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Abstract
Regional prevalence estimation requires the use of suitable statistical methods on
epidemiologic data with substantial local detail. Small area estimation with medical
treatment records as covariates marks a promising combination for this purpose. How-
ever, medical routine data often has strong internal correlation due to diagnosis-related
grouping in the records.Dependingon the strength of the correlation, the space spanned
by the covariates can become rank-deficient. In this case, prevalence estimates suffer
from unacceptable uncertainty as the individual contributions of the covariates to the
model cannot be identified properly. We propose an area-level logit mixed model for
regional prevalence estimation with a new fitting algorithm to solve this problem. We
extend the Laplace approximation to the log-likelihood by an �2-penalty in order to
stabilize the estimation process in the presence of covariate rank-deficiency. Empiri-
cal best predictors under the model and a parametric bootstrap for mean squared error
estimation are presented. A Monte Carlo simulation study is conducted to evaluate
the properties of our methodology in a controlled environment. We further provide
an empirical application where the district-level prevalence of multiple sclerosis in
Germany is estimated using health insurance records.
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1 Introduction

Regional prevalence estimation is an essential element of modern epidemiologic
research (Branscum et al. 2008; Stern 2014; Burgard et al. 2019). Policymakers and
health care providers need reliable information on regional disease distributions to plan
comprehensive health programs. Depending on the disease of interest, corresponding
figures may not be recorded in registries and must be estimated from survey data
instead. However, national health surveys often lack in sufficient local observations
due to limited resources. As a result, regional prevalence estimates based on survey
data can be subject to unacceptable uncertainty due to large sampling variances. Small
area estimation (SAE) solves this problem by linking a response variable of interest
to statistically related covariates by means of a suitable statistical model. The obser-
vations from multiple regions are combined and jointly used for model parameter
estimation. Regional prevalence estimates are obtained via model prediction, which
allows for an increase in the effective sample size relative to classical direct estimation.
See Rao and Molina (2015) for an overview on SAE.

In practice, the efficiency advantage of SAE methods over direct estimators is
mainly determined by two aspects: (i) finding a suitable model type to describe the
response variable, and (ii) having covariate data with explanatory power. Regarding
the first aspect, since regional prevalence is usually stated as proportion (number of
sick persons divided by the total number of persons), binomial, Poisson or negative
binomial mixed models are canonical choices. The binomial-logit approach has been
used for regional proportion estimation in the past, for instance by Molina et al.
(2007), Ghosh et al. (2009), Chen and Lahiri (2012), Erciulescu and Fuller (2013),
López-Vizcaíno et al. (2013), López-Vizcaíno et al. (2015), Burgard (2015), Militino
et al. (2015), Chambers et al. (2016), Hobza and Morales (2016), Liu and Lahiri
(2017) and Hobza et al. (2018). The Poisson or negative binomial mixed models were
applied to estimate small area counts or proportions by Berg (2010), Chambers et al.
(2014), Dreassi et al. (2014), Tzavidis et al. (2015) and Boubeta et al. (2016, 2017),
among others. Marino et al. (2019) propose a semiparametric approach allowing for a
flexible random effects structure in unit-level models. Ranalli et al. (2018) introduced
benchmarking for logistic unit-level. Concerning the second aspect, medical routine
data provided by official statistics or health insurance companies have been found to
be promising data bases for regional prevalence estimation. Exemplary applications
were provided by Tamayo et al. (2016), Burgard et al. (2019), and Breitkreutz et al.
(2019).

However, using medical routine data as covariates can be problematic, especially
within logit mixed models. Medical treatment frequencies are typically recorded and
coded into diagnosis groups, for instance on ICD-3 level (World Health Organization
2018). This context-related segmentation can induce strong correlation between med-
ical treatment frequencies for diseases that are closely related in terms of comorbidity,
such as diabetes and hypertension (Long and Dagogo-Jack 2011). If two or more
diagnoses from the auxiliary data set are strongly correlated, the space spanned by the
covariates can become rank-deficient. In that case, it is not possible to accurately sep-
arate the individual contributions of the covariates to the description of the response
variable. Model parameter estimates suffer from high variance and model predic-
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tions for regional prevalence are not reliable. This is particularly problematic for logit
mixed models, as model parameter estimation already relies on approximate inference
in the absence of rank-deficiency (Breslow and Clayton 1993). The respective like-
lihood integral does not have a closed-form solution, which requires techniques like
the Laplace approximation to find a proper substitute as objective function. Therefore,
when approximate inference is to be performed on a rank-deficient covariate space,
methodological adjustments are required to allow for reliable results.

In this paper, we propose a modification to the maximum likelihood Laplace (ML-
Laplace) algorithm for model parameter estimation (e.g. Demidenko 2013; Hobza
et al. 2018) in a logit mixed model under covariate rank-deficiency. We draw from
theoretical insights on ridge regression (Hoerl and Kennard 1970) and extend the
Laplace approximation to the log-likelihood function by the squared �2-norm of the
regression parameters (�2-penalty). This adjustment reduces the variance of model
parameter estimates considerably and improves approximate inference in the presence
of strong covariate correlation. To the best of our knowledge, �2-penalization has only
been studied for standard ML estimation in fixed effect logit models, for instance by
Schaefer et al. (1984), Cessie and Houwelingen (1992), and Pereira et al. (2016). We
are not aware of corresponding studies for logit mixed models based on ML-Laplace
estimation, especially not in the context of SAE.

An area-level binomial logit mixed model for regional prevalence estimation is
presented. Following Jiang and Lahiri (2001) and Jiang (2003), we derive empirical
best predictors (EBPs) under the model and present a parametric bootstrap estimator
for their mean squared error (MSE). Thereafter, we state the Laplace approximation
to the log-likelihood function and demonstrate �2-penalized approximate likelihood
(�2-PAML) estimation of the model parameters. We further show how the tuning
parameter for the �2-penalty can be chosen in practice.AMonteCarlo simulation study
is conducted to study the behavior of �2-PAML estimation under different degrees of
covariate correlation. And finally, the proposed methodology is applied to regional
prevalence estimation in Germany. We use health insurance records of the German
Public Health Insurance Company (AOK) and inpatient diagnosis frequencies of the
Diagnosis-RelatedGroup Statistics (DRG-Statistics) to estimate district-levelmultiple
sclerosis prevalence.

The remainder of the paper is organized as follows. In Sect. 2, we present the
model and its EBP. We further address MSE estimation. In Sect. 3, we present the
Laplace approximation and the technical details for �2-PAML. Section 4 contains a
Monte Carlo simulation study. Section 5 covers the application to regional prevalence
estimation. Section 6 closes with some conclusive remarks.

2 Model

2.1 Formulation

For the subsequent derivation, we rely on model-based inference in a finite population
setting. Let U be a finite population of size |U | = N . Suppose that U is partitioned
into D domains Ud of size |Ud | = Nd . That is to say, U = ∪D

d=1Ud , Ud1 ∩ Ud2 = ∅,

123



462 J. Krause et al.

d1 �= d2, and
∑D

d=1 Nd = N . Let S be a sample of size |S| = n that is drawn from
U . For simplicity, assume the sampling scheme is such that there are domain-specific
subsamples Sd of size |Sd | = nd with fixed nd > 0 for all d = 1, ..., D. Thus, we
have S = ∪D

d=1Sd and
∑D

d=1 nd = n. Let y be a dichotomous response variable with
potential outcomes {0, 1}. Denote the realization of y for some individual i ∈ Ud by
yid . Note that we use the same symbol for a random variable and its realizations in
order to avoid overloading the notation. Define yd = ∑

i∈sd yid as the sample total
(count) of y in domain Ud . Let x = {x1, ..., xp} be a set of covariates statistically
related to y. Denote xd as a 1 × p vector of aggregated (domain-level) realizations
of x . Suppose that corresponding information is retrieved from administrative records
and not calculated from the sample S. In what follows, we present an area-level
logit mixed model for estimating the domain totals Yd = ∑

i∈Ud
yid or proportions

pd = Yd/Nd of the response variable. Let us consider a set of random effects such
that {vd : d = 1, . . . , D} are independent and identically distributed according to
vd ∼ N (0, 1). In matrix notation, we have normally distributed random effects

v = col
1≤d≤D

(vd) ∼ ND(0, ID) (1)

and, hence, their probability density function (PDF) is stated as

fv(v) = (2π)−D/2 exp
{

− 1

2
v′v
}
. (2)

The model assumes that the distribution of the response variable yd , conditioned to
the random effect vd , is

yd |vd ∼ Bin(nd , pd), d = 1, . . . , D, (3)

and that the natural parameter fulfills

ηd = log
pd

1 − pd
= xdβ + φvd , d = 1, . . . , D, (4)

where φ > 0 is an standard deviation parameter, β = col1≤r≤p(βr ) is the vector of
regression parameters and xd = col′1≤r≤p(xdr ). We complete the model definition by
assuming that the domain-specific sample counts yd are independentwhen conditioned
on the random effects v. Therefore, the conditional PDF of y = col1≤d≤D(yd) given
v is stated as

P( y|v) =
D∏

d=1

P(yd |vd), P(yd |v) = P(yd |vd) =
(
nd
yd

)

pydd (1 − pd)
nd−yd , (5)

where

pd = exp {xdβ + φvd}
1 + exp {xdβ + φvd} = exp{ηd}

1 + exp{ηd} , 1 − pd = 1

1 + exp{ηd} . (6)
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Further, the unconditional PDF of y is

P( y) =
∫

RD
P( y|v) fv(v) dv =

∫

RD
ψ( y, v) dv, (7)

with

ψ( y, v) = (2π)−
D
2 exp

{−v′v
2

} D∏

d=1

(nd
yd

)
exp {yd(xdβ + φvd)}

[
1 + exp {xdβ + φvd}

]nd

= (2π)−
D
2

D∏

d=1

(
nd
yd

)

exp

{−v′v
2

}

exp

{ p∑

k=1

( D∑

d=1

yd xdk
)
βk + φ

D∑

d=1

ydvd

−
D∑

d=1

nd log (1 + exp {xdβ + φvd})
}

. (8)

2.2 Prediction

Hereafter, we obtain EBPs under the area-level logit mixed model introduced in
Sect. 2.1. For this,wefirst derive best predictors (BPs) in a preliminary settingwhere all
model parameters θ := (β ′, φ) are assumed to be known. Then, the EBPs are obtained

by replacing the full parameter vector θ by consistent estimators θ̂ := (β̂
′
, φ̂). Note

that calculating the EBP requires Monte Carlo integration over the random effect
PDF, which can be computationally infeasible for some applications. Therefore, we
also state two alternative predictors that do not rely on Monte Carlo integration and
are easier to apply in practice. We start with the EBPs. Recall the definition of the
conditional PDF P( y|v) from the last section. For the domain-specific component
P(yd |vd), we can write

P(yd |vd) =
(
nd
yd

)

pydd (1 − pd)
nd−yd =

(nd
yd

)
exp {yd(xdβ + φvd)}

[
1 + exp {xdβ + φvd}

]nd

= exp

{

log

(
nd
yd

)

+ yd(xdβ + φvd) − nd log
[
1 + exp{xdβ + φvd}

]
}

.(9)

The probability density function of v is

f (v) =
D∏

d=1

f (vd), f (vd) = (2π)−1/2 exp
{− 1

2
v2d
}
. (10)

The BP of pd = pd(θ, vd) is given by the conditional expectation p̂d(θ) = Eθ [pd | y].
Due to the conditional independence of the response realizations given the random
effects, we have Eθ [pd | y] = Eθ [pd |yd ] and
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Eθ [pd |yd ] =
∫
R

exp{xdβ+φvd }
1+exp{xdβ+φvd } P(yd |vd) f (vd) dvd

∫
R P(yd |vd) f (vd) dvd

= Nd(yd , θ)

Dd(yd , θ)
= Nd(yd , θ)

Dd(yd , θ)
,

(11)

where Nd = Nd(yd , θ), Dd = Dd(yd , θ), Nd = Nd(yd , θ) and Dd = Dd(yd , θ) are
functions of the model parameters and the domain-specific sample counts. They are
stated as follows:

Nd =
∫

R

exp{xdβ + φvd }
1 + exp{xdβ + φvd } exp

{

log

(
nd
yd

)

+ yd xdβ + φydvd

− nd log
[
1 + exp{xdβ + φvd }

]}
f (vd) dvd ,

Dd =
∫

R
exp

{

log

(
nd
yd

)

+ yd xdβ + φydvd − nd log
[
1 + exp{xdβ + φvd }

]
}

f (vd) dvd ,

Nd =
∫

R

exp{xdβ + φvd }
1 + exp{xdβ + φvd } exp

{
φydvd − nd log

[
1 + exp{xdβ + φvd }

]}
f (vd) dvd ,

Dd =
∫

R
exp
{
φydvd − nd log

[
1 + exp{xdβ + φvd }

]}
f (vd) dvd .

We can conclude that the EBP of pd is p̂d(θ̂). However, its quantification requires
integration over the random effect PDF f (vd). As the logit mixed model belongs to
the family of generalized linear mixed models, this cannot be performed analytically.
Instead, we apply Monte Carlo integration and approximate the EBP as follows:

1. Estimate θ̂ = (β̂, φ̂).
2. For k = 1, . . . , K , generate v

(k)
d i.i.d. N (0, 1) and v

(K+k)
d = −v

(k)
d .

3. Calculate p̂d(θ̂) = N̂d/D̂d , where

N̂d = 1

2K

2K∑

k=1

{
exp{xd β̂ + φ̂v

(k)
d }

1 + exp{xd β̂ + φ̂v
(k)
d }

exp
{
φ̂ydv

(k)
d − nd log

[
1 + exp{xd β̂ + φ̂v

(k)
d }]}

}

,

D̂d = 1

2K

2K∑

k=1

exp
{
φ̂ydv

(k)
d − nd log

[
1 + exp{xd β̂ + φ̂v

(k)
d }
]}

.

The EBP of pd can be used to obtain the predictor Ŷd = Nd p̂(θ̂) of the domain total
Yd .

We now state two alternative predictors that do not rely onMonte Carlo integration.
The first is a synthetic predictor. It is characterized by a regression-synthetic prediction
from the area-level logit mixed model without considering the random effect. On that
note, the synthetic predictor of pd is obtained according to

p̃synd = exp{xd β̂}
1 + exp{xd β̂} , (12)

which constitutes the synthetic predictor Ỹ syn
d = Nd p̃

syn
d for Yd . The plug-in predictor

is obtained along the same lines, but includes the random effects vd as well as the
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variance parameter φ. For the prediction of pd , we have

p̃ plug
d = exp{xd β̂ + φ̂v̂d}

1 + exp{xd β̂ + φ̂v̂d}
, (13)

where v̂d is a predictor for the random effect vd . We describe how to calculate the
corresponding predictors in Sect. 3. Finally, the plug-in predictor of Yd is Ỹ plug

d =
Nd p̃

plug
d .

2.3 Mean squared error estimation

In order to assess the reliability of the obtained predictions for pd , we use the mean
squared error. It is generally characterized by MSE( p̂d) = E[( p̂d − pd)2]. However,
MSE( p̂d) cannot be quantified directly and must be estimated instead. For this, we
apply a parametric bootstrap as demonstrated by González-Manteiga et al. (2007) and
Boubeta et al. (2016). It is performed as follows.

1. Fit the model to the sample and calculate the estimator θ̂ = (β̂
′
, φ̂).

2. Repeat B times with b = 1, ..., B:

(a) Generate v
(b)
d ∼ N (0, 1), y(b)

d ∼ Bin(nd , p
(b)
d ), d = 1, . . . , D,

where p(b)
d = exp

{
xd β̂+φ̂v

(b)
d

}

1+exp
{
xd β̂+φ̂v

(b)
d

} .

(b) For each bootstrap sample, calculate the estimator θ̂
(b)

and the EBP p̂(b)
d =

p̂(b)
d (θ̂

(b)
) as stated above.

3. Output: mse( p̂d) = 1
B

∑B
b=1

(
p̂(b)
d − p(b)

d

)2.

3 Penalizedmodel parameter estimation

In this section, it is demonstrated how model parameter estimation in the area-level
logit mixed model under covariate rank-deficiency is performed. The foundation of
our estimation strategy is the ML-Laplace algorithm (e.g. Demidenko 2013; Hobza
et al. 2018). That is to say, the integrals in the likelihood function are approximated via
the Laplace method and the result is maximized with a Newton-Raphson algorithm.
However, in light of the comments in Sect. 1 and prior to maximization, we extend
the approximated likelihood function by the squared �2-norm of β to account for the
negative effects of covariate rank-deficiency. With this, we obtain a penalized version
approximated likelihood, which is then maximized to obtain reliable model parameter
estimates.We refer to this procedure as �2-penalized approximatemaximum likelihood
(�2-PAML) estimation.

123



466 J. Krause et al.

3.1 Laplace approximation

Wefirst perform the Laplace approximation of the likelihood function. Let h : R 
→ R
be a continuously twice differentiable function with a global maximum at x0. This is
to say, assume that h′(x0) = 0 and h′′(x0) < 0. A Taylor series expansion of h(x)
around x0 yields

h(x) = h(x0) + h′(x0)(x − x0) + 1

2
h′′(x0)(x − x0)

2 + o
(|x − x0|2

)

≈ h(x0) + 1

2
h′′(x0)(x − x0)

2. (14)

The univariate Laplace approximation is

∫ ∞

−∞
eh(x) dx ≈

∫ ∞

−∞
eh(x0) exp

{
− 1

2

(− h′′(x0)
)
(x − x0)

2
}
dx

= (2π)1/2
(− h′′(x0)

)−1/2
eh(x0)

∫ ∞

−∞

exp
{

− 1
2

(
x−x0

(−h′′(x0))−1/2

)2}

(2π)1/2
(− h′′(x0)

)−1/2 dx

= (2π)1/2
(− h′′(x0)

)−1/2
eh(x0). (15)

Let us now approximate the log-likelihood of the area-level logit mixed model. Recall
that v1, . . . , vD are independent and identically distributed according to vd ∼ N (0, 1),
and that

yd |vd ind∼ Bin(nd , pd), pd = pd(vd) = exp {xdβ + φvd}
1 + exp {xdβ + φvd} , d = 1, . . . , D.

Thus, y1, . . . , yD are unconditionally independent with marginal probability density

P(yd) =
∫ ∞

−∞
P(yd |vd) f (vd) dvd

=
∫ ∞

−∞

{(
nd
yd

)

exp
{
yd(xdβ + φvd} − nd log

(
1 + exp{xdβ + φvd}

)}
}

·(2π)−1/2 exp{−1

2
v2d} dvd = (2π)−1/2

(
nd
yd

)

·
∫ ∞

−∞
exp
{

− v2d

2
+ yd(xdβ + φvd) − nd log

(
1 + exp{xdβ + φvd}

)}
dvd

= (2π)−1/2
(
nd
yd

)∫ ∞

−∞
exp
{
h(vd)

}
dvd , (16)

where

h(vd) = −v2d

2
+ yd(xdβ + φvd) − nd log

(
1 + exp{xdβ + φvd}

)
. (17)
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Note that for the maximizer of h(·), denoted by v0d , the first derivative is h′(v0d) = 0,
and the second derivative is characterized by h′′(v0d) < 0. By applying (15) in vd =
v0d , we get

P(yd) ≈
(
nd
yd

)

·
(
1 + φ2nd pd(v0d)(1 − pd(v0d))

)−1/2

· exp
{

− v20d

2
+ yd(xdβ + φv0d) − nd log

(
1 + exp{xdβ + φv0d}

)}
. (18)

From there, we can state the log-likelihood function under the model, which is given
by

l =
D∑

d=1

ld = log P(yd).

Using the results of the Laplace approximation, we obtain

ld ≈ l0d(θ) = log

(
nd
yd

)

− 1

2
log ξ0d − v20d

2

+yd(xdβ + φv0d)nd log
(
1 + exp{xdβ + φv0d}

)
, (19)

where p0d = pd(v0d) and ξ0d = 1 + φ2nd p0d(1 − p0d).

3.2 �2-penalized approximatemaximum likelihood

The approximated log-likelihood function is expanded by the squared �2-norm of
the regression coefficients β to account for strong correlation between covariates in
x1, . . . , xD . We obtain the penalized maximum likelihood problem

θ̂ = argmax
θ∈Rp+1

l pen(θ), l pen(θ) =
D∑

d=1

l0d(θ) − λ‖β‖22, (20)

where l0d(θ) is defined in (19) and λ > 0 is a predefined tuning parameter. Maximiza-
tion is performed via a Newton-Raphson algorithm. However, note that the Laplace
approximations of l1, ..., lD depends on the maximizers of h(v1), ..., h(vD), which
in turn depend on l1, ..., lD . Therefore, the maximization of (20) must contain two
steps that are performed iteratively and conditional on each other. The first step is the
approximation of the log-likelihood by maximizing h(v1), ..., h(vD). The second step
is the maximization of l pen(θ) given the results of the first step. This is demonstrated
hereafter.
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Step 1: Log-likelihood approximation

In order to maximize h(vd), we need to quantify its first and second derivatives. These
are

h′(vd) = −vd + φ
{
yd − nd pd(vd)

}
(21)

h′′(vd) = −
(
1 + φ2nd pd(vd)(1 − pd(vd))

)
(22)

for all d = 1, ..., D. The Newton-Raphson algorithm maximizes h(vd) = h(vd , θ),
defined in (17), for fixed θ = (β ′, φ) = θ0. The updating equation is

v
(k+1)
d = v

(k)
d − h′(v(k)

d , θ0)

h′′(v(k)
d , θ0)

, (23)

where k denotes an iteration of the procedure.

Step 2: Penalized maximization

We continue with maximizing the penalized approximate log-likelihood function.
Regarding the first partial derivatives of l pen with respect to β1, ..., βp and φ, it holds
that

∂ p0d
∂βr

= xdr p0d(1 − p0d) = xdr (p0d − p20d),
∂ p0d
∂φ

= v0d p0d(1 − p0d) = v0d(p0d − p20d),

η0dr = ∂ξ0d

∂βr
= φ2nd xdr [p0d − 3p20d + 2p30d ],

η0d = ∂ξ0d

∂φ
= 2φnd p0d(1 − p0d) + φ2nd(1 − 2p0d)

∂ p0d
δφ

= φnd p0d(1 − p0d)[2 + φ(1 − 2p0d)v0d ].

For the domain-specific likelihood component l0d , this yields to

∂l0d
∂βr

= −1

2

η0dr

ξ0d
+ (yd − nd p0d)xdr ,

∂l0d
∂φ

= −1

2

η0d

ξ0d
+ (yd − nd p0d)v0d .

With the application of these equations to all domain-specific likelihood components
l01, ..., l0D and the consideration of the �2-penalty, we finally obtain

∂l pen

∂βr
=

D∑

d=1

∂l0d
∂βr

− 2λβr ,
∂l pen

∂φ
=

D∑

d=1

∂l0d
∂φ

. (24)
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For the second partial derivatives, it holds that

∂η0dr

∂βs
= φ2nd xdr xd js[p0d(1 − p0d) − 6p20d(1 − p0d) + 6p30d(1 − p0d)]
= φ2nd xdr xd js p0d(1 − p0d)[1 − 6p0d + 6p20d ],

∂η0dr

∂φ
= 2φnd xdr p0d(1 − p0d)(1 − 2p0d) + φ2nd xdr (1 − 6p0d + 6p20d)

∂ p0d
∂φ

= φnd xdr p0d(1 − p0d)[2(1 − 2p0d) + φv0d(1 − 6p0d + 6p20d)],
∂η0d

∂βr
= φ2v0dnd xdr p0d(1 − p0d)[1 − 6p0d + 6p20d ],

∂η0d

∂φ
= 2nd p0d(1 − p0d) + 2φnd1 − 2p0d)

∂ p0d
∂φ

+2φnd(1 − 2p0d)p0d(1 − p0d)v0d + φ2ndv0d(1 − 6p0d + 6p20d)
∂ p0d
∂φ

= nd p0d(1 − p0d)[2 + 2φ(1 − 2p0d)v0d + 2φ(1 − 2p0d)v0d
+φ2v20d(1 − 6p0d + 6p20d)].

For the domain-specific likelihood component l0d , this yields to

∂2l0d
∂β2

r
= −1

2

∂η0dr
∂βr

ξ0d − η20dr

ξ2d
− nd x

2
dr p0d(1 − p0d),

∂2l0d
∂βs∂βr

= −1

2

∂η0dr
∂βs

ξ0d − η0drη0ds

ξ2d
− nd xdr xd js p0d(1 − p0d),

∂2l0d
∂φ∂βr

= −1

2

∂η0dr
∂φ

ξ0d − η0drη0d

ξ2d
− v0dnd xdr p0d(1 − p0d),

∂2l0d
∂φ2 = −1

2

∂η0d
∂φ

ξ0d − η20d

ξ2d
− v20dnd p0d(1 − p0d).

As for the first partial derivatives applying these equations to all domain-specific
likelihood components l01, ..., l0D and considering the �2-penalty, we end up with

∂2l pen

∂β2
r

=
D∑

d=1

∂2l0d
∂β2

r
− 2λ,

∂2l pen

∂βs∂βr
=

D∑

d=1

∂2l0d
∂βs∂βr

,

∂2l pen

∂φ∂βr
=

D∑

d=1

∂2l0d
∂φ∂βr

,
∂2l pen

∂φ2 =
D∑

d=1

∂2l0d
∂φ2 .

(25)

For r , s = 1, . . . , p + 1, define the components of the score vector

U0r = ∂l pen

∂βr
, U0p+1 = ∂l pen

∂φ
, (26)
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as well as the Hessian matrix

H0rs = H0sr = ∂2l pen

∂βs∂βr
, Hrp+1 = Hp+1r = ∂2l pen

∂φ∂βr
, H0p+1p+1 = ∂2l pen

∂φ2 .

(27)

In matrix form, we have U0 = U0(θ) = col
1≤r≤p+1

(U0r ) and H0 = H0(θ) =
(H0rs)r ,s=1,...,p+1. The Newton-Raphson algorithm maximizes l pen(θ), with fixed
vd = v0d , d = 1, . . . , D. Let k denote the index of iterations. The corresponding
updating equation is

θ (k+1) = θ (k) − H−1
0 (θ (k))U0(θ

(k)). (28)

Complete �2-PAML algorithm

The final algorithm containing both steps is performed as follows.

1. Set the initial values k = 0, θ (0), θ (−1) = θ (0) + 1, v
(0)
d = 0, v

(−1)
d = 1, d =

1, . . . , D.
2. Until ‖θ (k) − θ (k−1)‖2 < ε1, |v(k)

d − v
(k−1)
d | < ε2, d = 1, . . . , D, do

(a) Apply algorithm (23) with seeds v
(k)
d , d = 1, . . . , D, convergence tolerance

ε2 and θ = θ (k) fixed. Output: v(k+1)
d , d = 1, . . . , D.

(b) Apply algorithm (28)with seed θ (k), convergence tolerance ε1 andv0d = v
(k+1)
d

fixed, d = 1, . . . , D. Output: θ (k+1).
(c) k ← k + 1.

3. Output: θ̂ = θ (k), v̂d = v
(k)
d , d = 1, . . . , D.

We remark that the output of the �2-PAML algorithm gives estimates θ̂ of the model
parameters θ and mode predictions v̂ of the random effects vd , d = 1, ..., D.

3.3 Tuning parameter choice and information criterion

In the technical descriptions of Sect. 3.2, we assumed that the tuning parameter λ

had been defined prior to model parameter estimation. In practice, it has to be found
empirically from the sample data. Note that this aspect is crucial for the effectiveness of
the proposedmethod. On the one hand, if λ is chosen too small, the �2-PAML approach
cannot sufficiently stabilize model parameter estimates in the presence of covariate
rank-deficiency. On the other hand, if λ is chosen too large, the shrinkage induced
by penalization dominates the optimization problem and resulting model parameter
estimates are heavily biased. Finding an appropriate value for the tuning parameter is
oftendonevia grid search, as canbe seen for instance inBergstra andBengio (2012) and
Chicco (2017). We define a sequence of candidate values {λq}Qq=1, where λq > λq+1.
For each candidate value λq model parameter estimation as demonstrated in Sect. 3.2
is performed. The results of model parameter estimation have to be evaluated by a
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suitable goodness-of-fit measure. For our application, we choose the non-corrected
Bayesian information criterion (BIC; Schwarz 1978). Alternative measures would be
the generalized cross-validation criterion (Craven and Wahba 1979) or the Akaike
information criterion (Akaike 1974). For given candidate value λq , let β̂(λq) and
φ̂(λq) be the estimators of β and φ, respectively. Further, let v̂d(λq) be the mode
predictor of vd . The Laplace non-corrected BIC is given by

BIC(λq) = p log(D) − 2lapp(λq), (29)

where the second term is the Laplace approximation (19) to the log-likelihood, that is

lapp(λq) = lapp
(
β̂(λq), φ̂(λq), v̂1(λq), . . . , v̂D(λq)

)

=
D∑

d=1

log

(
nd
yd

)

+
D∑

d=1

{

− 1

2
log ξ̂d(λq) − v̂d(λq)

2

2

+
{
yd(xd β̂(λq) + φ̂(λq)v̂d(λq))

−nd log
(
1 + exp{xd β̂(λq) + φ̂(λq)v̂d(λq)}

)}
}

,

where

ξ̂d(λq) = 1 + φ̂(λq)
2nd p̂d(λq)(1 − p̂d(λq)),

p̂d(λq) =
exp
{
xd β̂(λq) + φ̂(λq)v̂d(λq)

}

1 + exp
{
xd β̂(λq) + φ̂(λq)v̂d(λq)

} .

For all λ1, ..., λQ , the following algorithm is performed:

1. Apply the �2-PAML algorithm to obtain θ̂(λq) and v̂1(λq), ..., v̂D(λq).
2. Calculate p̂d(λq) and ξ̂d(λq), d = 1, ..., D.
3. Calculate BIC(λq) according to (29).

After the algorithm is finalized, the optimal tuning parameter λopt can be defined as
the candidate value that minimizes the BIC.

However, due to the non-convexity of the underlying optimization problem for �2-
PAML estimation, the behavior of the BIC along the tuning parameter sequence can be
volatile to the extent that it may be characterized by multiple local minima. Therefore,
we further apply cubic spline smoothing by defining BIC(λ) = f (λ) + εq , where
f (λ) is a twice differentiable function and εq ∼ N (0, ψ). The cubic spline estimate
f̂ of the function f is obtained from solving the optimization problem

min
f ∈F

Q∑

q=1

[
BIC(λq) − f (λq)

]2 + δ

∫

f ′′(λ)2 dλ, (30)
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where F = { f : f is twice differentiable} denotes the class of twice differentiable
functions and δ > 0 is a smoothing parameter. After f̂ has been obtained, the optimal
tuning parameter value λopt is defined as the minimizer of the smoothed function, that
is

λopt = argmin
λ∈{λq }Qq=1

f̂ (λ). (31)

4 Simulation

4.1 Setup

Hereafter, the performance of the �2-PAML approach is evaluated under controlled
conditions. For this, we conduct a Monte Carlo simulation study with K = 500
iterations that are indexed by k = 1, ..., K . We generate synthetic data according to

yd ∼ Bin(nd , pd), pd = exp
{
β0 + xdβ1 + φvd

}

1 + exp
{
β0 + xdβ1 + φvd

} ,

β0 = −0.2, β1 = 0.315, d = 1, ..., D,

where nd = 100, 15 as column vector of five ones, and φ = 0.4. The random effect vd
is drawn from a standard normal, as defined in Sect. 2.1. For the covariate vector xd , we
consider four different settings {A, B, C, D} with respect to the dependency between
the auxiliary variables. This is done in order to test the methodology under different
covariate correlation situations. In the A-setting, we have orthogonal covariates that
are generated according to xrd ∼ U (0.7, 1.2), r = 1, ..., 5. For the remaining three
settings, we choose

x1d ∼ U (0.7, 1.2), xrd = α(zd + ρx1d), zd ∼ U (0, 0.2), r = 2, ..., 5,

where ρ is a parameter controlling the dependency between x1d and xrd , and α is
a parameter harmonizing the variance of the random variables over settings. In the
B-setting, there is medium correlation with 20-50% on a percentage scale for the
product-moment correlation coefficient. For the C-setting, we have correlation with
about 50-75%. And in the D-setting, we have a strong correlation with 80-90%. Note
that the latter mimics situations of quasi rank-deficiency, which are of special interest.
In addition to covariate correlation, we let the total number of areas D vary over
scenarios in order to evaluate the method under different degrees of freedom. Overall,
we consider 8 simulation scenarios:

A.1 : D = 50, A.2 : D = 100,
B.1 : D = 50, ρ = 0.3, α = 2.0, B.2 : D = 100, ρ = 0.3, α = 2.0,
C.1 : D = 50, ρ = 0.9, α = 1.5, C.2 : D = 100, ρ = 0.9, α = 1.5,
D.1 : D = 50, ρ = 1.5, α = 0.7, D.2 : D = 100, ρ = 1.5, α = 0.7.
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The objective is to estimate the domain proportion pd , d = 1, ..., D. We compare
two model parameter estimation approaches for the logit mixed model described
in Sect. 2.1: a non-penalized approach that is obtained from maximizing lapp

(Laplace-ML), and the �2-penalized approach through maximizing l pen (�2-PAML),
as described in Sect. 3. We evaluate the simulation outcomes with respect to three
aspects: (i) model parameter estimation, (ii) domain proportion prediction, and (iii)
MSE estimation based on the parametric bootstrap in Sect. 2.3. The results are sum-
marized in the following subsections.

4.2 Model parameter estimation results

The target of this subsection is to study the fitting behavior of the �2-PAML algorithm.
Define θ := (β0,β

′
1, φ). For a given estimator θ̂r ∈ θ̂ of the model parameter θr ,

r = 1, ..., p + 1, we consider the following performance measures:

Bias(θ̂r ) = 1

K

K∑

k=1

(
θ̂ (k)
r − θr

)
, MSE(θ̂r ) = 1

K

K∑

k=1

(
θ̂ (k)
r − θr

)2
, (32)

where θ
(k)
r is the value that θ̂r takes in the k-th iteration of the simulation and θr

denotes the true value. As θr = 0.3 for all components of β1, we average the perfor-
mance measures for the regression parameters. Table 1 contains the results for model
parameter estimation.

We start with the regression parameters β = (β0,β
′
1)

′. It can be seen that the
�2-PAML algorithm obtains more efficient estimates than the ML-Laplace approach.
Its MSE is significantly smaller in all considered scenarios. The largest efficiency
gains are obtained in the D-scenarios, which include strong covariate correlation.
This could be expected from theory, as the �2-penalty was introduced by Hoerl and
Kennard (1970) in order to improve the fitting behavior in these settings. However,
we also see that under orthogonal covariates (A-scenarios), the �2-PAML algorithm
still outperforms the ML-Laplace approach. This is because approximate likelihood
inference introduces additional uncertainty to model parameter estimation. Here, the
�2-penalty stabilizes the shape of the objective function, which allows for efficiency
gains evenwithout covariate correlation. Yet, the increased efficiency comes at the cost
of an increased bias. The slope parameters β1, which are penalized while applying the
�2-PAMLalgorithm, are estimatedwith larger bias relative to theML-Laplacemethod.
Please note that this is in line with theory. Hoerl and Kennard (1970) showed that the
�2-penalty affects the bias-variance trade-off the researcher typically encounters in
ML estimation. It increases the bias in order to reduce the variance, which ultimately
allows for a smallerMSEwhen the regularization parameter λ is chosen appropriately.

This is also becomes evident when looking at the distribution of regression param-
eter estimates. Figure 1 shows boxplots of the absolute deviation |β̂r − βr |, βr ∈ β1,
over all Monte Carlo iterations and for different simulation scenarios. In each quarter,
the distribution yielded by the �2-PAML algorithm is displayed on the left, while the
the one obtained by the ML-Laplace algorithm is located on the right. We see that the
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Fig. 1 Absolute deviation of regression parameter estimates

boxes and whiskers of the �2-PAML algorithm are much shorter than those of theML-
Laplace method. This implies that the deviations from the true value are much smaller
under penalization for the vast majority of cases. Accordingly, the fitting behavior is
overall stabilized.

Concerning φ, the results are different. The standard deviation parameter estima-
tion is not influenced by the covariate correlation. An intuitive explanation for this
phenomenon is that p0d is not affected by the collinearity of xd , and that the diagonal
element H0p+1p+1 of theHessianmatrix depends on xd only through p0d . This is why,
we expect that the asymptotic behavior of the ML-Laplace and �2-PAML estimators
of φ will be not (or almost not) affected by the covariate correlation.

Concerning the comparison of the two fitting algorithms, the �2-PAML approach
increases the efficiency of regression parameter estimation. On the other hand, the
efficiency of standard deviation parameter estimation is impaired relative to the ML-
Laplace approach. In general, both methods overestimate the true value. This is likely
due the involved Laplace approximation in both algorithms. It is known to induce
bias to model parameter estimation, as for instance addressed by Jiang (2007), p. 131.
However, the bias for the �2-PAML algorithm is larger, as it implements additional
shrinkage of the regression parameters through the �2-penalty. The regression parame-
ter estimates are drawn to zero (to some extent), which causes a larger proportion of the
target variable’s variance to be attributed to the random effect. This leads to a stronger
overestimation of the random effect standard deviation. Nevertheless, we will see in
the next subsection that the efficiency advantage in regression parameter estimation
overcompensates the loss in standard devation parameter estimation accuracy.
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4.3 Domain proportion prediction results

The target of this subsection is to investigate the behavior of the EBP of pd , d =
1, ..., D. We consider absolute bias, MSE, relative absolute bias, and relative root
mean squared error as performance measures. For a domain proportion prediction in
the k-th iteration of the simulation study, define

p̄d = 1

K

K∑

k=1

p(k)
d , RBd =

∑K
k=1 | p̂(k)

d − p(k)
d |

K | p̄d | ,

REd =
√

1
K

∑K
k=1( p̂

(k)
d − p(k)

d )2

| p̄d | , d = 1, . . . , D.

Further, let

Bd = 1

K

K∑

k=1

| p̂(k)
d − p(k)

d |, Ed = 1

K

K∑

k=1

( p̂(k)
d − p(k)

d )2, d = 1, . . . , D.

The performance measures are then given by

ABias = 1

D

D∑

d=1

Bd , RABias = 1

D

D∑

d=1

RBd ,

MSE = 1

D

D∑

d=1

Ed , RRMSE = 1

D

D∑

d=1

REd .

The results obtained from the simulation study are summarized in Table 2.We observe
that �2-PAML improves domain total prediction performance in terms of all consid-
ered performance measures and for all implemented simulation scenarios, including
those without covariate correlation. This is in line with the simulation results for
model parameter estimation from the last subsection. The �2-penalty stabilizes the
estimation performance even for orthogonal covariates due to the necessary Laplace
approximation. However, the strongest efficiency gains in terms of the MSE relative
to the ML-Laplace algorithm are obtained in the C- and D-scenarios, where we have
strong covariate correlation. Against the backhground of Hoerl and Kennard (1970),
this could be expected from theory, as �2-penalization is known to be particularly
useful in the presence of (quasi-)multicollinearity. Overall, we can conclude that the
�2-PAML algorithm not only improves model parameter estimation, but also domain
total prediction in any setting.

4.4 Mean squared error estimation results

The target of this subsection is to study the performance of the parametric bootstrap
for MSE estimation.We employ B = 500 bootstrap replicates in order to approximate
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Table 2 Domain Proportion Prediction Results

Scen Method ABias MSE RABias RRMSE

A.1 ML-Laplace 0.033342 0.001781 0.047429 0.059960

A.1 �2-PAML 0.032920 0.001735 0.046830 0.059188

A.2 ML-Laplace 0.033094 0.001749 0.047128 0.059465

A.2 �2-PAML 0.032911 0.001729 0.046870 0.059132

B.1 ML-Laplace 0.034811 0.001922 0.053363 0.066946

B.1 �2-PAML 0.034416 0.001879 0.052758 0.066201

B.2 ML-Laplace 0.034372 0.001872 0.052849 0.066259

B.2 �2-PAML 0.034180 0.001851 0.052557 0.065877

C.1 ML-Laplace 0.028710 0.001344 0.036400 0.046199

C.1 �2-PAML 0.028228 0.001300 0.035794 0.045434

C.2 ML-Laplace 0.028748 0.001355 0.036663 0.046597

C.2 �2-PAML 0.028539 0.001333 0.036399 0.046227

D.1 ML-Laplace 0.032102 0.001652 0.044746 0.056371

D.1 �2-PAML 0.031651 0.001605 0.044116 0.055569

D.2 ML-Laplace 0.032197 0.001663 0.045118 0.056794

D.2 �2-PAML 0.031972 0.001640 0.044802 0.056401

the prediction uncertainty under the model. For a MSE estimate in the k-th iteration
of the simulation study, define

MSEd = 1

K

K∑

k=1

(Ŷ (k)
d − Y (k)

d )2, msed = 1

K

K∑

k=1

mse(Ŷ (k)
d ), mse = 1

D

D∑

d=1

msed ,

where Ŷ (k)
d and mse(Ŷ (k)

d ) are the EBP of Yd and its bootstrap MSE estimator (see
Sect. 2.3), respectively. We consider the following performance measures

RBias = 1

D

D∑

d=1

msed − MSEd

MSEd
, RRMSE = 1

D

∑

d=1

√
1
D

∑D
d=1(msed − MSEd)2

MSEd
.

Table 3 summarizes the simulation results.We see that the parametric bootstrap estima-
tor shows a decent performance overall. There is a slight tendency for underestimation.
However, with a relative bias of less then 4.3% for approximate likelihood inference
with a generalized linear mixed model, this is negligible. With regards to the RRMSE,
we see that the parametric bootstrap is more efficient under orthogonal covariates (A-
scenarios) and medium correlation (B-scenarios). In the C- and D-scenarios, which
employ stronger covariate correlation, the RRMSE becomes larger. This is in line with
the results of Sect. 4.2. In these scenarios, the model parameter estimates are subject
to larger variation, which affects the bootstrap due to its parametric construction. Yet,
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Table 3 Mean Squared Error
Estimation Results

Scen MSE mse RBias RRMSE

A.1 0.001735 0.001687 −0.027801 0.097148

A.2 0.001729 0.001676 −0.030432 0.089698

B.1 0.001879 0.001851 −0.014858 0.090956

B.2 0.001851 0.001842 −0.004771 0.085181

C.1 0.001300 0.001275 −0.019039 0.171667

C.2 0.001333 0.001276 −0.042769 0.168694

D.1 0.001605 0.001613 0.004951 0.124678

D.2 0.001640 0.001610 −0.018371 0.119636

with respect to practice, a RRMSE ranging from 8.5% to 17.2% is a solid result for
uncertainty estimation.

5 Application

5.1 Data description andmodel specification

In what follows, we apply the �2-PAML approach to estimate the regional prevalence
of multiple sclerosis in Germany. For this, we consider the German population of
the year 2017. It is segmented into 401 administrative districts and contains about
82 million individuals. The districts correspond to the domains in accordance with
Sect. 2.1. The required demographic information is retrieved from the German Federal
Statistical Office and based on the methodological standards described in Statistisches
Bundesamt (2016). Asmodel response y, we define a binary variable with realizations

yid =
{
1 person has multiple sclerosis

0 else

for some i ∈ Ud . The objective is to estimate pd = Yd/Nd with Yd = ∑
i∈Ud

yid
for all German districts. In order to define whether a person has multiple sclerosis,
we rely on an intersectoral disease profile provided by the Scientific Institute Institute
of the AOK (WIdO). It is based on multiple aspects, including medical descriptions,
inpatient diagnoses, and ambulatory diagnoses. The necessary sample counts for y are
based on health insurance records provided by the AOK. In particular, we use district-
level prevalence figures of the AOK insurance population in 2017 that are based on the
intersectoral disease profiles. The AOK insurance population is the biggest statutory
health insurance population of the country with roughly 26 million individuals in
2017 (AOK Bundesverband 2018). Note that the German health insurance system has
a rather unique separation between statutory and private health insurance. Usually, this
has to be accounted for in order to produce reliable prevalence estimates. However,
Burgard et al. (2019) showed that model-based inference using covariate data with
sufficient explanatory power can overcome this issue.
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As auxiliary data source, we use district-level inpatient diagnosis frequencies of
the German DRG-Statistics that are provided by the German Federal Statistical Office
(Statistisches Bundesamt 2017). The data set contains figures on how often a given
disease has been recorded in hospitals within a year. Both main and secondary diag-
noses are considered. With respect to diagnosis grouping, the records are provided on
the ICD-3 level (World Health Organization 2018). Note that the DRG-Statistics are a
full census of all German hospitals. Thus, the corresponding records cover the entire
population, as required for the model derivation in Sect. 2.1. However, a drawback
of the data set’s richness is that we have to choose a suitable set of predictors x out
of approximately 3000 potential covariates. Naturally, it is not feasible to apply an
exhaustive stepwise strategy that is often used in the context of variable selection, as
for instance demonstrated by Yamashita et al. (2007).

Instead, we apply a heuristic strategy based on the premise that the objective is
to find a covariate subset with sufficient explanatory power for our purpose. First,
we isolate the 20 variables of the DRG-Statistics that have the strongest correlation
with the AOK records on G35, which is multiple sclerosis on the ICD-3 level. The
variables are arranged in decreasing order with respect to their correlation. Next, we
use the �2-PAML algorithm from Sect. 3.2 to perform model parameter estimation for
p covariates, where p ∈ {2, 3, ..., 20}. That is to say, we start with the 2 covariates
that have the strongest correlation to G35, and then sequentially increase the number
of predictors up to 20. For every result of model parameter estimation, we calculate
the Laplace non-corrected BIC in (29). Then, we select the covariate subset that corre-
sponds to the model fit which minimizes the BIC. The BIC curve over all considered
covariate set cardinalities is displayed in Fig. 2. We see that the curve has an odd
evolution over the covariate sets. This can be attributed to three reasons. Firstly, due
to the non-linearity of the link function, the covariate sorting is guaranteed to orga-
nize the covariates in descending order with regards to their relevance for the target
variable. Secondly, due to the strong correlation between them, the covariate contri-
butions interfer with each other. That is to say, when including an additional covariate
into the active set, the contributions of the previously contained covariates can change
considerably. And finally, as already addressed in Sect. 3.3, the non-convexity of the
optimization problem further leads to irregularities in the BIC curve.

Despite these issues, the BIC curve has a clear minimum that is located at p = 9.
Therefore, we isolate the 9 DRG-Statistics variables that have the strongest correlation
with the AOK records on G35. Thereafter, we perform a parametric bootstrap to esti-
mate the standard deviation of eachmodel parameter estimate θ̂ j ∈ θ̂ , j = 1, ..., p+1,
to evaluate its significance in terms of the p-value. The parametric bootstrap is
described as follows:

1. Fit the model to the sample and calculate the estimator θ̂ = (β̂
′
, φ̂).

2. Repeat B times with b = 1, ..., B:

(a) Generate v
(b)
d ∼ N (0, 1), y(b)

d ∼ Bin(nd , p
(b)
d ), d = 1, . . . , D, where p(b)

d =
exp
{
xd β̂+φ̂v

(b)
d

}

1+exp
{
xd β̂+φ̂v

(b)
d

} .

(b) For each bootstrap sample, calculate the estimator θ̂
(b)

.
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Fig. 2 BIC over covariate set cardinalities

3. Output: sd(θ̂ j ) =
√

1
B

∑B
b=1

(
θ̂

(b)
j − 1

B

∑B
k=1 θ̂

(k)
j

)2, j = 1, ..., p + 1.

Based on the estimated standard deviations, we calculate test statistics for a sequence
of t-tests under the null hypothesis H0 : θ j = 0, j = 1, ..., p + 1. For a given
θ j ∈ θ , the test statistic is given by t j = θ̂ j/sd(θ̂ j ) and follows a standard normal
distribution. The test statistic values are located in the pdf of the standard normal to
obtain their respective p-values. We delete every predictor that corresponds to a model
parameter that is not relevant on at least a 10% significance level. The entire procedure
is summarized hereafter:

1. Find the 20 covariates with the strongest correlation to y
2. Perform model parameter estimation for p ∈ {2, 3, ..., 20} predictors
3. Find the number of predictors that minimizes the BIC
4. For the BIC-minimal predictor set, perform a parametric bootstrap to estimate

standard deviations for the model parameter estimates
5. Perform t-tests to evaluate their significance and delete insignificant predictors

The proposed strategy yields us the final covariate set x which consists of p = 5
predictors. The selected covariates are briefly characterized as follows:

• X1: G43 (Migraine, secondary diagnosis)
• X2: M20 (Acquired deformities of fingers and toes, main diagnosis)
• X3: E66 (Overweight and obesity, main diagnosis)
• X4: E04 (Other nontoxic goiter, main diagnosis)
• X5: G35 (Multiple sclerosis, secondary diagnosis)

Please note that the association of these variableswithmultiple sclerosis is the result
of district-level correlation. It does not directly imply person-level comorbidities in
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Table 4 Estimation results for final model specification

Parameter Estimate Std.Dev. p-value 95%-Conf.Int.

β0 −5.79912 0.00640 0.00000 [−5.81167; −5.78657]

β1 −0.00092 0.00009 0.00000 [−0.00110; −0.00073]

β2 0.00026 0.00009 0.00380 [0.00009; 0.00043]

β3 −0.00030 0.00007 0.00001 [−0.00043; −0.00017]

β4 −0.00081 0.00006 0.00000 [−0.00093; −0.00068]

β5 0.00154 0.00009 0.00000 [0.00136; 0.00173]

φ 0.10939 0.00551 0.00000 [0.09860; 0.12019]

a medical sense. Applying the �2-PAML algorithm on the final covariate set yields
us the final model specification that we use for regional prevalence estimation. It is
summarized in Table 4. The confidence intervals for the parameters are calculated
according to θ̂ j ± t(D,1−α/2)sd(θ̂ j ), j = 1, ..., p + 1, where t(·) is the corresponding
quantile of t-distribution with D degrees of freedom and significance level α. The
BIC value of the upper model specification is 979754 and therefore even better than
the optimal fit with p = 9 in Fig. 2. This suggests that the used model specification
was a reasonable choice given the considered data basis. Further, observe that the
estimated value for the standard deviation parameter φ is considerably larger than all
slope parameters β1, ..., β5. This implies that the random effects v1, ..., vD are clearly
evident in the empirical distribution of p1, ..., pD . Therefore, we can conclude that
using a mixed effect model in this context was a necessary choice.

We further look at the internal correlation structure of the considered predictors in
order to assess the demand for �2-penalization in the application. For this, we look
at the empirical correlation matrix for the five selected DRG-Statistics variables. It is
given as follows:

�xx =

⎛

⎜
⎜
⎜
⎜
⎝

1.00 0.95 0.93 0.85 0.94
0.95 1.00 0.94 0.87 0.95
0.93 0.94 1.00 0.88 0.95
0.85 0.87 0.88 1.00 0.88
0.94 0.95 0.95 0.88 1.00

⎞

⎟
⎟
⎟
⎟
⎠

We observe that (beside the main diagonal elements), the correlation values range
from 0.85 to 0.95, or 85% to 95% on a percentage scale. This suggests that the internal
correlation structure is very strong and comparable to theD-scenarios of our simulation
study. Therefore, we conclude that using �2-penalization is reasonable in this context.
However, note that some of this correlation is due to the size as a result of district-
level aggregation. Again, this does not directly resemble medical comorbidity on an
individual level.
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Table 5 Quantiles of the EBP distributions

Method Min 0.25 0.50 Mean 0.75 Max

ML-Laplace 0.171% 0.259% 0.297% 0.301% 0.336% 0.513%

�2-PAML 0.209% 0.269% 0.295% 0.300% 0.324% 0.471%

5.2 Results

Let us now investigate the results of prevalence estimation. The national prevalence∑D
d=1 Yd/

∑D
d=1 Nd · 100% is estimated at 0.296%. Based on the parametric boot-

strap, we calculate a 95% confidence interval of [0.293%; 0.300%]. This implies that
the estimated total number of persons with multiple sclerosis ranges approximately
from 239000 to 246000, which is in line with reference figures on this topic. The Cen-
tral Research Institute of Ambulatory Health Care in Germany estimated that in 2017
about 240000 individuals had multiple sclerosis (Müller 2018). The regional distribu-
tion of prevalence estimates on the district-level is displayed in Fig. 3. We observe a
prevalence discrepancy between the western and eastern parts of Germany. The esti-
mated prevalence in western Germany are overall higher than in eastern Germany.
Further, we observe regional clustering with higher prevalence in the central-northern
and central-southern parts of Germany. This is also consistent with reference studies.
Similar patterns have been found by Central Research Institute of Ambulatory Health
Care in Germany (Müller 2018) and Petersen et al. (2014). Overall, the estimates are
plausible in both level and geographic distribution.

Figure 3 shows the distributions of district-level prevalence estimates for the EBPs
under both �2-PAML and the classical ML-Laplace method. The ML-Laplace results
are displayed in black, the �2-PAML results are plotted in red. We see that the means
of the distributions are almost identical. However, the �2-PAML distribution shows
considerably less variance than the ML-Laplace distribution. This is in line with both
theory and the simulation study, which both suggest stabilizing effects through �2-
penalization.

This is further evident when looking at the summarizing quantiles of both predictive
distributions. They are displayed in Table 5 . We see that the �2-PAML estimates are
more more focussed around the mean and do not show as strong of outliers at the tails
of the distribution compared to ML-Laplace.

Figure 5 displays the root mean squared error estimates rmse( p̂d) = √
mse( p̂d)

for the prevalence estimates in Fig. 3, where mse( p̂d) is obtained from the paramet-
ric bootstrap procedure described in Sect. 2.3. It becomes evident that there are no
obvious spatial patterns in the RMSE estimates.We neither observe a particular depen-
dency on the domain sizes nor on the prevalence estimates themselves. However, with
respect to the overall level of RMSE estimates, we can conclude that our estimates
are more efficient than direct estimates p̂dird = yd/nd , d = 1, ..., D, that are exclu-
sively obtained from the health insurance records. Their standard deviation is given

by sd( p̂dird ) =
√
p̂dird (1 − p̂dird ).
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0.200% to 0.245%
0.245% to 0.290%

0.290% to 0.335%
0.335% to 0.370%

0.370% and higher

Fig. 3 Results of prevalence estimation

A one-to-one comparison of rmse( p̂d) and sd( p̂dird ) per domain is visualized in
Fig. 6. The ordinate measures sd( p̂dird ) and the abscissa measures rmse( p̂d). The red
line marks the bisector, which indicates equality between the two. We observe that
rmse( p̂d) is always smaller than sd( p̂dird ) by quite a margin. Thus, given the reason-
able performance of the parametric bootstrap forMSE estimation in the simulation, we
can conclude that our estimates mark an improvement over the direct estimates. There
is a slight positive relation between the two measures. That is to say, a relatively large
sd( p̂dird ) is accompanied by a relatively large rmse( p̂d) on expectation. However, the
trend is only vaguely visible.

Finally, let us look at the distribution of random effect predictions over domains.
They are visualized in Fig.7. The bars of the histogram correspond to the probability
density of the mode predictors in the respective interval of the support. The red line is
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the result of a kernel density estimation over their realized values. We observe that the
distribution is very close to normal. This is in line with the theoretical developments
from Sect. 2.1. Overall, it can be concluded that the �2-PAML approach in the area-
level logit mixed model was a sensible choice for the considered application.

6 Conclusion

Regional prevalence estimation is an important issue to monitor the health of the
population and for planning capacities of a health care system. A good covariate on
the prevalence of a disease can be typically obtained from medical treatment records
such as the DRG-Statistics in Germany. We proposed a new small area estimator for
regional prevalence that copes with two major issues in this context. First, typically
health surveys do not have a large sample and the sample size is mainly dedicated
to allow for the estimation of national figures. Within regional entities, therefore,
the sample size is very small. Applying classical design based or model assisted
estimators on these small sample sizes leads to very high standard errors for many
regions. Our small area estimator is capable of overcoming this issue by using a model
based approach. The second problem we tackle is, that the best covariates at hand,
typically have high correlations between each other. This leads to numerical problems
inhibiting the exploitation of these covariates. To overcome this problem we propose
to use a �2-penalization approach. This leads to the need for revising the parameter
estimation procedure and to adapt it to the new requirements. We provide therefore
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Fig. 5 Results of RRMSE estimation

a novel Laplace approximation to a logit mixed model with �2 regularization. This
estimation procedure is applicable for other purposes such as classical logit mixed
model estimation with �2-penalization.

The prevalence estimation maps of Sect. 5 show some clusters of small areas with
high or low prevalence. This fact indicates that modeling spatial correlation by intro-
ducing, for example, simultaneous autoregressive random effects, might benefit the
final predictions. Combining this additional generalization with the robust penalized
approach is thus desirable. However, it is not an easy theoretical task and deserves
future independent research. In a Monte Carlo simulation study we show that the
proposed estimation approach �2-PAML yields stable parameter estimates even under
strong correlations of the covariates. This simulation results underpin the theoreti-
cal arguments. Finally, we applied this newly derived estimator to the prediction of
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district-level multiple sclerosis prevalence and obtained estimates with a considerably
low root mean squared error. Hence, we recommend using our new approach for the
regional prevalence estimation.
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