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Abstract
We investigate the hot hand phenomenon using data on 110,513 free throws taken 
in the National Basketball Association. As free throws occur at unevenly spaced 
time points within a game, we consider a state-space model formulated in continu-
ous time to investigate serial dependence in players’ success probabilities. In par-
ticular, the underlying state process can be interpreted as a player’s (latent) varying 
form and is modelled using the Ornstein-Uhlenbeck process. Our results support the 
existence of the hot hand, but the magnitude of the estimated effect is rather small 
as the underlying success probabilities are elevated by only a few percentage points.

Keywords Free throws · Hot hand · Irregularly sampled data · Ornstein-Uhlenbeck 
process · Sports analytics · State-space model

1 Introduction

In several areas of society, it remains an open question whether a “hot hand” effect 
exists, according to which humans may temporarily enter a state during which they 
perform better than on average. While this concept may occur in different fields, 
such as among hedge fund managers and artists (Jagannathan et al. 2010; Liu et al. 
2018), it is most prominent in sports. Sports commentators and fans — especially 
in basketball — often refer to players as having a “hot hand”, and being “on fire” or 
“in the zone” when they show a (successful) streak in performance. In the academic 
literature, the hot hand has gained great interest since the seminal paper by Gilovich 
et al. (1985), who investigated a potential hot hand effect in basketball. They found 
no evidence for its existence and attributed the hot hand to a cognitive illusion, much 
to the disapproval of many athletes and fans. Still, the results provided by Gilovich 
et al. (1985) have often been used as a primary example for showing that humans 
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over-interpret patterns of success and failure in random sequences (see, e.g. Thaler 
and Sunstein 2009; Kahneman 2011).

During the last decades, many studies have attempted to replicate or refute the 
results of Gilovich et al. (1985), analysing sports such as volleyball, baseball, golf, 
and especially basketball. Bar-Eli et  al. (2006) provide an overview of 25 studies 
on the hot hand, 11 of which were in favour of the hot hand phenomenon, while 13 
studies provided evidence against the hot hand, and one study remained inconclu-
sive. Several more recent studies, often based on large data sets, support the exist-
ence of the hot hand (see, e.g. Raab et al. 2012; Green and Zwiebel 2017; Miller 
and Sanjurjo 2018; Chang 2019). Notably, Miller and Sanjurjo (2018) show that the 
original study from Gilovich et al. (1985) suffers from a selection bias. Using the 
same data as in the original study by Gilovich et  al. (1985), Miller and Sanjurjo 
(2018) account for that bias, and their results do reveal a hot hand effect. However, 
there are also recent studies which provide mixed results (see, e.g. Wetzels et  al. 
2016) or which do not find evidence for the hot hand, such as Morgulev et al. (2020). 
Thus, more than 30 years after the study of Gilovich et al. (1985), the existence of 
the hot hand remains highly disputed.

Moreover, the literature does not provide a universally accepted statistical model-
ling approach for the hot hand effect. While some studies regard it as serial correla-
tion in outcomes (see, e.g. Gilovich et al. 1985; Dorsey-Palmateer and Smith 2004; 
Miller and Sanjurjo 2018), others consider it as serial correlation in success prob-
abilities (see, e.g. Albert 1993; Wetzels et al. 2016; Ötting et al. 2020). The latter 
modelling approach translates into a latent (state) process underlying the observed 
performance — intuitively speaking, a measure for a player’s form — which can 
be elevated without the player necessarily being successful in every attempt. In our 
analysis, we follow this approach and hence consider state-space models (SSMs) 
to investigate the hot hand effect in basketball. Specifically, we analyse free throws 
from more than 9000 games played in the National Basketball Association (NBA), 
totalling in 110,513 observations. In contrast, Gilovich et  al. (1985) use data on 
2600 attempts in their controlled shooting experiment.

Free throws in basketball, or similar events in sports with game clocks, occur 
at unevenly spaced time points. These varying time lengths between consecu-
tive attempts may affect inference on the hot hand effect if the model formulation 
does not account for the temporal irregularity of the observations. As an illustra-
tive example, consider an irregular sequence of throws with intervals ranging from, 
say, two seconds to 15 minutes. For intervals between attempts that are fairly short 
(such as a few seconds), players will most likely be able to retain their form from 
the last shot. On the other hand, if several minutes elapse before players take their 
next shot, it becomes less likely that they are able to retain their form from the last 
attempt. However, we found that existing studies on the hot hand do not account 
for different interval lengths between attempts. In particular, studies investigating 
serial correlation in success probabilities usually consider discrete-time models that 
require the data to follow a regular sampling scheme and thus, cannot (directly) be 
applied to irregularly sampled data. In our contribution, we overcome this limitation 
by formulating our model in continuous time to explicitly account for irregular time 
intervals between free throws in basketball. Specifically, we consider a stochastic 
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differential equation (SDE) as latent state process, namely the Ornstein-Uhlenbeck 
(OU) process, which represents the underlying form of players fluctuating continu-
ously around their average performance.

In the following, Sect. 2 presents our data set and covers some descriptive statis-
tics. Subsequently, in Sect. 3, the continuous-time SSM formulation for the analysis 
of the hot hand effect is introduced, while its results are presented in Sect. 4. We 
conclude our paper with a discussion in Sect. 5.

2  Data

We extracted data on all basketball games played in the NBA between October 2012 
and June 2019 from https:// www. baske tball- refer ence. com/, covering both regular 
seasons and playoff games. For our analysis, we consider data only on free throw 
attempts as these constitute a highly standardised setting without any interaction 
between players, which is usually hard to account for when modelling field goals 
in basketball. Specifically, when considering field goals in basketball, several addi-
tional factors may affect the outcome of a shot, such as the position of the player, the 
position of the opposing team’s players, and the effort of the defence. If this infor-
mation on a shot is ignored, a corresponding hot hand analysis might suffer from an 
omitted-variable bias.

We included all players who took at least 2000 free throws in the period consid-
ered, totalling in 110,513 free throws from 44 players. For each player, we included 
only those games in which he attempted at least four free throws to ensure that 
throws did not only follow successively (as players receive up to three free throws if 
they are fouled). In our analysis of the hot hand effect, we are interested in within-
game variations in a player’s form. A single sequence of free throw attempts thus 
consists of all throws taken by one player in a given game, totalling in 15,075 throw-
ing sequences with a median number of 6 free throws per game (min: 4; max: 39).

As free throws occur irregularly within a basketball game, the information on 
whether an attempt was successful needs to be supplemented by its time point 
tk, k = 1,… , T  , where 0 ≤ t1 ≤ t2 ≤ … ≤ tT , corresponding to the time already 
played (in minutes) as indicated by the game clock. For each player p in his n-th 
game, we thus consider an irregular sequence of binary variables Yp,n

t1
, Y

p,n
t2

,… , Y
p,n
tTp,n

 , 
with

In our sample, the proportion of successful free throw attempts is obtained as 0.784. 
However, there is considerable heterogeneity in the players’ throwing success as 
the corresponding empirical proportions range from 0.451 (Andre Drummond) to 
0.906 (Stephen Curry). Players can receive up to three free throws (depending on the 
foul) in the NBA, which are then thrown in quick succession, and the proportion of 
successful free throws differs substantially between the three attempts, with 0.769, 
0.8, and 0.883 obtained for the first, second, and third free throw, respectively. To 

Y
p,n
tk

=

{
1 if free throw attempt at time tk is successful;

0 otherwise.

https://www.basketball-reference.com/
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account for the position of the throw in a player’s set of (at most) three free throws, 
we hence include the dummy variables ft2 and ft3 in our analysis. In our sample, 
54.5% of all free throws correspond to the first, 43.7% to the second, and only 1.8% 
to the third attempt in a set (cf. Table  1). Furthermore, as the outcome of a free 
throw is likely affected by intermediate information on the game — such as a close 
game leading to pressure situations — we consider several further covariates, which 
were also used in previous studies (see, e.g. Toma 2017; Morgulev et al. 2020). Spe-
cifically, we consider the current score difference (scorediff), a home dummy vari-
able (home), and a dummy variable indicating whether the free throw occurred in 
the last 30 seconds of the quarter (last30). Corresponding summary statistics are 
shown in Table 1.

In Table 2, example throwing sequences used in our analysis are shown for free 
throws taken by LeBron James in five NBA games. These throwing sequences illus-
trate that free throw attempts often appear in clusters of two or three attempts at 
the same time (depending on the foul), followed by a time period without any free 
throws. Therefore, it is important to take into account the different lengths of the 
time intervals between consecutive attempts as the time elapsed between free throws 
affects a player’s underlying form.

3  Continuous‑time modelling of the hot hand

3.1  State‑space model specification

Following the idea that the throwing success depends on a player’s current (latent) 
form (see, e.g. Albert 1993; Wetzels et al. 2016; Ötting et al. 2020), we model the 
observed free throw attempts using a state-space model formulation as represented 
in Fig. 1. The observation process corresponds to the binary sequence of a player’s 
throwing success, while the state process can be interpreted as a player’s underlying 
form (or “hotness”). We further include the covariates introduced in Sect. 2 in the 
model, which possibly affect a player’s throwing success. In particular, we model 
the binary response of throwing success Yp,n

tk
 using a Bernoulli distribution with the 

associated success probability �p,n
tk

 being a function of the player’s current state Sp,ntk
 

and the covariates. Dropping the superscripts p and n for notational simplicity from 
now on, we thus have

Table 1  Descriptive statistics of 
the covariates

Mean St. dev. Min. Max.

Scorediff 0.576 9.860 − 45 49
Home 0.514 – 0 1
Last30 0.093 – 0 1
ft2 0.437 – 0 1
ft3 0.018 – 0 1
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where �0,p is a player-specific intercept to account for differences between players’ 
average throwing success. To address the temporal irregularity of the free throw 
attempts, we formulate the stochastic process {St}t≥0 in continuous time. Further-
more, we require the state process to be continuous-valued to allow for gradual 
changes in a player’s form, rather than assuming a finite number of discrete states 
(e.g. three states interpreted as cold vs. normal vs. hot; cf. Wetzels et al. 2016; Green 
and Zwiebel 2017). In addition, the state process ought to be stationary such that in 
the long-run a player returns to his average form. A natural candidate for a corre-
sponding stationary, continuous-valued and continuous-time process is the OU pro-
cess, which is described by the following SDE:

where 𝜃 > 0 is the reversion parameter indicating the strength of reversion to the 
long-term mean � ∈ ℝ , while 𝜎 > 0 is the diffusion parameter controlling the 
strength of fluctuations, and Bt denotes the Brownian motion. We further specify 
� = 0 to ensure that our model is identifiable, leading to the state process fluctuat-
ing around a player’s average form, given the current covariate values. In particular, 
positive values of the state process indicate higher success probabilities, whereas 
negative values indicate decreased throwing success, given the player’s average abil-
ity and the current game characteristics.

As shown in Fig. 1, we model the hot hand effect as serial correlation in success 
probabilities as induced by the state process. Specifically, the observed free throw 
attempts are conditionally independent, given the underlying states, while the unob-
served state process induces correlation in the observation process. Regarding the 
hot hand effect, the reversion parameter � of the OU process is thus of main interest 
as it governs the speed of reversion (to the average form). The smaller � , the longer 
it takes for the OU process to return to its mean and hence the higher the serial 
correlation. To assess whether a model including serial dependence (i.e. an SSM) 
is actually needed to describe the structure in the data, we additionally fit a bench-
mark model without the underlying state variable Stk in Eq. (1). Consequently, the 

(1)
Ytk ∼ Bern(�tk ), logit(�tk ) =Stk + �0,p + �1home + �2scorediff

+ �3last30 + �4ft2 + �5ft3,

(2)dSt = �(� − St)dt + �dBt, S0 = s0,

St1 St2 St3
...

Yt1 Yt2 Yt3 throwing success (observed)

player’s form (hidden)

Fig. 1  Dependence structure of our SSM: the throwing success Y
t
k
 is assumed to be driven by the under-

lying (latent) form of a player. To explicitly account for the irregular time intervals between observations, 
we formulate our model in continuous time



319

1 3

Continuous‑time state‑space modelling of the hot hand in…

benchmark model corresponds to the absence of any hot hand effect, i.e. a standard 
logistic regression model. We compare the fit of both models to the data using a 
cross-validated likelihood score as suggested by Celeux and Durand (2008). While 
standard information criteria such as AIC and BIC are often considered for this pur-
pose, it may very well be the case that they underpenalise the flexible parameters 
of the OU process in our SSM — a similar issue is well-known for nonparamet-
ric and mixed models (see, e.g. Hurvich et  al. 1998; Müller et  al. 2013). For the 
SSM considered here, it is anything but clear to what extent the latent states should 
be counted as parameters and contribute to the penalisation term (see, e.g. Auger-
Méthé et al. in press). We circumvent these difficulties by instead using a cross-val-
idated likelihood score to compare our models. We split the data set into 20 random 
samples, where 90% of each individual’s throwing sequences serve as training data, 
while the remaining 10% serve as test data. Fitting each model to the training data, 
we subsequently consider the out-of-sample log-likelihood on the remaining 10% of 
the throwing sequences to assess the models.

3.2  Statistical inference

The likelihood of the continuous-time SSM given by Eqs. (1) and (2) involves inte-
gration over all possible realisations of the continuous-valued state Stk , at each obser-
vation time t1, t2,… , tT . For simplicity of notation, let the integer � = 1, 2,… , T  
denote the index of the observation in the time series, such that Yt� shortens to Y� and 
St� shortens to S� . Further, t� represents the time at which the observation � was col-
lected. Then the likelihood of a single throwing sequence y1,… , yT is given by

where we assume that each player starts a game in his stationary distribution 
S1 ∼ N

(
0,

�2

2�

)
 , i.e. the stationary distribution of the OU process. Further, we 

assume Y� to be Bernoulli distributed with corresponding state-dependent probabili-
ties Pr(y� |s�) additionally depending on the current covariate values (cf. Eq.  (1)), 
while the transition density of the state process p(s� |s�−1) is normally distributed as 
determined by the conditional distribution of the OU process:

where �� = t� − t�−1 denotes the time difference between consecutive observations. 
Note that some of the observations actually occur at the exact same time accord-
ing to the game clock, namely if fouled players are assigned two or three succes-
sive free throws. In such cases, the conditional distribution in Eq. (4) is given by 

(3)

LT = ∫ …∫ p(y1,… , yT , s1,… , sT )dsT … ds1

= ∫ …∫ p(s1)Pr(y1|s1)
T∏

�=2

p(s� |s�−1)Pr(y� |s�)dsT … ds1,

(4)S� |S�−1 = s ∼ N

(
e−��� s,

�2

2�

(
1 − e−2���

))
,
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S� |S�−1 = s ∼ N(s, 0) , for �� = 0 , such that effectively, we assume a player’s under-
lying form to be the same for two or three successive attempts.

Due to the T integrals in Eq. (3), the likelihood calculation is intractable. To ren-
der its evaluation feasible, we approximate the multiple integral by finely discretis-
ing the continuous-valued state space as first suggested by Kitagawa (1987). The 
discretisation of the state space can effectively be seen as a reframing of the model 
as a continuous-time hidden Markov model (HMM) with a large but finite number 
of states, enabling us to apply the corresponding efficient machinery. In particular, 
we use the forward algorithm to calculate the likelihood, defining the possible range 
of state values as [−2, 2] , which we divide into 100 intervals. We chose the interval 
[−2, 2] such that the essential range of possible values of the state process is covered. 
The latter can be examined by looking at the (estimated) stationary distribution of 
the OU process, which we also monitored while fitting the model. For the OU pro-
cess, a possible choice of the interval range would be 

�
−3�∕

√
2�, 3�∕

√
2�

�
 (cor-

responding to three times the standard deviation in either direction as suggested by 
Fridman and Harris 1998). For further details on the approximation of the likelihood 
via state discretisation, see Ötting et  al. (2020) for discrete-time and Mews et  al. 
(2020) for continuous-time SSMs.

As we are interested in within-game variations of a player’s form, we assume sin-
gle throwing sequences of players to be mutually independent, conditional on the 
model parameters, such that the likelihood over all games and players is simply cal-
culated as the product of the individual likelihoods. The model parameters, i.e. the 
reversion parameter and the diffusion coefficient of the OU process as well as the 
regression coefficients, are then estimated by numerically maximising the (approxi-
mate) joint likelihood. The resulting parameter estimators are unbiased and consist-
ent — corresponding simulation experiments are shown in Mews et al. (2020).

4  Results

According to the cross-validated likelihood scores, the continuous-time model 
formulation including a potential hot hand effect is preferred over the benchmark 
model without any underlying state process. On average, the difference in the out-
of-sample log-likelihood between the models is 3.8 in favour of the continuous-time 
SSM, with the latter scoring higher likelihoods in 17 out of 20 cross-validation sets. 
The parameter estimates of the OU process, which represents the underlying form 
of a player, as well as the estimated regression coefficients are shown in Table 3. 
In particular, the estimate for the reversion parameter � of the OU process is fairly 
small, thus indicating serial correlation in the state process over time. To be more 
specific, the autocorrelation function (ACF) of the OU process is proportional to 
exp(−�� ), where � denotes the time interval, based on which we can deduce that 
exp(−0.042 ⋅ 71) ≈ 0.05 . Consequently, the ACF decreases by 95% over a time 
interval of 71 minutes, indicating that the hot hand phenomenon occurs over a whole 
game. Given that an NBA game lasts 48 minutes, our results indicate that the cor-
relation between a player’s form at the beginning and end of a game is still around 
0.13 (cf. Fig. 2).
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Based on the estimated parameters of the OU process, the corresponding sta-
tionary distribution is estimated as N

(
0, 0.3482

)
 , indicating a rather small range 

of the state process. The latter becomes apparent also when simulating state tra-
jectories based on the parameter estimates of the OU process (cf. Fig. 3). Still, 
the associated success probabilities, given that all covariate values are fixed to 
zero, vary considerably during the time of an NBA game (cf. right y-axis of 
Fig.  3). More specifically, the state process fluctuates between – 0.68 and 0.68 
around 95% of the time, implying that for a player with median throwing suc-
cess the corresponding success probabilities lie between 0.69 and 0.9, conditional 
on the covariates being equal to zero. In this specific case, a player’s underlying 
form thus changes his throwing success by up to – 12 and + 8 percentage points 
(the change in percentage points is not symmetrical around the average throwing 
success as we model the predictor on the logit scale, cf. Eq. (1)). While the state 
process and hence the resulting success probabilities slowly fluctuate around the 
average throwing success (given the covariates), the simulated state trajectories 
reflect the temporal persistence of the players’ underlying form. Thus, our results 

Table 3  Parameter estimates 
with 95% confidence intervals

Parameter Estimate 95% CI Odds ratios

� (Reversion parameter) 0.042 [0.016; 0.109] –
� (Diffusion) 0.101 [0.055; 0.185] –
�1 (Home) 0.023 [– 0.009; 0.055] 1.023
�2 (Scorediff) 0.030 [0.011; 0.048] 1.030
�3 (Last30) 0.003 [– 0.051; 0.058] 1.003
�4 (ft2) 0.223 [0.192; 0.254] 1.250
�5 (ft3) 0.421 [0.279; 0.563] 1.523

Fig. 2  Continuous-time autocorrelation function of the OU process based on the estimated reversion 
parameter provided in Table 3. The shaded area corresponds to the 95% CI
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suggest that players can temporarily enter a state in which their success prob-
ability is considerably higher than their average performance, which provides evi-
dence for a hot hand effect.

Regarding the estimated regression coefficients, the player-specific intercepts 
𝛽0,p range from -0.311 to 2.192 (on the logit scale), reflecting the heterogeneity 
in players’ throwing success. The estimates for �1 to �5 are displayed in Table 3 
together with their 95% confidence intervals and the resulting odds ratios. The 
chance in making a free throw is slightly increased if the game is played at home 
( �1 ) or if a free throw occurs in the last 30 seconds of a quarter ( �3 ), but both 
corresponding confidence intervals include the zero. In contrast, the confidence 
interval for the score difference ( �2 ) does not include the zero and its effect is 
positive, indicating that the odds to make a free throw increase by 3% per score 
the team is leading. The position of the throw, i.e. whether it is the first, second 
( �4 ), or third ( �5 ) attempt in a row, has the largest effect of all covariates consid-
ered: compared to the first free throw, the odds of a hit increase considerably if 
it is the second or, in particular, the third attempt, i.e. an increase in odds of 25% 
and 52.3%, respectively, which was already indicated by the descriptive analysis 
presented in Sect.  2. However, this strong effect on the success probabilities is 
probably caused by the fact that three successive free throws are only awarded if 
a player is fouled while shooting a three-point field goal, which, in turn, is more 
often attempted by players who regularly perform well at free throws.

To further investigate how the hot hand may evolve during a game, we com-
pute the most likely state sequences, corresponding to the underlying form of a 
player. Specifically, we seek

Fig. 3  Simulation of possible state trajectories for the length of an NBA game based on the estimated 
parameters of the OU process. The red-dashed line indicates the intercept (here: the median throwing 
success over all players), around which the processes fluctuate. The right y-axis shows the success prob-
abilities resulting from the current state (left y-axis), given that the explanatory variables equal 0. The 
graphs were obtained by application of the Euler-Maruyama scheme with initial value 0 and step length 
0.01
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where s∗
1
,… , s∗

T
 denotes the most likely state sequence given the observations. As 

we transferred our continuous-time SSM to an HMM framework by finely discre-
tising the state space (cf. Sect. 3.2), we can use the Viterbi algorithm to calculate 
such sequences at low computational cost (Zucchini et al. 2016). Figure 4 shows the 
most likely states underlying the throwing sequences presented in Table 2. While the 
decoded state processes fluctuate around zero (i.e. the player’s average throwing suc-
cess), the state values vary slightly over the time of an NBA game. Over all players 
and games, the decoded states range from −0.42 (in a game of Josh Smith) to 0.46 
(Andre Drummond), leading to changes in the success probabilities of about −10 
and +11.4 percentage points, respectively, given the corresponding current game 
characteristics.

The decoded state sequences in Fig. 4 further allow to illustrate the advantages 
and the main idea of our continuous-time modelling approach. For example, consider 
the throwing sequence in the second match shown, where LeBron James only made 
a single free throw of his first four attempts. The decoded state at throw number 3 is 
−0.092 (cf. Fig. 4) and the time passed between throw number 3 and 4 is 1.65 min-
utes (cf. Table 2). Thus, the value of the state process at throw number 4 is drawn 
from a normal distribution, given the decoded state of the previous attempt, with 
mean e−0.042⋅1.65(−0.092) = −0.086 and variance 0.1012

2⋅0.042
(1 − e−2⋅0.042⋅1.65) = 0.016 

(cf. Eq. (4)). Accordingly, the value of the state process for throw number 5 is drawn 

(s∗
1
,… , s∗

T
) = argmax

s1,…,sT

Pr(s1,… , sT |y1,… , yT ),

Fig. 4  Decoded states underlying the throwing sequences of LeBron James shown in Table 2. Successful 
free throws are shown in yellow, missed shots in black
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from a normal distribution with mean −0.050 and variance 0.078, conditional on 
the decoded state of −0.084 at throw number 4 and a relatively long time interval of 
12.22 minutes. As highlighted by these example calculations, the conditional distri-
bution of the state process takes into account the interval length between consecu-
tive attempts: the more time elapses, the higher the variance in the state process and 
hence, the less likely is a player to retain his form, with a tendency to return to his 
average performance.

5  Discussion

In our analysis of the hot hand, we used SSMs formulated in continuous time to 
model throwing success in basketball. Focusing on free throws taken in the NBA, 
our results provide evidence for a hot hand effect as the underlying state process 
exhibits some persistence over time. In particular, the model including a hot hand 
effect is preferred over the benchmark model without any underlying state process 
based on  cross-validated likelihood scores. Although we provide evidence for the 
existence of a hot hand, the magnitude of the hot hand effect is rather small as the 
underlying success probabilities are elevated by only a few percentage points (cf. 
Figs. 3 and 4 ).

A clear advantage of the continuous-time modelling framework considered in this 
contribution is that it enables us to explicitly account for the unevenly spaced time 
points of free throws in basketball. As argued in Sect. 1, it seems intuitively plausi-
ble that players are more likely to retain their form the less time elapses between two 
consecutive attempts. Our modelling approach thus naturally mirrors these consider-
ations by using the OU process to model the evolution of a player’s latent form over 
time, while accommodating varying interval lengths between observations. In con-
trast, SSMs operating in discrete time require that time intervals are of equal length 
and therefore, are not (directly) applicable to irregularly spaced observations in 
time. Although it is possible to temporally aggregate irregularly spaced data to gen-
erate regular (i.e. equidistant) time intervals between observations and thus, to ren-
der discrete-time models applicable, this approach comes with several drawbacks. 
For instance, the temporal aggregation of the data introduces subjectivity regarding 
the choice of the discrete-time modelling resolution and discards information on the 
exact observation times. Moreover, it has been shown that applying discrete-time 
models to data with irregularly spaced events can lead to biased estimates (see, e.g. 
Delsing et al. 2005; Barbour et al. 2013; de Haan-Rietdijk et al. 2017). Therefore, 
using continuous-time models to analyse irregularly spaced observations in time 
avoids the pitfalls mentioned above and, in addition, is conceptually appealing as the 
model’s interpretation does not depend on the time resolution of the data at hand.

A minor drawback of the analysis arises from the fact that there is no univer-
sally accepted statistical modelling approach for the hot hand. While we evaluate 
the magnitude of the hot hand effect based on the ACF (see Sect. 4), it is not clear 
how strong the autocorrelation in the state process should be to reflect a distinct hot 
hand pattern, rendering definite conclusions almost impossible. Based on the ACF, 
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however, the magnitude of the estimated hot hand effect can easily be compared 
to other studies which consider (discrete- or continuous-time) SSMs to investigate 
autocorrelation in players’ underlying success probabilities. A further limitation of 
our approach is related to the general problem of disentangling the hot hand effect 
from possible model misspecifications. Although we include several covariates in 
our model, which were also used in previous studies on free throw shooting in bas-
ketball, we cannot rule out an omitted-variable bias. In addition, possible heteroge-
neity across players regarding covariate effects has not been considered in our analy-
sis. Consequently, if player-specific effects or covariates which affect the outcome of 
a free throw are missing in our model, this may lead to biased estimates of the OU 
process and hence, to biased results on the hot hand effect.

In general, the modelling framework considered provides great flexibility with 
regard to distributional assumptions. In particular, the response variable is not 
restricted to be Bernoulli distributed (or Gaussian, as is often the case when mak-
ing inference on continuous-time SSMs), such that other types of response variables 
used in hot hand analyses (e.g. Poisson) can be implemented by changing just a few 
lines of code. Our continuous-time SSM can thus easily be applied to other sports, 
and the measure for success does not have to be binary as considered here. For read-
ers interested in adopting our code to fit their own hot hand model, the electronic 
supplement of this article provides the data and code used for the analysis.
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