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Abstract
We study the long-run stochastic stability properties of volunteering strategies in
finite populations.We allow for mixed strategies, characterized by the probability that
a player may not volunteer. A pairwise comparison of evolutionary strategies shows
that the strategy with a lower probability of volunteering is advantaged. However, in
the long run there are also populations of volunteering types. Monomorphisms with
the more volunteering types are more frequent if the populations have fewer mem-
bers, and if the benefits from volunteering are larger. Such monomorphisms with
volunteering cease to exist if the population becomes infinitely large. In contrast, the
disadvantage of volunteering disappears if the ratio of individual benefits and costs
of volunteering becomes infinitely large.

Keywords Volunteering · Stochastic stability · Finite populations · Mixed strategies

JEL Classification C73 · D62 · H41

1 Introduction

Groups often suffer from the following problem known as the volunteer’s dilemma:
Several members of a group might have the option to take a costly action. If at least
one of them volunteers and takes this action, this benefits all members in the group.
The volunteer also benefits but–unlike the other members of the group–incurs a cost.
So the volunteer’s net advantage is lower than that of other group members. Each
group member would be willing to volunteer if nobody else does, but each would
prefer that someone else volunteers.
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Examples can be found in many contexts. Teams in military combat need volun-
teers for dangerous special tasks or for actions that might rescue the whole team.1

Firms choose whether to experiment, or to innovate technologies that have common-
good nature, such that all firms of the same industry might learn or benefit from this
volunteering activity.2 Single firms or their CEOs take lobbying actions that benefit
these firms but might also be advantageous for the whole industry.3 Norm enforce-
ment through social punishment is also a volunteering game: several players might
observe a norm-violating behavior and think about whether to sanction the norm vio-
lator. The sanctioning activity is costly for the punisher and constitutes a contribution
to the enforcement of collective rules, so each player has an incentive to abstain,
hoping that someone else engages in this costly activity.4 The volunteer’s dilemma
also caught the attention of psychologists (see, e.g., Olivola et al. 2020). And the
animal world provides further illustrative evidence. Archetti (2009a, b) alludes to
a set of empirical environments in which the problem emerges. A generic exam-
ple is the choice of whether to make alarm calls that are costly for the call maker
but alert the larger group, for instance, of an approaching predator.5 Archetti and
Scheurin (2011) study the volunteer’s dilemma for the case in which the group ben-
efit emerges only if multiple players volunteer. Mielke et al. (2019) used artificial
dummies of snakes in a natural environment to study the possible motives of snake
alarms. They considered multiple possible reasons for such behavior, including the
motive of the alarm giving individual to signal his strength or fitness. They found
results in line with the volunteer’s dilemma game. A related variant of the volun-
teer’s dilemma emerges in waiting games, i.e., when wait-and-see behavior becomes
an option for the individuals in a group.6 A vivid example is the story of the mur-
der of Catherine Susan Genovese. According to early newspaper reports, thirty-eight
random bystanders allegedly watched or listened to it for thirty-five minutes before
the first person called the police (see Gansberg 1964, in a New York Times article).7

Diekmann (1985) offers a Nash equilibrium analysis of the volunteer’s problem
if players maximize their expected material payoffs. In the symmetric equilibrium
players typically mix between volunteering and not volunteering, making each other
potential volunteer just indifferent about whether to volunteer or not. We study the
stochastic dynamics of Diekmann’s volunteer’s dilemma in the long run in a finite
population. At each point of time the population consists of potentially several types,

1Blomberg et al. (2009) describe how merit awards might be used to turn a prisoner’s dilemma into a
volunteer’s dilemma in the context of heroic acts in military combat.
2See Johnson (2002) for a model of a volunteer game with incomplete information in the context of the
development of open-source software.
3Barbieri et al. (2020) study volunteering in this context, allowing for a trade-off between free-riding on
other members of the own group and preempting other groups on behalf of the own group.
4See Przepiorka and Diekmann (2018) for a discussion.
5Archetti (2011) reconsiders the alarm-call problem and studies the role of players’ vigilance, i.e., the
probability that a group member will observe that there is a predator approaching or not. Vigilance is a
prerequisite of making an alarm call in this case.
6See Bliss and Nalebuff (1984), Fudenberg and Tirole (1986) and Barbieri et al. (2020) for game theory
treatments of this and related volunteering games.
7Later studies report that the story is not supported by the available evidence and must be corrected on the
basis of the facts (see, e.g., Manning et al. 2007).
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where an individual’s type is described by the probability that this player volunteers.
The type composition of the population is determined by a Markov process in which
strong forces of selection and weak forces of mutation describe the transition prob-
abilities between population states. We study the long-run properties of this process,
using a framework developed by Fudenberg et al. (2006).

Finite population size is important for this concept, much like in Schaffer (1988),
and may make spiteful strategies evolutionarily advantageous.8 But unlike Schaf-
fer (1988), the concept developed by Fudenberg et al. (2006) looks at the long-run
composition of finite populations. It allows for a pairwise comparison of two strate-
gies with respect to their asymptotic success frequencies.9 We ask what the limit
distribution of strategies is. As strategies that randomize between volunteering and
not volunteering might yield superior outcomes (see, e.g., Bergstrom 2014), we
allow for such mixing. For any two strategies we find that the limit distribution has
two monomorphic populations of players. Groups might consist of players who all
volunteer with the same positive probability - hence, there is some degree of coop-
eration in the limit distribution. Populations with the strategy type that volunteers
less frequently turn out to be more likely than populations with the strategy type
that volunteers more frequently, however. This evolutionary advantage of the less
volunteering type holds for any pairwise comparison of volunteering strategies. The
analysis of all pairs of evolutionary strategies drawn from a set that is a continuum of
such strategies shows that there is a complete and transitive rank order on this set in
the volunteer’s dilemma game.

We also look at the comparative static properties. Volunteering groups are more
likely if the material benefit from volunteering is larger. If the material benefit
becomes very large in comparison to the cost of volunteering then, in a pairwise com-
parison of evolutionary strategies, the advantage of less cooperative types disappears
so that monomorphic groups of players with higher or lower volunteering probability
become equally likely. We also look at group size and find results suggesting that vol-
unteering is more pronounced in smaller groups, i.e., if the positive spillovers from
volunteering benefit a smaller group of other players. In the limit where the group
size becomes infinitely large, only monomorphic groups of players who volunteer
less frequently have a positive probability to exist in a pairwise comparison with any
other strategy type.

2 Themodel

The state game Consider the following sequence of state games that follow the rules
of Diekmann’s (1985) volunteer’s dilemma game. In a given period the population

8Schaffer’s (1988) criterion of whether a newly emerging mutant does better than incumbents in an other-
wise homogeneous finite population has been used in many contexts to explain status preferences (Eaton
and Eswaran 2003), the emergence of property rights (Eswaran and Neary 2014), in-group favoritism and
out-group spite (Eaton et al. 2011; Konrad and Morath 2012), aggression in conflict (Hehenkamp et al.
2010), and the inclination to start violent conflict (Konrad and Morath 2016).
9For applications of this framework see, e.g., Böttcher and Nagler (2016), Hauert and Imhof (2012), and
Traulsen and Nowak (2006).
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consists of m > 1 players. The state game has a population that consists of players
who apply at most two different evolutionary strategies. Each player can either vol-
unteer or not volunteer. We denote these two actions as a ∈ {v, n} . Like in many
evolutionary games studied, these pure strategies relate to the players’ types. Broad-
ening the framework, we allow for player types that randomize between these two
actions. Let σ with σ ∈ [0, 1] denote the probability for not volunteering, i.e., for
a = n. We also refer to players who randomize according to σ as a player of type σ .
The analysis considers all possible pairs (σ, σ̂ ) ∈ (0, 1] × [0, 1) with σ > σ̂ .10

The material payoffs are as follows. If at least one player volunteers then all play-
ers receive a benefit that is equal to G > 1. Each player who volunteers has a cost
of volunteering that is normalized to 1, regardless of how many other players vol-
unteer. The name of the game is motivated by the observation that each player can
increase her own material payoff by volunteering if no other player volunteers. But
each player prefers not to volunteer if at least one of the other players volunteers. Let
s players choose the mixed strategy σ , i.e., they do not volunteer with a probability
σ . Furthermore, let the other (m − s) players follow mixed strategy σ̂ such that each
of them does not volunteer with probability σ̂ , where σ̂ < σ . Then, the player who
follows the mixed strategy σ has the expected material payoff

y(s) = −(1 − σ) + (1 − σ sσ̂ (m−s))G. (1)

Here, (1 − σ) is the expected cost from volunteering for a player of type σ . The
term (1 − σ sσ̂ (m−s)) describes the probability that the public benefit G will emerge
if there are s players of type σ and (m − s) players of type σ̂ , assuming that their
actions emerge from their mixed strategies and in a way that makes their choice
outcomes from these mixed strategies stochastically independent. Analogously, each
player who follows strategy σ̂ has the expected material payoff

ŷ(s) = −(1 − σ̂ ) + (1 − σ sσ̂ (m−s))G. (2)

These material payoffs describe player types’ fitness in the state game. Since G > 1,
the expected material payoffs in Eqs. 1 and 2 are strictly positive.

Markov process We next turn to describing the population dynamics in an infinite
sequence of periods t = 1, 2, 3, ..., where a state game takes place in each of these
periods. Let ht = s players behave according to σ and (m − s) players behave
according to σ̂ in period t . Recall that σ > σ̂ by suitably naming the two strategies.
The material payoff of a player in period t does not depend on the actual period
but only on the type composition of the population and the player’s own type in the
state game taking place in that period. For two given strategies σ and σ̂ in period
t all relevant parameters for how the dynamics evolve are fully described by these
strategies and the single parameter ht , that is, by the number of players who follow
strategy σ . The types’ expected material payoffs as in Eqs. 1 and 2 drive this Markov

10A motivating question for this generalization is whether the existence of mixed strategy types might
cause stochastically stable bimorphisms. We limit consideration to pairwise comparisons. Extending the
analysis to an infinite number of types would require different tools to deal with the stochastic dynamics
with a continuum of types than we use here.
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process which follows the rules described by Fudenberg et al. (2006): The process is
initially in the state h0 ∈ {0, 1, 2, ..., m}. From one period to the next the total number
of individuals in the group remains fixed and equal to m but one individual is chosen
to reproduce. The transition probabilities ps,s′ between states s and s′ from period t

to period t +1 for a given state ht = s are described by Eqs. 3 to 8. For interior states
s ∈ {1, ..., m − 1} the Markov state remains unchanged with probability ps,s which
equals

ps,s = 1 − ps,s−1 − ps,s+1, (3)

where ps,s+1 and ps,s−1 are the probabilities of transition to the neighboring states.
Other transitions are not feasible:

ps,s′ = 0 for all s′ /∈ {s − 1, s, s + 1}. (4)

For the monomorphic boundary states s = 0 and s = m the process either stays there,
or moves to the neighboring state in the interior. This is possible due to mutations,
where μ measures the mutation probability.

pm,m = 1 − pm,m−1 = 1 − μ, (5)

p0,0 = 1 − p0,1 = 1 − μ, (6)

The probability for transitions from an interior state to one of the two neighboring
states is given by

ps,s+1 = sy(s)(1 − μ) + (m − s)ŷ(s)μ

sy(s) + (m − s)ŷ(s)

m − s

m
, (7)

and

ps,s−1 = sy(s)μ + (m − s)ŷ(s)(1 − μ)

sy(s) + (m − s)ŷ(s)

s

m
. (8)

The transition probabilities strictly follow Fudenberg et al. (2006). They depend on
the material payoffs y (s) and ŷ (s), the frequency distribution of types and the prob-
ability μ ≥ 0 that a mutation will occur (i.e., that, for instance, an individual of type
σ mutates and becomes a type who volunteers according to σ̂ instead of σ ). Note that
(3)–(8) describe the dynamics as a stochastic process, not as a deterministic process,
as is commonly done in the context of populations with more than countably many
individuals.

The probabilities in Eqs. 7 and 8 have an interpretation that becomes more trans-
parent for the case μ = 0. It goes back to Moran’s (1962) population dynamics with
frequency dependent transition probabilities, as described in Nowak et al. (2004) and
Taylor et al. (2004): all but one of the m players simply survive into the next period
(or reproduce identically) and keep their types. One of the m players is singled out,
‘dies’ and is replaced by a player who is possibly of the same type or of the other
type. To change the state from ht = s to ht+1 = s + 1, the player who is singled
out must necessarily be of type σ̂ and must be replaced by a player of type σ . In
the absence of mutations (μ = 0) the probability of this happening reduces to the
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textbook version of frequency-dependent transition dynamics in the Moran process
without mutations (see Nowak 2006, p. 109):

sy(s)

sy(s) + (m − s)ŷ(s)

m − s

m
. (9)

Intuitively, any of the m players in period t can be the one who dies. The term m−s
m

is
the probability that the player who dies is of type σ̂ . Furthermore, sy/(sy+(m−s)ŷ)

describes the probability that the replacement is a player of type σ . This probability is
frequency and fitness dependent. For y = ŷ this is as likely as s/m, i.e., proportional
to the share of type σ -players in the total population. But for y �= ŷ the selection
of the replacement type follows a drift. For y > ŷ this drift favors replacement by
a player of type σ , and for y < ŷ it favors replacement by a player of type σ̂ . The
possibility of mutations modifies this transition probability from Eqs. 9 to 7.

The reasoning for Eq. 8, i.e., the transition from ht = s to a state with ht+1 = s−1,
i.e., with one player of type σ being replaced by a player of type σ̂ , is analogous. If
the process is in ht = s and does not transit to one of the neighboring states, it must
stay at s, i.e., ht+1 = s, and the probability of this is, hence, (3). Without mutations
(μ = 0) the process (3)–(8) has two absorbing states, characterized by s = 0 and
s = m and transition probabilities p0,0 = pm,m = 1. But mutation allows the process
to leave these absorbing states, where we can think of μ as the probability of such an
event. Also, in the non-absorbing states s ∈ {1, 2, ..., (m− 1)} such a mutation (from
σ to σ̂ or vice versa) might happen, as described in Eqs. 7 and 8.

The limit result The Markov process described by Eqs. 3 to 8 is an ergodic Markov
chain: it is aperiodic and positive recurrent. Let P be the matrix of transition proba-
bilities ps,s′ . Because the Markov chain is ergodic, there exists a unique probability
vector π = (π1, ..., πm) that solves the equation

π(μ)P = π(μ) (10)

for any given positive μ. The vector π characterizes the unique limit distribution of
this Markov chain, with the following interpretation: If analogous Markov processes
operate in many populations in parallel–all of them following the logic of transition
probabilities (3)–(8) and all running for a very long time–and if we look at these
processes after a long enough time and identify the states in which these processes
are in the different populations, then the limit probability πs(σ, σ̂ ) is the share of
these populations that are in state s. The analytic steps in Fudenberg et al. (2006, p.
354) can be used to find the limit properties:

π∗
m ≡ lim

μ→0
πm

(
σ, σ̂

) = γ

γ + 1
and π∗

0 = 1 − π∗
m, (11)

where

γ =
m−1∏

s=1

y(s)

ŷ(s)
. (12)

We can, hence, state the following result:
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Proposition 1 Let the set of possible strategies be {σ, σ̂ }. (i) In the limit distribution
for μ → 0 the population consists of players exclusively of type σ with probability

π∗
m

(
σ, σ̂

) =

m−1∏

s=1

y(s)

ŷ(s)

m−1∏

s=1

y(s)

ŷ(s)
+ 1

(13)

and of players exclusively of type σ̂ with probability 1 − π∗
m

(
σ, σ̂

)
. (ii) π∗

m

(
σ, σ̂

)
>

1/2 if and only if σ > σ̂ . (iii) Let three feasible strategies be σ1, σ2, and σ3. It holds
that {

π∗
m(σ1, σ2) >

1

2
and π∗

m(σ2, σ3) >
1

2

}
=⇒ π∗

m(σ1, σ3) >
1

2
. (14)

In words, if strategy σ1 is advantageous against strategy σ2 and σ2 is advantageous
against strategy σ3, then σ1 is advantageous against σ3.

A proof of this and all further propositions is in the Appendix. The first part of the
proposition suggests that, in the long run, the Markov process is either in state s = 0
or in s = mwith probability 1. Hence, if one wants to compare strategies with respect
to their stochastic stability advantage, it makes sense to compare πm and π0. Strategy
σ can be considered to be more advantageous than strategy σ̂ if πm(σ, σ̂ ) > 1/2.

The characteristic of a strategy to be more advantageous mainly depends on mate-
rial payoff relative to the material payoff associated with other strategies on the whole
set of states. Consider a player who volunteers. In some situations the player is not
pivotal, because one or several other players volunteer. Her action as a volunteer is
redundant and only costly to her, making her worse off than others. In other situa-
tions the player is pivotal and G is provided if and only if the player volunteers. If
the player volunteers this increases the player’s own material payoff by G − 1. This
increase is, however, smaller than the increase G that results for all other members
of the population. Volunteering does never improve the player’s payoff relative to the
payoffs of others and this provides an intuition for result (iii) in the proposition. It
follows from (iii) that σ = 1 (i.e., not volunteering with probability one) is the most
advantageous evolutionary strategy, independent of which of the infinite number of
other strategies might be the alternative strategy. This property is also interesting
from a methodological point. It shows that there is a complete and transitive ordering
in a pairwise comparison of strategies in the volunteer’s dilemma.11

Stochastic stability versus evolutionary stability: an example Think of populations
with two individuals only (m = 2). Consider a numerical example with a value of
the public good of G = 2. There is only one interior state, which is s = 1. Inserting

11The fact that a lower volunteering probability (i.e., higher σ ) is more advantageous could also be
described as spiteful behavior: the player refrains from an action that would increase the material payoff
of the player, and this behavior is chosen because the action would increase the material payoff of other
players by even more.
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into (13) yields

π∗
m = 1 − 2σ σ̂ + σ

2 − 4σ σ̂ + σ + σ̂
(15)

as the probability that the population consists of players of type σ only. We plot this
probability for any combination (σ, σ̂ ) ∈ (0, 1)×(0, 1) in Fig. 1. It shows that for any
σ this probability is increasing in σ and decreasing in σ̂ with lower bound π∗

m = 1
3

and upper bound π∗
m = 2

3 , and π∗
m(σ, σ̂ ) = 1

2 for all σ = σ̂ .
Fudenberg et al. (2006) provides us with a framework to consider stochastic sta-

bility if the set of possible player types has only two elements, as in this example. In a
more general framework a dynamic process might start in a monomorphic state char-
acterized by σ . After a mutant σ̂ emerges it might return to the monomorphic state
σ , or it might transit into a monomorphic state characterized by σ̂ . It stays there until
another mutant type σ̃ ∈ [0, 1] emerges, which might differ from σ and σ̂ , and so
on. It would be interesting to characterize a possible surface of the limit distribution
for any combination (σ, σ ) on the type space [0, 1] × [0, 1] if it exists, but we have
to leave this problem to future analysis. Figure 1 is suggestive, showing a stochas-
tic stability advantage of more selfishness, for whatever are the two types that might
interact with each other.

To emphasize the divergence of this result to evolutionary stability in large popu-
lations, suppose that only the pure strategies σ = 0 and σ = 1 are feasible strategies.
By Proposition 1 it then holds almost always that both members of the population
either both volunteer or both do not volunteer. The state in which both individuals
are of the non-volunteering type is more likely than the state in which both volun-
teer. For m = 2, the probability that the population consists of non-volunteers only
is G/ (2G − 1). We might compare the stochastic stability outcome in this case with
the evolutionarily stable outcome if players in each period are drawn from a large
set with more than countably many players that are teamed up randomly in pairwise
interactions. If, in the latter environment, evolutionary strategies are restricted to the
two pure strategies σ = 0 and σ = 1, an equilibrium in evolutionarily stable strate-
gies has a share of q = 1/G of players of type σ = 1 and a remaining share of (1−q)

Fig. 1 Limit probability π∗
2 (on the vertical axis) for combinations of σ and σ̂ (on the horizontal axes).

The horizontal planes at altitude 1
3 and

2
3 suggest that all π∗

2 are between these values
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of players of type σ = 0. By construction of q, a player of type σ = 0 has, in expec-
tation, the material payoff of G− 1. A player of type σ = 1 has an expected material
payoff of (1 − q)G. These expected values are equal if q = 1/G. Any population
mixture q̃ > q with a higher share of non-volunteering types favors the volunteering
type σ = 0 as (1 − q̃)G < (1 − q)G = G − 1, and G − 1 is the payoff of type
σ = 0. Similarly, any population mixture q̃ < q with a larger share of volunteering
types favors the non-volunteering type σ = 1 as G − 1 = (1 − q)G < (1 − q̃)G.

The divergence between evolutionary stability for infinitely large populations
and stochastic stability of the Moran process as limit probabilities of the stochastic
dynamics in finite populations has been noticed for some time. Transition dynamics
of the underlying Markov process in finite populations are stochastic, whereas the
evolutionary dynamics in infinite populations are typically approximated by deter-
ministic processes. Foster and Young (1990) discuss the importance of an ‘adequate’
account of stochastic effects and suggest the concept of stochastically stable equilib-
rium. Our results fundamentally build on the limit results for ergodic Markov chains
and the tool provided by Fudenberg et al. (2006) for calculating the invariant distribu-
tion.12 Attempts have been made by Harper and Fryer (2016) and Mohseni (2019) to
reconcile stochastic stability in finite but large populations and standard concepts of
deterministic approximiations of the dynamics of evolutionary processes in infnitely
large populations.

If the dilemma becomes more severe We can study how the stationary group com-
position is affected by the relationship between the cost of volunteering (that was
normalized to 1) and the individual gross benefit for each group member denoted by
G. Recall that a higher σ means that the strategy type volunteers less frequently and
state m means that the population exclusively consists of types σ with σ > σ̂ .

Proposition 2 Suppose only two evolutionary strategies exist, characterized by σ

and σ̂ with σ > σ̂ . The limit probability π∗
m

(
σ, σ̂ ; G

)
for the Markov process to be in

state s = m is smaller if the group members’ benefits G from the volunteer’s action
is larger. Furthermore, limG→∞ π∗

m

(
σ, σ̂ ; G

) = limG→∞ π∗
0

(
σ, σ̂ ; G

) = 1/2.

Proposition 2 suggests that groups of players who volunteer more frequently are
more common in the limit distribution of group types if the benefit G that each group
member has if one group member volunteers is larger. A higherG reduces the relative
disadvantage which the volunteer has, compared to the non-volunteer. Accordingly,
the two evolutionary strategies σ and σ̂ perform more equally in terms of relative
material payoff and differences in the likelihoods π∗

m and π∗
0 of monomorphic groups

of each of the two strategy types are reduced. If the benefit G becomes very large,
the comparative disadvantage of being a volunteer becomes less and less important

12Their theorem draws on a theorem that was developed by Fudenberg and Imhof (2006) who relate their
work to Freidlin and Wentzell (1984) on systems with random dynamics but offer an independent proof
for their result.
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and vanishes in the limit so that monomorphic groups of more frequent volunteers
and groups of less frequent volunteers become equally likely for G → ∞.

Group size effects To study group size effects we consider the limit probabil-
ity π∗

m(σ, σ̂ ) when comparing a mixed strategy to a strategy of always or never
volunteering.

Proposition 3 Suppose that 1 = σ > σ̂ or σ > σ̂ = 0. Then π∗
m(σ, σ̂ ) is higher

for higher m. For any σ > σ̂ , in the limit for very large groups, groups consist of the
less volunteering types with probability 1.

We find that, compared to any mixed strategy, the advantage of never volunteering
as well as the disadvantage of always volunteering increase with group size.13 In the
limit for large groups, the stationary distribution attributes a probability of 1 to groups
that consist of less volunteering members only. The intuition for the result is again
that only relative material success matters. It is precisely the fact that volunteering
benefits others that is to the disadvantage of the volunteer. Hence, if more players
benefit from the act of volunteering, then this disadvantage becomes larger.

3 Conclusions

We studied the volunteer’s dilemma when the space of evolutionary strategies
includes the two pure strategies (volunteer; not volunteer) and any mixing between
these. We provide a pairwise comparison of all possible mixed strategies with respect
to their long-run evolutionary advantage. This pairwise comparison builds on meth-
ods introduced by Fudenberg et al. (2006) for games with only two strategies. The
pairwise comparison between all possible evolutionary strategies in a continuous
strategy space does not necessarily lead to a complete ordering of strategies. How-
ever, in the context of the volunteer’s dilemma, our analysis shows that such a
complete ordering exists. Comparing any two strategies, the type who volunteers with
a lower probability has a greater evolutionary advantage for any pairwise comparison.

Appendix

Proof of Proposition 1 (i) The first part of this proposition just inserts the descrip-
tions of players’ fitness (1) and (2) that emerge for the volunteer’s dilemma in the

13Intuitively, similar comparative statics properties should hold for arbitrary pairs (σ, σ̂ ) but analytical
results are less straightforward in this case. The reason is that, when adding another player, the relative
advantage from a lower volunteering probability decreases (material payoff increases for both strategies
σ and σ̂ because it becomes more likely that someone else volunteers). However, volunteering benefits a
larger group of players, which makes non-volunteering more attractive.
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machinery of Fudenberg et al. (2006). (ii) For the second part, note that

m−1∏

s=1

y(s)

ŷ(s)
=

m−1∏

s=1

z(s) + σ

z(s) + σ̂
(16)

where
z(s) = (−1 + (1 − σ sσ̂m−s)G). (17)

We can re-write (13) as

π∗
m =

m−1∏

s=1

z(s)+σ
z(s)+σ̂

m−1∏

s=1

z(s)+σ
z(s)+σ̂

+ 1

. (18)

Hence, π∗
m is larger than 1/2 if and only if

m−1∏

s=1

z(s) + σ

z(s) + σ̂
> 1. (19)

This inequality holds because, for each single factor, (z(s) + σ) /
(
z(s) + σ̂

)
> 1 if

and only if σ > σ̂ . Thus, σ > σ̂ is necessary and sufficient for π∗
m

(
σ, σ̂

)
> 1/2.

(iii) By part (ii), π∗
m(σ1, σ2) > 1/2 requires σ1 > σ2 and π∗

m(σ2, σ3) > 1/2 requires
σ2 > σ3. Thus, σ1 > σ3, and this, in turn, implies π∗

m(σ1, σ3) > 1/2.

Proof of Proposition 2 Equation 13 can be transformed to

1

π∗
m

(
σ, σ̂ ; G

) = 1 + 1
m−1∏

s=1

((1−σ s σ̂m−s )G−1)+σ
((1−σ s σ̂m−s )G−1)+σ̂

. (20)

Hence, π∗
m

(
σ, σ̂ ; G

)
is decreasing if

∂

[
m−1∏

s=1

((1−σ s σ̂m−s )G−1)+σ
((1−σ s σ̂m−s )G−1)+σ̂

]

∂G
< 0. (21)

Inequality (21) holds because

∂
[

((1−σ s σ̂m−s )G−1)+σ
((1−σ s σ̂m−s )G−1)+σ̂

]

∂G
= − (1 − σ sσ̂m−s)

(
σ − σ̂

)

(
G(1 − σ sσ̂m−s) + σ̂ − 1

)2 < 0 (22)

for each factor in the product. The limit property for G → ∞ then follows directly
from

lim
G→∞

1

π∗
m

(
σ, σ̂ ; G

) = 1 + lim
G→∞

1
m−1∏

s=1

((1−σ s σ̂m−s )G−1)+σ
((1−σ s σ̂m−s )G−1)+σ̂

= 2. (23)
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Proof of Proposition 3 We have to show that, for m̃ = m+1 the inequality 1
π∗

m
> 1

π∗
m̃

holds if σ = 1 > σ̂ or σ > σ̂ = 0, where

1

π∗
m

(
σ, σ̂

) = 1 +
m−1∏

s=1

((1 − σ sσ̂m−s)G − 1) + σ̂

((1 − σ sσ̂m−s)G − 1) + σ
(24)

and
1

π∗
m̃

(
σ, σ̂

) = 1 +
m+1−1∏

s=1

((1 − σ sσ̂m+1−s)G − 1) + σ̂

((1 − σ sσ̂m+1−s)G − 1) + σ
. (25)

Consider first the case σ = 1. The inequality 1
π∗

m
> 1

π∗
m̃

reduces to

m−1∏

s=1

((1 − σ̂m−s)G − 1) + σ̂

((1 − σ̂m−s)G − 1) + 1
>

m+1−1∏

s=1

((1 − σ̂m+1−s)G − 1) + σ̂

((1 − σ̂m+1−s)G − 1) + 1
(26)

The right-hand side of this inequality can be written as

((1−σ̂m+1−1)G−1)+σ̂

((1−σ̂m+1−1)G−1)+1

m+1−1∏

s=2

((1−σ̂m+1−s )G−1)+σ̂

((1−σ̂m+1−s )G−1)+1

= ((1−σ̂m+1−1)G−1)+σ̂

((1−σ̂m+1−1)G−1)+1

m−1∏

s=1

((1−σ̂m−s )G−1)+σ̂
((1−σ̂m−s )G−1)+1 (27)

and the claim then follows from ((1−σ̂m+1−1)G−1)+σ̂

((1−σ̂m+1−1)G−1)+1
< 1.

Consider next the case σ̂ = 0. The comparison simplifies to

m−1∏

s=1

G − 1

G − 1 + σ
>

m+1−1∏

s=1

G − 1

G − 1 + σ
(28)

and holds because
G − 1

G − 1 + σ
∈ (0, 1). (29)

The limit property (ii) follows from

lim
m→∞ π∗

m = 1

1 + limm→∞
m−1∏

s=1

((1−σ s σ̂m−s )G−1)+σ̂
((1−σ s σ̂m−s )G−1)+σ

= 1 (30)

for σ > σ̂ .
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