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Abstract

Equality of opportunity is an important normative ideal of distributive justice. In
spite of its wide acceptance and economic relevance, standard estimation approaches
suffer from data limitations that can lead to both downward and upward biased esti-
mates of inequality of opportunity. These shortcomings may be particularly pro-
nounced for emerging economies in which comprehensive household survey data
of sufficient sample size is often unavailable. In this paper, we assess the extent of
upward and downward bias in inequality of opportunity estimates for a set of twelve
emerging economies. Our findings suggest strongly downward biased estimates of
inequality of opportunity in these countries. To the contrary, there is little scope for
upward bias. By bounding inequality of opportunity from above, we address recent
critiques that worry about the prevalence of downward biased estimates and the
ensuing possibility to downplay the normative significance of inequality.
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1 Introduction

Equality of opportunity (EOp) is an ideal of distributive justice that garners wide-
spread public support and is plausibly related to macro-economic indicators of
development (Marrero and Rodriguez 2013; Ferreira et al. 2018; Aiyar and Ebeke
2019; Cappelen et al. 2007; Alesina et al. 2018). However, limitations in the under-
lying data sources lead to both upward and downward biased estimates of inequal-
ity of opportunity (IOp). Both biases are potentially large in emerging countries
where the data quality is arguably worse than in industrialized economies. However,
it is not clear ex ante which of the two biases prevails and whether IOp estimates
rather tend to be downward or upward biased. In this paper, we address this uncer-
tainty by constructing lower bound (LB) and upper bound (UB) estimates of IOp for
twelve emerging economies and compare them to estimates from the conventional
approach.

EOp distinguishes ethically justifiable (fair) inequalities from unjustifiable
(unfair) inequalities using the concepts of circumstances and effort.! Circum-
stances are defined as all factors that are not under the control of the individual—
for instance, the biological sex, the parental background and the birthplace. To the
contrary, working hours and educational decisions are under the (partial) control of
individuals and are therefore characterized as efforts. Opportunity egalitarians con-
sider inequalities based on exogenous circumstances as unfair, while inequalities
resulting from effort exertion are deemed fair sources of inequality (among others
Cohen 1989; Arneson 1989).

This distinction is not only relevant from a normative perspective but provides
important insights for the patterns and drivers of economic development (Marrero
and Rodriguez 2013; Peragine et al. 2014; Ferreira et al. 2018; Neidhofer et al.
2018). For instance, a leveled playing field fosters human capital accumulation by
providing incentives for skill acquisition (Mejia and St-Pierre 2008). Furthermore,
circumstance-based variation in life outcomes reflects horizontal inequality and seg-
regation, both of which are important drivers of social tensions and conflict (Rohner
2011).

What we call the “standard approach” (S) towards IOp estimation in this paper,
constructs a counterfactual distribution of life outcomes from a linear prediction
using all circumstance information observable by the econometrician. In line with
the opportunity-egalitarian doctrine, inequality in this counterfactual distribution is
considered “unfair” since it only varies with immutable circumstance characteris-
tics. Due to limitations in the underlying data sources, this conventional method can
lead to both upward and downward biased empirical measurements of IOp. First,
due to the partial observability of circumstances, standard IOp estimates tend to be
downward biased (Balcazar 2015; Hufe et al. 2017). The downward bias may be par-
ticularly pronounced in countries that lack household surveys combining informa-
tion on the outcome of interest with rich information on individual characteristics.

! Among others, this dichotomy is formalized in Roemer (1998) and Fleurbaey (1995).
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Most emerging economies fall into this category. Second, if the ratio between
the number of parameters to be estimated and the available degrees of freedom is
large, the ensuing noise in the parameter estimates will artificially inflate the meas-
ured impact of observed circumstances on individual life outcomes (Brunori et al.
2019b). Emerging economies may again be particularly susceptible to such upward
bias in standard IOp estimates since the sample sizes of available household surveys
tend to be comparatively small. Ex ante it is unclear which of the two biases prevails
for the group of emerging economies. As a consequence, policy makers that rely
on standard estimates may over- or underestimate the true degree of IOp and enact
policy measures without considering the uncertainty around such estimates (Kanbur
and Wagstaff 2016).

In this paper, we address the uncertainty around empirical IOp estimates by draw-
ing on longitudinal household surveys from twelve emerging economies which ena-
ble us to estimate both LB and UB measures of IOp. First, we calculate LB meas-
ures of IOp by estimating the impact of observable circumstances on incomes with
a cross-validated lasso procedure. Assessing statistical models by out-of-sample
cross-validation disciplines the process of model selection and therefore prevents
overfitting the circumstance parameters to the estimation sample. As a consequence,
the relevant circumstance parameters are estimated with less noise which in turn
cushions upward biases in IOp measures.

Second, we leverage the panel dimension of the data to calculate UB estimates
based on the individual fixed effect (FE) estimator proposed in Niehues and Pei-
chl (2014). By their most common definition, circumstance characteristics are time-
constant but partly unobservable by the econometrician. Individual FEs capture the
full set of unobservable circumstances and therefore yield the maximum amount of
outcome variation that can be explained by circumstances. However, individual FEs
also capture time-constant effort variables and therefore may overstate the extent of
unequal opportunities. Hence, they yield an upper bound of the true IOp estimate.

Our results can be summarized as follows. In emerging economies the standard
approach of estimating inequality of opportunity produces results that closely align
with the lower bound. In theory, the restricted data infrastructures of many emerg-
ing economies could lead to either upward biased (small sample sizes) or downward
biased (little circumstance information) estimates. In practice, the latter concern
clearly dominates the former in our sample. With respect to individual (equivalized
household) incomes, the average difference between the standard estimate and the
lower bound estimate is 5.7 (5.0) percentage points (pp). To the contrary, the aver-
age distance between the standard estimate and the upper bound estimate is 22.8 pp
(28.5 pp).

These results from emerging economies contrast recent evidence for European
countries. For example, Brunori et al. (2018) show for a set of European coun-
tries that standard estimates may be upward biased by up to 300%. This contrast
emphasizes that the particularities of data environments are crucial for an assess-
ment of the relative importance of upward and downward biases. Second, the large
distance between the standard estimate and the upper bound estimate in emerging
economies emphasizes the concern of providing misleading reference points to
policymakers who could use downward-biased estimates of IOp to downplay the
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moral significance of inequality (Kanbur and Wagstaff 2016). In the absence of data
innovations, providing reasonable bounds on inequality of opportunity may be the
only way to address such concerns. Our paper is the first to conduct such a bound-
ing exercise for a set of emerging economies with broad geographical coverage and
thereby contributes to the growing literature on EOp in these countries.

The remainder of this paper is organized as follows. In Sect. 2 we formalize the
EOp concept and outline the corresponding estimation strategies for its LB and
UB measures. After introducing the data sources in Sect. 3, we present results and
robustness analyses for both LB and UB estimates in Sect. 4. Section 5 concludes
the paper.

2 Conceptual framework

Important life outcomes such as income and consumption are determined by an
extensive vector of personal characteristics that can be subsumed by a binary clas-
sification into circumstances and efforts. Those characteristics that are completely
beyond the realm of individual control are called circumstances. To the contrary,
those characteristics that are at least partially controlled by individuals are called
efforts. The more the distribution of outcomes depends on circumstances, the
stronger the violation of the opportunity-egalitarian ideal and the higher the measure
of inequality of opportunity.

Consider a finite population indexed by i € {1, ..., N}.? Each individual is char-
acterized by the tuple {y;,C;,E;}. y;, constitutes the period-specific outcome of
interest, C, the vector of time-invariant circumstances, and E;; period-specific effort.
Life outcomes are a function of circumstances and efforts*:

Vir = (Ci, By (Cy). @)

Note that we allow circumstances to have a direct and an indirect impact on the
outcome of interest. For example, certain groups may be excluded from offices and
positions based on outright discrimination (direct impact). However, such discrimi-
nation may also lead to adjustments in individual effort exertion since the imposed
circumstance constraints alter the individual optimization calculus (indirect impact).
Whether the correlation between circumstances and efforts contributes to the fair or

2 See Brunori et al. (2019a) and Alesina et al. (2019) for work on Africa, Ferreira and Gignoux (2011)
for work on Latin America, as well as Andreoli and Fusco (2019) and Brock et al. (2016) for comparative
work including Eastern Europe and Central Asia.

3 We follow the notational conventions established in Ferreira and Gignoux (2011).

4 Note that the current literature largely abstracts from time-variant circumstance characteristics. This
abstraction can be rationalized by the blurry distinction between time-variant factors beyond individual
control and individual efforts. For example, consider local economic shocks or local outburst of conflict
as potential embodiments of time-variant circumstances. Their effect could be confounded by individual
migration decisions which are at least partially under individual control. However, as we outline below,
our normative framework accounts for the effect of such factors to the extent that they are correlated with
time-constant factors such as the region of birth.
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the unfair part of inequality is widely debated (Jusot et al. 2013). In this paper we
follow Roemer (1998) who proposes that outcome differences due to a correlation
between circumstances and effort constitute a violation of EOp.’

The literature on EOp further distinguishes the ex-ante from the ex-post approach
(Ramos and Van De Gaer 2016). While the ex-ante approach requires that there
are no differences in life outcomes across circumstance types, the ex-post approach
demands that individuals exerting the same effort enjoy the same level of advan-
tage. In this paper we focus on the ex-ante approach. That is, we use C; to con-
struct a partition of disjunct types II = {T, ..., Tp} such that all members of a type
are homogeneous in circumstances. The average outcome of type k is denoted by
,uf. EOp is achieved if type-means in period ¢ are equalized across types, i.e. if
,uf =ﬂfVl,k | T, T, € I

Computing inequality in a counterfactual distribution M, = (u!,. ..., u5, ... ub),
in which each individual i of type k is assigned its corresponding type outcome yf
yields a scalar measure of IOp. It decreases with Pigou-Dalton transfers between
circumstance types but is invariant to such transfers within circumstance types. Ine-
quality in the counterfactual distribution of type-means can thus be considered unfair
as it only depends on disparities due to immutable circumstance characteristics.

Standard Estimation (S) The standard approach towards IOp measurement (Bour-
guignon et al. 2007; Ferreira and Gignoux 2011) constructs an estimate for the
counterfactual distribution of type means in a two-step procedure. First, for the year
of interest # we estimate:

Iny,=a+ B *C;+e¢,. 2)

Note that this specification accounts for both the direct and the indirect effect of
circumstances since the correlation between C; and E;; is implicitly captured by f.
Second, we use the vector of estimated parameters 8 to parametrically construct an

: g 5rS _ (S g 5 \6.
estimate for the distribution of type means M> = ({5, ..., i}, ..., jiy, )
~S A 5 0'2
i, = exp a+ﬁ*Ci+7 . 3)

Lower bound estimation (LB) Conceptually, Ferreira and Gignoux (2011) show
that the outlined standard estimate of IOp is a LB of its true value if the circum-
stance vector C; contains only a subset of all relevant circumstances. Empirically,
however, this lower bound measure may be upward biased due to sampling variance
in the distribution of type means (Brunori et al. 2019b). With decreasing sample

5 This normative assumption is adopted by much of the empirical literature on IOp but can be easily
relaxed, see Niehues and Peichl (2014) and Jusot et al. (2013). We refrain from doing so in our empirical
application since restricting samples on availability of effort information would further reduce the num-
ber of observations.

2
6 Z represents the residual variance that corrects for differences in the marginal impact of circumstances

due to the log-transformation (Blackburn 2007).
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400 P.Hufe et al.

size and increasing size of the circumstance set, the available degrees of freedom
to estimate f shrink. The ensuing noise in ﬁ artificially inflates the variance in the
distribution of estimated type means MZS , which in turn leads to upward biased lower
bound measures of I0p.

The literature has proposed different methods to address the upward bias in I0p
estimates. Using the European Union Survey on Income and Living Conditions
(EU-SILC), Brunori et al. (2019b) select models by 5-fold cross validation. Thereby,
the authors pre-specify a large variety of potential models which differ in circum-
stance characteristics and their interactions. After estimating these models on ran-
dom folds of the data, the algorithm chooses the model which minimizes the aver-
age out of sample mean squared error.” An alternative approach to model selection
are conditional inference trees and forests (Brunori et al. 2018). The regression tree
method recursively splits the data according to the circumstance variables which
have the strongest association with the outcome of interest while regression forest
provide average estimates over multiple regression trees applied to random subsets
of the data.

In this work we calculate lower bound estimates based on two different cross-
validated lasso estimations that select the relevant circumstances to maximize the
out-of-sample prediction accuracy of the model. Lasso estimations have two advan-
tages in comparison to previous methods. First, one does not have to pre-specify
the models to be evaluated by cross-validation—the preferred method in Brunori
et al. (2019b). Second, they are less computationally expensive than random for-
ests—the preferred method in Brunori et al. (2018). In Fig. 4, we use EU-SILC
data to validate the lasso methodology against the findings of Brunori et al. (2018,
2019b). Both lasso estimates align very closely with the alternative estimation pro-
cedures. The implied Pearson correlation coefficients are 0.90/0.87 in comparison to
the findings of Brunori et al. (2019b), and 0.91/0.89 in comparison to the findings of
Brunori et al. (2018). All correlation coefficients are not statistically different from
one at the 5% significance level.

In both estimation approaches, we first estimate

2

argmin Z Iny, — olasso _ Z ﬁjlaxso " Cz] + Z j) ﬁjlasso )
p j j “)
o ~/ - /

(¢)) (@)

Part (1) of Eq. 4 is a perfect mirror of the OLS algorithm used to estimate Eq. 2. Part
(2) however introduces a penalization term that varies with the absolute value of the
estimated coefficient ﬁj “ The larger (smaller) the penalization term A, the more
(less) parsimonious the model and the lower the variance (bias) in the predictions

7 Intuitively, k-fold cross-validation works as follows. The sample is divided into k-folds. Under each
specification, the model parameters are estimated on k — 1 folds and the ensuing predictions are bench-
marked against the data points in the kth fold. Repeating this procedure k times, one chooses the model
that delivers the lowest average mean-squared prediction error across the k iterations.
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~ las: . o
based on the parameter vector f “**_We choose the optimal parameterization of A
by means of 5-fold cross validation.®
A
The first lower bound estimate (LB1) uses the resulting vector ,8 to construct

the counterfactual distribution #/“8! = (gtB, . kBl gLBlY:
3 . slass o’
”531 — exp {alasm + ﬁ““o % Ci + 7 } (5)

The second lower bound estimate (LB2) implements a post-OLS lasso estimation

(Hastie et al. 2013). We only retain the subset C* C C, i.e. those 01rcu11t15tances
~ Post—lasso

whose coefficients were not shrunk to zero in Eq. 4. Then, we estimate 8 by

running an OLS regression on the restricted set of circumstances:

lnyit — aPost—lasso + ﬁPast—Zusso * C]r + €. (6)
A Post—lass o . .
We use p T o construct  the  counterfactual  distribution
7LB2 _ ( ~LB2 ~LB2 ~LB2
M _<”lz s My s e My )
. R APost—las o2
”ill,BZ _ exp{ Post—lasso + ﬁ ost—iasso % C:‘ + 7 } (7)

Note that LB1 and LB2 are just different estimates of the same parameter vector.
The choice between these two estimation methods is not straightforward. On the
one hand, Belloni and Chernozhukov (2013) argue that the post-lasso may have a
superior prediction accuracy than the standard lasso approach. On the other hand,
the methodological validation based on EU-SILC reveals that the standard lasso
approach tends to align more closely with the results in Brunori et al. (2018, 2019b)
(Fig. 4). In our empirical application, we refer to standard lasso as our baseline
LB estimate. However, we show that our main conclusions are insensitive to this
choice.’

Upper bound estimation (UB) Since S and LB are based on the subset of observ-
able circumstances only, the resulting IOp estimates may be downward biased.
Following Niehues and Peichl (2014) we therefore construct UBs of IOp using an
individual fixed effects (FE) estimator. Assuming circumstances to be time-invar-
iant, individual FEs capture the full set of C; even though not all circumstances
are observable by the econometrician. A counterfactual distribution of type means

8 The general idea of cross-validation is explained in footnote 7. In the case of lasso estimations, its
implementation is as follows: We re-estimate Eq. 4 for different values of 4 on each of the five folds. Ulti-
mately, we choose 4 that on average minimizes the mean-squared prediction error across the five folds.
The mean-squared prediction error is a standard measure of prediction accuracy (Hastie et al. 2013) and
the appropriate target statistic to trade-off upward and downward bias in inequality of opportunity esti-
mates (Brunori et al. 2019b). In Table 3 we show the chosen values of A for each country in our sample.

° The post-lasso approach will yield results that are more in line with standard estimations based on
OLS. This is the case since standard lasso retains parameter estimates that are shrunk by penalization.
To the contrary—and analogous to OLS—post-lasso re-estimates these parameters without penalization.
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constructed from individual FEs thus captures the upper ceiling of outcome varia-
tion that can be attributed to the impact of circumstances. In particular, the smoothed
distribution of the UB is constructed as follows.

First, using observations from all periods v # ¢, we estimate the individual FE c;

while accounting for common year-specific shocks uv:10

Iny,, =c;+u,+e¢,. ®)

Second, we regress the individual outcome in period 7 on the estimated individual
FE:

Iny, =¥ * ¢+ €. 9)
Third, we use the vector of parameters ¥ to construct the counterfactual distribution
C7UB _ ( UB ~UB ~UB).
Mt - (/’llt s My e My )
~UB 2 ~ O'2
i,” = exp ‘I’*ci+7 . (10)

Note that this estimator would yield the true estimate of 1Op if ¢; captured time-
invariant circumstances only. However, the individual FE may also absorb time-
invariant effort exertion (e.g. long-term motivation, ambition) leading to an UB
interpretation of this IOp estimate.

Inequality measurement We follow existing 1Op literature and summarize the
information in counterfactual distributions A%, M5!, M52, and MYE by the mean
log deviation (MLD) and the Gini coefficient. The MLD is part of the generalized
entropy class of inequality measures satisfying symmetry, the Pigou—Dalton transfer
principle, scale invariance, population replication, as well as additive and path-inde-
pendent subgroup decomposability (Shorrocks 1980; Foster and Shneyerov 2000).
However, the MLD is very sensitive to low incomes many of which are smoothed
out when constructing counterfactual distributions. Therefore, Brunori et al. (2019a)
argue in favor of using the Gini index in spite of its imperfect subgroup decom-
posability.!! For both inequality measures, we provide relative measures of 10p that
relate the MLD (Gini) of the counterfactual distributions M5, M5!, M52 and MUB
to the actual outcome distribution Y,. The latter measures can be interpreted as the
share of total inequality that is explained by circumstances and thus violates the
opportunity-egalitarian ideal.

10" Accounting for year-specific shocks is necessary since the panel data used to estimate the fixed effect
are unbalanced. In case of a balanced panel, the individual fixed effect would be completely orthogonal
to the year-specific shock, i.e. one could abstract from u,,.

! Technically, the Gini coefficient nevertheless yields conservative IOp estimates as the residual in the
Gini decomposition does contain elements of between-group inequality (Brunori et al. 2019a).
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3 Data

We estimate IOp in income and consumption expenditure for twelve emerging econ-
omies in different geographical areas of the world ranging from Africa (Ethiopia,
Malawi, South Africa, Tanzania), Central and South America (Argentina, Chile,
Mexico, Peru), Europe and Central Asia (Russia), to East and South-East Asia
(China, Indonesia, Thailand). The country selection is guided by the availability of
household panel data with (1) information on relevant circumstance variables, and
(2) a sufficient number of observations in the longitudinal dimension.'? Table 2 pro-
vides an overview of the underlying data sources.

We consider three outcomes of interest. First, we calculate IOp in individual
income—before or after taxes and transfers depending on data availability. Second,
we account for resource sharing at the household level and calculate IOp in equiv-
alized household income. Accounting for resource sharing at the household level
is particularly relevant in emerging economies since female participation in formal
labor markets tends to be low (Cubas 2016). Third, to derive a more direct measure
of IOp in material well-being, we also consider equivalized household consumption
expenditures. Household income and consumption expenditure are deflated by the
modified OECD equivalence scale.

Throughout the paper, we restrict ourselves to within-country comparisons.
Table 2 documents many differences across the underlying data sources. These
include differences in the reference period, the income and consumption expenditure
aggregates, the detail of available circumstance characteristics, as well as the sam-
pled populations. For example, while the data for Mexico avails net income infor-
mation until 2004, the data for Thailand provides gross income figures until 2016.
The Ethiopian panel provides a rather parsimonious set of circumstances for a rural
fraction of the population, whereas the Russian panel provides a rich set of circum-
stances for a nationally representative sample of households. We therefore refrain
from cross-country comparisons but focus our discussion on intra-country compari-
sons between the different estimation approaches.

To ensure the consistency of these intra-country comparisons, we only retain
those units of observation for which we observe (1) all circumstance variables, and
(2) positive outcomes in all available outcome dimensions for at least three periods
of observation. We further restrict our samples to individuals aged 25-55."3

Table 1 displays relevant summary statistics for the estimation of S, LB, and UB
by country.

12 For countries, in which multiple panel data sets are available, we use the data set with the highest
number of waves.
13 In Table 4 we show how samples change as we sequentially impose these data restrictions.
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Fig. 1 Bounds of Inequality of Opportunity. The figure shows estimates of relative IOp for individual
incomes (a), equivalized household incomes (b) and equivalized household expenditures (c¢) based on
the MLD. Standard estimates (S) use the full set of country-specific circumstances disclosed in Table 1.
Lower bound (LB) estimates use the full set of country-specific circumstances disclosed in Table 1 but
estimate the relevant parameters by means of a lasso estimation to account for sampling variance. Upper
bound (UB) estimates are based on predictions from individual fixed effects. Source: Own calculations
based on data described in Table 2
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4 Results

Figure 1 displays bounds of relative IOp, i.e. the percentage of total inequality that
can be explained by exogenous circumstances.'* Standard estimates (S) indicate IOp
based on all observable circumstances available in the particular country data set.
Lower bound estimates (LB) also use the full set of observable circumstances but
account for potential upward biases through lasso estimation in which irrelevant cir-
cumstance parameters are shrunk to zero.'> Upper bound estimates (UB) account for
unobservable circumstances through the FE estimation procedure outlined in Sect. 2.

Individual income Panel (a) shows the results for individual income. The standard IOp
estimate (S) for individual income ranges from 9.3% (Argentina) to 30.6% (Peru, South
Africa). Accounting for sampling variation and the ensuing potential for upward biases
in S provides only minor reductions in IOp. According to LB, between 6% (China) and
25.9% (Peru) of outcome inequality must be considered unfair. The average difference
between S and LB estimates amounts to 5.7pp.' When using the post-lasso OLS proce-
dure, the average difference is even smaller and equals 0.5pp. These results suggest that
the standard estimation approach (S) is largely uncompromised by overfitting circum-
stance parameters to the available data. Instead—and in line with the theoretical reason-
ing of Ferreira and Gignoux (2011)—the standard approach indeed recovers estimates
close to the lower bound (LLB) estimate in all countries under consideration. Note that
this result stands in contrast to recent evidence for European countries suggesting that
the standard approach overestimates lower bound 10p by up to 300% (Brunori et al.
2018, 2019b). This difference is reconciled by the quality of the underlying data sources.
While the richness of the European data confers the opportunity to overfit the circum-
stance information to the data, the sparsity of circumstance information in the household
surveys under consideration prevents upward biases in the standard estimate (S).

The lower bound estimator selects the circumstance parameters with the highest
out-of-sample prediction accuracy. In Table 5, we show for each outcome of interest,
which of the circumstance variables and categories are chosen by the lasso estimator
in a particular country. Across all countries, gender plays a prominent role reflect-
ing concerns about gender inequality in the context of emerging and developing
economies (Jayachandran 2015). However, it is important to note that the selection
of particular variables by lasso only indicate a predictive correlation and does not
necessarily imply a causal relationship. For instance, even though both maternal and
paternal education could causally affect the income of individuals, a high correlation
between fathers” and mothers’ education might lead the lasso to choose only one of
the two circumstance characteristics.

14 Point estimates for absolute IOp, relative IOp, as well as total inequality are disclosed in Table 3.

15" As highlighted above: Unless otherwise indicated the LB estimate refers to the standard lasso estima-
tion.

16 This cross-country average conceals heterogeneity. In particular, the lower the sample size relative
to the number of estimated circumstance parameters, the larger the difference between S and LB. See
Table 3 where we list the ratio of sample size and estimated parameters by country.
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While sparse circumstance information limits the scope for upward biases, it may
lead to downward biases due to the neglection of circumstances that are unobserved
by the econometrician. Therefore, we take account of unobservable circumstances
by means of the fixed effect estimation outlined in Sect. 2. The UB estimates of I0p
vary between 17.2% (Mexico) and 72.5% (South Africa). On average, UB exceeds S
by 22.8pp. It therefore yields a significant upward correction of IOp in comparison
to S and LB, respectively. The difference between UB and S is broadly compara-
ble to the respective gap in developed economies (Niehues and Peichl 2014). As
such, our results reflect recent concerns that downward biased IOp estimates based
on observable circumstance characteristics provide misleading reference points as
regards the normative significance of inequality (Kanbur and Wagstaff 2016).!”

Household income Panel (b) of Fig. 1 displays analogous IOp estimates for equival-
ized household income. In contrast to the results on individual income, we thereby
account for resource sharing at the household level and heterogeneity in household
compositions. Estimates for S (LB) decrease for the vast majority of countries and
now lie between 1.2% in Argentina (0%, China) and 35.9% in South Africa (24.7%,
South Africa). This decrease follows from the assumption of resource sharing at the
household level that largely nullifies gender-based differences in incomes. Hence,
the average difference between S and LB remains at a very low level of 5.0pp.
Again, using the alternative post-lasso OLS estimation strategy decreases this dif-
ference to 1.3 pp. To the contrary, the UB estimates are largely comparable to their
individual income analogues. According to UB, 1Op ranges between 8.6% (Mexico)
and 73.9% (South Africa). As a consequence, the average difference between S and
UB increases from 22.8 pp to a level of 28.5 pp when considering household instead
of individual incomes. Our general conclusion, however, remains intact: In the
context of the developing economies under consideration, the standard estimation
approach recovers an estimate close to LB. However, its large distance to UB sug-
gests severe underestimations due to the influence of unobservable circumstances.

Household expenditure In Panel (c), we show IOp estimates for equivalized household
expenditure. There are different explanations for potential deviations of IOp in house-
hold expenditure and household income. First, if households smooth consumption its
distribution is less unequal than the distribution of income. Additionally, assuming tran-
sitory fluctuations to be more strongly reflected in the outcome distribution Y, than the
smoothed distribution M,, we would expect relative IOp in consumption expenditures to

'7 Due to differences in the underlying data, we refrain from comparing our results to other IOp esti-
mates in the relevant countries: See for example, Brock et al. (2016), Brunori et al. (2019a) Ferreira
and Gignoux (2011), Ferreira et al. (2018), Golley et al. (2019), Piraino (2015), Song and Zhou (2019),
Juarez Wendelspiess Chavez (2015), Zhang and Eriksson (2010). These differences pertain to reference
periods, the considered outcomes of interest, the detail of available circumstance characteristics, sample
selection criteria, estimation methods, as well as inequality indices. However, we provide detailed infor-
mation on these studies in Table 7.
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be higher than in income.'® In fact, this is the pattern observed by Ferreira and Gignoux
(2011) when comparing IOp in income and consumption for five Latin-American coun-
tries. Second, even if households smooth consumption, expenditures for consumption
items, especially durables, can be lumpy (Meyer and Sullivan 2017). This tendency
is amplified by the fact that reference periods for expenditure reporting are oftentimes
shorter (e.g. weekly, monthly, quarterly) in order to allow survey respondents to recall
their expenditures in different categories. Again, assuming transitory fluctuations to
be more strongly reflected in the outcome distribution Y, than the smoothed distribu-
tion M,, we would expect relative IOp in consumption expenditures to be lower than
in income. Which of the two tendencies dominates is an empirical question and varies
with the mode of data collection in the different countries. In our country sample the
second channel tends to dominate. Compared to relative IOp in household income, IOp
in household expenditure is on average 2.5 pp (S), 1.6 pp (LB), and 4.5 pp (UB) lower.
However, there is heterogeneity across countries. According to the standard estimate,
relative IOp for household expenditure is higher than IOp for income in Peru, South
Africa, and Thailand. The reverse is true for China, Ethiopia, Indonesia, and Russia.
Estimates for S (LB) with respect to consumption expenditure lie between 6.3% in Tan-
zania (0%, China) and 40.3% in South Africa (29.5%, South Africa). According to UB, IOp
ranges between 12.2% (Tanzania) and 67.6% (South Africa). As a consequence, the average
difference between S and LB (UB) amounts to 5.9pp (20.2 pp). These findings support our
conclusion that the standard estimation approach recovers an estimate close to LB.

Sensitivity analysis We conduct four sensitivity checks in which we probe the
robustness of our conclusions to alternative specification choices.

MLD vs. Gini coefficient The majority of empirical IOp estimations draw on the
MLD due to its path-independent decomposability property. In the context of IOp meas-
urment, this property allows for a perfect decomposition into circumstance-based unfair
inequality and effort-based fair inequality. However, as noted by Brunori et al. (2019a)
the MLD’s senstivity to low income values leads to low relative measures of 1Op.

Hence, we replicate our analysis based on the Gini coefficient and show the results
in Fig. 2. Indeed, relative IOp based on the Gini is larger than suggested by the MLD.
For individual incomes, the standard estimate on average increases by 30 pp and now
lies between 34.1% (Argentina) and 68.1% (Peru). The corresponding UB on average
increases by 26pp and ranges from 43.5% (Mexico) to 89.8% (South Africa). The LB
on average increases by 27.8 pp and lies between 28.7% (China) and 62.3% (Peru). The
pattern is very similar for equivalized household income and expenditure (see Table 3).

These results indicate that the attenuating effect implied by the tail sensitivity of the
MLD largely outweighs the attenuating effect implied by the imperfect decomposabil-
ity of the Gini coefficient. Furthermore, although using the Gini coefficient widens the
gap between S and LB, the difference between UB and S is still larger for the majority
of outcomes and countries in our sample. This observation confirms that independent
of the inequality measure, the potential for downward biased IOp estimates is much
larger than the potential to overestimate IOp in emerging economies.

18 A similar line of thought can be found in Bourguignon et al. (2007) who argue that the presence of
transitory fluctuations in the residual tends to bias IOp estimates downward.
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Fig.2 Bounds of Inequality of Opportunity, Gini coefficient. The figure shows estimates of relative IOp
for individual incomes (a), equivalized household incomes (b) and equivalized household expenditures
(c) based on the Gini coefficient. Standard estimates (S) use the full set of country-specific circumstances
disclosed in Table 1. Lower bound (LB) estimates use the full set of country-specific circumstances dis-
closed in Table 1 but estimate the relevant parameters by means of a lasso estimation to account for
sampling variance. Upper bound (UB) estimates are based on predictions from individual fixed effects.
Source: Own calculations based on data described in Table 2
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Fig. 3 Sensitivity Checks. The figure shows the robustness of our results according to three variations. In p
Panel (a) we harmonize the set of circumstances. In Panel (b) we harmonize the number of periods used
to calculate UB. In Panel (¢) we harmonize the year of interest for the calculation of IOp according to the
scheme outlined in Table 6. In all figures, the x-axis shows the percentage point (pp) difference between
the standard estimate (S) and the lower bound (LB) (upper bound (UB)) according to our baseline speci-
fication. The y-axis provides analogous statistics after the respective harmonization. Source: Own calcu-
lations based on data described in Table 2

Circumstance availability The differences between S and LB (UB) may vary with
the size of the invoked circumstance set. To test the relevance of this concern in our
sample, we re-estimate S and LB while restricting ourselves to a harmonized set of
circumstances that is available in all countries under consideration. The internation-
ally comparable circumstance set includes gender and year of birth. In Panel (a) of
Fig. 3 we plot the difference between S and UB (LB) according to the harmonized
circumstance specification (y-axis) against the analogous differences in our baseline
estimates (x-axis). The closer data points align with the 45 degree line, the more
similar the results between the baseline and the alternative specification.

Restricting the circumstance set mechanically attenuates S but leaves UB unaltered.
It is therefore unsurprising that the difference between S and UB increases for all coun-
tries under consideration. The reverse holds true for the difference between S and LB.
In fact, the restriction of the circumstance set leads to a zero difference between S and
LB for the majority of the country cases. These results therefore confirm our main con-
clusion: The more parsimonious the circumstance set, the stronger the correspondence
between S and LB and the higher the downward bias. Unfortunately, we cannot run the
reverse test by increasing the number of circumstances. Therefore, we cannot provide a
direct assessment of the precise conditions under which S and LB come adrift.

Number of periods The difference between S and UB may differ with the num-
ber of periods used to construct the individual FEs. In the baseline we set a mini-
mum threshold for the number of periods used to calculate the fixed effect. However,
in spite of implementing this minimum threshold the de facto number of observa-
tions used for the construction of the individual FEs is not bounded from above and
therefore varies across countries (Table 1). To test the relevance of this concern,
we construct UB estimates in which we restrict the sample to the three most recent
observations for each individual in each country. In Panel (b) of Fig. 3 we plot the
differences between S and UB according to this harmonized specification (y-axis)
against the analogous differences according to our baseline estimates (x-axis). The
closer data points align with the 45 degree line, the more similar the results between
the baseline and the alternative specification.

We find that all data points with respect to the difference between S and UB
closely align to the 45 degree line. This pattern suggest that even short panels
deliver reliable indicators for UB inequality of opportunity. Note that the panel
length impinges upon the UB estimate only. Therefore, all differences between S and
LB remain unaffected by this harmonization.

Year of interest Our results may be sensitive to alternations in the time period of
interest. In our baseline analysis we focus on the most recent available data years
covering a range from 2009 to 2017. Therefore, we replicate our analysis for the
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country-specific wave in closest proximity to 2009.'° In Panel (c) of Fig. 3 we plot
the differences between S and UB (LB) according to this harmonized specifica-
tion (y-axis) against the analogous differences according to our baseline estimates
(x-axis). The closer the data points align with the 45 degree line, the more similar
the results between the baseline and the alternative specification.

Given that a society’s opportunity structure is shaped by long-run institutional
features, one would expect these differences to be small. Indeed, we find that the
data points for the difference between S and UB closely group around the 45 degree
line. A similar conclusion holds for the difference between S and LB although the
dispersion around the 45 degree line is somewhat larger.

5 Conclusion

Measures of IOp are of considerable policy relevance since they reflect widely-
held principles of distributive justice and plausibly correlate with measures of eco-
nomic development. In spite of their interest, point estimates of IOp are surrounded
by severe uncertainty since they can be both upward and downward biased. Due to
poorer data infrastructures with smaller sample sizes and less information on cir-
cumstance characteristics, IOp estimates in emerging economies may be particularly
susceptible to both biases and it is unclear which of the two biases prevails.

We show that downward bias clearly dominates in the context of emerging econo-
mies. On the one hand, sparsely populated circumstance sets restrict the scope for
overfitting circumstance information to the data. As a consequence, standard esti-
mates of IOp strongly correspond to their lower bound analogues. This result stands
in contrast to recent evidence from countries with richer data environments. On the
other hand, the sparsity of observable circumstance information leads to large dif-
ferences between standard estimates of IOp and their upper bound analogues. The
extent of these differences is largely comparable to more developed countries and
ranges between 20 pp and 30 pp.

While we provide reasonable bounds for IOp in these countries, substantial dif-
ferences between lower and upper bound IOp remain. Our results therefore tie in
with recent concerns that downward biased IOp estimates could misguide judgments
on the normative significance of inequality. In the future, such gaps may be closed
as better data sets become available. However, until such innovations materialize,
bounding the range of potential estimates remains a viable way to limit the scope
for downplaying the normative significance of inequality in the countries of interest.

Additional tables

See Tables 2, 3,4, 5 and 6

19 Table 6 shows the country-specific year chosen for this sensitivity check.
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418 P.Hufe et al.

Table5 All (Lasso-Selected) parameter categories

Country Parameters selected by lasso: Individual Income (*), Household Income (’), and House-
hold Expenditure (4)
Argentina gender*®, birthyear®®, birthplace (current place of residence®, different place than

current residence®®, other province®®, neighboring country®, other country®®)

Chile gender®, birthyear*® | father education (no schooling®®, primary, secondary®®,
tertiary*®), mother education (no schooling®®, primary, secondary*®, tertiary*®),
birthplace (national, foreign), ethnicity (not member of any indigeneous population®®,
Aymara®, Rapa Nui, Quechua, Mapuche’, Atacameno", Coya, Kawaskar, Yagan,
Diaguita®®), chronic disease®® (yes/no), labor force status of father (not working®,
employer‘, self—employed’, employed’, domestic worker, armed forces®), labor
force status of mother (not working®, employer, self-employed, employed, domestic
worker, armed forces’)

China gender®, birthyear®, ethnicity (Han®, Mongolian, Hui, Tibetan, Vaguer, Miao, Yi,
Zhuang, Buyi, Korean, Man, Dong, Yao, Tujia, other®), birthplace urbanity (city®,
suburban, county capital city, village®)

Ethiopia gender”, birthyear®, father education (no schooling", some nursery school, 1st
grade, 2nd grade, 3rd grade‘, 4th grade, 5th grade, 6th grade‘, 7th grade, 8th grade,
9th grade, 10th grade, 11th grade, 12th grade, uncompleted non-university higher
education, completed non university higher education, university education, adult
literacy program®, other literacy program, parochia education, koranic education,
other), mother education (no schooling, some nursery school", 1st grade, 2nd grade,
3rd grade, 4th grade, 5th grade, 6th grade, 7th grade, 8th grade, 9th grade, 10th grade,
11th grade, 12th grade, uncompleted non-university higher education, completed
non university higher education, university education, adult literacy program®, other
literacy program, parochia education, koranic education, other), ethnicity (Amhara®4,
Oromo*®4, Tigrai”‘, Adere, Afar, Gurage”, Somali, other, Gedeo®®4, Gamo,
Kembata‘, Wolaita”‘, Hadiya’, Saho"‘), religion (None’, Orthodox, Catholic®
Muslim, OtherChristian, Protestant,Traditional"‘, other)

>

Indonesia gender®4 birthyear*®4, father education (no schooling, elementary schooling®®4,
junior high, senior high", junior college/college/university, other®) mother educa-
tion (no schooling, elementary schooling, junior high, senior high"‘, junior college/
college/university, other), ethnicity (Jawa®®4, Sunda®®, Bali*®4, Minang, Betawi,
other‘), religion (Islam‘, Catholic", Protestant, Hindu, Buddha, Konghucu), foreign
language® ®4

Malawi gender”, birthyear, father education (no schooling®, primary schooling, more than
primary schooling, other), mother education (no schooling 4, primary schooling
A more than primary schooling, other), religion (Catholic, Protestant A Revival,
Moslem®*, Traditional, other)

Mexico gender®® | birthyear*® | indigeneous®®

Peru gender*®4 birthyear*®4 birthplace (Amazonas®*®4, Ancash*®, Apurl’mac",
Arequipa"‘, Ayacucho"‘, Cajamarca"‘, Callao®*®4, Cusco®, Huancavelica®®,
Huénuco®®4, Ica®®, Junin®4, La Libertad*®4, Lambayeque"‘, Lima*®4,
Loreto®® 4, Madre de Dios*®4, Moquegua", Pasco, Piura®®4, Puno, San Martin,
Tacna®, Tumbes®, Ucayali", Other county‘), chronic disease"‘, language
(Quechua®®, Aymara, other native language*®4, Spanish®*®4 foreign language,
deaf-dumb*®4)
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Table 5 (continued)

Country Parameters selected by lasso: Individual Income (*), Household Income (’), and House-
hold Expenditure (4)
Russia gender®, birthyear, father education (without education/illiterate, elementary school/
incomplete secondary school®#, professional courses, vocational training without sec-

ondary education, vocational training with secondary education, secondary education®,
technical community college®4, institute/university/academy", post-graduate course,
academic degree®), mother education (without education/illiterate, elementary school/
incomplete secondary school®®4, professional courses®, vocational training without
secondary education, vocational training with secondary education, secondary educa-
tion, technical community college, institute/university/academy"‘, post-graduate
course, academic degree), birthplace (Russia, Ukraine, Belorussia®4, Azerbaizhan,
Kazakhstan’, Uzbekistan, other country‘), father occupation (armed forces’,
legislators/senior officials/managers®, professionals®, technicians/associate profession-
als, clerks, service workers/shop market sales work, skilled agricultural and fishery
worker®, craft and related trade workers, plant and machine operators/assemblers, ele-
mentary occupations), mother occupation (armed forces®*, legislators/senior officials/
managers, professionals, technicians/associate professionals", clerks, service workers/
shop market sales work, skilled agricultural and fishery worker, craft and related trade
workers, plant and machine operators/assemblers, elementary occupations”), birth-
place urbanity (city*®4, urban-type settlement, village/Derevnia/Kishlak/Aul*®4),
height*®

South Africa gender® ®4, birthyear*®4 | father education (Grade R/0, Grade 1°®4, Grade 2, Grade
3*®4 Grade 4, Grade 54, Grade 6°, Grade 7, Grade 8®4, Grade 9°®, Grade 1094,
Grade 11°4, Grade 12°®4 other, no schooling"‘, National Certificate Vocational 2,
National Certificate Vocational 4, NTC 1, NTC 2, NTC 3), mother education (Grade
R/0, Grade 1, Grade 2°, Grade 3°®, Grade 4, Grade 5°*®4, Grade 64, Grade 7®, Grade
8°®4A Grade 9, Grade 10°®4 Grade 114, Grade 12°®4 other, no schooling"‘,
National Certificate Vocational 2, National Certificate Vocational 4, NTC 3), foreign
birthplace4, ethnicity (African, Coloured®®, Asian/Indian®*®4, White*®4 other)

Tanzania gender”, birthyear, birthplace (non-foreign/foreign), ethnicity (Mhaya, Mnyambo,
Mhangaza, Msubi, Kishubi, Mzinza, other), religion (Musilim, Catholic, Protestant,
Other Christian, Traditional, other)

Thailand gender, birthyear, father education (no education, less than P4, P4, more than P4),
mother education (no education®*, less than P4, P4, more than P4), wealth of
parents (among the poorest households in the village’, around the middle in terms of
wealth® 4, among the rich households in the village), land size of parents®4

Source: Own calculations based on data described in Table 1

The table shows the circumstance categories used to calculate standard estimates (S). Circumstance vari-
ables are denoted in boldface; their respective categories are listed in parentheses. Superscripts indicate
variables chosen by the lasso procedure for the lower bounds (LB) of three different outcome variables:
individual income (*), household income (’), household consumption expenditure(‘)
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Table 6 Year of interest,

baseline and harmonized Year baseline Year harmonized Differ—
ence in
years
Argentina 2015 2009 6
Chile 2009 2009 0
China 2014 2010 4
Ethiopia 2009 2009 0
Indonesia 2013 2006 7
Malawi 2010 2010 0
Mexico 2009 2009 0
Peru 2010 2009 1
Russia 2017 2009 8
South Africa 2017 2008 9
Tanzania 2010 2010 0
Thailand 2017 2009 8

Source: Own calculations based on data described in Table 2

The table shows the country-specific baseline year, the harmonized
year, and their difference for the sensitivity check concerning the
year of interest 7. See Sect. 4 for details

Additional figures
See Fig. 4.
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Fig.4 Methodological Validation. The figure shows how lower bound methodologies from the literature com-
pare to the lasso estimation in this paper. The left panel compares the lasso procedure with the regression forest
estimates from Brunori et al. (2018) while the right panel compares the lasso procedure with the cross-validated
model selection approach in Brunori et al. (2019b). Filled diamonds refer to the standard lasso. White diamonds
refer to post-OLS lasso. Source: Own calculations based on EU-SILC, Brunori et al. (2018), Brunori et al. (2019b)

Existing studies

See Table 7.
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