
Goebbels, Steffen; Gurski, Frank; Komander, Dominique

Article — Published Version

The knapsack problem with special neighbor
constraints

Mathematical Methods of Operations Research

Provided in Cooperation with:
Springer Nature

Suggested Citation: Goebbels, Steffen; Gurski, Frank; Komander, Dominique (2021) : The
knapsack problem with special neighbor constraints, Mathematical Methods of Operations
Research, ISSN 1432-5217, Springer, Berlin, Heidelberg, Vol. 95, Iss. 1, pp. 1-34,
https://doi.org/10.1007/s00186-021-00767-5

This Version is available at:
https://hdl.handle.net/10419/286815

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s00186-021-00767-5%0A
https://hdl.handle.net/10419/286815
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Mathematical Methods of Operations Research (2022) 95:1–34
https://doi.org/10.1007/s00186-021-00767-5

ORIG INAL ART ICLE

The knapsack problemwith special neighbor constraints

Steffen Goebbels1 · Frank Gurski2 · Dominique Komander2

Received: 19 June 2021 / Revised: 22 September 2021 / Accepted: 25 November 2021 /
Published online: 28 December 2021
© The Author(s) 2021

Abstract
The knapsack problem is one of the simplest and most fundamental NP-hard problems
in combinatorial optimization. We consider two knapsack problems which contain
additional constraints in the form of directed graphs whose vertex set corresponds to
the item set. In the one-neighbor knapsack problem, an item can be chosen only if at
least one of its neighbors is chosen. In the all-neighbors knapsack problem, an item can
be chosen only if all its neighbors are chosen. For both problems, we consider uniform
and general profits and weights. We prove upper bounds for the time complexity of
these problems when restricting the graph constraints to special sets of digraphs. We
discuss directed co-graphs, minimal series-parallel digraphs, and directed trees.

Keywords Knapsack problem · Neighbor constraints · Directed co-graphs · Minimal
series-parallel digraphs · Directed trees

Mathematics Subject Classification 05C85 · 90C39 · 05C69

A short version of this paper will appear in the proceedings of the International Conference on Operations
Research (OR Goebbels et al. 2021).

B Frank Gurski
frank.gurski@hhu.de

Steffen Goebbels
steffen.goebbels@hsnr.de

Dominique Komander
dominique.komander@hhu.de

1 Faculty of Electrical Engineering and Computer Science, iPattern Institute, Niederrhein
University of Applied Sciences, 47805 Krefeld, Germany

2 Institute of Computer Science, Algorithmics for Hard Problems Group, University of Düsseldorf,
40225 Düsseldorf, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-021-00767-5&domain=pdf
https://orcid.org/0000-0003-4313-9101
http://orcid.org/0000-0002-1212-1796
https://orcid.org/0000-0001-6990-5164

2 S. Goebbels et al.

1 Introduction

In recent years, the interest in knapsack problems related to graphs has grown strongly.
In addition to an input to a knapsack problem, these problems contain additional
constraints in the form of graphs whose vertex set corresponds to the item set of the
knapsack problem. These include, for example, the knapsack problem with conflict or
forcing graphs, the subset sum problem with digraph restrictions, the partially ordered
knapsack problem. In Borradaile et al. (2012), applications for constrained knapsack
problems in scheduling, tool management, investment strategies, database storage,
and network formation are mentioned.

Following Borradaile et al. (2011, 2012), we analyze the knapsack problem with
additional constraints based on a digraph.

We use the notations of Bang-Jensen and Gutin (2009) for graphs and digraphs.1

A graph is a pair G = (A, E), where A is a finite set of vertices and E ⊆ {{u, v} |
u, v ∈ A, u �= v} is a finite set of edges. For a vertex v ∈ A, the set NG(v) = {u ∈
A | {v, u} ∈ E} is the set of all neighbors or the neighborhood of v in G.

A directed graph or digraph is a pair G = (A, E), where A is a finite set of vertices
and E ⊆ {(u, v) | u, v ∈ A, u �= v} is a finite set of ordered pairs of distinct vertices
called arcs or directed edges. For a vertex v ∈ A, the sets N+

G (v) = {u ∈ A | (v, u) ∈
E} and N−

G (v) = {u ∈ A | (u, v) ∈ E} are called the set of all successors and the set
of all predecessors of v in G. Their union NG(v) = N−

G (v) ∪ N+
G (v) is the set of all

neighbors or the neighborhood of v inG. A vertex v is called a sink iff N+
G (v) = ∅, v is

called a source iff N−
G (v) = ∅. For an undirected graph G = (A, E), replacing every

edge {u, v} of G by exactly one of the arcs (u, v) and (v, u) leads to an orientation of
G. Every digraph that can be obtained by an orientation of an undirected graph G is
called an oriented graph, i.e., an oriented graph is a digraph without loops or opposite
arcs.

A digraph G ′ = (A′, E ′) is a subdigraph of digraph G = (A, E) if A′ ⊆ A and
E ′ ⊆ E ∩ (A′ × A′). If every arc of E with start- and end-vertex in A′ is in E ′, we
say that G ′ is an induced subdigraph of digraph G.

For a digraph G = (A, E) its underlying undirected graph is defined by disregard-
ing the directions of the arcs, i.e. un(G) = (A, {{u, v} | (u, v) ∈ E, u, v ∈ A}).

We analyze knapsack problems with digraph constraints for special classes of
digraphs: directed trees, directed co-graphs, andminimal series parallel digraphs (msp-
digraphs).

A directed tree is a digraph for which the underlying undirected graph is a tree. On
directed trees, bidirectional edges are allowed.

An out-rooted tree (in-rooted tree) is a directed tree with a distinguished root but
without bidirectional edges such that all vertices can be reached from the root (the
root can be reached from all vertices), i.e., all arcs point away from (towards) the root.

A binary tree is a rooted tree in which every vertex has at most two children. A
directed binary tree is a rooted directed tree such that the rooted underlying undirected
tree is a binary tree.

1 Please note that we use A for the vertex set of graphs and digraphs, since it corresponds to the item set
of a knapsack instance.

123

The knapsack problem with special neighbor constraints 3

Directed co-graphs and msp-digraphs are recursively defined digraphs, see
Sects. 3.1 and 4.1. Starting with single vertex digraphs, larger digraphs are constructed
by some operations that compute the union of the sets of vertices and the sets of edges
of the given digraphs, respectively, and add certain additional edges. The recursive
structure of these digraphs can be represented by a tree that allows for dynamic pro-
gramming.

Within the knapsack problem (KP) there is given a set A = {a1, . . . , an} of n ≥ 1
items. Every item a j has a size s j and a profit p j . Further, there is a capacity c. All
values are assumed to be non-negative integers and s j ≤ c for every j ∈ {1, . . . , n}.
The task is to choose a subset A′ of A, such that p(A′) := ∑

a j∈A′ p j is maximized
and the capacity constraint holds, i.e.

s
(
A′) :=

∑

a j∈A′
s j ≤ c. (1)

The subset sum problem (SSP) is the special case of the knapsack problem for which
p j = s j .

We consider the knapsack problem with additional constraints in the form of
(di)graphs G = (A, E) from Borradaile et al. (2011, 2012).

The one-neighbor constraint prescribes that an item v ∈ A can be chosen into
A′ ⊆ A only if at least one of its neighbors in NG(v) is chosen, i.e.,

(
v ∈ A′ ∧ NG(v) �= ∅) ⇒ NG(v) ∩ A′ �= ∅. (2)

The all-neighbors constraint prescribes that an item v ∈ A can be chosen into
A′ ⊆ A only if all its neighbors in NG(v) are chosen, i.e.,

v ∈ A′ ⇒ NG(v) ⊆ A′. (3)

These definitions imply that vertices without neighbors can always be chosen. When
considering digraphs, the constraints only apply to the out-neighbors N+

G (v) of a vertex
v. We state the following optimization problems given in Borradaile et al. (2012).

Name Knapsack with one-neighbor constraint (KP1N)
Instance A set A = {a1, . . . , an} of n ≥ 1 items and a digraph G = (A, E). Every

item a j has a size s j and a profit p j . Further, there is a capacity c.
Task Find a subset A′ of A that maximizes p(A′) subject to (1) and (2).

Name Knapsack with all-neighbors constraint (KPaN)
Instance A set A = {a1, . . . , an} of n ≥ 1 items and a digraph G = (A, E). Every

item a j has a size s j and a profit p j . Further, there is a capacity c.
Task Find a subset A′ of A that maximizes p(A′) subject to (1) and (3).

As said before, the parameters s j , p j and c are assumed to be non-negative inte-
gers, i.e. from the set N0 := {0, 1, 2, 3, . . .}. Especially zero profits p j need special
treatment in some of the presented algorithms.

123

4 S. Goebbels et al.

Fig. 1 Digraph in Example 1

a

a a

1

2 3

a4 a5

For both problems, a subset A′ of A is called feasible, if it satisfies the prescribed
constraints of the problem.Within somealgorithmsweneed to omit capacity restriction
(1) but then we speak nonetheless of feasible solutions. We denote the value of an
optimal solution on input I by OPT(I).

The restriction of KP1N and KPaN to uniform sizes and profits (s j = p j = 1 for
j = 1, . . . , n) is denoted by uniform KP1N and uniform KPaN, respectively. When
general sizes and profits s j , p j ∈ N0 are allowed as in the definitions of KP1N and
KPaN, we also speak of general KP1N and general KPaN.

Following (Borradaile et al. 2012) we consider the following eight problems

{one-neighbor, all-neighbors} × {general, uniform} × {undirected, directed}.

Example 1 We consider the digraph G in Fig. 1. For uniform KPaN with c = 3 we
have {a3}, {a5}, {a3, a5}, {a2, a3}, {a4, a5}, {a2, a3, a5}, and {a3, a4, a5} as feasible
solutions. For uniform KP1N with c = 3, we additionally find the feasible solutions
{a1, a2, a3} and {a1, a4, a5}.

Every feasible solution for knapsack with all-neighbors constraint (KPaN) is also
a feasible solution for knapsack with one-neighbor constraint (KP1N), but not vice
versa. Both A′ = ∅ and A′ = A for s(A) ≤ c are feasible solutions for every instance
of knapsack with all-neighbors constraint (KPaN) and for every instance of knapsack
with one-neighbor constraint (KP1N).

In Tables 1, 2, 3 and 4 we summarize the results of the given paper as well as
the known time complexities of knapsack problems with neighbor constraints. Most
presented algorithms for general profits and weights are pseudo-polynomial. Their
runtimes depend on the capacity bound c or the profit sum

P =
n∑

j=1

p j ≤ n · max
1≤ j≤n

p j . (4)

Value P is an upper bound for the profit of an optimal solution for an instance of the
knapsack problem. There are two similar approaches to solve knapsack with dynamic
programming: One can either partition target capacities and maximize profits or one
can partition profits and minimize capacities. The first approach leads to pseudo-
polynomial runtime bounds in c whereas the second approach results in bounds that

123

The knapsack problem with special neighbor constraints 5

involve P (cf. Kellerer et al. 2010, Chapter 2). Within this paper, we use the second
approach.

The general, directed, all-neighbors knapsack problem is closely related to the
partially ordered knapsack problem (POK) (Johnson and Niemi 1983; Kolliopoulos
and Steiner 2007), which is defined as follows. Given is an instance for the knapsack
problem and an acyclic digraph G = (A, E) whose vertices correspond to the items
of the knapsack instance (cf. Sect. 4). A subset A′ ⊆ A is closed under predecessor,
if v ∈ A′ and (u, v) ∈ E implies that u ∈ A′. The partially ordered knapsack problem
is to find a subset A′ ⊆ A which is closed under predecessor, such that A′ maximizes
the profit and fulfills the capacity constraint (1). In contrast to this, solutions of the all-
neighbors knapsack problem are closed under successor. By considering the reverse
graph, one constraint on an acyclic digraph becomes the other. Since we discuss the
all-neighbors knapsack problem even on cyclic digraphs, this is a generalization of
partially ordered knapsack.

The subset-union knapsack problem (SUKP) is a special case of KPaN, see (Bor-
radaile et al. 2012). KP1N can be applied to solve the knapsack problem with forcing
graph (KFG): In theKFGproblem, for all edges of an undirected forcing graph (A, E),
at least one of its two vertices has to be chosen as an item into a feasible KP solution,
see (Pferschy and Schauer 2017). Let P be the sum of all profits. To model the KFG
constraint with a one-neighbor constraint in a graph (A′, E ′), let the set of vertices
be A′ := A ∪ E such that edges of the forcing graph become vertices/items with size
0 and profit P + 1, and vertices/items of A keep their size and profit in the KP1N
problem that also shares the capacity bound with the KFG problem. Each vertex in
v ∈ E ⊆ A′ is connected with two directed edges (pointing) to the two adjacent
vertices of the edge v in the forcing graph. If the profit of an optimal KP1N solution is
less than |E | · (P+1), then no feasible solution of KFG exists. Otherwise, the optimal
profit of KFG equals the optimal profit of KP1N minus |E | · (P + 1).

Gourvès et al. introduced a related approach, namely the subset sum problem
with digraph constraint (SSG) and subset sum problem with weak digraph constraint
(SSGW) (Gourvès et al. 2018). SSG is a general KPaN problem on a digraph for which
item sizes and profits are equal. Then capacity bound c also becomes a bound for the
profit. Originally, the digraph-constraint in SSG is formulated somewhat different: A
feasible solution A′ of SSG has to fulfill a predecessor condition: If a vertex v of the
digraph has at least one predecessor in A′, then v must also be in A′. But this constraint
equals the all-neighbors constraint from the perspective of the predecessors. We there-
fore can verify known runtime bounds (Gurski et al. 2020a, b) for SSGwith the bounds
that we derive for general KPaN on directed co-graphs and msp-digraphs. A dynamic
program to solve SSG for oriented trees is presented in Gourvès et al. (2018). This can
be also done with the dynamic program for the KPaN problem in Sect. 5.1. SSGW,
however, is different to the problems discussed in this paper. The digraph constraint
here is that if all predecessors of a vertex v are in a feasible solution, then v must also
be in this solution. Bounds for this problem on directed co-graphs and msp-digraphs
are proved in Gurski et al. (2020a, b).

APX-hard problems do not allow a PTAS (and thus no FPTAS), if P �= NP. For
subset selection problems, the existence of a pseudo-polynomial algorithm leads to a
FPTAS. Thus, for APX-hard subset selection problems there is no pseudo-polynomial

123

6 S. Goebbels et al.

Ta
bl
e
1

T
im

e
co
m
pl
ex
ity

of
kn

ap
sa
ck

pr
ob

le
m
s
w
ith

ne
ig
hb

or
co
ns
tr
ai
nt
s

G
ra
ph

O
ne
-n
ei
gh

bo
r

A
ll-
ne
ig
hb

or
s

U
ni
fo
rm

U
nd
ir
ec
te
d

L
in
ea
r

B
or
ra
da
ile

et
al
.(
20

12
)

O
(n

·c
)
⊆

O
(n

2
)

B
or
ra
da
ile

et
al
.(
20

12
)

D
ir
ec
te
d

St
ro
ng
ly

N
P-
ha
rd

B
or
ra
da
ile

et
al
.(
20

12
)

St
ro
ng

ly
N
P-
ha
rd

B
or
ra
da
ile

et
al
.(
20

12
)

G
en
er
al

U
nd
ir
ec
te
d

A
PX

-h
ar
d

B
or
ra
da
ile

et
al
.(
20

12
)

PF
TA

S
B
or
ra
da
ile

et
al
.(
20

12
)

O
(n

·P
+

n2
)

C
on

cl
us
io
ns

D
ir
ec
te
d

St
ro
ng
ly

N
P-
ha
rd

B
or
ra
da
ile

et
al
.(
20

12
)

St
ro
ng

ly
N
P-
ha
rd

B
or
ra
da
ile

et
al
.(
20

12
)

123

The knapsack problem with special neighbor constraints 7

Ta
bl
e
2

T
im

e
co
m
pl
ex
ity

of
kn

ap
sa
ck

pr
ob

le
m
s
w
ith

ne
ig
hb

or
co
ns
tr
ai
nt
s
gi
ve
n
by

tr
ee
s

G
ra
ph

O
ne
-n
ei
gh

bo
r

A
ll-
ne
ig
hb

or
s

U
ni
fo
rm

U
nd
ir
ec
te
d

L
in
ea
r

B
or
ra
da
ile

et
al
.(
20

12
)

O
(1

)
O
ne

co
m
po

ne
nt

D
ir
ec
te
d

O
(n

3
)

T
he
or
em

6
O

(n
3
)

T
he
or
em

5

G
en
er
al

U
nd
ir
ec
te
d

N
P-
ha
rd

Pr
op
os
iti
on

2
O

(n
)

Pr
op
os
iti
on

1

D
ir
ec
te
d

N
P-
ha
rd

Pr
op
os
iti
on

2
N
P-
ha
rd

Pr
op
os
iti
on

2

O
(n

·P
2

+
n)

T
he
or
em

6
O

(n
·(
P

+
1)

·(
P

+
n)

)
T
he
or
em

5

123

8 S. Goebbels et al.

Ta
bl
e
3

T
im

e
co
m
pl
ex
ity

of
kn

ap
sa
ck

pr
ob

le
m
s
w
ith

ne
ig
hb

or
co
ns
tr
ai
nt
s
gi
ve
n
by

co
-g
ra
ph

s

G
ra
ph

O
ne
-n
ei
gh

bo
r

A
ll-
ne
ig
hb

or
s

U
ni
fo
rm

U
nd
ir
ec
te
d

L
in
ea
r

B
or
ra
da
ile

et
al
.(
20

12
)

O
(n

·c
)
⊆

O
(n

2
)

B
or
ra
da
ile

et
al
.(
20

12
)

di
re
ct
ed

O
(n

3
)

C
or
ol
la
ry

3
O

(n
3
)

C
or
ol
la
ry

2

G
en
er
al

U
nd
ir
ec
te
d

O
(n

·P
2
+n

2
)

C
on

cl
us
io
ns

O
(n

·P
+n

2
)

C
on

cl
us
io
ns

D
ir
ec
te
d

O
(n

·P
2
+n

2
)

T
he
or
em

2
O

(n
·(
P

+1
)
·m

ax
{n,

P
+1

})
T
he
or
em

1

123

The knapsack problem with special neighbor constraints 9

Table 4 Time complexity of knapsack problems with neighbor constraints given by msp-digraphs

One-neighbor All-neighbors

Uniform O(n3) Corollary 5 O(n3) Corollary 4

General O(n · P2 + n2) Theorem 4 O(n · (P + 1) · max{n, P + 1}) Theorem 3

algorithm, i.e. they are strongly NP-hard. In the Conclusions section we show that
knapsack with one-neighbor constraint and knapsack with all-neighbors constraint
are pseudo-polynomial subset selection problems if zero profits are excluded. Thus,
these problems are not APX-hard.

In the following sections we discuss solutions for the one-neighbor and all-
neighbors knapsack problems for which the input graph is restricted to directed
co-graphs, msp-digraphs, and directed trees. We consider general profits and weights.
Then, results for uniform profits and weights immediately follow.

2 Elementary results

In order to show the correctness of our runtime bounds for KP1N and KPaN when
restricting the graph constraints to special sets of digraphs, we will use the following
results.

Lemma 1 Let G = (VG , EG) be a digraph, and let H = (VH , EH) be an induced
subdigraph of G. If A′ is a feasible solution for KPaN on G, then A′ ∩VH is a feasible
solution for KPaN on H.

Proof Let v ∈ A′ ∩VH . We have to show that N+
H (v) ⊆ A′ ∩VH . Since A′ is a feasible

solution for KPaN on G, we know that N+
G (v) ⊆ A′. Thus, N+

H (v) ⊆ N+
G (v) ⊆ A′,

and N+
H (v) = N+

H (v) ∩ VH ⊆ N+
G (v) ⊆ A′ ∩ VH . �

The reverse direction of Lemma 1 does not hold, since vertices with successors
in A′ ∩ (VG \ VH) are not considered by the feasible solutions for KPaN on H . By
considering the induced subdigraph H = ({a1, a4, a5}, {(a1, a4), (a4, a5)}) of digraph
G and A′ = {a1, a2, a3} in Example 1, we observe that Lemma 1 does not hold for
KP1N.

But we can show a weaker form of Lemma 1 for KP1N:

Lemma 2 Let G = (VG , EG) be a digraph and let H = (VH , EH) be an induced
subdigraph of G, such that no non-sink of H has a successor in VG \ VH . If A′ is a
feasible solution for KP1N on G, then A′ ∩ VH is a feasible solution for KP1N on H.

Proof Let v ∈ A′ ∩ VH with N+
H (v) �= ∅, i.e., v is not a sink in H . We have to show

N+
H (v) ∩ (A′ ∩ VH) �= ∅.
Due to the preliminaries, non-sink v does not have a successor in VG \ VH , i.e.,

N+
G (v) ⊆ VH . Thus, ∅ �= N+

H (v) = N+
G ∩ VH = N+

G (v). Since v ∈ A′, and A′ is a
feasible solution for KP1N on G, and N+

G (v) �= ∅, there exists u ∈ A′ ∩ N+
G (v) =

A′ ∩ N+
H (v) = A′ ∩ N+

H (v) ∩ VH . But this gives N
+
H (v) ∩ (A′ ∩ VH) �= ∅. �

123

10 S. Goebbels et al.

Lemma 3 Let G = (VG , EG) be a digraph and let H = (VH , EH) be an induced
subdigraph of G. If A′ is a feasible solution for KP1N on G and A′ ⊆ VH , then A′ is
a feasible solution for KP1N on H.

Proof Let v ∈ A′ with N+
H (v) �= ∅. We have to show N+

H (v) ∩ A′ �= ∅.
Since A′ is a feasible solution on G and ∅ �= N+

H (v) ⊆ N+
G (v), we know that

N+
G (v) ∩ A′ �= ∅. Because of A′ ⊆ VH , we get A′ = A′ ∩ VH , such that ∅ �=

N+
G (v) ∩ A′ = N+

G (v) ∩ VH ∩ A′ = N+
H (v) ∩ A′. �

The connected components can be used to solve the general, undirected all-
neighbors knapsack problem.

Proposition 1 General knapsack with all-neighbors constraint (KPaN) is solvable in
O(t · P + n + m) time on graphs with n vertices, m edges, and t ≤ n connected
components with the capacity bound c. If a graph has only one component, e.g., a tree,
then the problem is solvable in O(n) time.

Proof The given problem can be interpreted as a knapsack problem in which the items
are t ≤ n connected components of the graph, cf. (Borradaile et al. 2012). Computing
the connected components can be done in O(n + m) time. Size and profit of each
component is the sum of sizes and profits of its vertices. These data also can be
computed in O(n + m) time. With t items, the knapsack problem can be solved in
O(t · c) and inO(t · P) time with standard dynamic programming, cf. (Kellerer et al.
2010, Chapter 2). Thus, the general all-neighbors problem on (undirected) graphs is
solvable inO(t · P +n+m) time. If the graph consists of only one single component,
then it is sufficient to sum up profits and sizes, the runtime is in O(n). �

When restricting the graph constraints to edgeless (di)graphs, both general knapsack
with one-neighbor constraint and with all-neighbors constraint become the NP-hard
knapsack problem such that they are also NP-hard.

Co-graphs, directed co-graphs (see Definition 1) as well as msp-digraphs (see Def-
inition 2) are allowed to be edgeless (di)graphs. Thus, we get:

Corollary 1 General knapsack with one-neighbor constraint (KP1N) and general
knapsack with all-neighbors constraint (KPaN) are NP-hard on co-graphs, directed
co-graphs as well as on msp-digraphs.

Proposition 2 General knapsack with one-neighbor constraint (KP1N) and general
knapsack with all-neighbors constraint (KPaN) are NP-hard for directed in-rooted
trees and out-rooted trees. General knapsack with one-neighbor constraint (KP1N) is
NP-hard for (undirected) trees.

Proof We use a reduction from KP. For some given KP instance I on n items B =
{b1, . . . , bn}with a capacity bound d, where item bi has size ti and profit qi , 1 ≤ i ≤ n,
we define instances I ′ as follows. The item set is A = {ai | bi ∈ B} ∪ {an+1}
where item ai has size si := ti and profit pi := qi , 1 ≤ i ≤ n, and an+1 has size
sn+1 = 0 and profit pn+1 = 0. The capacity is c = d, and the digraph is G = (V , E)

with V = A. For in-rooted trees, we choose E = {(ai , an+1) | 1 ≤ i ≤ n}, for

123

The knapsack problem with special neighbor constraints 11

out-rooted trees let E = {(an+1, ai) | 1 ≤ i ≤ n}, and for undirected trees let
E = {{ai , an+1} | 1 ≤ i ≤ n}.

Obviously, I has a KP solution B ′ ⊆ B if and only if I ′ has a solution {ai | bi ∈
B ′} ∪ {an+1} or {ai | bi ∈ B ′}. Note that an+1 is not allowed to be in non-trivial
solutions of I ′ for out-rooted trees and KPaN. It is also not included for KP1N on
(undirected) trees or out-rooted trees iff B ′ = ∅. �

3 Knapsack problems on directed co-graphs

3.1 Directed co-graphs

Directed co-graphs are interesting from an algorithmic point of view since several
hard digraph problems can be solved in polynomial time by dynamic programming
along the tree structure of the input digraph, see (Bang-Jensen and Maddaloni 2014;
Gurski 2017; Gurski et al. 2019a, b, 2020, 2021; Gurski and Rehs 2018; Retoré 1998).
Moreover, directed co-graphs are very useful for the reconstruction of the evolution-
ary history of genes or species using genomic sequence data (Hellmuth et al. 2017;
Nojgaard et al. 2018).

Definition 1 (Directed co-graphs, Crespelle and Paul 2006) The class of directed co-
graphs is recursively defined as follows.

(i) Every digraph ({v},∅) on a single vertex, denoted by v, is a directed co-graph.
(ii) If G1 = (V1, E1) and G2 = (V2, E2) are vertex-disjoint directed co-graphs, then

(a) the disjoint union G1 ⊕ G2, which is defined as the digraph with vertex set
V1 ∪ V2 and edge set E1 ∪ E2,

(b) the order composition G1�G2, defined by their disjoint union plus all possible
edges only directed from V1 to V2, and

(c) the series composition G1⊗G2, defined by their disjoint union plus all possible
edges between V1 and V2 in both directions,

are directed co-graphs.

Undirected co-graphs are defined accordingly with the operations “disjoint union”
and “series composition”G1⊗G2 that adds all edges between V1 and V2, see (Corneil
et al. 1981).

A directed co-graph can be represented by an expression X that connects vertices
using the three operations of Definition 1, see Example 2. The expression X is called
a di-co-expression, digraph(X) is the defined graph, and we denote by |X | the number
of vertices in digraph(X).

Obviously, we can define a tree structure for every directed co-graph, denoted
as di-co-tree. The leaves of the di-co-tree represent the vertices of the digraph and
the inner nodes of the di-co-tree correspond to the operations applied on the sub-
expressions defined by the subtrees. For some vertex u of di-co-tree T we denote by
T (u) the subtree rooted at u and by X(u) the di-co-expression (sub-di-co-expression,
sub-expression) defined by T (u).

123

12 S. Goebbels et al.

Fig. 2 Digraph in Example 2
1v

3v

2v

4v

Given some directed co-graph, one can construct a di-co-tree in linear time, see
(Crespelle and Paul 2006). It has been shown in Crespelle and Paul (2006) that directed
co-graphs can be characterized by eight forbidden induced subdigraphs.

Example 2 The di-co-expression

X = ((v1 ⊕ v3) � (v2 ⊗ v4)) (5)

defines digraph(X) shown in Fig. 2.

Several classes of digraphs are included in the set of all directed co-graphs. For
example, every transitive tournament is a directed co-graph, and every oriented bipar-
tite digraph is a directed co-graph.

3.2 All-neighbors problems on directed co-graphs

We consider an instance I of the general knapsack with all-neighbors constraint
problem such that G = (V , E) is a directed co-graph defined by some binary di-
co-expression X .

For modeling a specific restriction, the series composition is not required in all-
neighbors problems. A directed co-graph can be replaced by a simplified directed
co-graph for which the di-co-expression does not contain a series composition. As
none or all vertices have to be chosen in a feasible solution, each subexpression L⊗ R
can be replaced by a single vertex for which the size is the sum of all sizes and the
profit is the sum of all profits in L ⊗ R.

For some sub-expression X(u) of X let F(X(u), p) be the minimum size of a
solution with profit exactly p in digraph(X(u)). While the problem requires the size
to be at most c, values of function F are allowed to exceed c. But if profit p cannot
be realized under digraph restrictions, we set F(X(u), p) := ∞.

Theorem 1 General KPaN can be solved in directed co-graphs with n vertices in
O (n(P + 1)max{n, P + 1}) time where P := ∑n

j=1 p j is the sum of all profits of
the items (vertices) of a given problem, see Eq. (4).

Proof In order to solve the general KPaN problem for an instance I on directed co-
graph G, we traverse di-co-tree T in a bottom-up order, i.e. from the leaves to the root
r . For every vertex u of T and integer 0 ≤ p ≤ P we use Algorithm 1 to compute a
non-negative integer value F(X(u), p) as described before.

If a zero profit p = 0 has to be realized then F(X(u), p) = 0 due to the feasible
empty solution. Non-empty zero profit solutions cannot have smaller sizes.

123

The knapsack problem with special neighbor constraints 13

If |X(u)| = 1 and p > 0 then F(X(u), p) < ∞ iff the profit pi of the only vertex
ai equals p. Then F(X(u), p) = si , otherwise F(X(u), p) = ∞.

To prove the correctness for |X(u)| > 1 and p > 0, we look at the three possible
operations:

– Let X(u) = L ⊕ R. Since there are no edges between digraph(L) and digraph(R),
each feasible solution (a solution that fulfills the all-neighbors condition without
capacity constraint) is the union of a feasible solution with vertices in digraph(L)

and a feasible solution with vertices in digraph(R), see Lemma 1, and vice versa
since neighborhoods do not change by applying the union:

F(L ⊕ R, p) = min{F(L, p′) + F(R, p − p′) : 0 ≤ p′ ≤ p}.
– Let X(u) = L � R. If a feasible solution has at least one vertex in digraph(L)

then it includes all vertices of digraph(R) due to the �-operation and the all-
neighbors condition. Thus, a solution equals a solution for digraph(R) without
vertices in digraph(L), i.e, F(X(u), p) = F(R, p), or it includes at least one
vertex of digraph(L). In the latter case, the all-neighbor condition implies, that the
restriction of the solution to digraph(L) is also a feasible solution (Lemma 1). Vice
versa, by adding all vertices of digraph(R), each feasible solution in digraph(L)

becomes a solution fulfilling the all-neighbors condition in digraph(L�R). Let SR
be the sum of all sizes for vertices in digraph(R), and let PR be the corresponding
sumof all profits of digraph(R). Asmentioned above, solutions that include at least
one vertex of digraph(L) can only exist if PR ≤ p. Then, for solutions including
a vertex of L , it holds

F(X(u), p) = F(L, p − PR) + SR .

– Let X(u) = L ⊗ R. Since p > 0, we only have to deal with non-empty solu-
tions. The only possible feasible solution contains all vertices. If, for example,
digraph(L) �= ∅ then due to the ⊗-operation and the all-neighbors condition, all
vertices of non-empty digraph(R) also belong to the solution. For one of these ver-
tices, “⊗” in connection with the all-neighbors condition also requires all vertices
of digraph(L) to be part of the solution. Thus, the solution includes all vertices.
Vice versa, let SX be the sum of all sizes for vertices in digraph(X(u)), and let
PX be the corresponding sum of all profits of digraph(X(u)). If p = PX then
F(X(u), p) = SX , otherwise F(X(u), p) = ∞.

After performing Algorithm 1 on every sub-expression X(u) for vertices u of T ,
we can solve our problem by considering values for root r :

OPT(I) = max{p ∈ {0, . . . , P} | F(X(r), p) ≤ c}.
A di-co-tree T with n vertices and m edges can be computed in O(n + m) ⊆ O(n2)
time, see (Crespelle and Paul 2006), and P is computed inO(n) time.We have n leaves
and n−1 inner vertices in di-co-tree T forwhich values of F for p ∈ {0, . . . , P} have to
be computedwith at most P+1 iterations or by adding n summands. Thus, the runtime
is in O (n(P + 1)max{n, (P + 1)} + n + m) ⊆ O (n(P + 1)max{n, P + 1}). �

123

14 S. Goebbels et al.

For uniform problems, P equals the number of items n. This is the reason why
uniform problems can be solved in polynomial time instead of the pseudo-polynomial
bounds which hold for the general problems. Theorem 1 directly implies:

Corollary 2 Uniform KPaN can be solved on directed co-graphs with n vertices in
O(n3) time.

Algorithm1General all-neighbors problemsondirected co-graphs:Computeminimal
solution size F(X(u), p) for a given profit p based on previously computed values
for sub-expressions of X(u).

� Start Block “Common”
F(X(u), p) := ∞
(V , E) := digraph(X(u))

if p = 0 then F(X(u), p) := 0
else if |X(u)| = 1 then let ai ∈ V be the only vertex.

if p = pi then F(X(u), p) := si
else if X(u) = L ⊕ R then

for p′ := 0; p′ ≤ p; p′ := p′ + 1 do
S := F(L, p′) + F(R, p − p′)
if F(X(u), p) > S then F(X(u), p) := S � End Block “Common”

if p �= 0 ∧ (X(u) = L � R ∨ X(u) = L ⊗ R) then
(VL , EL) := digraph(L), (VR , ER) := digraph(R)

PL := ∑
ai∈VL pi , PR := ∑

ai∈VR pi
SL := ∑

ai∈VL si , SR := ∑
ai∈VR si

if X(u) = L � R then
if p ≤ PR then F(X(u), p) := F(R, p)
else F(X(u), p) := SR + F(L, p − PR)

else � (case X(u) = L ⊗ R)
if p = PL + PR then F(X(u), p) = SL + SR

We can apply the result to the subset sum problemwith digraph constraint (SSG) on
directed co-graphs. If we introduce an upper capacity bound c = P ′ ≤ P for profits
such that instead of finding a subset A′ of A that maximizes p(A′) the task is to find a
subset A′ of A that maximizes {p′ : p′ = p(A′) ∧ p′ ≤ P ′}, then the runtime bound
of KPaN becomesO(n(P ′ + 1)max{n, P ′ + 1}). If we also exclude zero profits, then
the sums giving PL , PR , SL , and SR in Algorithm 1 can be limited to the first P ′ + 1
summands. Then the runtime bound becomes

O
(
n

(
P ′ + 1

)2 + n2
)

⊆ O
(
n

(
P ′)2 + n2

)
.

Taking into account that the number m of arcs is bounded by n2, this is the same
estimation as in Gurski et al. (2020a). In fact, the result in Gurski et al. (2020a) is
proved following the recursive definition of directed co-graphs very similarly to the
structure of the dynamic program presented in this section.

123

The knapsack problem with special neighbor constraints 15

3.3 One-neighbor problems on directed co-graphs

We consider an KP1N instance I of the general problem such that G is a directed
co-graph defined by some binary di-co-expression X .

The directed co-graphG canpossess cycles anddoes not necessarily contain sinks or
sources. Therefore, a feasible, non-empty KP1N solution does not necessarily contain
sinks of G. Such a feasible KP1N solution without sinks with respect to digraph(L) is
also a feasible solution with respect to digraph(L � R) since every vertex within the
solution already has a successor in digraph(L) that belongs to the solution. But this is
not true for feasible KP1N solutions with sinks of digraph(L).

In order to get useful informations about the sinks within a solution, we use an
extended data structure for dynamic programming. For some sub-expression X(u)

of X let F(X(u), p, k) be the minimum size of a feasible solution fulfilling the one-
neighbor condition with profit exactly p in digraph(X(u)) that contains a sink if k = 1
and does not possess any sinks if k = 0. The minimum size is allowed to exceed c,
i.e., as before, feasible solutions must fulfill the one-neighbor constraint but do not
have to fulfill the capacity constraint. We set F(X(u), p, k) to ∞, whenever there is
no such a solution.

Profits (and sizes) of vertices ai are allowed to be zero. Thus, a zero profit can be
realized with either an empty solution or with non-empty solutions that only contain
vertices ai with zero profit pi = 0. In contrast to empty solutions, vertices with zero
profit can be used to fulfill neighbor constraints (for example, see Algorithm 3, case
X = L � R for p′′ = 0, and case X = L ⊗ R for p′ = 0 or p′ = p; also see
Algorithm 5 for p′ = p). To differentiate between empty and non-empty zero profit
solutions, we introduce function F̃(X(u), p, k) that is defined as F(X(u), p, k) with
the difference that now instead of feasible solutions only non-empty feasible solutions
are considered. If there are only empty feasible solutions then F̃(X(u), p, k) = ∞.
Thus,

F(X(u), p, k) =
{
F̃(X(u), p, k), if p > 0 ∨ k = 1,
0, else.

Theorem 2 General KP1N can be solved in directed co-graphs with n vertices in
O(P2n + n2) time.

Proof While traversing di-co-tree T with root r of a directed co-graph G in a bottom-
up order, we compute F̃(X(u), p, k) for every vertex u of T and integers 0 ≤ p ≤ P ,
k ∈ {0, 1} with Algorithm 3.

If there exists only one vertex ai , i.e., |X(u)| = 1, then this vertex is a sink: if
p = pi then F̃(X(u), p, 1) = si . In all other cases F̃(X(u), p, k) = ∞.

To see the correctness for |X(u)| > 1 and 0 ≤ p ≤ P , we look at the three possible
operations:

– Let X(u) = L⊕ R. A feasible solution in digraph(L⊕ R) restricted to digraph(L)

or digraph(R) is still feasible with respect to the subdigraphs due to Lemma 2.
Feasible solutions of the two subdigraphs are also feasible solutions in digraph(L⊕

123

16 S. Goebbels et al.

Algorithm2Given a di-co-expression X(u), the dynamic knapsack programcomputes
theminimal size F̂(X(u), p)of a non-empty set of vertices (with sizes andprofits) from
the vertices of digraph(X) such that their profits exactly sum up to p ∈ {0, . . . , P}.
if |X(u)| = 1 then let ai ∈ V be the only vertex.

if p = pi then F̂(X(u), p) := si
else F̂(X(u), p) := ∞

else
X has one of the representations X = L ⊕ R, X = L � R or X = L ⊗ R
F̂(X(u), p) := min{F̂(L, p), F̂(R, p)} � empty solutions for p′ = 0 in R or L , respectively
for p′ = 1; p′ < p; p′ := p′ + 1 do

S := F̂(L, p′) + F̂(R, p − p′)
if S < F̂(X(u), p) then F̂(X(u), p) := S

R) as the neighbors do not change. But then, the one-neighbor condition is fulfilled
for their union as well.
For k = 0, a feasible solution must not have a sink. This is true iff both feasible
sub-solutions with vertices in digraph(L) and digraph(R), respectively, do not
have sinks. For k = 1, at least one sub-solution must contain a sink.
Function F̃ deals with non-empty solutions. A feasible solution in digraph(L⊕ R)

is non-empty iff its restriction to digraph(L) or its restriction to digraph(R) is non-
empty. This leads to equations

F̃(X(u), p, 0) = min{F̃(L, p, 0), F̃(R, p, 0),

min{F̃(L, p′, 0) + F̃(R, p − p′, 0) | p′ ∈ {1 . . . , p − 1}}},
F̃(X(u), p, 1) = min{F̃(L, p, 1), F̃(R, p, 1),

min{F̃(L, p′, k′) + F̃(R, p − p′, k′′) | p′ ∈ {1, . . . , p − 1}, k′, k′′ ∈ {0, 1}, k′ + k′′ ≥ 1}}.

Note that the separate listing of F̃(L, p, 0), F̃(R, p, 0) in the first equation and of
F̃(L, p, 1), F̃(R, p, 1) in the second equation is necessary to compose non-empty
sub-solutions with empty sub-solutions to get non-empty solutions.

– Let X(u) = L � R.
Because of this case, the sink parameter k was introduced. If a non-empty solution
is completely contained in digraph(L) then it cannot contain a sink since the �-
operation and the neighbor condition imply that the sinkmust include a neighbor in
digraph(R)which is in the solution. On the other side, a sink-free feasible solution
with respect to digraph(L) is also a feasible solution for digraph(L � R).
It remains to discuss the case of feasible solutions with at least one vertex in
digraph(R). Since there are no edges fromdigraph(R) to digraph(L), the restriction
of the solution to digraph(R) still fulfills the neighbor condition (Lemma 2). Vice
versa, if a non-empty feasible solution with respect to digraph(R) is given, then
due to the �-operation, each vertex of digraph(L) has a successor in this solution
and can therefore be added without violating the one-neighbor condition.
To sum up, each set S of vertices from digraph(L � R) satisfies the one-neighbor
condition if and only if the following conditions hold: The restriction of S to
digraph(R) fulfills the one neighbor condition. If this restriction is empty then

123

The knapsack problem with special neighbor constraints 17

the restriction of S to digraph(L) fulfills the one-neighbor condition and does not
possess a sink. Otherwise, if the restriction of S to digraph(R) is non-empty, S can
contain arbitrary vertices from digraph(L).
With F̂(L, p) we compute the smallest size of a non-empty knapsack solution
without any digraph restrictions and without capacity bound (i.e., a subset sum
solution) that obtains exactly profit p, see Algorithm 2. Let VL be the set of vertices
of digraph(L). If VL = {a1, . . . , an} and a j has size s j and profit p j , then

F̂(L, p) := min

⎧
⎨

⎩

∑

a j∈V ′
s j | ∅ �= V ′ ⊆ VL , p =

∑

a j∈V ′
p j

⎫
⎬

⎭

if the set is non-empty, otherwise F̂(L, p) := ∞. Then, with

γ (L, R, p, k) := min
{
F̃(R, p, k), min

{
F̃(R, p′′, k) + F̂(L, p − p′′) | 0 ≤ p′′ < p

}}
,

(6)

it holds for F̃(L � R, p, k):

F̃(L � R, p, 0) = min
{
F̃(L, p, 0), γ (L, R, p, 0)

}
, F̃(L � R, p, 1) = γ (L, R, p, 1). (7)

Note that in (6) value p′′ is allowed to be zero. Thus, non-empty solutionswith zero
profit are used to fulfill the one-neighbor condition. The expression F̃(L, p, 0) in
(7) is necessary to cover the case of a non-empty solution without vertices in
digraph(R).

– Let X(u) = L ⊗ R. Since the ⊗-operation generates a digraph without sinks,
feasible solutions can only exist for k = 0, i.e., F̃(L ⊗ R, p, 1) = ∞. For k = 0,
we seek a solution with minimal size and have to consider different profits.
With

ρ(L, R, p) := min
{
F̂(L, p′) + F̂(R, p − p′) | 0 ≤ p′ ≤ p

}
,

we get

F̃(L ⊗ R, p, 0) = min
{
F̃(L, p, 0), F̃(R, p, 0), ρ(L, R, p)

}
.

All non-empty solutions with vertices both in digraph(L) and digraph(R) are
covered with the calculation of ρ(L, R, p). In this situation, the one-neighbor
condition is fulfilled due to the “⊗” operator. Non-empty solutions without ver-
tices in digraph(L) or digraph(R) are considered via F̃(R, p, 0) or F̃(L, p, 0),
respectively.

We can solve our problem by considering values at root r of T :

OPT(I) = max{p ∈ {0, . . . , P} | p = 0 ∨ ∃k∈{0,1} F̃(X(r), p, k) ≤ c}.

123

18 S. Goebbels et al.

Before we perform Algorithm 3 on every sub-expression X(u) for vertices u of T ,
we compute values of F̂ with Algorithm 2 on every sub-expression X(u) for O(n)

vertices and every p ∈ {0, . . . , P} by executing a loop withO(P) iterations. Thus, all
values of F̂ are computed in O(nP2 + n) time.

Similar to Algorithms 2, 3 is executed for 0 ≤ p ≤ P and each of theO(n) nodes of
the di-co-tree. The loopswithin the algorithmhave atmost p+1 iterationswith p ≤ P .
As before, the di-co-tree of a directed co-graph can be computed in O(n2) time, and
P is computed in O(n) time. This gives an overall runtime of O((P + 1)2n + n2) ⊆
O(P2n + n2). This bound also covers the runtime of Algorithm 2. �

With P = n, the result for uniform KP1N follows directly:

Corollary 3 UniformKP1Ncan be solved for directed co-graphs on n vertices inO(n3)
time.

4 Knapsack problems onminimal series-parallel digraphs

4.1 Minimal series-parallel digraphs

Minimal Series-parallel digraphs are interesting from an algorithmic point of view
since several hard graph problems can be solved in polynomial time by dynamic
programming along the tree structure of the input graph, see (Gurski et al. 2020,
2021; Valdes et al. 1982).

For n ≥ 2, the digraph

−→
Pn = ({v1, . . . , vn}, {(vi , vi+1) | 1 ≤ i ≤ n − 1})

is called a directed path on n (distinct) vertices. Vertex v1 is the start vertex and vn is
the end vertex of

−→
Pn . For n ≥ 2, the digraph

−→
Cn = ({v1, . . . , vn}, {(vi , vi+1) | 1 ≤ i ≤ n − 1} ∪ {(vn, v1)})

is a directed cycle on n vertices. A directed acyclic graph is a digraph without any
directed cycle as subdigraph. A vertex v is reachable from vertex u in G, if there is a
directed path in G as a subdigraph with start vertex u and end vertex v.

We recall the definitions from (Bang-Jensen and Gutin, 2018) which are based on
Valdes et al. (1982).

Definition 2 (Minimal series-parallel digraphs) The class of minimal series-parallel
digraphs, msp-digraphs for short, is recursively defined as follows.

(i) Every digraph ({v},∅) on a single vertex, denoted by v, is aminimal series-parallel
digraph.

(ii) If G1 = (V1, E1) and G2 = (V2, E2) are vertex-disjoint minimal series-parallel
digraphs, then the parallel compositionG1∪G2 = (V1∪V2, E1∪E2) is aminimal
series-parallel digraph.

123

The knapsack problem with special neighbor constraints 19

Algorithm 3 General KP1N on directed co-graphs: Compute minimal solution size
F̃(X(u), p, k) for a given profit p based on previously computed values for sub-
expressions of X(u).

� Start block “Common”
F̃(X(u), p, k) := ∞
if |X(u)| = 1 then let ai ∈ V be the only vertex.

if k = 1 ∧ p = pi then F̃(X(u), p, k) := si
else if X(u) = L ⊕ R then

� Consider empty and non-empty solutions with zero profit in R or L
F̃(X(u), p, k) := F̃(L, p, k)
if F̃(X(u), p, k) > F̃(R, p, k) then F̃(X(u), p, k) := F̃(R, p, k)

� Consider solutions with positive profit in L and R
for p′ = 1; p′ < p; p′ := p′ + 1 do

if k = 0 then
S := F̃(L, p′, 0) + F̃(R, p − p′, 0)
if F̃(X(u), p, k) > S then F̃(X(u), p, k) := S

else
S1 := F̃(L, p′, 1) + F̃(R, p − p′, 0), S2 := F̃(L, p′, 0) + F̃(R, p − p′, 1)
S3 := F̃(L, p′, 1) + F̃(R, p − p′, 1)
for i = 1; i ≤ 3; i := i + 1 do

if F̃(X(u), p, k) > Si then F̃(X(u), p, k) := Si
� End block “Common”

if X(u) = L � R then
if k = 0 then F̃(X(u), p, k) := F̃(L, p, k)

if F̃(X(u), p, k) > F̃(R, p, k) then F̃(X(u), p, k) := F̃(R, p, k)

for p′′ = 0; p′′ < p; p′′ := p′′ + 1 do
SR := F̃(R, p′′, k)
if SR < ∞ then

SL := F̂(L, p − p′′), see Algorithm 2
if F̃(X(u), p, k) > SL + SR then F̃(X(u), p, k) := SL + SR

else if X(u) = L ⊗ R then � digraph(X(u)) has no sinks
if k = 0 then

F̃(X(u), p, k) := F̃(L, p, 0), SR := F̃(R, p, 0)
if SR < F̃(X(u), p, k) then F̃(X(u), p, k) := SR

� Consider solutions with at least one vertex from both digraphs without restrictions
for p′ = 0; p′ ≤ p; p′ := p′ + 1 do

SL := F̂(L, p′), see Algorithm 2
SR := F̂(R, p − p′), see Algorithm 2
if SL + SR < F̃(X(u), p, k) then F̃(X(u), p, k) := SL + SR

(iii) If G1 and G2 are vertex-disjoint minimal series-parallel digraphs and O1 is the
set of sinks in G1 and I2 is the set of sources in G2, then series composition
G1 ×G2 = (V1 ∪ V2, E1 ∪ E2 ∪ (O1 × I2)) is a minimal series-parallel digraph.

Regarding these construction rules, new edges only result from rule (iii). Thus, an
msp-digraph is a directed, acyclic graph that has at least one source and one sink.

Similar to a directed co-graph, an msp-digraph can be represented by an msp-
expression X that connects vertices using the operations ofDefinition 2, seeExample 3.
The digraph defined by X is denotedwith digraph(X), and |X | is the number of vertices
in digraph(X). For every msp-digraph we can define a tree structure, denoted as msp-
tree. The leaves of the msp-tree represent the vertices of the digraph and the inner

123

20 S. Goebbels et al.

Fig. 3 Digraph in Example 3

1v v6

v5

2v 3v 4v

nodes of the msp-tree correspond to the operations. For some vertex u of msp-tree T
we denote by T (u) the subtree rooted at u and X(u) the msp-expression (sub-msp-
expression, sub-expression) defined by T (u). For everymsp-digraph one can construct
an msp-tree in linear time (Valdes et al. 1982).

Minimal series-parallel digraphs are the line digraphs of edge series-parallel
digraphs (Valdes et al. 1982), which are an oriented version of the well known class
of series-parallel graphs. In order to motivate the notation of minimal series-parallel
digraphs, we refer to the super class of series-parallel digraphs which are are exactly
the digraphs whose transitive closure equals the transitive closure of an msp-digraph
(Valdes et al. 1982).

Example 3 The msp-expression

L = (v1 × ((v2 × (v3 × v4)) ∪ v5)) × v6

defines the msp-digraph shown in Fig. 3.

Several classes of digraphs are included in the set of all msp-digraphs. For example,
every in- and out-rooted tree is an msp-digraph, and every oriented bipartite graph is
an msp-digraph.

The following lemma can be immediately obtained via induction on the recursive
definition of minimal series-parallel digraphs.

Lemma 4 Let G = (V , E) be an msp-digraph. Then, for every vertex v ∈ V there is a
sink vs of G, such that there is a directed path from v to vs in G, and there is a source
vo of G, such that there is a path from vo to v in G.

For assembling feasible solutions from sub-expressions, we use the following
lemma.

Lemma 5 Let G be an msp-digraph. Then every non-empty feasible solution of KP1N
and every non-empty feasible solution of KPaN contains a sink of G.

Proof LetG = (V , E) be an msp-digraph and A′ be a feasible KP1N (KPaN) solution
which contains some v ∈ V . There exits a longest path in the directed acyclic graph
induced by A′ containing v. Obviously, this path ends in a sink of the induced digraph.
But due to the neighbor conditions, this sink has to be a sink of G, too. �

4.2 All-neighbors problems onminimal series-parallel digraphs

We consider an instance I of the general knapsack problem with all-neighbors con-
straint problem such thatG is an msp-digraph defined by some binary msp-expression

123

The knapsack problem with special neighbor constraints 21

X . Since msp-digraphs are acyclic, the problem becomes a partially ordered knapsack
problem by considering the reverse digraph.

Theorem 3 General KPaN can be solved in msp-digraphs with n vertices in
O (n(P + 1)max{n, (P + 1)}) time.
Proof The arguments are similar to the proof of Theorem 1 when we consider msp-
expressions instead of di-co-expressions.

Let T be anmsp-tree for msp-digraphG with root r that we traverse from the leaves
to the root. For every vertex u of T and profit 0 ≤ p ≤ P we compute the minimal
size F(X(u), p) of feasible solutions (that fulfill the all-neighbor condition but might
exceed the capacity bound c) with respect to digraph(X(u)) for profit exactly p with
Algorithm 4.

For cases p = 0, |X(u)| = 1, and X(u) = L ∪ R we refer to the proof of
Theorem 1 since “⊕” and “∪” are the same operations. Thus, we only have to deal
with X(u) = L × R for 0 < p ≤ P .

If a solution with respect to digraph(L × R) contains a vertex of digraph(L) then,
due to the all-neighbors condition and since digraph(L) is acyclic, it also contains
a sink of digraph(L), see Lemma 5. Therefore, all sources in digraph(R) belong to
the solution. Since digraph(R) is an acyclic digraph, all its vertices are reachable
from sources (see Lemma 4). Because of the all-neighbors condition, all |R| vertices
of digraph(R) belong to the solution as well. The remaining vertices in digraph(L)

fulfill the all-neighbors condition in digraph(L × R) and therefore also fulfill the
all-neighbors condition in digraph(L) (Lemma 1). Vice versa, a feasible solution for
digraph(R) is also a feasible solution for digraph(L × R) since the vertices in the
solution do not have any neighbors (successors) in digraph(L). Each feasible solution
for digraph(L) can be extended to a feasible solution for digraph(L × R) by adding
all vertices of digraph(R) such that the all-neighbor condition holds (especially for
sinks with respect to digraph(L) that get successors belonging to the solution).

Thus, let SR be the sum of all sizes and PR be the sum of all profits corresponding to
vertices of digraph(R). If p ≤ PR , then there exists a smallest solution iff a smallest
solution is contained in digraph(R) and F(L × R, p) = F(R, p). Otherwise, if
p > PR , all vertices of digraph(R) belong to every solution:

F(L × R, p) = min {F(L, p − PR) + SR} .

After performing Algorithm 4 on every sub-expression X(u) of X the problem is
solved via

OPT(I) = max{p ∈ {0, . . . , P} | F(X(r), p) ≤ c}.

with the same arguments as in the proof of Theorem 1, the runtime is inO (n(P + 1)
max{n, P + 1}). �

We can apply the result to the subset sum problem with digraph constraint (SSG)
for msp-digraphs and capacity bound c = P ′ ≤ P in the same way as for directed
co-graphs. The runtime bound of KPaN becomes O(n(P ′ + 1)max{n, P ′ + 1}). If

123

22 S. Goebbels et al.

one also excludes zero profits, then the sums giving SL and PR in Algorithm 4 can
be limited to the first P ′ + 1 summands, and the runtime is in O(n(P ′)2 + n2). This
confirms the result in Gurski et al. (2020a) that was obtained with a similar dynamic
program.

For P = n, Theorem 3 directly implies:

Corollary 4 Uniform KPaN can be solved on msp-digraphs with n vertices in O(n3)
time.

Algorithm 4 General all-neighbors problems on msp-digraphs: Compute minimal
solution size F(X(u), p) based on previously computed values for sub-expressions
of X(u).
Execute Block “Common” in Algorithm 1 with “⊕” replaced by “∪”
if X(u) = L × R then

(VR , ER) := digraph(R)

SR := ∑
ai∈VR si , PR := ∑

ai∈VR pi
if p ≤ PR then F(X(u), p) := F(R, p)
else

SL := F(L, p − PR)

if SL + SR < F(X(u), p) then F(X(u), p) := SL + SR

4.3 One-neighbor problems onminimal series-parallel digraphs

The induced digraph of every non-empty KPaN or KP1N solution on an msp-digraph
G is an acyclic digraph. Therefore, it contains a sink. Due to the neighbor constraint,
all its sinks are also sinks of G (see Lemma 5). Obviously, it also contains at least one
source, but the sources of the induced digraph might not be sources of G. Since the
“×” operation connects sinks with sources of msp-digraphs, we have to distinguish
between solutions with and without sources of the underlying graph.

In order to get useful information about the sources within a solution, we use
extended data structures similar to the discussion of the general KP1N problem on
directed co-graphs. We consider an instance of KP1N such that G = (A, E) is an
msp-digraph which is given by an msp-expression X . For some sub-expression X(u)

of X let F(X(u), p, k) be the minimum size of a feasible solution fulfilling the one-
neighbor condition with profit exactly p in digraph(X(u)) that contains a source if
k = 1 and that does not possess a source if k = 0. The minimum size is allowed to
exceed c, i.e., as before, feasible solutions must fulfill the one-neighbor constraint but
do not necessarily fulfill a capacity constraint. We set F(X(u), p, k) to ∞, whenever
there is no such a solution.

As for KP1N on directed co-graphs, we also need to distinguish between empty and
non-empty solutions. For this purpose, we use the same function F̃(X , p, k) which
only considers non-empty feasible solutions such that F̃(X , p, k) = ∞ if only the
empty solution exists for p = 0.

123

The knapsack problem with special neighbor constraints 23

Theorem 4 General KP1N can be solved onmsp-digraphs with n vertices inO(P2n+
n2) time.

Proof The arguments are similar to the proof of Theorem 2 when we consider msp-
expressions instead of di-co-expressions and indicate sources instead of sinks.

Let T be anmsp-tree for msp-digraphG with root r that we traverse from the leaves
to the root. For every vertex u of T and profit 0 ≤ p ≤ P we compute F̃(X(u), p, k)
to decide if a non-empty solution for profit p exists that has to contain sources in
digraph(X(u)) for k = 1 and must not contain sources in digraph(X(u)) for k = 0.
For this, we use Algorithm 5 and discuss its correctness.

For cases |X(u)| = 1 and X(u) = L∪R see proof of Theorem 2 as “⊕” and “∪” are
the same operations, and there is no difference between indication of sinks or sources.
Thus, we only have to deal with X(u) = L × R for 0 ≤ p ≤ P . In the following, we
show that each set of vertices satisfying the one-neighbor condition fulfills one of the
following conditions, and vice versa.

1. It has no source in digraph(L × R) and its vertices all belong to digraph(R) and
it is a feasible solution in digraph(R).

2. It is composed fromvertices of both digraph(L) and digraph(R) and the restrictions
to digraph(L) and digraph(R) fulfill the one-neighbor condition in digraph(L)

and digraph(R), respectively. The solution contains a vertex that is a source of
digraph(R). It contains a source of digraph(L × R) iff it contains a source of
digraph(L).

We prove that feasible solutions fulfill one of the conditions. Let a solutionwith (k = 1)
or without (k = 0) sources with respect to digraph(L × R) be given. Note that due to
the “×” operation there are no sources in digraph(R) with respect to digraph(L × R)

since at least one existing sink of acyclic digraph(L) is connected with all sources of
digraph(R).

Thus, only for the case k = 0 it is possible that all vertices of the solution belong
to digraph(R). This describes the first condition. In this case, the neighbor condition
is already fulfilled in digraph(R) (Lemma 3).

If not all vertices of the solution belong to digraph(R), at least one vertex of the solu-
tion is from digraph(L). Then the non-empty restriction of the solution to digraph(L)

satisfies the one-neighbor condition with respect to digraph(L) as all vertices with
successors in digraph(R) become sinks (Lemma 2). The restriction of the solution to
digraph(R) also fulfills the one-neighbor condition with Lemma 2 since vertices in
digraph(R) do not have successors in digraph(L). There has to be at least one solution
vertex in digraph(R) that is a source in digraph(R) since otherwise existing vertices
of the solution that are sinks with respect to digraph(L) (see Lemma 5) do not fulfill
the one-neighbor condition in digraph(L × R). This is condition 2 in which sources
can only be in digraph(L).

Now we prove that each set of vertices satisfying the two conditions is a feasible
solution in digraph(L × R).

If a feasible solution exists with respect to digraph(R) (condition 1), then it is also a
feasible solution with respect to digraph(L× R) (without sources) since the neighbors
of the vertices of the solution do not change. Non-empty feasible solutionswith respect

123

24 S. Goebbels et al.

to digraph(L) and with respect to digraph(R) (condition 2) can be combined to a
feasible solution for digraph(L × R) since the condition 2 prescribes that the solution
with respect to digraph(R) contains a source in digraph(R). The source is necessary to
fulfill the one-neighbor condition for the existing sinks of the solution in digraph(L),
see Lemma 5.

The two conditions lead to following equations. With

γ (L, R, p, k) := min{F̃(L, p′, k) + F̃(R, p − p′, 1) | 0 ≤ p′ ≤ p}, (8)

it holds

F̃(L × R, p, 0) = min{F̃(R, p, 0), F̃(R, p, 1), γ (L, R, p, 0)},
F̃(L × R, p, 1) = γ (L, R, p, 1).

Note that the expressions F̃(R, p, 0), F̃(R, p, 1) are required to cover source-free
solutions without vertices in digraph(L). The value p′ = 0 in (8) has to be considered
in the case k = 1 to include solutions with a source that do not have non-zero profit
vertices in L . A source must be contained in L .

After performing Algorithm 5 on every sub-expression X(u) of X we can solve our
problem:

OPT(I) = max{p ∈ {0, . . . , P} | p = 0 ∨ ∃k∈{0,1} F̃(X , p, k) ≤ c}.

with the same arguments as in the proof of Theorem 2, the runtime is inO(P2n+n2).�
With P = n we immediately get:

Corollary 5 Uniform KP1N can be solved on msp-digraphs with n vertices in O(n3)
time.

Algorithm 5 General one-neighbor problems on msp-digraphs: Compute minimal
solution size F̃(X(u), p, k) based on previously computed values for sub-expressions
of X(u). A solution without source in digraph(X(u)) is required for k = 0, a solution
with source is investigated for k = 1. As in Algorithm 3, function F̃(X(u), p, k) only
computes minimal sizes of non-empty solutions. If the only solution for p = 0 is
empty then F̃(X(u), p, k) := ∞.
Execute Block “Common” in Algorithm 3 with “⊕” replaced by “∪”
if X(u) = L × R then

if k = 0 then
F̃(X(u), p, k) := min{F̃(R, p, 0), F̃(R, p, 1)}

for p′ = 0; p′ ≤ p; p′ := p′ + 1 do
SL := F̃(L, p′, k), SR := F̃(R, p − p′, 1)
if SL + SR < F̃(X , p, k) then F̃(X(u), p, k) := SL + SR

123

The knapsack problem with special neighbor constraints 25

5 Knapsack problems on directed trees

In this section, we discuss digraphs for which the underlying undirected graph is a
tree, i.e., directed trees. Examples are in-and out-rooted trees that are msp-digraphs
but generally not directed co-graphs. Thus, we have already shown upper bounds for
in-and out-rooted trees, see Table 4. Nowwe are interested in the general case in which
edges can be directed arbitrarily. This includes the case of oriented trees, i.e., directed
trees that are oriented digraphs, but also covers trees with bidirectional edges. General
KPaN and KP1N on directed trees are NP-hard, see Proposition 2.

The presented bounds in Table 2 are given for algorithms that traverse an underlying
undirected tree from the leaves to the root. They compute several sizes for each subtree
based on the values obtained for previously handled subtrees.

5.1 All-neighbors problems on directed trees

When dealing with the all-neighbors condition, vertices that are connected with bidi-
rectional edges must be included in a solution together or not at all. Thus, before
solving all-neighbors problems, each bidirectional edge can be removed by replacing
their vertices with a single new one. For a directed tree withO(n) vertices, this can be
done in O(n) time by traversing the underlying undirected tree. Profits and sizes of
the new vertices being created are the sum of the profits and sizes of merged vertices,
respectively. The resulting directed tree also has O(n) vertices.

Theorem 5 General KPaN can be solved on directed trees with n vertices in
O (n(P + 1)(P + n)) time, uniform KPaN can be solved on directed trees in O (

n3
)

time.

For msp-digraphs and thus for in- and out-rooted trees we have an O (
n3

)
runtime

bound for uniform KPaN. This fits with the given bound for more general oriented
and even directed trees that are not necessarily msp-digraphs (as e.g. the induced
subdigraph that results from removing v3 in Fig. 3).

Proof Let T = (V , E) be a directed tree where we choose an arbitrary vertex r ∈ V
as root. Due to the previous remark, we can assume without loss of generality that
there are no bidirectional edges in T . For u ∈ V we denote by T (u) the subtree of
T rooted at vertex u. We now distinguish between out-going and in-coming edges of
u. Let S+(u) = {o1, . . . , oδ+(u)} be the set of neighbor vertices in T (u) that can be
reached from u with an out-going edge, and let S−(u) = {i1, . . . , iδ−(u)} be the set of
neighbor vertices in T (u) from which the root u can be reached with an in-coming
edge. These pairwise disjoint sets can be computed inO(n) time from T . The order of
the two sets is denoted by δ(u) = δ+(u)+δ−(u) and corresponds to the vertex degree
of u in the underlying undirected tree un(T) minus 1, since we omit the predecessor
of u in T .

With F(T (u), p, k), we compute the minimum size of a solution on subtree T (u)

subject to the all-neighbors constraint with profit exactly p that includes the root u for
k = 1 and does not include the root if k = 0. The values are allowed to exceed c. If
no solution exists, F(T (u), p, k) := ∞.

123

26 S. Goebbels et al.

Tocompute F(T (u), p, k)basedon the (previously computed) values of F(T (v), p,
0) and F(T (v), p, 1) for v ∈ S+(u)∪S−(u), we need to representq = p orq = p−pu
(if p ≥ pu), where pu is the profit of u, by sums of δ(u) numbers (q1, q2, . . . , qδ(u)),
q j ∈ {0, . . . , q}. If δ(u) > 0, there exist

(
(q + 1) + (δ(u) − 1) − 1

δ(u) − 1

)

≤ (q + n)δ(u)−1

different sequences of such numbers that sum up to q. Let K (q) be the set of these
sequences, and K (q) := ∅ if δ(u) = 0.

Lemma1allows to assemble all-neighbors solutions fromsuch solutions on subtrees
with dynamic programming. We begin with solutions in T (u) that do not include the
root. Due to the all-neighbors condition, such solutions are not allowed to contain
vertices that are connected with the root by in-coming edges. If δ(u) = 0, i.e., u is
a leaf of the underlying undirected tree un(T), then the minimum size of all these
solutions is F(T (u), p, 0) = 0 if p = 0, and F(T (u), p, 0) = ∞ if p �= 0. For
δ(u) > 0 we get

F(T (u), p, 0) = min

⎧
⎨

⎩

∑

o j∈S+(u)

min{F(T (o j), q j , 0), F(T (o j), q j , 1)}

+
∑

i j∈S−(u)

F(T (i j), q j+δ+(u), 0) | (q1, q2, . . . , qδ(u)) ∈ K (p)

⎫
⎬

⎭
.

Let su be the size of u. If p < pu then F(T (u), p, 1) = ∞. Otherwise, all solutions
including the root u contain vertices that can be directly reached from the root with an
out-going edge. If δ(u) = 0 then F(T (u), p, 1) = su for p = pu and F(T (u), p, 1) =
∞ otherwise. If δ(u) > 0,

F(T (u), p, 1) = su + min

⎧
⎨

⎩

∑

o j∈S+(u)

F(T (o j), q j , 1)

+
∑

i j∈S−(u)

min{F(T (i j), q j+δ+(u), 0), F(T (i j), q j+δ+(u), 1)} | (q1, q2, . . . , qδ(u)) ∈ K (p − pu)

⎫
⎬

⎭
.

For our rooted directed tree we define � = max{δ(u) | u ∈ V } which corresponds
to the maximum vertex degree of un(T) minus 1. We have to compute values of F for
at most P + 1 profits andO(n) vertices u1, . . . , un with at most � summands to find

OPT(I) = max{p ∈ {0, . . . , P} | ∃k∈{0,1}F(T , p, k) ≤ c}.

123

The knapsack problem with special neighbor constraints 27

Fig. 4 Transforming an all-neighbors problem on an oriented tree into an all-neighbors problem on a binary
tree: Vertex a4 is chosen into a feasible solution. Then all vertices inserted to obtain the binary tree are also
chosen

For the non-trivial case � > 0 this leads to a runtime bound

O
⎛

⎝n +
P∑

p=0

n∑

l=1

� · d(l)

⎞

⎠ ⊆ O
(
n + (P + 1)n�(P + n)�−1

)
, (9)

where O(n) is the runtime to compute tree structures and P ,

d(l) :=
{

(p + n)δ(ul)−1 : δ(ul) > 1
1 : δ(ul) ≤ 1.

(10)

To reduce the vertex degree, the general problem allows inserting additional vertices
in T with size and profit zero before executing the previously described procedure,
see Fig. 4.

For each root u of a subtree with δ(u) > 2, we reduce the number of successors
to at most two by inserting separate binary trees for out-going and in-coming edges
as shown in the figure. In linear time O(n), this results in a new directed tree T ′
with at most 2n vertices and � ≤ 2. Then the all-neighbors constraint ensures that
each solution with respect to T becomes a solution with respect to T ′ containing only
possibly some additional new vertices, and vice versa. Thus, we obtain the bound for
general KPaN from (9) with � = 2.

Instead of solving uniform KPaN, we solve general KPaN on T ′ with constant
weights and sizes for vertices of T and zero weights and size for the new inner vertices
of binary trees. Thus, we get the bound of the uniform problem with P = n. �

If one does not eliminate all bidirectional edges in a first step, the proof becomes
only slightly longer. But then, bidirectional edges can be used to reduce the vertex
degree as shown in Fig. 5.

The dynamic program used in Theorem 5 is also applicable to the SSG problem for
c = P ′ on directed trees. By replacing P with P ′, one obtains the bound O(n(P ′ +
1)(P ′ + n)). A different dynamic program solving this SSG problem is given in
Gourvès et al. (2018).

123

28 S. Goebbels et al.

Fig. 5 Transforming an
all-neighbors problem on a
directed tree from Fig. 4 into an
all-neighbors problem on a
binary tree by inserting
bidirectional edges: Vertex a4 is
chosen into a feasible solution.
Then all new vertices inserted to
obtain the binary tree are also
chosen as one due to the
bidirectional edges

5.2 One-neighbor problems on directed trees

In contrast to the all-neighbors problem, a one-neighbor constraint might change by
merging vertices that are connected with bidirectional edges.

Theorem 6 General KP1N can be solved in directed trees T with n vertices in
O (

nP2 + n
)
time, uniform KP1N can be solved on directed trees in O (

n3
)
time.

Proof Let T be a directed tree and as before, let r be an arbitrary chosen root of
the underlying undirected tree un(T). We organize the vertices from root to leaves
such that for a vertex u, S+(u) and S−(u) are again the vertices which are directly
connected from u in the subtree of T rooted at u with an out-going and in-coming
edge, respectively. For the one-neighbor problem, we must also consider the disjoint
set of neighbor vertices S±(u) = {b1, . . . , bδ±(u)} in T (u) that are connected with u
by a bidirectional edge. Again, these information can be gathered in O(n).

Wewant to solve the problem in a treewith� ≤ 2 as in the previous proof.However,
it is even difficult to realize � ≤ 3 by switching to an equivalent problem. The one-
neighbor condition allows to reduce non-empty sets S+(u) and S−(u) to at most one
vertex each by inserting directed binary out- or in-rooted trees with root u as before.
However, this approach does not work for S±(u). Additionally added bidirectional
vertices can be used to fulfill a one-neighbor condition that is not fulfilled for the
original tree and bidirectional edges cannot be replaced by out-going and in-coming
edges to auxiliary vertices without violating the tree structure. Therefore, we solve the
problem on a data structure that avoids this difficulty, see Fig. 6.

The data structure consists of five components (type, L, R, size, profit). Depending
on the given type, it represents either an edge {u, v} of the underlying undirected tree
un(T), i.e., a one or bidirectional edge of T , or a leaf u of T . A tree with � ≤ 2 is
constructed by recursively inserting this structure into L (left subtree) and R (right
subtree). The empty structure () is used to terminate the construction. The right subtrees
in R are used to compose a linear list of technical nodes such that structures for all
vertices in S(u) := S+(u) ∪ S−(u) ∪ S±(u) can be attached to one individual node

123

The knapsack problem with special neighbor constraints 29

Fig. 6 Transforming a one-neighbor problem on an arbitrary tree into a one-neighbor problem on a tree
with vertex degree at most three is difficult due to bidirectional edges. In this example, vertex a5 is chosen
into a feasible solution. Then the construction in the proof of Theorem 5, transferred to bidirectional edges
as shown in the middle image, does not work with the one-neighbor constraint. Therefore, we transform
into the auxiliary binary tree structure on the right side

with the left subtree field L . The field type indicates the type of object (edge or leaf):

type :=

⎧
⎪⎪⎨

⎪⎪⎩

out : v ∈ S+(u)

in : v ∈ S−(u)

inout : v ∈ S±(u)

leaf : u is a leaf of T .

Let u be a vertex of the given tree T with size su and profit pu . Then, we generate
structure

X(u) = (type, L, R, su, pu)

as follows: If S(u) = ∅ then type := leaf, L := R := (). Otherwise, let v ∈ S(u),
S′(u) := S(u) \ {v}. Field type is set to the type of edge between u and v, L := X(v).
If S′(u) = ∅ then R := (). Otherwise, let w ∈ S′(u), S′′ := S′(u) \ {w}. Then,

R := (type of edge between u and w, X(w), R′′, 0, 0).

To insert the expression for R′′ we iterate the procedure with S′(u) replaced by S′′,
and so on. For example, Fig. 6 shows a tree that is transformed to expression

(

in,

(

leaf, (), (), s2, p2

)

,

(

out,
(
leaf, (), (), s3, p3

)
,
(
inout,

(
leaf, (), (), s4, p4

)
,

(
inout, (leaf, (), (), s5, p5), (), 0, 0

)
, 0, 0

)
, 0, 0

)

, s1, p1

)

.

The vertices connected with dashed edges in Fig. 6 represent one vertex of the original
tree T . With respect to the one-neighbor condition they have to be interpreted as one.

123

30 S. Goebbels et al.

We derive a structure X from a given tree, but we also need to translate X back into
the tree by merging linear lists in fields R (dashed edges) into single vertices that can
be incident to multiple edges again. Let T ′(X) be the corresponding tree that can be
obtained from X . Thus, T ′(X(r)) is a reconstructed version of tree T , and for each
vertex u of T , tree T ′(X(u)) corresponds to subtree T (u).

We define F(X , k, p) on structure X that computes minimal sizes of corresponding
KP1N solutions for profit exactly p without size limit (1) in the tree T ′(X) under an
additional constraint depending on the value of parameter k:

– k = 0 requires that the root of T ′(X) is not part of a KP1N solution in T ′(X),
– k = 1 indicates that the root of T ′(X) is in the solution but does not have a neighbor
in T ′(X) that also belongs to the solution,

– k = 2 indicates that the root of T ′(X) is in the solution and also has a neighbor in
the solution.

– k = 3 indicates “semi-solutions” which include the root of T ′(X) and for which
the one-neighbor condition holds for all vertices except from the root. Such “semi-
solutions” might become part of solutions at a later step when the root of T ′(X)

is connected to a preceding vertex of T . Solutions of cases k = 1 and k = 2 are
included in case k = 3.

Given a one-neighbor KP1N solution in T , let X be an expression derived from a
subtree of T . Then, the restriction of the solution to T ′(X) fulfills in T ′(X) one of
the cases k ∈ {0, 1, 2, 3}. Case k = 3 is required since the prerequisites of Lemma
2 might not be fulfilled for the root of T ′(X) but for all other vertices. Vice versa,
solutions in T can be assembled from sets of vertices that fulfill combinations of cases
k ∈ {0, 1, 2, 3}. This leads to a dynamic program.

Let Pp := {0, 1, 2, . . . , p}. We start with the case k = 0 in which we only discuss
solutions that do not include the root of T ′(X). Therefore, in order to satisfy the
one-neighbor condition in T ′(X), the root cannot be used:

F((), 0, p) = F((leaf, (), (), su , pu), 0, p) =
{

0 : p = 0
∞ : p > 0,

F((in, L, R, su , pu), 0, p) = min{F(L, k′, p′) + F(R, 0, p− p′) | k′ ∈ {0, 2}, p′∈Pp},
F((out, L, R, su , pu), 0, p) = min{F(L, k′, p′) + F(R, 0, p− p′) | k′ ∈ {0, 1, 2}, p′∈Pp},
F((inout, L, R, su , pu), 0, p) = min{F(L, k′, p′) + F(R, 0, p− p′) | k′ ∈ {0, 2}, p′∈Pp}.

Let k ≥ 1, then the root of T ′(X) has to be in the solution such that for pu > p we
get F((type, L, R, su, pu), k, p) := ∞. We discuss cases for pu ≤ p:

In case k = 1, no vertex that is connected from the root by an out-going edge or
bidirectional edge is allowed to be in the solution:

F((), 1, p) =
{

0 : p = 0
∞ : p > 0,

F((leaf, (), (), su , pu), 1, p) =
{
su : p = pu
∞ : p �= pu ,

F((in, L, R, su , pu), 1, p) = su+min{F(L, k′, p′)+F(R, 1, p− p′) | k′ ∈ {0, 3}, p′∈Pp−pu },
F((out, L, R, su , pu), 1, p) = F((inout, L, R, su , pu), 1, p) = ∞.

123

The knapsack problem with special neighbor constraints 31

With k′ = 3 in the in-rule, even “semi-solutions” can be connected to the root. Since
the root is part of the solution, a possibly violated one-neighbor condition of a “semi-
solution” is healed. As k′ = 3 also covers the cases k′ = 1 and k′ = 2, all cases
k′ ∈ {0, 1, 2, 3} are allowed in F(L, k′, p′).

If k = 2, the root of T ′(X) and a vertex that is connected from the root by an
out-going edge or bidirectional edge must be in the solution. If this root is represented
in X by a linear list (like the dashed list in Fig. 6) then it is sufficient for the root to be
connected to one neighbor in T via the list. This leads to following rules:

F((), 2, p) = F((leaf, (), (), su , pu), 2, p) = ∞,

F((in, L, R, su , pu), 2, p) = su+min{F(L, k′, p′)+F(R, 2, p− p′) | k′∈{0, 3}, p′∈Pp−pu },
F((out, L, R, su , pu), 2, p) = su+min{F(L, k′, p′)+F(R, 3, p− p′),

F(L, 0, p′) + F(R, 2, p− p′) | k′ ∈ {1, 2}, p′∈Pp−pu },
F((inout, L, R, su , pu), 2, p) = su+min{F(L, 3, p′)+F(R, 3, p− p′),

F(L, 0, p′)+F(R, 2, p− p′) | p′∈Pp−pu }.

Note that the use of F(R, 3, p − p′) in the out- in inout-rules can avoid reaching the
terminal condition F((), 2, p) = ∞. Thus, at least one neighbor has to be chosen to
obtain a finite value of F .

Finally, we have to deal with “semi-solutions”, i.e., the case k = 3:

F((), 3, p) =
{

0 : p = 0
∞ : p > 0,

F((leaf, (), (), su , pu), 3, p) =
{
su : p = pu
∞ : p �= pu ,

F((in, L, R, su , pu), 3, p) = su+min{F(L, k′, p′)+F(R, 3, p− p′) | k′ ∈ {0, 3}, p′∈Pp−pu },
F((out, L, R, su , pu), 3, p) = su+min{F(L, k′, p′)+F(R, 3, p− p′) | k′∈{0, 1, 2}, p′∈Pp−pu },
F((inout, L, R, su , pu), 3, p) = su+min{F(L, k′, p′)+F(R, 3, p− p′) | k′∈{0, 3}, p′∈Pp−pu }.

The structure X(r) can be obtained inO(n) time from T and is recursively composed
fromO(n) structures belonging to leaves and edges of T . Values of F can be computed
for p ∈ {0, . . . , P} from interior structures to larger composed structures, i.e., from
the leaves to the root, by iterating throughPp orPp−pu . Thus, the runtime to compute

OPT(I) = max{p ∈ {0, . . . , P} | ∃k∈{0,1,2}F(X(r), p, k) ≤ c}

is in O(n(P + 1)2) ⊆ O (
nP2 + n

)
. This bound also covers the computation of P

and the sets of neighbor vertices in O(n).
With P = n, the bound O (

n3
)
follows for uniform KP1N. �

6 Conclusions and outlook

Undirected co-graphs are well studied (Corneil et al. 1981) and can be interpreted as
directed co-graphs by replacing each undirected edge with two bidirectional directed
edges. It can be represented by a di-co-tree consisting of leaves and interior vertices
for the “⊕” and “⊗” operations. The “�” operation is not needed. Thus, upper runtime

123

32 S. Goebbels et al.

bounds for uniform and general KPaN and KP1N problems on directed co-graphs also
apply to undirected co-graphs. However, Proposition 1 provides the better runtime
bound O(t · P + n + m) ⊆ O(n · P + n2) for the general all-neighbors problem on
(undirected) graphs with n vertices, m edges and t ≤ n components, especially for
co-graphs.

Given an undirected graph G = (V , E), a set of vertices V0 ⊆ V fulfilling the one-
neighbor condition on G is called a one-neighbor set. Lemma 5 in Borradaile et al.
(2012) shows that by cutting a spanning tree of each connected component into small
pieces, V can be partitioned into one-neighbor sets such that their induced graphs are
stars. A star is a graph with a center vertex such that all edges are incident to the center
vertex. The iterated disjoint union G ′ of these stars does not contain the induced graph
P4 and is therefore an undirected co-graph, cf. (Corneil et al. 1981). Each feasible
solution of a KP1N problem on G ′ is also a feasible solution of the KP1N problem
on G (but not necessarily vice versa). Thus, co-graphs can serve to find good but not
necessarily optimal feasible KP1N solutions on undirected graphs.

The given pseudo-polynomial solutions can be used to obtain fully polynomial
approximation schemes (FPTAS). One idea is to use a powerful result of Pruhs and
Woeginger (2007) on the existence of an FPTAS for subset selection problems, which
can be defined as follows.Given is a set X = {x1, . . . , xn} of n elements such that every
element x j has a positive profit p j , and for every subset X ′ ⊆ X it can be decided,
based on a structure with l bits, in time polynomial in n and l, whether X ′ is a feasible
solution. Further, there has to be a feasible solution for every instance. The task is to
find a feasible solution X ′ realizing maximum profit. In Pruhs and Woeginger (2007)
it has been shown that the existence of an algorithm for a subset selection problem
with runtime polynomial in n, l, and

∑n
i=1 pi implies that there exists an FPTAS for

this problem. In order to apply this result we have to know that knapsack with one-
neighbor constraint and knapsack with all-neighbors constraint are subset selection
problems. All properties are easy to verify. For the existence of a feasible solution we
can choose the empty solution. The structure consists of the graph, the sizes, and the
capacity. The graph can be represented by an adjacency matrix with O(n2) bits, such
that l is polynomially bounded by the input size.

However, we have to exclude zero profits in order to apply the result from Pruhs and
Woeginger (2007). But for knapsack problems without zero profits, the stated upper
term bounds apply all the more such that an FPTAS exists.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

The knapsack problem with special neighbor constraints 33

References

Bang-Jensen J, Gutin G (2009) Theory algorithms and applications. Springer, Berlin
Bang-Jensen J, Gutin G (eds) (2018) Classes of directed graphs. Springer, Berlin
Bang-Jensen J, Maddaloni A (2014) Arc-disjoint paths in decomposable digraphs. J. Graph Theory 77:89–

110
Borradaile G, Heeringa B, Wilfong G (2011) The 1-neighbour knapsack problem. Springer, Berlin
Borradaile G, Heeringa B, Wilfong G (2012) The knapsack problem with neighbour constraints. J Discrete

Algorithms 16:224–235
Corneil D, Lerchs H, Stewart-Burlingham L (1981) Complement reducible graphs. Discrete Appl Math

3:163–174
Crespelle C, Paul C (2006) Fully dynamic recognition algorithm and certificate for directed cographs.

Discrete Appl Math 154(12):1722–1741
Goebbels StJ, Gurski F, Komander D (2021) The knapsack problem with special neighbor constraints on

directed co-graphs. In: Proceedings of the international conference on operations research (OR 2021),
Selected Papers of the International Annual Conference of the German Operations Research Society
(GOR), Springer Verlag, to appear

Gourvès L, Monnot J, Tlilane L (2018) Subset sum problems with digraph constraints. J Comb Optim
36(3):937–964

Gurski F (2017) Dynamic programming algorithms on directed cographs. Stat Optim Inform Comput 5:35–
44

Gurski F, Hoffmann S, Komander D, Rehs C, Rethmann J, Wanke E (2020) Computing directed steiner
path covers for directed co-graphs. Springer, Berlin, pp 556–565

Gursk F, Komander D, Lindemann M (2020) Oriented coloring of msp-digraphs and oriented co-graphs.
Springer, Berlin

Gurski F, Komander D, Lindemann M (2021) Homomorphisms to digraphs with large girth and oriented
colorings of minimal series-parallel digraphs. Springer, Berlin

Gurski F, Komander D, Rehs C (2019) Computing digraph width measures on directed co-graphs. Springer,
Berlin, pp 292–305

Gurski F, Komander D, Rehs C (2019) Oriented coloring on recursively defined digraphs. Algorithms
12(4):87

Gurski F, Komander D, Rehs C (2020) Solutions for subset sum problems with special digraph constraints.
Math Methods Oper Res 92(2):401–433

Gurski F, Komander D, Rehs C (2020) Subset sum problemswith special digraph constraints. In: Operations
research proceedings (OR 2019), selected papers. Springer, pp 339–346 (2020)

Gurski F, Komander D, Rehs C (2021) How to compute digraph width measures on directed co-graphs.
Theor Comput Sci 855:161–185

Gurski F, Rehs C (2018)Directed path-width and directed tree-width of directed co-graphs. Springer, Berlin,
pp 255–267

HellmuthM, Stadler P,WiesekeN (2017) Themathematics of xenology: di-cographs, symbolic ultrametrics,
2-structures and tree-representable systems of binary relations. J Math Biol 75(1):199–237

Johnson D, Niemi K (1983) On knapsacks, partitions, and a new dynamic programming technique for trees.
Math Oper Res 8(1):1–14

Kellerer H, Pferschy U, Pisinger D (2010) Knapsack problems. Springer, Berlin
Kolliopoulos S, Steiner G (2007) Partially ordered knapsack and applications to scheduling. Discrete Appl

Math 155(8):889–897
Nojgaard N, El-Mabrouk N, Merkle D, Wieseke N, Hellmuth M (2018) Partial homology relations - satis-

fiability in terms of di-cographs. Springer, Berlin, pp 403–415
Pferschy U, Schauer J (2017) Approximation of knapsack problems with conflict and forcing graphs. J

Comb Optim 33:1300–1323
Pruhs K, Woeginger G (2007) Approximation schemes for a class of subset selection problems. Theor

Comput Sci 382(2):151–156
Retoré C (1998) Pomset logic as a calculus of directed cographs. In: Proceedings of the fourth roma

workshop: dynamic perspectives in logic and linguistics. CLUEB, pp 221–247
Valdes J, TarjanR, Lawler E (1982) The recognition of series-parallel digraphs. SIAMJComput 11:298–313

123

34 S. Goebbels et al.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	The knapsack problem with special neighbor constraints
	Abstract
	1 Introduction
	2 Elementary results
	3 Knapsack problems on directed co-graphs
	3.1 Directed co-graphs
	3.2 All-neighbors problems on directed co-graphs
	3.3 One-neighbor problems on directed co-graphs

	4 Knapsack problems on minimal series-parallel digraphs
	4.1 Minimal series-parallel digraphs
	4.2 All-neighbors problems on minimal series-parallel digraphs
	4.3 One-neighbor problems on minimal series-parallel digraphs

	5 Knapsack problems on directed trees
	5.1 All-neighbors problems on directed trees
	5.2 One-neighbor problems on directed trees

	6 Conclusions and outlook
	References

