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Abstract
Weconsider nonparametric regression for bivariate circular time serieswith long-range
dependence. Asymptotic results for circular Nadaraya–Watson estimators are derived.
Due to long-range dependence, a range of asymptotically optimal bandwidths can be
foundwhere the asymptotic rate of convergence does not dependon the bandwidth. The
result can be used for obtaining simple confidence bands for the regression function.
The method is illustrated by an application to wind direction data.

Keywords Circular time series · Circular circular kernel regression · Long-range
dependence · Gaussian subordination · Confidence interval

1 Introduction

Directional or circular time series arise in many scientific fields such as meteorology,
oceanography, biology, neuroscience, bioinformatics, geoscience and cosmology. An
overview of directional data analysis can be found for instance in books by Mardia
(1972), Fisher (1993),Mardia and Jupp (2000), Jammalamadaka and SenGupta (2001)
and Ley and Verdebout (2017). Most literature deals with iid observations. More gen-
erally, for cases where more than one circular variable is observed, parametric and
nonparametric circular-circular regression with iid residuals is discussed for instance
in Gould (1969), Fisher and Lee (1992), Johnson andWehrly (1978), Mardia and Jupp
(2000), Jammalamadaka and SenGupta (2001), Kato et al. (2008), Kim and SenGupta
(2016) and Polsen and Taylor (2015). Nonparametric density estimation on the circle
is discussed for instance byWatson (1983), Hall et al. (1987), Bai et al. (1988), Fisher
(1989, 1993) and Taylor (2008). Also see Tsurata and Sagae (2017) for properties of
higher order circular kernels. In practice, one often observes circular time series that
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exhibit serial dependence. Circular processes with weak serial dependence are con-
sidered for instance in Wehrly and Johnson (1980), Breckling (1989), Kato (2010),
Modlin et al. (2012) and Wang and Gelfand (2014). Circular time series with long-
range dependence are considered in Di Marzio et al. (2012) and Beran and Ghosh
(2019). Di Marzio et al. (2012) discuss nonparametric trend estimation, Beran and
Ghosh (2019) define models with long-range dependence using Gaussian subordina-
tion, and derive asymptotic results for parametric estimators where the mean direction
depends on deterministic explanatory variables. In this paper, we extend the results in
Beran and Ghosh (2019) to a nonparametric circular-circular regression model of the
form

ϑt = [μ (ψt ) + Zt ]mod 2π (1)

where ϑt , ψt ∈ [−π, π) (t = 1, 2, . . .), ψt and Zt are stationary long-memory pro-
cesses defined by Gaussian subordination, and Zt is such that

E (sin Zt ) = 0, E (cos Zt ) = R > 0 (2)

(see e.g. Gould 1969). Equations (1) and (2) mean that, given ψt = w0, the mean
direction of ϑt is μ

(
w0
)
, i.e.

E
[
exp (iϑt ) | ψt = w0

]
= R exp

(
iμ
(
w0
))

(w0 ∈ [−π, π)). (3)

We consider asymptotic properties of circular kernel estimators of μ(w0). Limit the-
orems are derived using in particular general results in Mielniczuk and Wu (2004).
Due to long-range dependence, a range of asymptotically optimal bandwidths can
be found where the asymptotic rate of convergence does not depend on the band-
width. The results can be used for obtaining simple simultaneous confidence bands
for μ(w0

1), . . . , μ(w0
m) (w0

1, . . . , w
0
m ∈ [−π, π), m ∈ N).

The paper is organized as follows. A general introduction and definitions are given
in Sect. 2. Limit theorems are discussed in Sect. 3. In Sect. 4, asymptotic results from
Sect. 3 are used to obtain confidence bands forμ(ψ). An application to wind direction
data is discussed in Sect. 5. Proofs are given in the Appendix.

2 Definitions

2.1 Definition of themodel

We extend the model introduced in Beran and Ghosh (2019) to bivariate circular time
series with long-range dependence. First we recall the definition of longmemory in the
sense of second order dependence. A real-valued second order stationary time series
with autocovariance function γ (k) is said to exhibit long-range (or strong) dependence,
if
∑

γ (k) = ∞. Often it is assumed that

γ (k) ∼ cγ k
2H−2 (k → ∞), (4)
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On nonparametric regression for bivariate circular… 31

or that the spectral density has a pole at the origin characterized by

f (λ) = 1

2π

∞∑

k=−∞
γ (k) e−ikλ ∼

λ→0
c f |λ|1−2H (5)

with H ∈ ( 12 , 1) and 0 < cγ < ∞. Here, “∼” means that the ratio of the left and
right hand side converges to 1. References to the extended literature on long-memory
processes can be found for instance in Beran (1994), Giraitis et al. (2012) and Beran
et al. (2013). For generating schemes for longmemory processes also see e.g.Davidson
and Sibbertsen (2005).

To obtain bivariate circular time series (ψt , ϑt ) ∈ [0, 2π)2 (t ∈ Z) with long-range
dependence, the following assumptions will be used:

• (A1) Let Zt , Xt (t ∈ Z) be stationary Gaussian processes with E(Zt ) = E(Xt ) =
0, 0 < σ 2

Z = var(Zt ) < ∞, σ 2
X = var(Xt ) = 1, and autocovariance functions

γZ , γX and spectral densities fZ , fX such that

γZ (k) ∼
k→∞ cγ,Z k

2HZ−2, (6)

fZ (λ) = 1

2π

∞∑

k=−∞
γZ (k) e−ikλ ∼

λ→0
c f ,Z |λ|1−2HZ , (7)

γX (k) ∼
k→∞ cγ,Xk

2HX−2, (8)

fX (λ) = 1

2π

∞∑

k=−∞
γX (k) e−ikλ ∼

λ→0
c f ,X |λ|1−2HX (9)

for some constants 0 < cγ,Z , c f ,Z , cγ,X , c f ,X < ∞ and 1
2 < HZ , HX < 1.

Moreover, assume that the two processes are independent from each other.
• (A2) Let Gψ(u) = ∫ u

−π
gψ(v)dv (u ∈ [−π, π)) be an absolutely continuous

circular cumulative distribution function with density gψ = G
′
ψ , and denote by

� the standard normal distribution function. Define the circular time series ψt

(t ∈ Z) by
ψt = G−1

ψ (� (Xt )) . (10)

• (A3) Let μ : [−π, π) → R be a twice continuously differentiable function. The
circular time series ϑt (t ∈ Z) is defined by

ϑt = [μ (ψt ) + Zt ]mod 2π. (11)

Remark 1 Assumption (A1) implies

E (sin Zt ) = 0, E (cos Zt ) = RZ > 0, (12)

E (sin Xt ) = 0, E (cos Xt ) = RX > 0. (13)
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32 J. Beran et al.

Note also that Zt and Xt can be written in theWold representation with iid innovations
εt ∼ N (0, σ 2

ε ) and ηt ∼ N (0, σ 2
η ) respectively, as

Zt =
∞∑

j=0

a jεt− j , Xt =
∞∑

j=0

c jηt− j (t ∈ Z) (14)

where a0 = c0 = 1 and

a j ∼ Ca j
HZ−3/2, c j ∼ Cc j

HX−3/2 ( j → ∞) (15)

for some suitable constants 0 < Ca , Cc < ∞.

Remark 2 The circular time seriesψt = G−1
ψ (�(Xt )) is said to be subordinated to the

Gaussian process Xt (see e.g. Rosenblatt 1961, 1979; Taqqu 1975, 1979; Dobrushin
andMajor 1979;Dobrushin 1980). By definition, themarginal distribution of the series
is the circular distribution Gψ . Note that the circular density function gψ = G ′

ψ is
arbitrary, i.e. using (10) any circular density function can be obtained as a marginal
density via Gaussian subordination.

Assumption (8) means that Xt exhibits long-range dependence. For the circular
time series ψt , a different definition of autocovariance and autocorrelation function
has to be used. Let νψ denote themean direction ofψt , i.e. E[exp(iψt )] = R exp(iνψ).
Jammalamadaka and Sarma (1988) proposed the circular autocorrelation function

ρcircular (k) = E
[
sin

(
ψt − νψ

)
sin

(
ψt+k − νψ

)]

E
[
sin2

(
ψ1 − νψ

)] . (16)

To see whether long memory of Xt is inherited by ψt one needs to introduce the

notion of Hermite rank. Denote by ϕ(x) = (2π)− 1
2 exp(− 1

2 x
2) the standard nor-

mal density function, and by L2(R;ϕ) the space of real valued functions h with
||h||2 = ∫ |h(z)|2ϕ(z)dz < ∞. Equipped with the scalar product < h, h̃ >=∫
h(x)h̃(x)ϕ(x)dx , L2(R;ϕ) is a Hilbert space. Hermite polynomials

Hq (z) = (−1)q exp

(
1

2
z2
)

dq

dzq
exp

(
−1

2
z2
)

(q = 0, 1, . . . )

build an orthogonal basis in L2(R;ϕ). Thus, every function h ∈ L2(R;ϕ) has an
orthogonal L2-representation

h (z) =
∞∑

q=0

aq
q!Hq (z) ,

where the qth Hermite coefficient aq is given by

aq = 〈
h,Hq

〉 =
∫ ∞

−∞
h (z)Hq (z) ϕ(z)dz.

123



On nonparametric regression for bivariate circular… 33

A function h with a0 = 0 is said to have Hermite rank m ≥ 1, if am �= 0 and a j = 0
( j < m) (Taqqu 1975). The following Lemma is derived in Beran and Ghosh (2019):

Lemma 1 Let ψt (t ∈ Z) be defined in (10) with γX characterized by (8). Denote by
νψ the mean direction of ψt , and define

h (x) = sin
{
G−1

ψ (� (x)) − νψ

}
.

Suppose that the Hermite rank of h is m. Furthermore assume that

HX > 1 − 1

2m
. (17)

Then, setting
Hm := 1 + (HX − 1)m, (18)

we have
ρcircular (k) ∼

k→∞ cmk
2Hm−2 (19)

where

cm = a2mc
m
γ,Z

m!E [sin2 (ϑ1 − μ)
] .

Remark 3 Note that, by definition of the mean direction νψ ,

E [h (Xt )] = E
[
sin

{
G−1

ψ (� (Xt )) − νψ

}]
= 0.

Lemma 1 means that, under assumption (17), the directional series ψt has long-
range dependence in the sense that its circular autocorrelation ρcircular(k) has a
hyperbolic decay and is not summable.

As for the second circular series ϑt , (11) implies

ϑt =
[
μ
(
G−1

ψ (� (Xt ))
)

+ Zt

]
mod 2π (20)

= [
μ̃ (Xt ) + Zt

]
mod 2π (21)

where

μ̃ (x) = μ
(
G−1

ψ (� (x))
)

.

Since the processes Xt and Zt are stationary, ϑt is stationary with a constant mean
direction νϑ . By definition, the conditional mean direction of ϑt given ψt = w0 is
equal to μ(w0) (see (3)). Moreover, (20) implies that long-range dependence in Zt

leads to long-range dependence in ϑt .
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34 J. Beran et al.

2.2 Kernel estimation of the conditional mean direction

Let w0 ∈ [0, 2π). The conditional mean direction μ(w0) of ϑt can be estimated by a
circular kernel estimator. In the context of iid observations, circular kernel estimators
have been discussed for instance by Hall et al. (1987), Fisher (1989), Jammalamadaka
and SenGupta (2001), Taylor (2008), Tsurata and Sagae (2017); Tsuruta and Sagae
(2020), Bedouhene and Zougab (2020). Here, we will consider Nadaraya–Watson
estimators of the form

μ̂n(w
0) =

∑n
s=1 Kb

(
ψs − w0

)
ϑs

∑n
s=1 Kb

(
ψs − w0

) . (22)

For the kernel function Kb we adopt the definition introduced in Hall et al. (1987) and
Tsurata and Sagae (2017) among others.

Definition 1 Let Lκ(u) = L(κ(1− cos u)) and Cκ(L) = ∫ π

−π
Lκ(u)du. Then, setting

κ = b−2 (b > 0), we define circular kernels

Kb (u) = C−1
κ (L) Lκ (u) (u ∈ [−π, π)). (23)

Moreover, the lth moment of L is defined by

ml (L) =
∫ ∞

0
L(r)r (l−1)/2dr (l = 2k, k ∈ {0, 1, 2, . . .} ). (24)

Remark 4 Note that by definition
∫ π

−π
Kb(u)du = 1. Thus, if L ≥ 0, then Kb is a

circular density function.

The following assumptions on L are used in Tsurata and Sagae (2017):

• (L1) L ′(r) = dL/dr is continuous.
• (L2)

∫ ∞

0
L2
(
x2

2

)
dx < ∞,

∫ ∞

0
L2
(
x2

2

)
x2dx < ∞.

• (L3) For j0 = 2k0, we have ml(L) < ∞ (0 ≤ l ≤ j0) and

ml (L) =
∫ y

0
L(r)r (l−1)/2dr + O

(
y−( j0+1)/2

)
(0 ≤ l ≤ j0).

• (L4)

lim
r→∞ L (r) r ( j0+1)/2 = 0.
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On nonparametric regression for bivariate circular… 35

Note that, under assumptions (L1) to (L4), Kb has a Fourier series representation

Kb (u) = 1

2π

∞∑

s=−∞
αs (b) exp (−isu) (u ∈ [−π, π)) (25)

with

α−s (b) = αs (b) =
∫ π

−π

Kb (u) exp (isu) du.

The order of a circular kernel is defined as follows (Tsurata and Sagae 2017):

Definition 2 Let p = 2k for some k ∈ {1, 2, . . .}. Then Kb(u) = C−1
κ (L)Lκ(u) with

κ = b−2 is called a circular kernel of order p, if (L1) to (L4) hold with j0 ≥ p + 2,
and

m0 (L) �= 0, ml (L) = 0 (l = 2, 4, . . . , p − 2), mp (L) �= 0.

Remark 5 Tsurata and Sagae (2017) discuss methods for constructing higher order
circular kernels from lower order kernels. For instance, let

L2 (r) = exp (−r) , L(1)
2 (r) = d

dr
L2 (r) ,

rκ (u) = κ (1 − cos u) ,

Lκ,2 (u) = L2 (rκ (u)) = exp (−κ (1 − cos u)) ,

and denote by Ck(Lk,2) the corresponding normalizing constant. Then

ml (L) =
∫ ∞

0
L2(r)r

(l−1)/2dr = �

(
l + 1

2

)
(l = 2k, k ∈ {0, 1, 2, . . .} )

(Tsurata and Sagae 2017). In particular, m0(L2) = �( 12 ) = √
π , and

m2 (L2) = �

(
2 + 1

2

)
= 3

4

√
π.

Thus, Kb,2(u) = C−1
κ (Lκ,2)Lκ,2(u)with κ = b−2 is a circular kernel of order 2. Now,

let

L4 (r) = 3

2
L2 (r) + r L(1)

2 (r) ,

set Lκ,4(u) = L4(rκ(u)) and denote by Ck(Lk,4) the corresponding normalizing
constant. Then

Kb,4 (u) = C−1
κ

(
Lκ,4

)
Lκ,4 (u)
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36 J. Beran et al.

is a kernel of order 4. Similarly, kernels Kb,p+2 of order p + 2 can be obtained
recursively by setting

L p+2 (r) = p + 1

p
L p (r) + 2

p
r L(1)

p (r) (p = 2, 4, 6, . . . )

Lκ,p+2(u) = L p+2(rk(u)) and

Kb,p+2 (u) = C−1
κ

(
Lκ,p+2

)
Lκ,p+2 (u) .

3 Asymptotic results

The asymptotic rate of convergence of μ̂n(w
0) − μ(w0) is characterized by the fol-

lowing decomposition:

Theorem 1 Let w0 ∈ [−π, π), suppose that (A1) to (A3) and (L1) to (L4) hold and

Kb is a kernel of order p = 2k. Furthermore assume that μ̃(x) = μ
(
G−1

ψ (� (x))
)
is

p+2 times continuously differentiable, the derivatives μ̃(s) and g(s)
ψ (s = 1, 2, . . . , p)

are square integrable, gψ(w) > 0 (w ∈ [−π, π)) and

n → ∞, b → 0, nb → ∞.

Then,

μ̂n

(
w0
)

− μ
(
w0
)

= O
(
b2k

)
+ Op

(
1√
nb

)
+ Op

(
nHZ−1

)
+ Op

(
b2nHX−1

)
.

(26)

Remark 6 The first term in (26) is deterministic. It is due to the difference μn(w
0) −

μ(w0) where μn(w
0) = E[Kb(ψ − w0)ϑ]/E[Kb(ψ − w0)]. The order of this error

is smaller the higher the order of the kernel Kb is.

Equation (26) can be used to address the question of optimal bandwidth choice.Note
first that the third term in (26) is the only one that does not depend on the bandwidth
b. This means that an error of order Op(nHZ−1) is always there, independently of the
choice of b. A sequence of bandwidths bn may therefore be called optimal, if

max

{
b2kn ,

1√
nbn

, b2nn
HX−1

}
= o

(
nHZ−1

)
. (27)

The first question iswhether (27) can be achieved. The answer is given by the following
Lemma:

Lemma 2 Under the assumptions of Theorem 1 the following statements are equiva-
lent:
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(i) The set of bandwidth sequences such that bn > 0, bn → 0, nbn → ∞ and (27)
holds is not empty.

(ii) The set of bandwidth sequences such that bn > 0, bn → 0, nbn → ∞ and

lim
n→∞ n(1−HZ )/2kbn = 0, lim

n→∞ n(HX−HZ )/2bn = 0, lim
n→∞ n2HZ−1bn = ∞ (28)

is not empty.
(iii)

HZ > max

{
HX + 2

5
,
2k + 1

4k + 1

}
. (29)

As a corollary we obtain:

Corollary 1 Suppose that the assumptions of Theorem 1, and (29) hold. Then the set
of optimal sequences is not empty. Moreover, for any such sequence bn we have

μ̂n

(
w0
)

− μ
(
w0
)

= Op

(
nHZ−1

)
(w0 ∈ [0, 2π)). (30)

A closer analysis of (30) leads to convergence in distribution:

Theorem 2 Suppose that the assumptions of Theorem 1, and (29) hold. Then

n1−HZ
[
μ̂n

(
w0
)

− μ
(
w0
)]

→
d

cμζ (31)

where

cμ =
√
sin

(
πHZ − π

2

)
� (2 − 2HZ ) c f ,Z

HZ
(
HZ − 1

2

) ,

c f ,Z is defined in (7) and ζ is a standard normal random variable. More generally,
for w0

1 < w0
2 < · · · < w0

m (w0
j ∈ [0, 2π)),

n1−HZ
[
μ̂n

(
w0
1

)
− μ

(
w0
1

)
, . . . , μ̂n

(
w0
m

)
− μ

(
w0
m

)]
→
d

[
cμ, . . . , cμ

] · ζ. (32)

Remark 7 Equation (32) means in particular that the standardized random deviations
of estimates at different values w0

j , w
0
l are asymptotically perfectly correlated. This is

very much in contrast to usual behaviour in nonparametric regression. The degenerate
limit theorem simplifies the construction of simultaneous confidence intervals for
μ(w0

1), . . . , μ(w0
m).

Remark 8 It can also be shown that, if HX ≤ 1
2 , then (32) holds for any HZ > (2k +

1)/(4k+1). Note that in this case we also havemax{(HX +2)/5, (2k+1)/(4k+1)} =
(2k + 1)/(4k + 1).
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38 J. Beran et al.

Remark 9 For k = 1, we have (2k + 1)/(4k + 1) = 3/5. Now HX < 1 implies
(HX + 2)/5 < 3/5 so that condition (29) reduces to

HZ >
3

5
. (33)

On the other hand, for k → ∞, the ratio (2k + 1)/(4k + 1) decreases monotonically
to 1/2. Therefore, in the limit (as k → ∞), under the assumption that HX > 1/2
condition (29) reduces to HZ > (HX + 2)/5.

Under simple additional conditions, uniform convergence of μ̂n(w
0) can be

obtained:

Theorem 3 Suppose that the assumptions of Theorem 1, and (29) hold. Moreover,
assume

lim
n→∞

(

nHZ+HX−2
∞∑

s=−∞
|αs (bn)|

)

= 0, (34)

where αs(b) are the coefficients in the Fourier series representation (25). Then

sup
w0∈[0,2π)

∣∣∣μ̂n

(
w0
)

− μ
(
w0
)∣∣∣ →

p
0.

Remark 10 The conditions in Theorem 3 are related to Lemma 3.2 and Corollary 3.2
in Ghosh (2014).

Typically,
∑∞

s=−∞ |αs(bn)| is asymptotically proportional to b−β
n for some β > 0.

Theorem 3 then simplifies as follows.

Corollary 2 Suppose that the assumptions of Theorem 1, and (29) hold. Moreover,
assume that ∞∑

s=−∞
|αs (b)| = O

(
b−β

)
(b → 0) (35)

for some β > 0, and bn is a sequence of bandwidths such that bn > 0, bn → 0,
nbn → ∞, (27) holds and

lim
n→∞ n2−HZ−HX bβ

n = ∞. (36)

Then

sup
w0∈[0,2π)

∣∣
∣μ̂n

(
w0
)

− μ
(
w0
)∣∣
∣ →

p
0.

Example 1 Denote by Is(κ) (s = 0, 1, 2, . . .) modified Bessel functions of order s.
Consider a von Mises kernel with κ = b−2,

Kb (u) = 1

2π I0 (κ)
exp (κ cos u) .
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The Fourier series representation of Kb is given by

Kb (u) = 1

2π

∞∑

s=−∞
αs (κ) exp (−isu)

where

αs (κ) = Is (κ)

I0 (κ)
.

Since Is(κ) > 0, we have

∞∑

s=−∞
|αs (κ)| = 2πKb (0) = exp (κ)

I0 (κ)
.

Then, I0(κ) ∼ exp(κ)/
√
2πκ (κ → ∞) (see e.g. Robert 1990) implies

∞∑

s=−∞
|αs (κ)| ∼

κ→∞
√
2πκ = √

2πb−1.

Thus, condition (36) with β = 1 holds. Similar results can be obtained for the gener-
alized von Mises distribution introduced by Kim et al. (2013).

Example 2 For a wrapped normal kernel with σ = b,

Kb (u) = 1√
2πb

∞∑

j=−∞
exp

(

− (u + 2π j)2

2b2

)

,

we have the Fourier series representation

Kb (u) = 1

2π

∞∑

s=−∞
exp

(
−b2

2
s2
)
exp (−isu) .

Thus,

∞∑

s=−∞
|αs (b)| = 2πKb (0)

=
√
2π

b

∞∑

j=−∞
exp

(
−2π2

b2
j2
)

,
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and, for b ≤ 1,

∞∑

s=−∞
|αs (b)| ≤ b−1

√
2π

∞∑

j=−∞
exp

(
−2π2 j2

)

= Cb−1.

Therefore, condition (36) with β = 1 holds.

4 Asymptotic confidence intervals

Theorem 2 can be used to obtain asymptotic confidence sets for μ(w0
1),…,μ(w0

m).
Since condition (29) has to be checked first, a two-step procedure has to be applied.
Suppose for instance that we use a kernel of order 2. Then we have to test the null
hypothesis H0 : HZ ≤ 3/5 against the alternative H1 : HZ > 3/5. If H0 is rejected,
then (32) implies that confidence intervals with asymptotic coverage probability 1−α

can be defined by

[
μ̂n

(
w0
1

)
, . . . , μ̂n

(
w0
m

)]
± nHZ−1q1−α/2

[
cμ

(
w0
1

)
, . . . , cμ

(
w0
m

)]
(37)

where q1−α/2 is the (1− α/2)-quantile of the standard normal distribution (see (32)).
Testing HZ ≤ 3/5 versus HZ > 3/5 can be done as follows. Under the given

conditions, SZ ,t = sin Zt mod 2π has the same long-memory parameter HZ as Zt .
Therefore a consistent estimator of HZ can be based on the periodogram of the series
SẐ ,t = sin Ẑt (t = 1, . . . , n) where Ẑt = [ϑt − μ̂n(ψt )]mod 2π . There is a vast
range of consistent methods for estimating the long-memory parameter (see e.g. Beran
et al. 2013, chapter 5, and references therein). For instance, let ĤZ be a local Whittle
estimator based on the periodogram of SẐ ,t at the m lowest frequencies. Then, under
mild regularity conditions (see Robinson 1995), as m → ∞, m/n → 0,

√
m
(
ĤZ − HZ

)
→
d

1

2
ζ1

where ζ1 is a standard normal random variable. Thus, given a level of significance
α ∈ (0, 1), we reject H0 : HZ ≤ 3/5, if

ĤZ >
3

5
+ 1

2
√
m
q1−α

where q1−α is the (1 − α)-quantile of the standard normal distribution.

Remark 11 Confidence intervals (37) are conditional, since they are computed under
the condition that H0 : HZ ≤ 3/5 is rejected. In principle this would call for an
adjustment of quantiles, for instance using a Bonferroni correction. However, note
that (32) and (37) are applicable only, if HZ > 3/5. If this is the case (i.e. HZ > 3/5),
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then then H0 is rejected with asymptotic probability one, provided that we use a
consistent estimator ĤZ of HZ . Therefore, no correction for multiple testing needs to
be applied asymptotically.

Remark 12 In practice, the constants cμ(w0
j ) ( j = 1, . . . ,m) in (37) have to be esti-

mated. This means that HZ and c f ,Z have to be replaced by consistent estimates.

Remark 13 If one uses a kernel of order p = 2k with k ≥ 2 (instead of k = 1), a test
of

H0 : HZ ≤ max

{
HX + 2

5
,
2k + 1

4k + 1

}

against

H1 : HZ > max

{
HX + 2

5
,
2k + 1

4k + 1

}

has to be carried out. This is slightly more complicated, because the right hand side of
the inequality involves the unknown parameter HX . Since sinψt has the same long-
memory parameter HX as ψt , HX can be estimated based on the periodogram of the
series Sψ,t = sinψt (t = 1, . . . , n). Suppose for instance that ĤZ and ĤX are local
Whittle estimators based on SẐ ,t = sin Ẑt (see above) and Sψ,t respectively. Then

√
m
(
ĤZ − HZ , ĤX − HX

)
→
d

1

2
(ζ1, ζ2)

where ζ1, ζ2 are independent standard normal random variables and m is the number
of lowest frequencies used for estimation. Let

T = ĤZ − max

{
ĤX + 2

5
,
2k + 1

4k + 1

}

.

A rejection region at an asymptotic level of significance α is then defined by the
condition T > q1−α where q1−α is the (1 − α)-quantile of the random variable

W = W (HZ , HX ) = HZ+ 1

2
√
m

ζ1−max

{
1

5
HX + 2

5
+ 1

10
√
m

ζ2,
2k + 1

4k + 1

}
. (38)

The distribution of W depends on HZ and HX . For each pair (HZ , HX ) ∈ ( 1
2 , 1

)2
,

(1−α)-quantiles q1−α = q1−α(HZ , HX ) ofW (HZ , HX ) can be obtained by numeric
integration or by simulations. If HZ and HX are replaced by their consistent estimates,
approximate (1 − α)-quantiles are given by q1−α(ĤZ , ĤX ).
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(a) January to March (b) April to June

(c) July to September (d) October to December

Fig. 1 Windrose plots of daily wind directions in Chicago in 2015, split into four three-months periods: a
January to March, b April to June, c July to September and d October to December

5 Data example

We consider daily average wind directions recorded in Chicago and Milwaukee
between 1 January and 31 December, 2015 (data source https://www.glerl.noaa.gov/).
Figure 1a–d show windrose plots of wind directions in Chicago (here given in degrees
between 0o to 360◦), split into four three-months periods, i.e. (a) January to March,
(b) April to June, (c) July to September and (d) October to December. The same plots
are displayed for Milwaukee in Fig. 2a–d. These figures indicate typical seasonal pat-
terns. In a first step we therefore remove a deterministic seasonal trend from both
series. This is done using the deseasonalization method for circular data described in
Beran and Ghosh (2019). Figure 3a shows the two series together with the fitted sea-
sonal trend. The residual series are displayed in Fig. 3b. Note that for better visibility,
the Milwaukee series was moved down vertically by 360◦.

Define now ϑt to be the residual series for Milwaukee (lower series in Fig. 3b),
and ψt the residual series for Chicago. The plot of ϑt vs. ψt in Fig. 4 indicates a
possible relationship between the two wind directions, though the circular nature of
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(a) January to March (b) April to June

(c) July to September (d) October to December

Fig. 2 Windrose plots of daily wind directions in Milwaukee in 2015, split into four three-months periods:
a January to March, b April to June, c July to September and d October to December
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(b)
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Fig. 3 a Daily wind directions in Chicago and Milwaukee, in 2015. Also plotted are fitted seasonal trends.
For better visibility, the Milwaukee series is shifted vertically by −360◦. b Residual series obtained after
removing the seasonal trend
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Fig. 4 Scatterplot of seasonally adjusted wind directions (Milwaukee vs. Chicago)
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Fig. 5 Log-log-periodogram of sin Ẑt

the variables makes a visual inspection more difficult. The Nadaraya–Watson estimate
of μ(ψ), based on a von Mises kernel, is shown in Fig. 6. Since we are using a kernel
of order 2, the value of HX does not play any role (see Remark 9). With respect to
estimation of HZ , we consider a local Whittle estimator with m = [n0.6] frequencies.
For SẐ ,t = sin Ẑt where Ẑt = ϑt − μ̂n(ψt )mod 2π , we obtain ĤZ = 0.75 with a
95%-confidence interval of [0.58, 0.92]. Thus, there is significant evidence for long
memory in Zt . The estimate does not changemuch, when other estimationmethods are
used. For instance, fitting fractional autoregressive models of orders p = 0, 1, . . . , 3,
and selecting the best model using the BIC (see e.g. Beran et al. 1998), leads to
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Fig. 6 Scatterplot of seasonally adjusted wind directions (Milwaukee vs. Chicago) together with μ̂(ψ) and
a 95% − confidence band

ĤZ = 0.67 ([0.59, 0.75]). Figure 5 shows the log-log-periodogram sin Ẑt , together
with a fitted spectral density.

The next step is to test HZ ≤ 3/5 against HZ > 3/5. For the localWhittle estimator,
the critical limit for the 5% level of significance is 3/5+1.645 · 12m−1/2 = 0.74. Since

ĤZ = 0.75 is above this threshold, there is evidence at the 5%-level of significance
for condition (29). The same conclusion is reached when using estimates based on
the BIC method. Confidence bands for μ(ψ) based on Theorem 2 and (37) are given
in Fig. 6. As a cautionary remark one should bear in mind that, strictly speaking, the
band is simultaneous for a finite - though possibly large - number of ψ-values only.
Note also that due to the circular nature of the data, there is an apparent jump around
ψ = 17.6o. This is not a jump in the function μ, but rather due to plotting modulo
360◦. The same comment applies to the confidence band.
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7 Appendix: proofs, figures

7.1 Proofs

Proof (of Theorem 1) The method of the proof of Theorem 1 follows similar lines as
Proposition 1 and Section 3.2 in Mielniczuk and Wu (2004). For ψ0 ∈ [0, 2π), we
have

μ̂n

(
ψ0
)

=
n−1

n∑

s=1
Kb

(
ψs − ψ0

)
ϑs

f̂n
(
ψ0
)

where

f̂n
(
ψ0
)

= n−1
n∑

s=1

Kb

(
ψs − ψ0

)

is a kernel density estimator of the density fψ at ψ0. Using the notation

μn

(
ψ0
)

= E
[
Kb

(
ψt − ψ0

)
ϑ
]

E
[
Kb

(
ψt − ψ0

)] , Dn

(
ψ0
)

= μ̂n

(
ψ0
)

− μn

(
ψ0
)

we have

μ̂n

(
ψ0
)

− μ
(
ψ0
)

= μn

(
ψ0
)

− μ
(
ψ0
)

+ Dn

(
ψ0
)

.

The first term is deterministic and does not depend on the dependence structure.
Following arguments in Tsurata and Sagae (2017) (for the special case of k = 1 also
see Taylor 2008), leads to

μn

(
ψ0
)

− μ
(
ψ0
)

= O
(
b2k

)
.

To study asymptotic properties of Dn , the following notation is useful:

ξt = ξt

(
ψ0
)

= Kb

(
ψ0 − ψt

)
− E

[
Kb

(
ψ0 − ψ (Xt )

)
| ηs, s ≤ t − 1

]
,

An

(
ψ0
)

= 1

n

n∑

t=1

εt Kb

(
ψ0 − ψ (Xt )

)
+ 1

n

n∑

t=1

⎛

⎝
∞∑

j=1

a jεt− j

⎞

⎠ ξt ,

and

Jt
(
ψ0
)

= Zt Kb

(
ψ0 − ψt

)
.
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Consider the decomposition

Dn

(
ψ0
)
f̂n
(
ψ0
)

= n−1
n∑

s=1

Kb

(
ψ − ψ0

) [
ϑs − μn

(
ψ0
)]

= An

(
ψ0
)

+ Bn

(
ψ0
)

+ Cn

(
ψ0
)

+ rn

with

An

(
ψ0
)

= 1

n

n∑

t=1

{
Jt
(
ψ0
)

− E [Zt | εs, s ≤ t − 1]

× E
[
K
(
ψ0 − ψt

)
| ηs, s ≤ t − 1

]}
,

Bn

(
ψ0
)

= 1

n

n∑

t=1

E [Zt | εs, s ≤ t − 1]

× E
[
Kb

(
ψ0 − ψt

)
| ηs, s ≤ t − 1

]

and

Cn

(
ψ0
)

= n−1
n∑

t=1

Kb

(
ψt − ψ0

) [
μ
(
ψ0
)

− μn

(
ψ0
)]

.

The asymptotic results inMielniczuk andWu (2004) are obtained for kernel regression
with non-circular kernels. Taking into account the definition and properties of circular
kernels, the arguments inMielniczuk andWu (2004) can be reformulated accordingly,
to yield

An = Op

(
1√
nb

)
, Bn = Op

(
nHZ−1

)
, Cn

(
ψ0
)

= Op

(
b2nHX−1

)

and rn = op(max{An, Bn,Cn}). �
Proof (of Lemma 2) From Theorem 1 and (26) we have

μ̂n

(
ψ0
)

− μ
(
ψ0
)

= O
(
b2k

)
+ Op

(
1√
nb

)
+ Op

(
nHZ−1

)
+ Op

(
b2nHX−1

)
.

In order that the term Op(nHZ−1) dominates we need

max
{
b2k , (nb)−1/2 , b2nHX−1

}
= o

(
nHZ−1

)
.

This leads to
b = o

(
min

{
n(HZ−1)/2k , n(HZ−HX )/2

})
(39)
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and
n1−2HZ = o (b) . (40)

In order that (39) and (40) hold simultaneously, we need

n1−2HZ = o
(
min

{
n(HZ−1)/2k , n(HZ−HX )/2

})
,

which leads to

HZ > max

{
HX + 2

5
,
2k + 1

4k + 1

}
.

�
Proof (of Corollary 1) The result follows directly from Lemma 2 and Theorem 1. �
Proof (of Theorem 2) Writing

νt = E
[
Kb

(
ψ0 − ψt

)
| ηs, s ≤ t − 1

]

we have

Bn

(
ψ0
)

= 1

n

n∑

t=1

E [Zt | εs, s ≤ t − 1] E
[
Kb

(
ψ0 − ψt

)
| ηs, s ≤ t − 1

]

= 1

n

n∑

t=1

⎛

⎝
∞∑

j=1

a jεt− j

⎞

⎠ νt

= 1

n

n∑

t=1

Ztνt + op (Bn) .

Now, define

B̃n

(
ψ0
)

=
(
Kb ∗ fψ

(
ψ0
)) 1

n

n∑

t=1

Zt

where

Kb ∗ fψ
(
ψ0
)

=
∫ π

−π

Kb

(
ψ0 − y

)
fψ (y) dy.

Since

E (νt ) = Kb ∗ fψ
(
ψ0
)

,
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we have

1

n

n∑

t=1

Ztνt − B̃n

(
ψ0
)

= 1

n

n∑

t=1

Zt [νt − E (νt )]

and hence also

E

[
1

n

n∑

t=1

Ztνt − B̃n

(
ψ0
)]

= 0.

Denote by γν(k) the autocovariance function of νt . Then

var

(
1

n

n∑

t=1

Ztνt − B̃n

(
ψ0
))

= n−2
n∑

s,t=1

γZ (t − s) γν (t − s)

= n−1
∑

|k|<n

(
1 − |k|

n

)
γZ (k) γν (k) .

Now, as k → ∞,

|γν (k)| ≤ cγ,ν · k2HX−2, γZ (k) ∼ cγ,Z k
2HZ−2

where cγ,ν , cγ,Z are suitable constants. Therefore,

var

(
1

n

n∑

t=1

Ztνt − B̃n

(
ψ0
)
)

≤ const · n2HX+2HZ−4
∑

|k|<n

(
1 − |k|

n

)

×
( |k|

n

)2HX+2HZ−4 1

n

∼ C · n2HX+2HZ−4.

Now HX < 1 impliesn2HX+2HZ−4 = o(n2HZ−2). Thus, Bn maybe replaced asymptot-
ically by B̃n . For B̃n , the asymptotic distribution follows from Kb∗ fψ(ψ0) → fψ(ψ0)

and well known limit theorems for sample means under long-range dependence (see
e.g. Beran et al. 2013; Chapter 4.2 and Corollary 1.2). More specifically,

nHZ−1
[
μ̂n

(
ψ0
)

− μ
(
ψ0
)]

= nHZ−1 B̃n
(
ψ0
)

fψ
(
ψ0
) + op

(
nHZ−1

)

= nHZ−1 1

n

n∑

t=1

Zt + op
(
nHZ−1

)

= cμW + op
(
nHZ−1

)
.

�
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Proof (of Theorem 3) The line of proof is similar to Ghosh (2014). Under the given
conditions, it is sufficient to prove that

Sn
(
ψ0
)

= 1

n

n∑

t=1

E
[
Kb

(
ψ0 − ψt

)
| ηs, s ≤ t − 1

]
Zt

converges uniformly to zero in probability. It is then enough to show

lim
n→∞ E

[

sup
ψ0

∣∣∣Sn
(
ψ0
)∣∣∣

]

= 0.

By assumption,

Kb (w) = 1

2π

∞∑

s=−∞
αs (b) exp (−isw)

and Zt is independent of ηs (s ∈ Z). Thus,

Sn
(
ψ0
)

= 1

n

n∑

t=1

E
[
Kb

(
ψt − ψ0

)
| η j , j ≤ t − 1

]
Zt

= 1

2π

∞∑

s=−∞
αs (b)

{
1

n

n∑

t=1

Zt E
[
exp (−isψt ) | η j , j ≤ t − 1

]
}

exp
(
isψ0

)
,

and

∣∣∣Sn
(
ψ0
)∣∣∣ ≤ 1

2π

∞∑

s=−∞
|αs (b)|

∣∣∣∣∣
1

n

n∑

t=1

Zt E
[
exp (−isψt ) | η j , j ≤ t − 1

]
∣∣∣∣∣
. (41)

Now the right-hand side of (41) does not depend on ψ0. Hence,

sup
ψ0

∣∣∣Sn
(
ψ0
)∣∣∣ ≤ 1

2π

∞∑

s=−∞
|αs (b)|

∣
∣∣∣∣
1

n

n∑

t=1

Zt E
[
exp (−isψt ) | η j , j ≤ t − 1

]
∣
∣∣∣∣
.

Using the notation

νt,s,cos = E
[
cos (sψt ) | η j , j ≤ t − 1

]
, νt,s,sin = E

[
sin (sψt ) | η j , j ≤ t − 1

]
,

we then have, for a suitable constant 0 < C < ∞,

E

[

sup
ψ0

∣
∣∣Sn

(
ψ0
)∣∣∣

]

≤ 1

2π

∞∑

s=−∞
{|αs (b)|
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×
√√√√var

(
1

n

n∑

t=1

Ztνt,s,cos

)

+ var

(
1

n

n∑

t=1

Ztνt,s,sin

)⎫⎬

⎭

≤ CnHZ+HX−2
∞∑

s=−∞
|αs (b)| .

Thus, assumption (34) implies

lim
n→∞ E

[

sup
ψ0

∣∣∣Sn
(
ψ0
)∣∣∣

]

= 0.

�
Proof (of Corollary 2) The result follows directly from Theorem 3, (35) and (36). �
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