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Abstract
The European gas market is organized as a so-called entry-exit system with the main
goal to decouple transport and trading. To this end, gas traders and the transmission
system operator (TSO) sign so-called booking contracts that grant capacity rights to
traders to inject or withdraw gas at certain nodes up to this capacity. On a day-ahead
basis, traders then nominate the actual amount of gas within the previously booked
capacities. By signing a booking contract, the TSO guarantees that all nominations
within the booking bounds can be transported through the network. This results in
a highly challenging mathematical problem. Using potential-based flows to model
stationary gas physics, feasible bookings on passive networks, i.e., networks without
controllable elements, have been characterized in the recent literature. In this paper,
we consider networks with linearly modeled active elements such as compressors or
control valves. Since these active elements allow the TSO to control the gas flow,
the single-level approaches for passive networks from the literature are no longer
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applicable. We thus present a bilevel model to decide the feasibility of bookings in
networks with active elements. While this model is well-defined for general active
networks, we focus on the class of networks for which active elements do not lie on
cycles. This assumption allows us to reformulate the original bilevel model such that
the lower-level problem is linear for every given upper-level decision. Consequently,
we derive several single-level reformulations for this case. Besides the classic Karush–
Kuhn–Tucker reformulation, we obtain three problem-specific optimal-value-function
reformulations. The latter also lead to novel characterizations of feasible bookings in
networks with active elements that do not lie on cycles. We compare the performance
of our methods by a case study based on data from the GasLib.

Keywords Gas networks · Bilevel optimization · European entry-exit market ·
Bookings · Active elements

Mathematics Subject Classification 90B10 · 90C11 · 90C35 · 90C46 · 90C90

1 Introduction

The main goal of the European entry-exit gas market is to decouple transport and
trading of gas. The transmission system operator (TSO), who operates the network,
and gas traders interact via so-called bookings. A booking represents a mid- to long-
term capacity-right contract between gas traders and the TSO. It grants traders the right
to inject and withdraw gas up to the booked capacities at certain nodes of the network.
After signing these booking contracts, gas traders can nominate on a daily basis the
actual quantities of gas within their booked capacities that should be shipped through
the network by the TSO. In total, these so-called nominations have to be balanced and
represent the quantities of gas that are injected at entry nodes or withdrawn at exit
nodes in a single time period.

By signing a booking contract, the TSO is obliged to guarantee that every balanced
and booking-compliant load flow can be transported through the network, which fol-
lows from the European directive (Directive 2009) and the subsequent regulation
(European Parliament Council 2009) on the entry-exit gas market. Indeed, this condi-
tion decouples transport and trading, since after signing the booking contracts, the gas
traders can nominate any balanced quantity of gas without considering any transport
requirements of the network. However, from a mathematical point of view, deciding
the feasibility of a booking poses a significant challenge since infinitelymany different
balanced load flows have to be checked for being transportable through the network.

First mathematical results regarding bookings are obtained in the PhD theses by
Hayn (2016) and Willert (2014). Some structural properties of bookings are analyzed
in Willert (2014). Further, Hayn (2016) studies the problem of deciding the feasibility
of a booking as a quantifier elimination problem and presents an algorithm that decides
the feasibility of a booking in an active network up to a certain tolerance. The remaining
literature regarding bookings focuses on the case of passive networks. In Fügenschuh
et al. (2014), the so-called reservation-allocation problem is studied for linear flow
problems, which is closely related to the feasibility of a booking. Later on, in Labbé
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A bilevel approach to decide the feasibility… 411

et al. (2020), a characterization of feasible bookings is obtained, in which for each pair
of nodes, a nonlinear optimization problem needs to be solved to global optimality.
These nonlinear problems compute the maximum pressure difference between the
corresponding two nodes that can be obtained within the considered booking. If these
maximum pressure differences satisfy certain pressure bounds, the booking is feasible
and otherwise, it is infeasible. This characterization can be used to decide the feasibility
of a booking in polynomial time for passive, tree-shaped networks (Labbé et al. 2020)
or passive, single-cycle networks (Labbé et al. 2021). However, the problem is coNP-
hard on passive networks in general (Thürauf 2020). Moreover, optimizing over the
set of feasible bookings is hard even on tree-shaped networks (Schewe et al. 2020).
We note that deciding the feasibility of bookings can also be seen as a special two-
stage robust or adjustable robust optimization problem in which the uncertainty set
consists of balanced and booking-compliant load flows. Exploiting this point of view,
the authors of Aßmann (2019); Aßmann et al. (2019); Robinius et al. (2019) derive
methods that can be used to decide the feasibility of bookings in passive networks.
Moreover, results of booking feasibility are not restricted to the European entry-exit
gas market, but can also be applied to other potential-based network problems such as
network expansion under demand uncertainties. This is demonstrated, e.g., inRobinius
et al. (2019), where a robust diameter selection for hydrogen networks is computed
that is protected against unknown future demand fluctuations.

Unfortunately, all these results in passive networks cannot be used directly to decide
the feasibility of bookings in active networks. Switching from passive to active net-
works makes the problem even more challenging as it introduces binary decisions
for switching on or off active elements such as compressors or control valves. These
binary decisions have to be taken individually for each balanced load flow within the
booking bounds, since the TSO is able to change the settings of the active elements.
This additional degree of freedom leads us to consider the following bilevel structure.
The upper-level adversarial player tries to find a balanced and booking-compliant load
flow that cannot be transported. The TSO, acting as the lower-level player, uses the
active elements to transport this “worst-case” load flow of the upper level through
the network. Consequently, if the upper-level player finds a balanced and booking-
compliant load flow that cannot be transported by the TSO in the lower level, then the
booking is infeasible. Otherwise, it is feasible. For an introduction to bilevel optimiza-
tion, we refer to the books Bard (1998); Dempe (2002) and the recent survey article
see above Kleinert et al. (2021). In general, bilevel optimization has been successfully
applied to many different problems in the context of energy networks; see Wogrin
et al. (2020). Moreover, it has specifically been applied to find scenarios that lead to
severe transport situations in passive gas networks with linear flow models; see, e.g.,
Hennig and Schwarz (2016).

In this paper, we present a first stepping stone towards deciding the feasibility of
bookings in networks with linearly modeled active elements and a nonlinear model for
stationary gas transport. First, a bilevelmodel for validating bookings on networkswith
active elements is derived. Since even linear bilevel optimization is computationally
hard, see Hansen et al. (1992); Jeroslow (1985), and since we additionally consider
nonlinear gas transport models, we assume that no active element is part of a cycle of
the network; see, e.g., Aßmann et al. (2019),where this assumption is used aswell. This
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412 F. Plein et al.

allows us to reformulate our model as a bilevel problem with mixed-integer nonlinear
upper level and a linear lower level. We then develop different approaches to solve this
challenging bilevel problem. First, the classic Karush–Kuhn–Tucker (KKT) approach
is applied. We provide provably correct bounds on the lower-level primal and dual
variables to be used in the linearization of theKKT complementarity constraints. Then,
three closed-form expressions of the lower-level optimal value function are studied.
Using these closed-form formulas, we set up optimal-value-function reformulations
of the presented bilevel model, which then lead to novel characterizations of feasible
bookings in active networks. The obtained approaches are evaluated in a computational
study for some instances of the GasLib (Schmidt et al. 2017). The results show that
the nonlinear gas flow model is computationally very challenging, which only allows
for a limited comparison of the methods. Thus, we also conducted a computational
study for a simplified linear flow model.

The remainder of this paper is structured as follows. In Sect. 2, we formally intro-
duce the problem of deciding the feasibility of a booking in networks with active
elements. In Sect. 3,we then illustratewhy themethods for the case of passive networks
cannot be applied and how active elements make the problem even more challenging.
We present a bilevel model for deciding the feasibility of a booking for active networks
in Sect. 4. While this model is well-defined for general active networks, we afterward
focus on networks in which the active elements do not lie on cycles. This assumption
allows us to reformulate the original bilevel model such that the lower-level prob-
lem is linear for every given upper-level decision. Based on the reformulated bilevel
model, we provide the single-level KKT reformulation in Sect. 5 and discuss various
optimal-value-function reformulations and characterizations of feasible bookings in
active networks in Sect. 6. We then compare our methods in a computational study in
Sect. 7. Finally, we summarize our results and discuss possible directions for future
research in Sect. 8.

2 Problem description

We now formalize the problem of deciding the feasibility of a booking in gas net-
works including compressors and control valves. We follow and extend the problem
description in Labbé et al. (2021), which deals with the feasibility of a booking for
a single-cycle network without active elements. To this end, we consider linearly
modeled active elements and stationary gas flows.

We model a gas network by a weakly connected and directed graph G = (V , A)

with nodes V and arcs A. The set of nodes is partitioned into entry nodes V+, at which
gas is injected, exit nodes V−, at which gas is withdrawn, and the remaining inner
nodes V0. The set of arcs is partitioned into pipes Apipe and active elements Aact,
which can actively control the pressure. Further, the set of active elements is split into
compressors Acm, which can increase the pressure, and control valves Acv, which can
decrease the pressure.

We now introduce our framework for deciding the feasibility of a booking.
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A bilevel approach to decide the feasibility… 413

Definition 2.1 A load flow is a vector � = (�u)u∈V ∈ R
V≥0 with �u = 0 for all u ∈ V0.

The set of load flows is denoted by L .

A load flow leads to an actual flow situation in the gas network. More precisely, �u
denotes the amount of gas that is injected at an entry u ∈ V+ and that is withdrawn at
an exit u ∈ V−. Since we consider stationary gas flows, the quantities of gas injected
and withdrawn from the network have to be balanced. This leads to the definition of
a nomination.

Definition 2.2 A nomination is a balanced load flow �, i.e.,
∑

u∈V+ �u = ∑
u∈V− �u .

The set of nominations is given by

N :=
⎧
⎨

⎩
� ∈ L :

∑

u∈V+
�u =

∑

u∈V−
�u

⎫
⎬

⎭
.

A booking, on the other hand, represents a mid- to long-term contract in the Euro-
pean entry-exit gas market between the gas traders and the TSO that allows gas traders
to inject orwithdrawgas at certain nodes up to the booked capacity. To do so, theTSO is
obliged to guarantee that all possibly infinitely many booking-compliant nominations
can be transported through the network.

Definition 2.3 A booking is a load flow b ∈ L . A nomination � is called booking-
compliant w.r.t. the booking b if � ≤ b holds, where “≤” is meant component-wise
throughout this paper. The set of booking-compliant nominations is given by N (b) :=
{� ∈ N : � ≤ b}.

In the following, we consider stationary gas flows based on theWeymouth pressure
loss equation (Weymouth 1912). In line with the corresponding literature Schewe et al.
(2020), Thürauf (2020), and Labbé et al. (2021), we model gas flow physics using
potential-based flows, which for active networks consist of arc flows q = (qa)a∈A,
node potentials π = (πu)u∈V , and controls � = (�a)a∈Aact . In the context of gas
networkswith horizontal pipes, potentials represent squared gas pressures at the nodes,
i.e., πu = p2u for u ∈ V . We note that potential-based flow models are also capable of
handling non-horizontal pipes; see Gross et al. (2019). For modeling active elements,
a variety of different modeling approaches exist that range from simple linear to
sophisticatedmixed-integer nonlinear ones; see Fügenschuh et al. (2015). In this paper,
we focus on linearlymodeled active elements similar toAßmann (2019).A compressor
or control valve a ∈ Aact linearly increases, respectively decreases, potentials by�a ∈
[0,�+

a ], where �+
a ≥ 0 is an upper bound on its capability to increase or decrease the

potential. The compressor or control valve can only be active if a minimal quantity of
flow passes the arc in the “correct” direction, i.e., if qa > ma holds for some given
threshold value ma ≥ 0. We model an active element a = (u, v) ∈ Aact by

πu − πv =
{

−�a, if a ∈ Acm,

�a, if a ∈ Acv,

�a ∈ [0,�+
a χa(q)],
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414 F. Plein et al.

where the indicator function χa(q) is given by

χa(q) :=
{
1, if qa > ma,

0, otherwise.

We note that modeling the indicator function χa introduces binary variables in general,
which we explicitly consider in Sect. 4. We can now formally define the feasibility of
a nomination and a booking.

Definition 2.4 A nomination � ∈ N is feasible if (q, π,�) exists that satisfies

∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa =

⎧
⎪⎨

⎪⎩

�u, u ∈ V+,

−�u, u ∈ V−,

0, u ∈ V0,

(1a)

πu − πv = �aqa |qa |, a = (u, v) ∈ Apipe, (1b)

πu − πv =
{

−�a, a = (u, v) ∈ Acm,

�a, a = (u, v) ∈ Acv,
(1c)

�a ∈ [0,�+
a χa(q)], a ∈ Aact, (1d)

πu ∈ [π−
u , π+

u ], u ∈ V , (1e)

where δout(u) and δin(u) denote the sets of arcs leaving and entering node u ∈ V ,
�a > 0 is a pipe-specific potential drop coefficient for all a ∈ Apipe, 0 < π−

u ≤ π+
u

are potential bounds for all u ∈ V , and 0 ≤ �+
a is an upper bound on the operation of

each active element a ∈ Aact.

Constraints (1a) ensure flow conservation at every node of the network. For
pipes a ∈ Apipe, Constraints (1b) link the arc flow to the incident node potentials.
For active elements a ∈ Aact, Constraints (1c) determine the potentials incident to the
active element according to its control �a . Moreover, Constraints (1d) ensure that the
active elements operate in the allowed ranges, which are due to technical restrictions.
Finally, the potentials have to satisfy certain potential bounds, see Constraints (1e).
The feasibility of a booking is then defined as follows.

Definition 2.5 A booking b ∈ L is feasible if all booking-compliant nominations
� ∈ N (b) are feasible, i.e., a booking b is feasible if

∀� ∈ N (b) ∃(q, π,�) satisfying (1). (2)

Consequently, for checking the feasibility of a booking, possibly infinitely many
booking-compliant nominations have to be checked for feasibility.

From a robust optimization perspective, Problem (2) can be seen as a special two-
stage robust or adjustable robust optimization problem, see Ben-Tal et al. (2009);
Yanıkoğlu et al. (2019) for more details. Here, the uncertainty set consists of all
booking-compliant nominations N (b). Moreover, the robust problem consists only
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A bilevel approach to decide the feasibility… 415

of so-called “wait-and-see” decisions given by (1) and no “here-and-now” decisions
are made. The switch from passive to active networks makes Problem (2) even more
challenging since it introduces binary “wait-and-see” decisions due to the indicator
functions χa for all a ∈ Aact.

3 Why active elements are difficult

In this section, we first review a known characterization of the feasibility of a booking
in passive networks as obtained in Labbé et al. (2020). Afterward, we show that this
characterization cannot be applied to the considered case with active elements, which
illustrates the need for new methods to decide the feasibility of a booking in active
networks.

In passive networks, the feasibility of a given booking b can be characterized by
computing the maximum potential difference for each pair of nodes; see Theorem 10
in Labbé et al. (2020). For each pair of nodes (w1, w2) ∈ V 2, the authors introduce
the nonlinear optimization problem

ϕw1w2(b) := max
�,q,π

πw1 − πw2 (3a)

s.t.
∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa =

⎧
⎪⎨

⎪⎩

�u, u ∈ V+,

−�u, u ∈ V−,

0, u ∈ V0,

(3b)

πu − πv = �aqa |qa |, a = (u, v) ∈ A, (3c)

0 ≤ �u ≤ bu, u ∈ V . (3d)

The feasibility of a booking is then characterized by constraints on the optimal
value ϕw1w2(b) of (3).

Theorem 3.1 (Theorem 10 in Labbé et al. (2020)) Let G = (V , A) be a weakly
connected and passive network and let b ∈ L be a booking. Then, the booking b is
feasible if and only if for each pair of nodes (w1, w2) ∈ V 2, the corresponding optimal
value ϕw1w2(b) satisfies

ϕw1w2(b) ≤ π+
w1

− π−
w2

. (4)

For passive tree-shaped or passive single-cycle networks, this characterization can
be checked in polynomial time; see Labbé et al. (2020, 2021); Robinius et al. (2019).
However, the problem of validating a booking on general passive networks is known
to be coNP-hard (Thürauf 2020).

Unfortunately, the characterization given in Theorem 3.1 does not hold if active
elements are present in the network, which we demonstrate by the following coun-
terexample. To this end, we consider a tree G = (V , A)with corresponding lower and
upper potential bounds π− and π+:

V := {s, v, t}, A := {(s, v), (v, t)},
π−
s = π+

s = 5, π−
v = 0, π+

v = 10, π−
t = 5, π+

t = 7,
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416 F. Plein et al.

Fig. 1 Network of the
counterexample consisting of
three nodes, one compressor, and
one pipe, together with relevant
node and arc parameters s v t

⎛
⎝

b
π−

π+

⎞
⎠ =

⎛
⎝

1
5
5

⎞
⎠

⎛
⎝

0
0
10

⎞
⎠

⎛
⎝

1
5
7

⎞
⎠

m(s,v) = 0
Δ+

(s,v) = 2
Λ(v,t) = 1

where s ∈ V+ is an entry node, t ∈ V− is an exit node, and v ∈ V0 is an inner node.
Furthermore, (s, v) ∈ Acm is a compressor that operates in the range �(s,v) ∈ [0, 2]
if q(s,v) > m(s,v) = 0 and otherwise, it is switched to bypass mode, i.e., �(s,v) = 0.
The arc (v, t) ∈ Apipe is a pipe with potential drop coefficient �(v,t) = 1. A graphical
representation is given in Figure 1.

We consider the booking (bs, bv, bt ) = (1, 0, 1). By construction, every feasible
point of (3) satisfies 0 ≤ qa ≤ 1 for all a ∈ A. To apply the passive characterization (4)
to the active network G = (V , A), we set the active element to bypass mode and
interpret it as a pipe with�(s,v) = 0. Consequently, it follows that the characterization
conditions (4) are directly satisfied for every pair of nodes except of (s, t). For the latter
pair of nodes, the booking-compliant nomination (�s, �v, �t ) = (1, 0, 1) is the optimal
solution of (3) w.r.t. (s, t) with objective value ϕst (b) = 1 and therefore violates the
corresponding condition (4). Consequently, the booking is infeasible. However, this
is not correct here since the compressor can be used to compensate the potential loss.
In particular, for every booking-compliant nomination � ∈ N (b), we can explicitly
construct a corresponding feasible point of (1) as follows: The zero nomination is
feasible due to πu = 5 for all u ∈ V , qa = 0 for all a ∈ A, �(s,v) = 0, and
χ(s,v)(q) = 0. Thus, we now consider an arbitrary nonzero nomination � ∈ N (b).
The corresponding flows q are unique since G is a tree. We thus can construct the
following feasible point of (1):

πs = 5, πv = 7, πt = 7 − q2(v,t), �(s,t) = 2, χ(s,v)(q) = 1,

where πt = 7 − q2(v,t) ∈ [5, 7] holds due to 0 ≤ qa ≤ 1 for all a ∈ A. This small
counterexample illustrates that the existing characterization for deciding the feasibility
of a booking in passive networks cannot be applied directly to the case of networks
with active elements.

Furthermore, the introduction of active elements may lead to a disconnected set of
feasible nominations, which is proven to be connected for the case of passive networks;
see Schewe et al. (2020). We can observe this effect in our small counterexample by
setting the threshold value m(s,v) = 0.5. Then, the set of nominations N (b) splits into
infeasible nominations {(�s, �v, �t ) = (x, 0, x) : x ∈ (0, 0.5]} and the set of feasi-
ble nominations {(�s, �v, �t ) = (x, 0, x) : x ∈ (0.5, 1]} ∪ {(0, 0, 0)}, which are not
connected. Consequently, the booking (bs, bv, bt ) = (1, 0, 1) is infeasible. We addi-
tionally note that the maximum potential difference between s and t is 0.25, which is
obtained by the nomination (0.5, 0, 0.5) that differs from the optimal solution ϕst (b)
given by (1, 0, 1) of the passive characterization (4). Consequently, the usual mono-
tonicity property of passive network, namely that more flow between a pair of nodes
leads to a larger potential difference, is not satisfied in active networks anymore.
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In the following section, we adapt the method of computing maximum potential
differences to decide the feasibility of a booking in active networks using a bilevel
approach. Choosing the tool of bilevel optimization is based on the following intu-
ition. First, an arbitrary booking-compliant nomination is chosen. Afterward, the TSO
controls the active elements to transport the nomination through the network. If this is
possible for every booking-compliant nomination, then the booking is feasible. Oth-
erwise, it is infeasible. We explore this bilevel perspective to derive new methods to
decide the feasibility of a booking in networks with active elements.

4 Bilevel modeling

We adapt the methodology of Labbé et al. (2020) to validate a booking on networks
with active elements by adequately computing nominations with maximum potential
difference. As previously discussed, an analogous single-level optimization problem
is not sufficient if active elements are present. Here, we consider a max-min bilevel
optimization problem. The leader chooses a booking-compliant nomination � ∈ N (b)
that maximally violates potential bounds. The goal of the follower, i.e., the TSO,
is to transport this nomination while minimizing the violation. The TSO determines
flows q, potentials π , and controls � of the active elements according to (1), where
the potential bound intervals are adjusted using auxiliary variables y, z ∈ R. More
precisely, for every node u ∈ V it is required that πu ∈ [π−

u − y, π+
u + z]. The bilevel

problem is thus given by

sup
�∈N (b)

min
q,π,�,y,z

y + z (5a)

s.t. (1a)–(1d),

πu + y ≥ π−
u , u ∈ V , (5b)

πu − z ≤ π+
u , u ∈ V . (5c)

In this bilevel model, we use “sup” instead of “max” in the upper level, since bilevel-
optimal solutions might not be attainable. In fact, the bilevel-feasible region may not
be closed in the presence of continuous linking variables, i.e., of variables of the upper
level that appear in the lower level, and integer decisions at the lower level; see Moore
and Bard (1990); Vicente et al. (1996); Köppe et al. (2010). In (5), the linking variables
are given by the nomination � and the binary decisions of the lower level are induced
by the indicator functions χa for all a ∈ Aact. However, we observe in the following
that under the structural assumption 1 considered in this paper, the supremum is indeed
attained.

In Problem (5), the leader chooses a booking-compliant nomination andmaximizes
the sum of the violation y ∈ R of lower potential bounds and the violation z ∈ R of
upper potential bounds. The follower transports the nomination through the network
and chooses a control of the active elements to minimize the total potential bound
violation, as modeled by (5b) and (5c). This max-min problem, where leader and fol-
lower share the same objective function, is part of a special class of bilevel optimization
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problems, which includes, e.g., interdiction-like problems; see Wood (2011); Smith
and Song (2020) and Section 6 of Kleinert et al. (2021). If the optimal value of (5) is
positive, then there exists an infeasible nomination. In this case, the leader has chosen
a nomination such that the follower cannot route flows without violating the poten-
tial bounds. In contrast, if the optimal value is nonpositive, then the corresponding
booking is feasible. From the perspective of the TSO, this objective value measures
how close within or how far outside of its physical capabilities the network is operated
given a “worst-case” nomination w.r.t. the considered booking. The following result
proves the correctness of Problem (5).

Proposition 4.1 Let G = (V , A) be aweakly connected networkwith linearlymodeled
active elements Aact ⊆ A. Then, the booking b ∈ L is feasible if and only if the optimal
value of (5) is nonpositive.

Proof If the optimal value of (5) is positive, it is clear that there exists a bilevel-feasible
point (�, q, π, y, z) such that the nomination � violates either a lower potential bound
(y > 0) or an upper potential bound (z > 0). Thus, the booking is infeasible in that
case.

Suppose now that for every feasible point (�, q, π,�, y, z) of (5), it holds that
y + z ≤ 0. If y, z ≤ 0, all booking-compliant nominations can be transported within
the original potential bounds and the booking is feasible. If y > 0 and z ≤ −y,
the nomination � violates at least one lower potential bound πu = π−

u − y < π−
u

for u ∈ V . Without changing flows q or the controls �, we consider new potentials
π̃u := πu + y for all u ∈ V . Adapting the corresponding auxiliary variables ỹ := 0
and z̃ := y + z ≤ 0, we have constructed a new solution (�, q, π̃ ,�, ỹ, z̃) of the
same objective value without any violation of lower or upper potential bounds. The
symmetric case of z > 0 and y ≤ −z can be treated analogously.

It has been discussed in Sect. 3 that the problem of validating the feasibility of a
booking when considering active elements is difficult in general. This is reflected in
Problem (5), which is a bilevel problem with nonlinear and nonconvex lower level
and for which optimal solutions may not be attainable. Thus, to tackle this highly
challenging problem we need to make the following structural assumption that allows
us to derive a practically more tractable reformulation of the bilevel model considered
so far.

Assumption 1 No active element is part of an undirected cycle in G.

We note that this assumption is also used in Aßmann et al. (2019); Aßmann (2019).
Figure 2 shows on the left a stylized gas network satisfying Assumption 1. Intuitively,
Assumption 1 implies that there cannot be any flow along a cycle in the network.
More precisely, flow in pipes always leads to a potential drop due to (1b), which for
flows along a cycle would lead to mismatching starting and end potentials on that
cycle. Such a mismatch could however be fixed by using active elements that act on
that cycle in order to match starting and end potentials. Assumption 1 eliminates this
possibility and allows us to show the uniqueness of the flows corresponding to any
given nomination. To this end, we extend the results of Maugis (1977); Collins et al.
(1978); Ríos-Mercado et al. (2002) for passive networks.
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P

Fig. 2 Stylized gas network satisfying Assumption 1 (left) and its reduced network (right)

Theorem 4.2 Suppose that Assumption 1 holds. Then, for a given nomination � ∈ N,
every feasible point (q, π) of (1a) and (1b) admits the same unique flows qa for all
a ∈ A and the same unique potential differences πu − πv for all (u, v) ∈ Apipe.

Proof Weprove that flows q are uniquely determined by the nomination �. The unique-
ness of potential differences on pipes then directly follows from (1b). First, observe
that by Assumption 1, the removal of an active element a ∈ Aact decomposes the
network G = (V , A) into two smaller networks. Moreover, after removing all active
elements Aact, the network G is split into disconnected and passive components.

If Aact = ∅, the network G is passive and the result follows from Maugis (1977);
Collins et al. (1978). By induction on |Aact|, we show that the result also holds true in
general. Thus, suppose that the result holds for networks with at most |Aact|−1 active
elements. We remove an arbitrary active element a ∈ Aact from G, which results in
two networks with fewer active elements G1 = (V1, A1) and G2 = (V2, A2). We
assume w.l.o.g. that a = (s, t) with s ∈ V1 and t ∈ V2. For every node u ∈ V , we
define

σu :=

⎧
⎪⎨

⎪⎩

1, if u ∈ V+,

−1, if u ∈ V−,

0, if u ∈ V0.

Then, the balancedness of supply and demand of nomination � implies that the arc
flow qa is uniquely given by

qa =
∑

u∈V1
σu�u = −

∑

u∈V2
σu�u .
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Starting from the nomination �, we now construct another nomination �̃ for G1 that is
balanced over V1. We define �̃u := �u for all u ∈ V1 \ {s} and

�̃s :=
∣
∣
∣
∣
∣
∣
σs�s −

∑

w∈V1
σw�w

∣
∣
∣
∣
∣
∣
.

All nodes in V1 \ {s} keep the same nomination value. The modification at node s
might change its role, i.e., it can either be an entry, an exit, or an inner node. Thus, we
also define σ̃u := σu for all u ∈ V1 \ {s} and

σ̃s :=

⎧
⎪⎨

⎪⎩

1, if σs�s − ∑
w∈V1 σw�w > 0,

−1, if σs�s − ∑
w∈V1 σw�w < 0,

0, if σs�s − ∑
w∈V1 σw�w = 0,

which exactly corresponds to the sign of σs�s − ∑
w∈V1 σw�w. In particular, we have

produced a nomination for G1, since

∑

u∈V1
σ̃u �̃u =

∑

u∈V1\{s}
σu�u + σs�s −

∑

w∈V1
σw�w = 0.

By the induction hypothesis, the restriction of q to A1 is uniquely determined. Sym-
metrical arguments can be applied to show that the restriction of q to A2 is also unique.
Finally, the result follows given the fact that A = A1 ∪ A2 ∪ {a}.

The latter result implies that, once a nomination is given, most lower-level decisions
in (5) are already fixed by physics. The lower-level problem can thus be reduced to only
include the remaining decision variables. Therefore, consider the collection of passive
subnetworks obtained by removing all active elements from G, which we denote
by G := {G0,G1, . . . ,G|Aact |}. For convenience, we sometimes denote an active
arc a ∈ Aact by a = (Gi ,G j ) if a = (u, v) for u ∈ V (Gi ) and v ∈ V (G j ). Then,
by Assumption 1, the graph G̃ = (G, Aact) obtained by merging passive subnetworks
into single nodes is a tree. In line with Ríos-Mercado and Borraz-Sánchez (2015);
Ríos-Mercado et al. (2002), we call G̃ the reduced network. Figure 2 illustrates a
network (left) and its associated reduced network (right).

Using the rationale of Ríos-Mercado et al. (2002), it follows by Theorem 4.2 that
the potentials corresponding to a nomination � ∈ N are determined as soon as a
reference potential in an arbitrary passive subnetwork G j ∈ G and the controls �a

of all active elements a ∈ Aact are fixed. Exploiting this uniqueness of flows and
potentials, the following result presents an equivalent reformulation of Problem (5).
Therein, the upper level consists of a potential-based flow over G where all active
elements are inactive, i.e., πu = πv for all (u, v) ∈ Aact. The TSO then reacts by
using the active elements, as well as a constant shift τ j to be applied to the potentials
of all the nodes u ∈ V (G j ) for every passive subnetwork G j ∈ G. Intuitively, in
addition to choosing a worst-case nomination, the upper-level player thus already fixes
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all physical quantities that are uniquely determined by the nomination, i.e., all flows
and the potential differences on pipes. The lower level, on the other hand, consists of a
problem containing only those decision variables that the TSO influences. In addition,
this new bilevel structure allows us to linearly model the indicator function χa for the
activation of an element a ∈ Aact using binary variables.

Theorem 4.3 Consider the bilevel problem

max
�,q,π,s

y + z (6a)

s.t. (1a), (1b), (6b)

� ∈ N (b), (6c)

πu = πv, (u, v) ∈ Aact, (6d)

qa ≤ ma(1 − sa) + Msa, a ∈ Aact, (6e)

sa ∈ {0, 1}, a ∈ Aact, (6f)

(�, τ, y, z) ∈ R(�, q, π, s), (6g)

where M := min{∑u∈V+ bu,
∑

u∈V− bu} is an upper bound on the flow on any arc
and the set of lower-level solutions R(�, q, π, s) is given by

argmin
�,τ,y,z

y + z (7a)

s.t. τi − τ j =
{

−�a, a = (Gi ,G j ) ∈ Acm,

�a, a = (Gi ,G j ) ∈ Acv,
(7b)

�a ∈ [0,�+
a sa], a ∈ Aact, (7c)

τ j + y ≥ π−
u − πu, u ∈ V (G j ), G j ∈ G, (7d)

τ j − z ≤ π+
u − πu, u ∈ V (G j ), G j ∈ G. (7e)

Under Assumption 1, Problems (5) and (6) admit the same optimal value.

Proof Let (�, q, π,�, y, z) be a bilevel-feasible point of (5). In Ríos-Mercado et al.
(2002), it is shown that for a passive network, all potentials are uniquely determined
once a reference potential is fixed. In particular, all solutions of (1a) and (1b) are
equivalent up to a constant shift in every passive subnetwork. Thus, potentials in every
passive subnetwork G j ∈ G are of the form πu = πu(�) + τ j for all u ∈ V (G j ),
where π(�) is a solution of (1b) and (6d). Moreover, τ j ∈ R is an arbitrary shift of the
potentials in G j . Constraints (7b) then also hold, since the potentials π satisfy (1c).
It remains to model the indicator function χ . For every a ∈ Aact, we set sa = 1 if
and only if qa > ma . Since qa ≤ M , it follows that (6e) is satisfied. Consequently,
(�, q, π(�), s,�, τ, y, z) is bilevel feasible for (6) and admits the sameobjective value.

For the converse, first note that for every a ∈ Aact, Constraints (6e) guarantee that
sa = 1 holds if qa > ma . Assume now that qa ≤ ma . Then, the leader’s decision on
sa is arbitrary. However, the lower level with sa = 1 is a relaxation of the lower level
with sa = 0. Upper and lower level have the same objective function with opposing
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optimization directions. Consequently, there is a bilevel-optimal solution of (6) with
sa = 0, and thus satisfying sa = χa(q). Let (�, q, π, s,�, τ, y, z) be a bilevel-optimal
solution of (6) with sa = χa(q) for all a ∈ Aact. Theorem 4.2 states that the flows q
corresponding to � and solving the System (1a) and (1b) are unique. If we denote these
unique flows by q(�), then q = q(�) and every bilevel-feasible point of (5) also admits
flows q(�). Let us now define π̃u := πu + τ j for all u ∈ V (G j ) and G j ∈ G. Then,
(�, q, π̃ ,�, y, z) is bilevel-feasible for (5) and admits the same objective function
value.

Since the integer decisions are at the upper level of Problem (6) and all variables
of the lower level (7) are continuous, all bilevel-optimal solutions are indeed attained,
which allows us to use “max” in (6). As a consequence of Theorem 4.3, the optimal
solution of (5) is then attained under Assumption 1 as well. Hence, in this case, the
“sup” in (5) can be replaced by a “max”.

To summarize, in this section we first presented a bilevel optimization model of
the adversarial interplay of checking the feasibility of a booking. In the resulting
Problem (5), the upper-level player selects the worst possible nomination w.r.t. a vio-
lation of the potential bounds. The lower-level player, i.e., the TSO, determines flows,
potentials, and a control of the active elements to minimize the violation. Exploit-
ing the structure resulting from Assumption 1, we deduced that many of the physical
quantities of the TSO’s problem are already uniquely determined by the upper-level
nomination. These observations led to Problem (6), where only variables that the TSO
can actively control remain in the lower-level problem. Moving flow and potential
variables to the upper level has, in particular, allowed us to linearly model the indi-
cator functions χ . Note also that in Problem (6), the upper level is a mixed-integer
nonlinear problem (MINLP), but the lower level is a linear problem (LP) for fixed
upper-level decisions. In the next section, we will focus on Problem (6) and derive the
classical KKT reformulation.

5 Karush–Kuhn–Tucker reformulation

Problem (6) is a bilevel problem with mixed-integer variables. In general, these prob-
lems are stronglyNP-hard, see, e.g., Hansen et al. (1992). Many approaches for bilevel
problems with mixed-integer variables rely on the fact that the linking variables, i.e.,
the variables of the upper level that appear in the lower level, are all integers. This
is not the case here since, in addition to the binaries sa for a ∈ Aact, the potentials
πu for u ∈ V link the upper and the lower level. However, we observe that the lower
level of (6) is linear for every fixed upper-level decision. As a consequence, we can
characterize the optimal solutions of the lower level using its KKT conditions.

5.1 Reformulation

Let us first consider the lower level’s dual problem for a fixed upper-level decision
(�, q, π, s).We introduce dual variablesαa for a ∈ Aact for constraints (7b), δ−

u and δ+
u

for u ∈ V corresponding to (7d) and (7e), and finally βa for a ∈ Aact associated to
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the upper bound on �a . The dual problem is then given by

max
α,β,δ+,δ− −

∑

a∈Aact

�+
a saβa +

∑

u∈V

(
(π−

u − πu)δ
−
u − (π+

u − πu)δ
+
u

)
(8a)

s.t.
∑

a∈δout(G j )

αa −
∑

a∈δin(G j )

αa =
∑

u∈V (G j )

(δ+
u − δ−

u ), G j ∈ G, (8b)

αa ≤ βa, βa ≥ 0, a ∈ Acm, (8c)

− αa ≤ βa, βa ≥ 0, a ∈ Acv, (8d)
∑

u∈V
δ+
u = 1,

∑

u∈V
δ−
u = 1, (8e)

δ+
u , δ−

u ≥ 0, u ∈ V . (8f)

Let G̃ be the reduced network obtained fromG bymerging all passive subnetworks.
The dual problem (8) can then be interpreted as a flow problem on G̃. From that point
of view, α represents dual flows, β are the capacities on arcs corresponding to active
elements, and

∑
u∈V (G j )

δ+
u and

∑
u∈V (G j )

δ−
u are the supply and demand at each

node G j . Constraints (8b) ensure dual flow balance. Note that the dual arc flows have
an unconstrained sign, with the same interpretation as before, i.e., αa > 0 corresponds
to flow in the direction of arc a ∈ Aact, while αa < 0 represents flow in the opposite
direction. For compressors a ∈ Acm, dual flows are bounded from above, i.e., flow in
the direction of the arc is bounded, whereas for control valves a ∈ Acv, arc flows are
bounded from below, i.e., flow in the opposite direction of the arc is bounded. Finally,
total supply and demand equal one; see (8e).

The KKT conditions for the lower level consist of primal feasibility (7b)–(7e), dual
feasibility (8b)–(8f), and the complementarity constraints

δ−
u (τ j + y + πu − π−

u ) = 0, u ∈ V (G j ), G j ∈ G, (9a)

δ+
u (τ j − z + πu − π+

u ) = 0, u ∈ V (G j ), G j ∈ G, (9b)

βa(�a − �+
a sa) = 0, a ∈ Aact, (9c)

(−αa + βa)�a = 0, a ∈ Acm, (9d)

(αa + βa)�a = 0, a ∈ Acv. (9e)

Consequently, Problem (6) can be reformulated as the MINLP

max
ξ

y + z (10)

s.t. (6b)–(6f), (UL)

(7b)–(7e), (LLP)

(8b)–(8f), (LLD)

(9),
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where ξ = (�, q, π, s,�, τ, y, z, α, β, δ+, δ−) is the vector of upper-level, lower-level
primal, and lower-level dual variables. Here, Constraint (UL) groups all upper-level
constraints. Constraint (LLP) and Constraint (LLD) group lower-level primal and dual
constraints, respectively.

5.2 Big-M linearization

A standard way of reformulating the KKT complementarity conditions (9) is via
big-M linearizations; see Fortuny-Amat andMcCarl (1981). For a dual variable λ ≥ 0
and a primal constraint c(x) ≥ 0, the complementarity conditionλc(x) = 0 is replaced
by

λ ≤ Mdu, c(x) ≤ Mp(1 − u),

where u ∈ {0, 1} is an auxiliary binary variable and Md, Mp ≥ 0 are upper bounds
for λ and c(x), respectively. It is shown in Kleinert et al. (2020) that determining
a bilevel-correct big-M is a hard task if problem-specific knowledge is lacking. In
the following, by exploiting the structure of Problem (6), we obtain provably correct
bounds on lower-level primal and dual variables that can be used for a linearization
of (9). First, let us consider the lower-level’s dual variables.

Lemma 5.1 Let (�, q, π, s)be feasible for (UL). Then, there is a corresponding optimal
solution (α, β, δ+, δ−) of the lower level’s dual problem (8) with αa ∈ [−1, 1] and
βa ∈ [0, 1] for all a ∈ Aact as well as δ+

u , δ−
u ∈ [0, 1] for all u ∈ V .

Proof If follows directly from (8e) and (8f) that δ+
u , δ−

u ∈ [0, 1] holds for all u ∈ V .
Following the interpretation of the lower level’s dual problem as a flow problem on G̃,
it holds that |αa | ≤ 1 for all a ∈ Aact, since the total demand and supply are both 1
and G̃ is a tree under Assumption 1. Finally, by optimality it follows that βa ≤ 1 holds
if for an arc a ∈ Aact the inequality �+

a sa > 0 is satisfied. Otherwise, if �+
a sa = 0

holds for an arc a ∈ Aact, then βa can be chosen arbitrarily in [0, 1].

Next, we derive bounds for lower-level primal variables such that an optimal solu-
tion satisfying them always exists.

Lemma 5.2 Let (�, q, π, s,�, τ, y, z) be a bilevel-feasible point of (6), then for any
ε̃, ε ∈ R, the point (�, q, π + ε̃, s,�, τ + ε, y − ε − ε̃, z + ε + ε̃) is also bilevel
feasible with the same objective value.

Proof Let (�, q, π, s,�, τ, y, z) be a bilevel-feasible point of (6) and consider arbi-
trary but fixed ε̃, ε ∈ R. We now check the feasibility of the point (�, q, π + ε̃, s,�,

τ + ε, y − ε − ε̃, z + ε + ε̃) for (6).
Since we have not changed the upper-level variables �, q, and s, and have only

shifted the potential π by ε̃, upper-level feasibility follows from Theorem 7.1 in (Koch
et al. 2015,Chapter 7).Wenow turn to the lower level. Since the lower-level variables�
stay unchanged, Constraint (7c) holds. Moreover, Constraints (7b), (7d), and (7e) are
satisfied due to
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τi + ε − τ j − ε + ωa�a = τi − τ j + ωa�a = 0, a = (Gi ,G j ) ∈ Aact,

τ j + ε + y − ε − ε̃ = τ j + y − ε̃ ≥ π−
u − πu − ε̃, u ∈ V (G j ), G j ∈ G,

τ j + ε − z − ε − ε̃ = τ j − z − ε̃ ≤ π+
u − πu − ε̃, u ∈ V (G j ), G j ∈ G.

This shows the feasibility of the considered point. Additionally, the objective values
of both points are equal, which directly follows by construction.

Corollary 5.3 There is an optimal solution (�, q, π, s,�, τ, y, z) of (6) that satisfies

min
u∈V {πu} = 0 and min

G j∈G
{τ j } = 0.

Using this result, we can bound the values π and τ in an optimal solution.

Lemma 5.4 There is an optimal solution (�, q, π, s,�, τ, y, z) of the bilevel prob-
lem (6) that satisfies

0 ≤ πu ≤
∑

a∈A

�aM
2, u ∈ V ,

0 ≤ τ j ≤
∑

a∈Aact

�+
a , G j ∈ G,

where M := min{∑u∈V+ bu,
∑

u∈V− bu} is an upper bound on the flow on any arc.

Proof Corollary 5.3 implies that there is an optimal solution (�, q, π, s,�, τ, y, z) of
the bilevel problem (6) with u ∈ V and G j ∈ G that satisfies

min
v∈V {πv} = πu = 0, min

Gi∈G
{τi } = τ j = 0. (11)

For an arbitrary node v ∈ V , we now consider a path P(u, v), which consists
of the arcs A(P(u, v)) ⊆ A corresponding to an undirected path from u to v in G.
Additionally, for an arc a = (s, t) ∈ A(P(u, v)), we introduce ηa(P), which evaluates
to 1, if a is directed from u to v, and otherwise it evaluates to −1. Consequently,
Constraint (1b) and Condition (11) imply

0 ≤ πv = πu −
∑

a∈P(u,v)∩Apipe

ηa(P)�a |qa |qa ≤
∑

a∈Apipe

�aM
2.

In analogy, for an arbitrary Gi ∈ G, Constraints (7b) and Condition (11) imply

0 ≤ τi = τ j +
∑

a∈P(u,v)∩Acm

ηa(P)�a −
∑

a∈P(u,v)∩Acv

ηa(P)�a ≤
∑

a∈Aact

�+
a .

Finally, it remains to determine big-M bounds for y and z. However, these can be
obtained by carefully combining the lower and upper bounds given in Lemma 5.4. It
suffices to observe that for a lower-level primal optimal solution, we obtain
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y = max
G j∈G,

u∈V (G j )

{
π−
u − πu − τ j

}
, z = max

G j∈G,

u∈V (G j )

{
πu + τ j − π+

u

}
.

6 Optimal-value-function reformulations and characterizations of
feasible bookings

As an alternative to the KKT reformulation of Sect. 5, the bilevel problem (6) can
also be reformulated using the lower level’s optimal value function; see, e.g., Dempe
(2002). Let ϕ(�, q, π, s) be the optimal value of (7) for given upper-level decisions
(�, q, π, s). Note that the lower level (7) is feasible for every (�, q, π, s), i.e., (UL)
always admits a feasible point. Thus, (6) is equivalent to

max
�,q,π,s

{ϕ(�, q, π, s) : (}UL). (12)

By strong duality of the lower level, ϕ is also the optimal value function of the lower
level’s dual problem (8). The latter is a linear problemwith objective function parame-
terized by π and s. Thus, ϕ is a piecewise-linear and convex function. More precisely,
given that the lower level is always feasible and bounded, the same holds for the
lower-level’s dual problem. The optimal value function ϕ can thus be expressed as
the maximum over the lower level’s dual objective function evaluated in a potentially
exponential number of vertices of the feasible set of the lower level’s dual problem.
Consequently, the single-level reformulation (12) is a convex maximization problem
over a nonconvex feasible set, which is a highly intractable problem class, in general.

6.1 The optimal value function

We exploit the special structure of the lower level under Assumption 1 to express ϕ

by polynomially many vertices of the polyhedral feasible set of the lower level’s dual
problem. To this end, let G̃ be the reduced network corresponding to G. Additionally,
for every two passive subnetworks Gi ,G j ∈ G, there exists a unique, undirected path
joining them, which we denote by P(Gi ,G j ). Choosing any Gk as the root of G̃,
we can partition the active elements into arcs pointing away from or towards Gk , i.e.,
Aact = Ak,→

act ∪ Ak,←
act . Formally, we define

Ak,→
act := {

(Gi ,G j ) ∈ Aact : P(Gk,Gi ) ⊆ P(Gk,G j )
}
, Ak,←

act := Aact \ Ak,→
act .

In the following, we prove that for given δ+ and δ−, the flow variables α can be
uniquely determined using the conservation constraints (8b). Given that (8b) contains
|Aact|+1 many linear equations and that the system is of rank |Aact|, we can eliminate
an arbitrarily chosen row. We denote by G0 the passive subnetwork in G for which
we delete the corresponding equation in (8b). Then, G0 can be interpreted as the root
of G̃ and we can consider subtrees of G̃ w.r.t. G0. If we remove an arc a ∈ Aact in G,
then the network decomposes into two subnetworks. For a ∈ Aact and G j ∈ G, the

123



A bilevel approach to decide the feasibility… 427

set Ga(G j ) denotes all passive sub-components that are contained in the subnetwork,
which containsG j after removing arc a. In particular, the subtree of G̃ “following” a is
obtained byGa(G j ) if a = (Gi ,G j ) ∈ A0,→

act and byGa(Gi ) if a = (Gi ,G j ) ∈ A0,←
act .

The solution of (8b) is then given by the following lemma.

Lemma 6.1 Constraints (8b) are equivalent to

αa = −
∑

Gl∈Ga(G j )

∑

u∈V (Gl )

(
δ+
u − δ−

u

)
, a = (Gi ,G j ) ∈ A0,→

act , (13a)

αa =
∑

Gl∈Ga(Gi )

∑

u∈V (Gl )

(
δ+
u − δ−

u

)
, a = (Gi ,G j ) ∈ A0,←

act . (13b)

Proof For given supplies δ+ and demands δ−, we already noted that α can be
interpreted as a flow. Due to Constraints (8e), Constraints (8b), which ensure flow
conservation in G̃, always admit feasible flows. For an arc a = (Gi ,G j ) ∈ A0,→

act , the
flow αa is determined by the net demand

D :=
∑

Gl∈Ga(G j )

∑

u∈V (Gl )

(
δ+
u − δ−

u

)

of the subtree “following” a. If D ≥ 0, a surplus in supply needs to leave the subtree
over a flowing from G j to Gi . Respecting the sign convention on the flow along
directed arcs, it then holds αa = −|D| = −D. If D < 0, a surplus in demand needs
to be shipped over a into the subtree, thus αa = |D| = −D. Similar arguments apply
to a = (Gi ,G j ) ∈ A0,←

act .

With this result at hand, we can explicitly determine the vertices of the polyhedral
feasible set of the lower level’s dual problem (8).

Theorem 6.2 The vertices of the polyhedron (8) are given by (13) and

βa = max{αa, 0}, a ∈ Acm,

βa = max{−αa, 0}, a ∈ Acv,

δ+
w1

= 1, δ+
u = 0, u ∈ V \ {w1},

δ−
w2

= 1, δ−
u = 0, u ∈ V \ {w2},

for all pairs of nodes (w1, w2) ∈ V 2.

Proof By Lemma 6.1, Constraints (13) uniquely determine α as a function of δ+
and δ−. Furthermore, for every feasible point of (8), the constraints

βa ≥ max{αa, 0}, a ∈ Acm,

βa ≥ max{−αa, 0}, a ∈ Acv,
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hold and have to be active at a vertex. It is therefore sufficient to determine the vertices
of (8e) and (8f) in the space of δ+ and δ−, which are given by

δ+
w1

= 1, δ+
u = 0, u ∈ V \ {w1},

δ−
w2

= 1, δ−
u = 0, u ∈ V \ {w2},

for any pair of nodes (w1, w2) ∈ V 2. This concludes the proof.

Using this result and the network structure, we now elaborate on a representation
of these vertices as follows. For any two nodes w1 ∈ G j1 and w2 ∈ G j2 , we introduce
for any a = (Gi ,G j ) ∈ A0,→

act ,

αa(w1, w2) :=

⎧
⎪⎨

⎪⎩

−1, if G j1 ∈ Ga(G j ),G j2 /∈ Ga(G j ),

1, if G j1 /∈ Ga(G j ),G j2 ∈ Ga(G j ),

0, otherwise,

and for any a = (Gi ,G j ) ∈ A0,←
act ,

αa(w1, w2) :=

⎧
⎪⎨

⎪⎩

1, if G j1 ∈ Ga(Gi ),G j2 /∈ Ga(Gi ),

−1, if G j1 /∈ Ga(Gi ),G j2 ∈ Ga(Gi ),

0, otherwise.

Furthermore, for any a ∈ Aact, we define

βa(w1, w2) :=
{
max{αa(w1, w2), 0}, if a ∈ Acm,

max{−αa(w1, w2), 0}, if a ∈ Acv.

Beforewegive a closed-formexpressionof the lower-level optimal value functionϕ,
we discuss an alternative way of representing αa(w1, w2) and βa(w1, w2). Recall that
the set of active elements Aact is partitioned into the set of compressors Acm and the
set of control valves Acv. The sets Ak,→

act and Ak,←
act can be partitioned similarly. For

all a ∈ Aact, we then obtain

αa(w1, w2) =

⎧
⎪⎨

⎪⎩

−1, if a ∈ P(G j1 ,G j2) ∩ A j1,←
act ,

1, if a ∈ P(G j1 ,G j2) ∩ A j1,→
act ,

0, otherwise.Consequently, it also holds

βa(w1, w2) =
{
1, if a ∈ P(G j1 ,G j2) ∩

(
A j1,→
cm ∪ A j1,←

cv

)
,

0, otherwise.

Using this representation of βa(w1, w2), we obtain the closed form of the lower-level
optimal value function stated in the following result.
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Corollary 6.3 The optimal value function ϕ of (7) is given by

max
(G j1 ,G j2 )∈G2,

w1∈V (G j1 ),

w2∈V (G j2 )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

πw1 − πw2 −

⎛

⎜
⎜
⎜
⎜
⎝

π+
w1

− π−
w2

+
∑

a∈P(G j1 ,G j2 ):
a∈A

j1,→
cm ∪A

j1,←
cv

�+
a sa

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (14)

Similar to the results obtained in Labbé et al. (2020) for passive networks, we can
now establish a characterization of feasible bookings for networks (under Assump-
tion 1) with linearly modeled active elements.

Theorem 6.4 Let G = (V , A) be aweakly connected network satisfyingAssumption 1.
Then, the booking b ∈ L is feasible if and only if φw1w2(b) ≤ π+

w1
− π−

w2
is satisfied

for every pair of nodes (w1, w2) ∈ V 2 with w1 ∈ V (G j1) and w2 ∈ V (G j2), where
we define

φw1w2(b) := max
�,q,π,s

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

πw1 − πw2 −
∑

a∈P(G j1 ,G j2 ):
a∈A

j1,→
cm ∪A

j1,←
cv

�+
a sa : (UL)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Proof As a consequence of Proposition 4.1 and Theorem 4.3, the booking b is feasible
if and only if the solutions of (12) satisfy ϕ(�, q, π, s) ≤ 0. By Corollary 6.3, the latter
holds if and only if

πw1 − πw2 −
∑

a∈P(G j1 ,G j2 ):
a∈A

j1,→
cm ∪A

j1,←
cv

�+
a sa ≤ π+

w1
− π−

w2

for every pair of nodes (w1, w2) ∈ V 2.
Observe that φw1w2(b) − (π+

w1
− π−

w2
) is a lower bound for the solutions of (12).

Thus, if the booking is feasible, φw1w2(b) ≤ π+
w1

− π−
w2

holds for every pair of nodes
(w1, w2) ∈ V 2. On the contrary, if the booking is infeasible, there exists a feasible
point (�, q, π, s) of (UL) and a pair of nodes (w1, w2) ∈ V 2 such thatϕ(�, q, π, s) > 0
holds, i.e.,

πw1 − πw2 −
∑

a∈P(G j1 ,G j2 ):
a∈A

j1,→
cm ∪A

j1,←
cv

�+
a sa > π+

w1
− π−

w2
.

In particular, we also have φw1w2(b) > π+
w1

− π−
w2
.

The optimal-value-function reformulation (12), where ϕ is given by (14), requires
optimizing a piecewise-linear function with |V |2 pieces over a nonlinear and noncon-
vex feasible domain. Using the characterization given in Theorem 6.4, all |V |2 linear
pieces can be optimized in individual subproblems.
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6.2 Reduced optimal value function

Since the lower level mainly controls active elements that link passive subnetworks,
it is possible to give a coarser interpretation of the lower-level optimal value function.
The main intuition now is to consider the lower level as a problem on the reduced
network G̃. By grouping all nodes of a passive subnetwork, we can rewrite the lower-
level optimal value function, yielding

max
(G j1 ,G j2 )∈G2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
w1∈V (G j1 )

{
πw1 − π+

w1

} + max
w2∈V (G j2 )

{
π−

w2
− πw2

}

−
∑

a∈P(G j1 ,G j2 ):
a∈A

j1,→
cm ∪A

j1,←
cv

�+
a sa

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (15)

Then, applying the same arguments as in the proof of Theorem 6.4, we deduce a
characterization with fewer subproblems to be solved.

Corollary 6.5 Let G = (V , A) be aweakly connected network satisfyingAssumption 1.
Then, the booking b ∈ L is feasible if and only if φ j1 j2(b) ≤ 0 is satisfied for every
pair of passive subnetworks (G j1 ,G j2) ∈ G2, where φ j1 j2(b) is defined by

max
�,q,π,s

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
w1∈V (G j1 )

{
πw1 − π+

w1

} + max
w2∈V (G j2 )

{
π−

w2
− πw2

}

−
∑

a∈P(G j1 ,G j2 ):
a∈A

j1,→
cm ∪A

j1,←
cv

�+
a sa : (UL)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

We introduce variables θ+
j and θ−

j for every G j ∈ G that satisfy

θ+
j = max

u∈V (G j )

{
πu − π+

u

}
, (16a)

θ−
j = max

u∈V (G j )

{
π−
u − πu

}
. (16b)

The optimal value function (15) then is a piecewise-linear function with
(|Aact|+ 1)2 pieces. For G j ∈ G, θ+

j and θ−
j are also piecewise-linear functions

with each |V (G j )| pieces. The characterization in Corollary 6.5 requires optimiz-
ing (|Aact| + 1)2 pieces of (15) separately, under the additional Constraint (16a) for
G j1 ∈ G and Constraint (16b) for G j2 ∈ G.

6.3 Separable optimal value function

Still considering the lower level as a problem defined on the reduced network G̃, we
derive a third closed-form expression of the lower-level optimal value function ϕ. We
can go one step further to reduce the number of subproblems in a characterization
from (|Aact| + 1)2 to |Aact| + 1. Instead of considering every pair of subnetworks
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Fig. 3 Illustration of (17)

G0

G1

G2

G3 G4

(G j1,G j2) ∈ G2 directly, the intuition is to first consider a third subnetworkGk acting
as an intermediary and then to treat (G j1 ,Gk) and (Gk,G j2) separately. Note that for
any three subnetworks G j1 ,Gk,G j2 ∈ G, it holds that

P(G j1 ,G j2) ∩
(
A j1,→
cm ∪ A j1,←

cv

)

⊆ (P(Gk,G j1) ∩ (Ak,←
cm ∪ Ak,→

cv )) ∪ (P(Gk,G j2) ∩ (Ak,→
cm ∪ Ak,←

cv )),

(17)

where equality holds if Gk lies on the path P(G j1 ,G j2). Figure 3 illustrates this
relation for G j1 = G3,Gk = G0,G j2 = G2. Here, the arc (G0,G1) appears in the
right-hand side of (17), while clearly not lying on P(G3,G2).

The previous observation allows us to prove the following result.

Lemma 6.6 For every Gk ∈ G, it holds ϕ ≥ ϕk , where we define

ϕk(�, q, π, s) := max
G j1∈G,

w1∈V (G j1 )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πw1 − π+
w1

−
∑

a∈P(Gk ,G j1 ):
a∈Ak,←

cm ∪Ak,→
cv

�+
a sa

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ max
G j2∈G,

w2∈V (G j2 )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π−
w2

− πw2 −
∑

a∈P(Gk ,G j2 ):
a∈Ak,→

cm ∪Ak,←
cv

�+
a sa

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(18)

for every feasible point (�, q, π, s) of (UL).

Proof Given that�+
a sa ≥ 0 for all a ∈ Aact, (17) implies that ϕ(�, q, π, s) is bounded

from below by

max
(G j1 ,G j2 )∈G2,

w1∈V (G j1 ),

w2∈V (G j2 )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πw1 − π+
w1

−
∑

a∈P(Gk ,G j1 ):
a∈Ak,←

cm ∪Ak,→
cv

�+
a sa + π−

w2
− πw2 −

∑

a∈P(Gk ,G j2 ):
a∈Ak,→

cm ∪Ak,←
cv

�+
a sa

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.
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For given Gk , the elements of the latter max-operator are separable w.r.t. (G j1 , w1)

and (G j2 , w2). Consequently, the joint max-operator can be split, which concludes
the proof.

Based on this result, we can derive the third closed form of the lower-level optimal
value function ϕ by considering all Gk ∈ G and ϕk .

Theorem 6.7 The optimal value function ϕ of (7) is given by

max
Gk∈G

ϕk, (19)

where ϕk is defined in (18).

Proof By Lemma 6.6, ϕ ≥ maxGk∈G ϕk holds. Let (�, q, π, s) be feasible for (UL).
Furthermore, let (G j1,G j2 , w1, w2) be the maximizer defining ϕ(�, q, π, s). For Gk

on the path P(G j1 ,G j2), equality holds in (17). Thus,

max
Gk∈G

ϕk(�, q, π, s) = ϕ(�, q, π, s).

Again, we can solve several subproblems independently and obtain the third charac-
terization.

Corollary 6.8 Let G = (V , A) be aweakly connected network satisfyingAssumption 1.
Then, the booking b ∈ L is feasible if and only if φk(b) ≤ 0 is satisfied for a passive
subnetwork Gk ∈ G, where

φk(b) = max
�,q,π,s

{
ϕk(�, q, π, s) : (UL)

}
.

We introduce variables ϑ+
k and ϑ−

k for every Gk ∈ G that satisfy

ϑ+
k = max

G j∈G,

u∈V (G j )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πu − π+
u −

∑

a∈P(Gk ,G j ):
a∈Ak,←

cm ∪Ak,→
cv

�+
a sa

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (20a)

ϑ−
k = max

G j∈G,

u∈V (G j )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π−
u − πu −

∑

a∈P(Gk ,G j ):
a∈Ak,→

cm ∪Ak,←
cv

�+
a sa

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (20b)

The optimal value function ϕ as defined in Theorem 6.7 then is a piecewise-linear
function with |Aact| + 1 pieces. For Gk ∈ G, ϑ+

k and ϑ−
k are also piecewise linear

with |V | pieces each. The characterization of Corollary 6.8 considers |Aact|+ 1 linear
objectives. For each subproblem for Gk ∈ G, only the additional constraints (20)
corresponding to Gk are required.
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As a closing remark, we discuss how the formulations and characterizations pre-
sented in this section can be implemented using standard linearization techniques for
the max-operators.

Remark 6.9 (Linerization of max-operators)We have seen that the lower-level optimal
value function is a piecewise-linear function that is convex and that needs to be maxi-
mized over a nonconvex domain. To model the max-operators involved in the different
models of ϕ, we make use of the following classical technique. For a finite index set I ,
we want to model maxi∈I { fi }. To this end, we introduce binary variables ui for all
i ∈ I and let L,U ∈ R be chosen such that L ≤ fi ≤ U holds for every i ∈ I . Then,
g = maxi∈I { fi } holds if and only if

fi ≤ g ≤ fi + (U − L)(1 − ui ), i ∈ I , (21a)
∑

i∈I
ui = 1, ui ∈ {0, 1}, i ∈ I . (21b)

This reformulation can be applied to all three variants (14), (15), and (19) of the
lower-level optimal value function. The appropriate big-M values L,U ∈ R can be
easily derived from the results of Sect. 5.2. By doing so, the three representations of
the lower-level optimal value function ϕ (and the characterizations derived from them)
can be modeled as MINLPs.

7 Computational experiments

In this section, we evaluate the performance of the different approaches developed in
this paper. In Sect. 7.3, the presented nonlinear potential-based flow model is studied.
In order to better evaluate the performance of ourmethods and to eliminate challenging
nonlinearities, we additionally study a simplified linear potential-based flow model
in Sect. 7.4.We compare theKKT reformulationwith the three optimal-value-function
reformulations and the three characterizations derived in Sect. 6. The columnsMethod
and Definition of Table 1 give a short overview regarding the considered methods
including their abbreviations used throughout this section.

7.1 Data

Our case study is based on two instances of the GasLib (Schmidt et al. 2017) and
different corresponding bookings. On the one hand, we study GasLib-134 (version 2),
which is a tree-shaped networkwith 134 nodes, one compressor, and one control valve.
It roughly represents the Greek gas network. The flow thresholdsm are set to 0 for the
compressor and to−10−2 for the control valve. The latter value is chosen to guarantee
the feasibility of the zero nomination in GasLib-134. Since the zero nomination is
always booking-compliant, its feasibility is a necessary condition for the feasibility
of any booking. Bookings for networks in the GasLib can be obtained by setting the
corresponding nominations contained in the GasLib as bookings. For GasLib-134,
these nominations reflect actual demand scenarios over several years in the past. We
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Table 1 Overview of methods and model statistics

GasLib-134 GasLib-40

Method Definition Subproblems Binaries Subproblems Binaries

KKT (10) 1 272 1 90

F-OVF (12) using (14) 1 17,956 1 1600

R-OVF (12) using (15) 1 277 1 116

S-OVF (12) using (19) 1 807 1 486

F-CHAR Theorem 6.4 17,956 0 1600 0

R-CHAR Corollary 6.5 9 162 36 44

S-CHAR Corollary 6.8 3 268 6 80

selected three random nominations over the year to consider different demands. In
particular, we study bookings derived from the nominations 2011-11-06, 2012-07-22,
and 2014-10-24.

On the other hand, we consider the GasLib-40 network for which we have replaced
one compressor by a pipe to satisfy Assumption 1. This results in a network with six
fundamental cycles, 40 nodes, and five compressors. All flow thresholdsm are set to 0.
As before, we derive one booking, denoted by 0–0, from the singleGasLib nomination.
This booking then serves as a base for the generation of additional bookings. To
do so, we slightly vary the booking at entries and exits as follows. For parameters
μ1, μ2 ∈ (0, 100) and node u ∈ V , we obtain a new booking b̃, denoted μ1 − μ2, by
uniformly sampling a random integer in

b̃u ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
100−μ1
100 bu,

100+μ1
100 bu

]
, if u ∈ V+,

[
100−μ2
100 bu,

100+μ2
100 bu

]
, if u ∈ V−,

{0}, if u ∈ V0,

where b is the initial booking 0–0. For GasLib-40, we generate three additional book-
ings for (μ1, μ2) ∈ {(10, 10), (1, 20), (10, 5)}. Note that in this way, we obtain
bookings that are not balanced, which is in contrast to the bookings derived from
GasLib nominations.

7.2 Computational setup

All models have been implemented in Python 3.8.0 using Pyomo 5.7.1 (Hart et al.
2017). We performed all computations using the Kaby Lake nodes with 32GB RAM
of the compute cluster Regionales Rechenzentrum Erlangen (2021). The time limit
is 2h.

In Sect. 7.3, when treating nonlinear gas physics, we use ANTIGONE 1.1 (Mis-
ener and Floudas 2014) and BARON 17.4 Tawarmalani and Sahinidis 2005) within
GAMS 24.8 (GAMS Development Corporation 2020) to solve the occurring MINLPs.
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We perform the computations on a single thread and set the optCr parameter in GAMS
to 10−4. In Sect. 7.4, we use Gurobi 9.0.1 (LLC Gurobi Optimization 2020) to solve
linear approximations of the gas physics. We again perform computations on a single
thread and set Gurobi parameters IntFeasTol to 10−9 and NumericFocus to 3.

We now discuss some statistics of our models, which are summarized in Table 1.
To solve the single-level reformulations, a single optimization problem needs to be
solved, whereas characterizations require solutions of multiple subproblems. The
columns Subproblems present the number of optimization problems to be solved
for each method w.r.t. the GasLib-134 and GasLib-40 networks. As we can see in
Table 1, the number of subproblems drastically differs for the considered charac-
terizations. This is due to the fact that F-CHAR consists of |V |2 many subproblems,
whereas the other two characterizationsR-CHAR and S-CHAR consist of (|Aact|+1)2 and
(|Aact|+1) subproblems. A reduced number of subproblems comes, however, at the
cost of additional binary variables. All models are implemented in their linearized
form, i.e., KKT’s complementarity constraints have been linearized as discussed in
Sect. 5.2 and for all other models, the linearization (21) of the max-operators is used.
The Binaries columns indicate the maximum number of additional binary variables
(other than the |Aact| binary variables s) required for the linearization of a subproblem.
Among all optimal-value-function reformulations, i.e., F-OVF, R-OVF, and S-OVF, we
can observe that R-OVF contains the smallest number of binary variables, which is
comparable to the number of binary variables for KKT. Regarding the characteriza-
tions, there is a clear trade-off between the number of subproblems and the number
of binary variables, for which we later see that the large number of subproblems in
F-CHAR is a computational disadvantage.

We finally note that all subproblems of the characterizations are solved iteratively
without warm-starts. Thus, we do not exploit that all characterizations can be fully par-
allelized since all subproblems can be solved independently. The actual parallelization
of the approaches based on the characterizations is out of the scope of this paper. How-
ever, to take this aspect into account during the discussion of our results, we discuss,
besides the total sequential time, also an idealized parallel time, i.e., the maximum
time required to solve a single subproblem.

7.3 The nonlinear case

Table 2 lists the results for the GasLib-134 network and the 2011-11-06 booking.
Method indicates the method from Table 1. Vio. represents the obtained violation,
i.e., for single-level reformulations the optimal value of the problem and for the char-
acterizations the maximum violation of any bound on the optimal solutions of the
corresponding subproblems. Thus, this column denotes the measure of feasibility of a
booking. Positive values indicate violated potential bounds and thus the infeasibility of
a booking. On the other hand, nonpositive values indicate that all booking-compliant
nominations can be transportedwithin the potential bounds, which implies the feasibil-
ity of a booking. Sol. gives the running time in seconds for single-level reformulations.
Min., Med., and Max. denote the minimum, median, and maximum running times (in
seconds) necessary for solving a single characterization subproblem and checking
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Table 2 Results for GasLib-134 and the 2011-11-06 booking in the nonlinear case

Method Solver Vio. Time

Sol. Min. Med. Max. Total

KKT ANTIGONE −391.21 6.88 6.93

KKT BARON −391.21 29.28 29.32

F-OVF ANTIGONE −391.21 454.19 455.84

F-OVF BARON −391.21 – –

R-OVF ANTIGONE −391.21 5.52 5.57

R-OVF BARON −413.31 79.28 79.32

S-OVF ANTIGONE −391.21 21.15 21.24

S-OVF BARON −393.49 32.35 32.44

F-CHAR ANTIGONE −391.21 0.22 0.28 3.17 6071.77

F-CHAR BARON −391.21 0.23 0.30 3.71 6550.48

R-CHAR ANTIGONE −391.21 0.30 1.04 20.24 53.44

R-CHAR BARON −391.21 0.34 1.97 12.15 29.40

S-CHAR ANTIGONE −391.21 0.92 2.40 231.93 235.35

S-CHAR BARON −391.21 1.34 3.03 25.88 30.34

whether the corresponding bound on the optimal solution is satisfied. Finally, Total
reports the total time, which for characterizations is equal to the time spent in the
sequential treatment of all subproblems. If an instance could not be solved within the
time limit of 2 h, then we represent it by “–” in the corresponding row of the table.

Unfortunately, the solvers do not give consistent results although all violations are
negative, i.e., the booking seems to be feasible. The runs using BARON for R-OVF
and S-OVF deviate from the common answer of all other combinations of methods
and solvers. In particular, the optimal solution has been cut off from the search space
at some point during the spatial branching. Consequently, we have to interpret the
obtained results by BARON with great caution. On the other hand, we can analyze
the trend presented by ANTIGONE. F-OVF and F-CHAR need the most time, which
is expected since they have the most binary variables and subproblems, respectively.
Although, the idealized parallel time of F-CHAR, i.e., 3.17s, is faster than the total
time of KKT, it should not be forgotten that for GasLib-134, we need to solve 17,956
subproblems. Here, the only method slightly outperforming KKT is R-OVF. The lat-
ter has approximately the same number of additional binary variables as KKT, while
S-OVF requires more binary variables. Concerning the corresponding methods using
the characterizations, we observe that R-CHAR and S-CHAR are outperformed both
w.r.t. the total sequential time and the idealized parallel time. Although, they require
fewer subproblems to be solved than F-OVF, they admit additional binary variables to
be branched on. For some subproblems, the solvers struggle to prove optimality.While
the median time is good, there exist some outlier problems that require a long time to
close the duality gap. As for the bookings 2012-07-22 and 2014-10-24, the general
trends are similar although there are some outliers. KKT performs comparatively slow
when considering the 2012-07-22 booking and using ANTIGONE. Similarly, S-OVF
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performs worse with ANTIGONE, whereas BARON follows the previous trend. For the
sake of brevity, we include the tables corresponding toGasLib-134 and the 2012-07-22
and 2014-10-24 bookings in “Appendix A”.

For GasLib-40, we are not able to generate meaningful results within the time limit
of 2h. We generally have to conclude that the problem at hand is numerically very
unstable and hard to handle for the used nonlinear solvers. Some models could still be
solved relatively fast, in particular the KKT model. However, the solvers often incor-
rectly certify optimality or get stuck in suboptimal solutions, not being able to close
the duality gap. One possible explanation for this higher instability could be the cyclic
structure of GasLib-40. To test this hypothesis, we generated variants of GasLib-134
with added cycles and compared them to the original tree network for the 2011-11-06
booking. We considered the GasLib-134 network with two, four, and six fundamental
cycles added inside the passive subnetwork between both active elements. On the one
hand, discrepancies between the results of ANTIGONE and BARON become more fre-
quentwith an increasing number of cycles. Furthermore, on the example of solvingKKT
usingANTIGONE, the running times for theGasLib-134 networkwith two, four, and six
cycles are 42.64s, 871.41s, and 6553.46s, respectively. We thus observe a significant
increase compared to the running time of 6.93s for the original GasLib-134 network.

The spatial branching on the nonlinear gas physics in addition to the branching
on linearized piecewise-linear functions leads to very challenging problems, which
would require further tuning of the MINLP solvers. This is, however, out of the scope
of this case study. To compare our methods, we have thus resorted to analyzing linear
approximations of gas physics as presented in the next section.

7.4 The linear case

Except for the nonlinear gas physics at the right-hand side of (1b), all considered
models are linear with mixed-integer variables. In this section, we consider linear
approximations of gas physics to obtain mixed-integer linear problems (MILP) to be
solved by Gurobi. To this end, we replace |qa | for every a ∈ Apipe by cM , where
c ∈ (0, 1] is a scaling factor and M := min{∑u∈V+ bu,

∑
u∈V− bu} is an upper bound

on the flow on each arc. Thus, we replace Constraints (1b) with

πu − πv = ξaqa, ξa = c�aM, a = (u, v) ∈ Apipe.

Table 3 shows the results for GasLib-134 and the 2011-11-06 booking, where Appr.
indicates the different scaling factors c ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. F-OVF is clearly
outperformed by the shown methods. The same holds for F-CHAR both w.r.t. the total
sequential time and the idealized parallel time. Consequently, we choose to omit both
methods in the tables.

First, we observe that all methods present consistent results in the linear case.
Additionally, for increasing scaling factors c, the resulting violations also increase.
This trend is easily explained by the fact that a large scaling factor leads to a larger
potential drop along all pipes, which again results in larger overall potential differ-
ences. In particular, the booking is feasible for c ∈ {0.2, 0.4} and becomes infeasible
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Table 3 Results for GasLib-134 and the 2011-11-06 booking in the linear case

Method Appr. Vio. Time

Sol. Min. Med. Max. Total

KKT 0.2 − 377.15 2.71 2.75

R-OVF 0.2 − 377.15 2.02 2.06

S-OVF 0.2 − 377.15 4.53 4.62

R-CHAR 0.2 − 377.15 0.14 0.24 0.65 2.87

S-CHAR 0.2 − 377.15 0.64 1.13 1.14 3.00

KKT 0.4 − 174.10 3.03 3.07

R-OVF 0.4 − 174.10 2.87 2.92

S-OVF 0.4 − 174.10 6.77 6.87

R-CHAR 0.4 − 174.10 0.17 0.26 1.46 3.86

S-CHAR 0.4 − 174.10 0.85 0.97 1.15 3.06

KKT 0.6 384.11 3.47 3.51

R-OVF 0.6 384.11 1.26 1.31

S-OVF 0.6 384.11 9.92 10.01

R-CHAR 0.6 384.11 0.17 0.24 0.67 3.40

S-CHAR 0.6 384.11 0.77 0.90 1.00 2.76

KKT 0.8 966.75 3.24 3.29

R-OVF 0.8 966.75 2.81 2.86

S-OVF 0.8 966.75 10.30 10.39

R-CHAR 0.8 966.75 0.16 0.24 0.64 3.05

S-CHAR 0.8 966.75 0.80 0.82 1.11 2.81

KKT 1.0 1549.40 3.66 3.70

R-OVF 1.0 1549.40 2.70 2.74

S-OVF 1.0 1549.40 16.34 16.43

R-CHAR 1.0 1549.40 0.15 0.25 0.68 3.19

S-CHAR 1.0 1549.40 0.78 0.91 1.12 2.90

for larger scaling factors. We observe that for all scaling factors, KKT is performing
well. Although slightly faster, R-OVF does not significantly outperform KKT. Similarly,
S-OVF admits running times comparable to KKT, but is the slowest among the presented
methods, which can be explained by its large number of binary variables necessary for
the complete linearization of the optimal value function (19). Concerning the meth-
ods using the characterizations, the sequential time necessary to solve R-CHAR and
S-CHAR is of the same order of magnitude as KKT. When considering the idealized
parallel time, R-CHAR and S-CHAR are the clear winners. To obtain these idealized
parallel times, 9 and 3 subproblems need to be solved in parallel, respectively. In that
regard, R-CHAR is the fastest method for four scaling factors and only takes a little
longer for c = 0.4, where S-CHAR is slightly faster. Again, similar trends can be
observed for the remaining bookings of GasLib-134. We therefore do not explicitly
discuss the corresponding results, but list them in “Appendix B”.
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Table 4 Results for GasLib-40 and the 0–0 booking in the linear case

Method Appr. Vio. Time

Sol. Min. Med. Max. Total

KKT 0.2 1792.45 2.79 2.83

F-OVF 0.2 1792.45 15.24 15.45

R-OVF 0.2 1792.45 7.38 7.43

F-CHAR 0.2 1792.45 0.10 0.12 0.47 197.37

R-CHAR 0.2 1792.45 0.11 0.12 0.44 5.23

S-CHAR 0.2 1792.45 1.68 1.92 2.06 11.44

KKT 0.4 10247.01 2.75 2.80

F-OVF 0.4 10247.01 15.08 15.28

R-OVF 0.4 10247.01 16.33 16.38

F-CHAR 0.4 10247.01 0.10 0.13 0.47 204.01

R-CHAR 0.4 10247.01 0.12 0.13 0.46 5.67

S-CHAR 0.4 10247.01 1.72 1.95 2.58 12.54

KKT 0.6 18701.58 5.80 5.85

F-OVF 0.6 18701.58 15.99 16.18

R-OVF 0.6 18701.58 13.62 13.67

F-CHAR 0.6 18701.58 0.09 0.12 0.41 193.04

R-CHAR 0.6 18701.58 0.12 0.13 0.45 5.62

S-CHAR 0.6 18701.58 0.84 1.46 1.70 8.44

KKT 0.8 27156.15 2.92 2.97

F-OVF 0.8 27156.15 15.28 15.48

R-OVF 0.8 27156.15 8.18 8.23

F-CHAR 0.8 27156.15 0.10 0.12 1.13 195.71

R-CHAR 0.8 27156.15 0.11 0.13 0.44 5.50

S-CHAR 0.8 27156.15 1.24 1.76 2.00 10.00

KKT 1.0 35610.71 4.57 4.62

F-OVF 1.0 35610.71 15.77 15.96

R-OVF 1.0 35610.71 135.86 135.91

F-CHAR 1.0 35610.71 0.10 0.12 0.42 192.54

R-CHAR 1.0 35610.71 0.11 0.12 0.44 5.31

S-CHAR 1.0 35610.71 1.10 1.67 2.04 9.97

Table 4 shows the results for GasLib-40 and booking 0–0. In contrast toGasLib-134,
F-OVF and F-CHAR are more competitive for GasLib-40, which has fewer nodes and
thus both methods require fewer binary variables (for the linearizations) or subprob-
lems; see Table 1. However, the cyclic structure of GasLib-40 makes the problem of
checking the feasibility of a booking more challenging. In our experiments, S-OVF
is not able to find a provably optimal solution and has thus been omitted from this
table. For c ∈ {0.4, 0.6, 0.8, 1.0}, the optimal solution was found by S-OVF, however
the duality gap could not be closed during the time limit. Overall, we observe more
variability in running times across different scaling factors c for all methods. In terms
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of total time, i.e., the sequential time for characterizations, KKT is the fastest method.
In terms of idealized parallel time, i.e., the maximum time necessary to solve a single
subproblem, all three characterizations outperform KKT. Note thatwe still have to solve
1600 subproblems for F-CHAR, although all individual computations can be done in at
most 0.5s for c ∈ {0.2, 0.4, 0.6, 1.0} and in roughly 1s for c = 0.8. If computations can
be fully parallelized, i.e., a sufficient number of cores are available to solve all subprob-
lems in parallel, R-CHAR is the most adequate method for GasLib-40 to obtain a bene-
ficial trade-off between the small number of subproblems to be solved and the number
of additional binary variable in each subproblem. On the other hand, S-CHAR requires
more time for each subproblem, at the benefit of very few subproblems to be solved
and can thus still outperform KKT if fewer parallel computing resources are available.

To eliminate the possibility that the interpretation of the previous results are purely
linked to the balancedness of bookings generated from nominations of the GasLib,
we have additionally studied the three perturbed bookings 10–10, 1–20, and 10–5.
Qualitatively, the results follow the discussion of the booking 0–0. The corresponding
tables are thus listed in “Appendix C”.

As a final discussion, note that all of the methods studied in this paper also allow
for preemptive decisions without the need to solve the models to optimality. For each
single-level reformulation, whenever a relaxation produces a nonpositive value, we
can stop the computation and certify that the booking is feasible. Similarly, whenever
a feasible point of positive violation is found, the booking is infeasible with the certifi-
cate given by the corresponding infeasible nomination. For showing the infeasibility
of a booking, the same logic can be extended to characterizations. As soon as a feasible
point of one subproblem with positive violation has been found, we can stop and cer-
tify that the booking is infeasible. This can be useful especially in practice, since TSOs
generally have additional knowledge regarding their networks and are aware of their
bottlenecks.With this knowledge at hand, it could be possible to check specific individ-
ual subproblems to identify infeasible nominations that lead to a rejection of the con-
sidered booking request. In case of a feasible booking, all subproblemsmust be solved.
They can however be terminated early, based on a nonpositive value of a relaxation.

8 Conclusion

The problem of deciding the feasibility of a booking in the European entry-exit gas
market has been studied mostly for passive networks up to now. In this paper, we
considered networks with linearly modeled active elements that do not lie on cycles of
the network. By doing so, we present a first stepping stone towards the study of more
general networks and more general models of active elements. The approaches for
verifying the feasibility of a booking in passive networks are not directly applicable
to the case of networks with active elements, as discussed in Sect. 3. Thus, we have
then presented a bilevel optimization model, in which the upper-level player chooses
a nomination that is most difficult to transport and the TSO at the lower level uses
the active elements to transport this nomination. Consequently, the bilevel structure
results from the fact that the TSO takes a decision individually for every nomination
by controlling the active elements appropriately. We studied both the classical KKT
reformulation and problem-specific optimal-value-function reformulations.More pre-
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cisely, we have given three optimal-value-function reformulations giving rise to three
equivalent characterizations of feasible bookings, which generalize the characteriza-
tion in Labbé et al. (2020) for passive networks. Our case studies show that the KKT
approach is already a very well performing method to check the feasibility of a book-
ing. It also shows that the more problem-specific approaches of Sect. 6 can sometimes
outperform theKKTapproach, especiallywhen parallel computing resources are avail-
able. It should, however, be noted that the applicability of these methods depends on
the structure of the network at hand. In particular, the number of binary variables for
the linearizations and the number of subproblems to be solved in the characteriza-
tions vary significantly. They are determined by the number of active elements and
nodes. Thus, the best-performing method among the various optimal-value-function
reformulations and characterizations strongly depends on the considered network.

In general, the methods developed in this paper can be used as a decision-support
system in the planning departments of TSOs that decide on the signing or the rejection
of booking requests. In practice, the validation of such a booking request is usually
based on checking expert scenarios via simulation tools. In this regard, our methods
can help to automatically generate such expert scenarios that are hard to transport
within the technical restrictions of the network. Obviously, this is only possible if the
network satisfies the assumptions made in this paper and, thus, there is still a lot to do
in order to automate the process of validating bookings.

For futurework, itwill be interesting to studynetworkswithout specific assumptions
on the location of the active elements, as well as more general models for the active
elements. However, even in the setting of this paper, some challenges still need to
be tackled. It is required to develop problem-specific solution approaches, especially
for the case of nonlinear gas physics. Similar to the studies in Robinius et al. (2019);
Labbé et al. (2020) for tree-shaped and in Labbé et al. (2021) for single-cycle networks,
algorithms to solve the nonlinear subproblems of the characterizations presented in
this paper can be beneficial. Finally, the analyses of the European gas market models
studied in Böttger et al. (2021); Schewe et al. (2020) can be extended to take into
account linearly modeled active elements by integrating the novel characterizations
of feasible bookings presented in this paper.
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Appendix A: Results for the nonlinear case

See Tables 5 and 6.

Table 5 Results for GasLib-134 and the 2012-07-22 booking

Method Solver Vio. Time

Sol. Min. Med. Max. Total

KKT ANTIGONE −514.36 420.38 420.43

KKT BARON −514.36 47.93 47.97

F-OVF ANTIGONE −514.36 – –

F-OVF BARON −514.36 – –

R-OVF ANTIGONE −514.36 192.06 192.11

R-OVF BARON −514.36 38.82 38.86

S-OVF ANTIGONE −514.36 1873.64 1873.73

S-OVF BARON −514.36 67.75 67.84

F-CHAR ANTIGONE −514.36 0.21 0.27 6.23 5942.30

F-CHAR BARON −514.36 0.19 0.31 181.02 10490.60

R-CHAR ANTIGONE −514.36 0.25 0.82 24.72 67.74

R-CHAR BARON −514.36 0.34 0.93 8.83 19.48

S-CHAR ANTIGONE −514.36 0.62 188.47 222.48 411.66

S-CHAR BARON −514.36 1.13 18.23 43.84 63.28

Table 6 Results for GasLib-134 and the 2014-10-24 booking

Method Solver Vio. Time

Sol. Min. Med. Max. Total

KKT ANTIGONE −512.80 4.41 4.45

KKT BARON −512.80 6.13 6.18

F-OVF ANTIGONE −512.80 – –

F-OVF BARON −512.80 – –

R-OVF ANTIGONE −512.80 2.27 2.32

R-OVF BARON −512.80 8.75 8.79

S-OVF ANTIGONE −512.80 4.28 4.37

S-OVF BARON −512.80 42.08 42.17

F-CHAR ANTIGONE −512.80 0.22 0.27 1.45 5065.65

F-CHAR BARON −512.80 0.19 0.27 19.05 5069.69

R-CHAR ANTIGONE −512.80 0.24 0.52 24.00 46.63

R-CHAR BARON −512.80 0.33 0.79 3.10 10.71

S-CHAR ANTIGONE −512.80 0.42 1.78 71.49 73.78

S-CHAR BARON −512.80 0.83 3.12 21.97 26.00
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Appendix B: Results for GasLib-134 in the linear case

See Tables 7 and 8.

Table 7 Results for GasLib-134 and the 2012-07-22 booking

Method Appr. Vio. Time

Sol. Min. Med. Max. Total

KKT 0.2 − 512.56 1.72 1.76

R-OVF 0.2 − 512.56 1.22 1.27

S-OVF 0.2 − 512.56 4.47 4.56

R-CHAR 0.2 − 512.56 0.15 0.24 0.76 3.25

S-CHAR 0.2 − 512.56 0.78 0.80 0.96 2.63

KKT 0.4 − 500.12 2.48 2.52

R-OVF 0.4 − 500.12 1.65 1.70

S-OVF 0.4 − 500.12 5.11 5.20

R-CHAR 0.4 − 500.12 0.17 0.26 0.83 3.35

S-CHAR 0.4 − 500.12 0.86 0.92 1.07 2.94

KKT 0.6 − 276.34 3.24 3.29

R-OVF 0.6 − 276.34 2.17 2.21

S-OVF 0.6 − 276.34 6.48 6.57

R-CHAR 0.6 − 276.34 0.15 0.25 0.60 3.21

S-CHAR 0.6 − 276.34 0.64 0.82 1.06 2.60

KKT 0.8 86.17 3.13 3.17

R-OVF 0.8 86.17 2.29 2.34

S-OVF 0.8 86.17 15.61 15.70

R-CHAR 0.8 86.17 0.17 0.26 1.23 3.72

S-CHAR 0.8 86.17 0.68 0.89 1.04 2.70

KKT 1.0 448.67 3.15 3.20

R-OVF 1.0 448.67 2.62 2.66

S-OVF 1.0 448.67 11.46 11.55

R-CHAR 1.0 448.67 0.14 0.27 0.62 3.01

S-CHAR 1.0 448.67 0.71 0.81 1.08 2.69
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Table 8 Results for GasLib-134 and the 2014-10-24 booking

Method Appr. Vio. Time

Sol. Min. Med. Max. Total

KKT 0.2 −513.71 2.04 2.08

R-OVF 0.2 −513.71 1.03 1.08

S-OVF 0.2 −513.71 3.11 3.20

R-CHAR 0.2 −513.71 0.15 0.23 0.49 2.33

S-CHAR 0.2 −513.71 0.38 0.41 0.74 1.62

KKT 0.4 −502.41 1.89 1.94

R-OVF 0.4 −502.41 1.31 1.35

S-OVF 0.4 −502.41 2.82 2.91

R-CHAR 0.4 −502.41 0.15 0.22 0.55 2.53

S-CHAR 0.4 −502.41 0.40 0.57 0.74 1.81

KKT 0.6 −491.12 1.94 1.99

R-OVF 0.6 −491.12 1.09 1.13

S-OVF 0.6 −491.12 3.41 3.51

R-CHAR 0.6 −491.12 0.15 0.23 0.54 2.49

S-CHAR 0.6 −491.12 0.40 0.53 0.76 1.79

KKT 0.8 −479.82 2.14 2.18

R-OVF 0.8 −479.82 1.19 1.23

S-OVF 0.8 −479.82 3.84 3.93

R-CHAR 0.8 −479.82 0.15 0.23 0.72 2.80

S-CHAR 0.8 −479.82 0.43 0.50 0.83 1.85

KKT 1.0 −468.53 2.31 2.36

R-OVF 1.0 −468.53 1.16 1.20

S-OVF 1.0 −468.53 4.08 4.17

R-CHAR 1.0 −468.53 0.15 0.24 0.67 2.78

S-CHAR 1.0 −468.53 0.43 0.62 0.81 1.95
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Appendix C: Results for GasLib-40 in the linear case

See Table 9, 10 and 11.

Table 9 Results for GasLib-40 and the 10–10 booking

Method Appr. Vio. Time

Sol. Min. Med. Max. Total

KKT 0.2 1444.25 2.69 2.74

F-OVF 0.2 1444.25 13.93 14.13

R-OVF 0.2 1444.25 35.23 35.28

F-CHAR 0.2 1444.25 0.10 0.13 0.42 204.48

R-CHAR 0.2 1444.25 0.12 0.14 0.55 5.88

S-CHAR 0.2 1444.25 0.79 1.76 2.41 9.74

KKT 0.4 9550.63 3.30 3.35

F-OVF 0.4 9550.63 15.21 15.40

R-OVF 0.4 9550.63 12.47 12.52

F-CHAR 0.4 9550.63 0.10 0.12 0.46 194.77

R-CHAR 0.4 9550.63 0.12 0.14 0.52 6.33

S-CHAR 0.4 9550.63 0.79 1.86 2.04 9.43

KKT 0.6 17657.00 2.99 3.04

F-OVF 0.6 17657.00 16.23 16.43

R-OVF 0.6 17657.00 21.40 21.45

F-CHAR 0.6 17657.00 0.10 0.12 0.43 192.77

R-CHAR 0.6 17657.00 0.11 0.14 0.43 5.58

S-CHAR 0.6 17657.00 0.80 1.67 1.92 9.45

KKT 0.8 25763.37 4.07 4.11

F-OVF 0.8 25763.37 18.91 19.10

R-OVF 0.8 25763.37 44.41 44.46

F-CHAR 0.8 25763.37 0.09 0.12 0.47 196.67

R-CHAR 0.8 25763.37 0.12 0.14 0.43 5.61

S-CHAR 0.8 25763.37 1.10 1.71 2.05 9.71

KKT 1.0 33869.75 3.56 3.61

F-OVF 1.0 33869.75 17.81 18.00

R-OVF 1.0 33869.75 189.46 189.51

F-CHAR 1.0 33869.75 0.11 0.13 0.57 208.23

R-CHAR 1.0 33869.75 0.12 0.13 0.44 5.64

S-CHAR 1.0 33869.75 1.72 1.83 2.12 11.23
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Table 10 Results for GasLib-40 and the 1–20 booking

Method Appr. Vio. Time

Sol. Min. Med. Max. Total

KKT 0.2 1859.32 3.14 3.19

F-OVF 0.2 1859.32 13.59 13.79

R-OVF 0.2 1859.32 86.28 86.34

F-CHAR 0.2 1859.32 0.10 0.13 0.51 206.26

R-CHAR 0.2 1859.32 0.11 0.14 0.46 5.78

S-CHAR 0.2 1859.32 1.60 1.97 2.52 11.89

KKT 0.4 10380.76 3.79 3.84

F-OVF 0.4 10380.76 15.04 15.24

R-OVF 0.4 10380.76 27.46 27.52

F-CHAR 0.4 10380.76 0.10 0.13 0.45 204.29

R-CHAR 0.4 10380.76 0.12 0.14 0.43 5.74

S-CHAR 0.4 10380.76 1.53 1.99 2.68 12.65

KKT 0.6 18902.19 4.79 4.84

F-OVF 0.6 18902.19 15.04 15.24

R-OVF 0.6 18902.19 20.71 20.76

F-CHAR 0.6 18902.19 0.10 0.13 0.53 201.68

R-CHAR 0.6 18902.19 0.11 0.14 0.43 5.84

S-CHAR 0.6 18902.19 0.82 1.78 2.18 9.92

KKT 0.8 27423.63 2.98 3.02

F-OVF 0.8 27423.63 15.73 15.92

R-OVF 0.8 27423.63 10.80 10.85

F-CHAR 0.8 27423.63 0.10 0.13 0.44 203.74

R-CHAR 0.8 27423.63 0.11 0.13 0.45 5.65

S-CHAR 0.8 27423.63 0.86 1.82 2.09 9.42

KKT 1.0 35945.07 2.26 2.31

F-OVF 1.0 35945.07 19.88 20.08

R-OVF 1.0 35945.07 44.83 44.88

F-CHAR 1.0 35945.07 0.10 0.13 0.52 205.41

R-CHAR 1.0 35945.07 0.11 0.13 0.45 5.64

S-CHAR 1.0 35945.07 0.84 1.74 2.03 9.64
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Table 11 Results for GasLib-40 and the 10–5 booking

Method Appr. Vio. Time

Sol. Min. Med. Max. Total

KKT 0.2 1575.16 6.37 6.42

F-OVF 0.2 1575.16 14.09 14.29

R-OVF 0.2 1575.16 55.73 55.78

F-CHAR 0.2 1575.16 0.10 0.12 0.42 203.09

R-CHAR 0.2 1575.16 0.12 0.13 0.52 5.71

S-CHAR 0.2 1575.16 1.71 2.07 2.43 12.38

KKT 0.4 9812.44 2.60 2.65

F-OVF 0.4 9812.44 17.19 17.38

R-OVF 0.4 9812.44 30.15 30.20

F-CHAR 0.4 9812.44 0.10 0.12 0.42 199.62

R-CHAR 0.4 9812.44 0.12 0.13 0.49 5.61

S-CHAR 0.4 9812.44 1.25 2.06 2.76 11.86

KKT 0.6 18049.72 2.45 2.50

F-OVF 0.6 18049.72 14.59 14.79

R-OVF 0.6 18049.72 68.87 68.92

F-CHAR 0.6 18049.72 0.10 0.13 0.45 203.72

R-CHAR 0.6 18049.72 0.12 0.13 0.51 5.70

S-CHAR 0.6 18049.72 1.19 1.65 1.91 9.56

KKT 0.8 26287.00 2.79 2.84

F-OVF 0.8 26287.00 16.32 16.52

R-OVF 0.8 26287.00 72.69 72.74

F-CHAR 0.8 26287.00 0.10 0.13 0.55 208.26

R-CHAR 0.8 26287.00 0.11 0.13 0.52 5.66

S-CHAR 0.8 26287.00 0.83 1.14 2.13 8.08

KKT 1.0 34524.28 3.06 3.11

F-OVF 1.0 34524.28 16.32 16.52

R-OVF 1.0 34524.28 40.98 41.03

F-CHAR 1.0 34524.28 0.10 0.12 0.52 196.73

R-CHAR 1.0 34524.28 0.11 0.14 0.49 5.92

S-CHAR 1.0 34524.28 0.88 1.73 1.99 9.39
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