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Abstract
In this article, we introduce the Maximum Diversity Assortment Selection Problem
(MDASP), which is a generalization of the two-dimensional Knapsack Problem
(2D-KP). Given a set of rectangles and a rectangular container, the goal of 2D-KP
is to determine a subset of rectangles that can be placed in the container without over-
lapping, i.e., a feasible assortment, such that a maximum area is covered. MDASP is
to determine a set of feasible assortments, each of them covering a certain minimum
threshold of the container, such that the diversity among them is maximized. Thereby,
diversity is defined as the minimum or average normalized Hamming distance of all
assortment pairs. MDASP was the topic of the 11th AIMMS-MOPTA Competition
in 2019. The methods described in this article and the resulting computational results
won the contest. In the following, we give a definition of the problem, introduce a
mathematical model and solution approaches, determine upper bounds on the diver-
sity, and concludewith computational experiments conducted on test instances derived
from the 2D-KP literature.

Keywords Combinatorial optimization · Mixed integer programming ·
Two-dimensional knapsack problem · Maximum diversity problem

B Felix Prause
prause@zib.de

Kai Hoppmann-Baum
hoppmann-baum@zib.de

Boris Defourny
defourny@lehigh.edu

Thorsten Koch
koch@zib.de

1 AI in Society, Science and Technology, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

2 Applied Algorithmic Intelligence Methods, Chair of Software and Algorithms for Discrete
Optimization, Technische Universität Berlin, Str. des 17. Juni 135, 10623 Berlin, Germany

3 Department of Industrial and Systems Engineering, Lehigh University, 200 W Packer Ave,
Bethlehem, PA 18015, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-021-00740-2&domain=pdf
http://orcid.org/0000-0001-9401-3707
http://orcid.org/0000-0001-9184-8215
http://orcid.org/0000-0003-0405-5538
http://orcid.org/0000-0002-1967-0077


522 F. Prause et al.

1 Introduction

The problem of packing rectangles into rectangular containers or to cut them from
rectangular stock sheets arises in a variety of industrial applications. Thereby, one
typically aims at determining a feasible solution where the wasted material or space is
minimized. Consider for example the paper (Haessler 1971), glass (Hahn 1968), wood
(Bouaine et al. 2018), or metal industry (Jakobs 1996). Here, rectangular pieces are
needed for the production of certain goods, which are typically cut from given stock
pieces (He et al. 2012). Another common application arising in logistics is to load
pallets or containers (Huang and Chen 2007). Furthermore, similar problems appear
in the production and operation of microchips, namely in the layout of processor
chips (Wu and Chan 2005) and the dynamic allocation of memory as well as in
multiprocessor scheduling (He et al. 2012). Finally, the editing and lay-outing of
newspapers (Wei et al. 2009) or the arrangement of products on supermarket shelves
(Problem description 2019) belong to this class of problems, too. They are typically
modeled as some special variant of the two-dimensional Knapsack Problem (2D-KP),
which we introduce in Sect. 2 and discuss in depth in Sect. 3.

However, for practitioners it is often useful when they are presented not only one
optimal but a set of diverse “near-optimal” solutions from which she or he can choose.
This holds especially for those tasks where it is hard to formalize or model important
side constraints. Consider, for example, the last two examples from above. If a super-
market wants to investigate the buying behavior of its customers, an arrangement of
the products minimizing the empty space is certainly desirable. Nevertheless, such a
result on its own is not very meaningful for the particular task. Instead, the company
needs to conduct tests with a variety of arrangements to assess whether they increase
the purchasing rates or not (Kök et al. 2015). Similarly, when it comes to the layout
of texts, pictures, or ads on a newspaper page, the result does not necessarily have to
be minimal w.r.t. the resulting empty space, but has to come in some aesthetic appeal.
Thus, presenting the user with a selection of assortments that cover some minimum
threshold of the available area can be advantageous in all areas where experiences and
subjective perceptions have an impact on the solution that is finally chosen.

Problems of this kindmotivate theMaximumDiversity Assortment Selection Prob-
lem (MDASP), which we introduce in Sect. 2. Next, we review the literature on two
inherent subproblems in Sect. 3: The above mentioned 2D-KP and the Maximum
Diversity Problem (MDP), where a predefined number of elements has to be selected
from a given set such that the diversity among them is maximized. Before discussing
a mixed-integer quadratic programming (MIQP) model for MDASP in Sect. 5, we
introduce MIQP formulations to determine upper bounds on the maximum diversity
in Sect. 4. Furthermore, we present a generic two-stage heuristic in Sect. 6. Finally, we
present extensive computational experiments in Sect. 7 and conclude with an outlook
on future research in Sect. 8.
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The maximum diversity assortment selection problem 523

Fig. 1 Container C with rectangle set R. Assortment A1 is feasible and A2 is even optimal. On the other
hand, assortments A3 andA4 are not feasible

2 Definitions and problem setup

ForMDASPweare given a rectangleCwithwidthw ∈ Z≥0 and height h ∈ Z≥0,which
we call container. Furthermore, we are given a set of rectangles R := {R1, . . . , Rn}
and each of them is associated with its width wi ∈ Z≥0 and its height hi ∈ Z≥0. Next,
an assortment is a subset A ⊆ R of rectangles, i.e., A ∈ P(R) where P(R) denotes
the powerset ofR.We call an assortmentA feasible if it can be placed in the containerC
without overlapping, i.e., if we can assign a bottom-left corner coordinate (xi , yi ) ∈ R

2

to each rectangle Ri ∈ A such that [xi , xi + wi ) × [yi , yi + hi ) ⊆ [0, w) × [0, h)

and for all Ri , R j ∈ A with i �= j we have
[xi , xi + wi ) × [yi , yi + hi ) ∩ [

x j , x j + w j
) × [

y j , y j + h j
) = ∅, see Iori et al.

(2020). In the sequel, we denote the set of all feasible assortments by F . Next, each
assortment A has an associated value v(A) = ∑

Ri∈A wi hi , which is the sum of the
areas of the rectangles it contains.We call an assortmentA∗ optimal if it is feasible and
if v(A∗) ≥ v(A) holds for everyA ∈ F . Determining an optimal assortment is called
the two-dimensional Knapsack Problem (2D-KP). Note that we otherwise allow an
arbitrary placement of the rectangles inside the container, i.e., we do not impose any
further conditions, and we do not allow the rotation of rectangles. An example can be
found in Fig. 1.

For MDASP we are furthermore given a threshold value v ∈ [0, v(C)], with
v(C) := wh denoting the area of the container, as well as a natural numberm ∈ Nwith
m ≥ 2.We call an assortmentA v-good if it is feasible and if v(A) ≥ v, and we denote
the set of v-good assortments by Fv ⊆ F . Furthermore, a selection is a multi-subset

123



524 F. Prause et al.

Fig. 2 Example for a selection of size m = 6 to the instance leung8 w.r.t. δmin , and a given threshold of
v = 0.923 which is the optimal value to the corresponding 2D-KP. The instance contains 30 rectangles, and
the obtained selection has a diversity of 0.778, which was the most diverse selection that we obtained for
this instance. Nevertheless, the best bound we found on this instance had a value of 0.916, compare with
computational results in Sect. 7

S of assortments, i.e., we allow that an assortment is contained more than once in S,
of cardinality |S| = m. We call S feasible if all of its assortments are v-good, i.e., if
A ∈ Fv for allA ∈ S. Additionally, we are given a diversity function δ for selections
and call δ(S) the diversity of selection S. The two diversity functions that we consider
in this paper are based on the Hamming distances between assortment pairs contained
in S and are discussed in Sect. 2.1. Finally, a selection S∗ is called optimal if it is
feasible and if δ(S∗) ≥ δ(S) holds for all feasible selections S. An example selection
is shown in Fig. 2. In the following, we denote an MDASP instance I as a quintuple
I := (C,R,m, v, δ).

Lemma 1 MDASP is NP-hard.

Proof We prove this by reducing from 2D-KP, which is NP-hard, see Fekete and
Schepers (2004) or Garey and Johnson (1979). Given an instance of 2D-KP with
container C and rectangle setR, for arbitrarym and δ there exists a feasible assortment
of value at least v if and only if there exists a feasible selection for theMDASP instance
I := (C,R,m, v, δ). 	
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The maximum diversity assortment selection problem 525

Fig. 3 The Hamming distance without normalization betweenA1 andA2 is 2, while the distance between
A3 and A4 is 4. Using normalization, A1 and A2 have maximum distance 1, while the distance between
A3 andA4 is 1

3

2.1 Diversity of selections

A common distance measure applied to the subsets of a common superset is the
Hamming distance (Hamming 1950). For two assortmentsA andA′, the (normalized)
Hamming distance is defined as

dH (A,A′) := |A�A′|
|A| + |A′| = |(A ∪ A′) \ (A ∩ A′)|

|A| + |A′| ,

where � represents the symmetric difference of sets. Furthermore, we define
dH (A,A′) = 0 in case that A = A′ = ∅. Note that we consider the normalized
Hamming distance, i.e., we divide by |A| + |A′|, in order to ensure that the number
of rectangles forming the assortments has no impact on the distance. An example
demonstrating this rationale is depicted in Fig. 3.

Lemma 2 Let I := (C,R,m, v, δ) be an MDASP instance. For any two assortments
A ⊆ R and A′ ⊆ R we have dH (A,A′) ∈ [0, 1].

Based on the Hamming distance, we define two diversity functions for selec-
tions. Therefore, we denote the index set of the assortments of a selection by
M := {1, . . . ,m} and introduce the Minimum-Distance-Diversity as

δmin(S) := min
i, j∈M
i< j

{dH (Ai ,A j )}

and the Average-Distance-Diversity as

δavg(S) := 2

m(m − 1)

m−1∑

i=1

m∑

j=i+1

dH (Ai ,A j ).

Lemma 3 Let I := (C,R,m, v, δ) be an MDASP instance and let S be a selection.
Then 0 ≤ δmin(S) ≤ δavg(S) ≤ 1.
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526 F. Prause et al.

Proof

δmin(S) = min
i, j∈M
i< j

{dH (Ai ,A j )}

= 2

m(m − 1)

m−1∑

k=1

m∑

l=k+1

min
i, j∈M
i< j

{dH (Ai ,A j )}

≤ 2

m(m − 1)

m−1∑

k=1

m∑

l=k+1

dH (Ak,Al) = δavg(S)

	


3 Related work and subproblems

MDASP has first been introduced in the 11th AIMMS-MOPTA Optimization Mod-
eling Competition (AIMMS-MOPTA optimization 2019; Problem description 2019),
which is part of the MOPTA conference series annually held at Lehigh University. To
the best of our knowledge, there exists no previous work regarding it. Therefore, we
give an overview of the literature concerning its two inherent subproblems instead: The
two-dimensional Knapsack Problem (2D-KP) and the Maximum Diversity Problem
(MDP).

As discussed in Sect. 1, the packing and cutting of rectangular items into or from
rectangular containers arises in the context of many different applications. Thus, the
2D-KP is a topic that has been under investigation for a long time. According to
Dowsland and Dowsland (1992), the first mathematical formulation of the problem
was given by Kantorovich (1960) in 1939. Similar problem formulations were given
by other authors during the 1950’s as the work of Kantorovich was not translated until
1960.

For a general overview over 2D-KP, we refer to the survey papers (Cheng et al.
1994; Crainic et al. 2012; Dyckhoff 1990; Hinxman 1980; Hopper and Turton 2001),
and in particular to the most recent one by Iori et al. (2020). Further, it is important
to note that the two-dimensional Cutting Stock Problem (2CSP) is closely related to
2D-KP. In fact, solution algorithms for 2CSPcan also be applied to 2D-KP.However, as
there exists a variety of different variants of 2D-KP, we want to emphasize the work of
Wäscher et al. (2007) and Lodi et al. (1999) regarding their classification. The former
is based on the typology used in Dyckhoff (1990). Here, the different rectangular
packing problems are identified as, e.g., Bin Packing, Knapsack, or Cutting Stock
Problems, and additionally classified according to their dimensionality and objective
as well as by the size, shape, and characteristics of the rectangles. On the other hand,
the classification of Lodi et al. is based on the side constraints that need to be satisfied,
e.g., if the rectangles can be placed freely in the container or are allowed to be rotated.
Further, there exist a weighted and an unweighted variant of 2D-KP. In the weighted
case each rectangle is assigned a certain value, and the objective of the problem is to
maximize the sum of the values of all placed rectangles. In the unweighted case, the
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value of each rectangle corresponds to its area. Thus, the objective here can either be
seen as maximizing the area of all placed rectangles or as minimizing the empty or
wasted space in the container. In this article we consider the unweighted variant of
2D-KP where the rectangles can be placed freely and are not allowed to be rotated.

In the literature, many mixed-integer programming (MIP) models exist for 2D-KP.
For further details regardingMIP in general, we refer to Achterberg (2007). Hadjicon-
stantinou and Christofides (1995) introduced a formulation using the straightforward
technique of discretizing the container. For each integer coordinate tuple in the con-
tainer there exists a binary variable indicating if the corresponding point is already
covered by a placed rectangle. Other MIP models featuring fewer variables and con-
straints using the relative positions of pairs of rectangles were introduced by Belov
et al. (2009) and Egeblad and Pisinger (2009). The former approach is based on vari-
ables and corresponding constraints indicating whether two rectangles overlap when
projected onto the x- or y-axis, fromwhich at most one is allowed for a feasible assort-
ment. The idea of the latter model is to use binary variables for each pair of rectangles
to ensure that one of them is placed either over, under, left, or right of the other. Several
other MIP formulations can be found in Beasley (1985), Gilmore and Gomory (1965),
Hatefi (2017), Hifi (2001).

Furthermore, a variety of problem-specificBranch-and-Bound approaches has been
developed (Christofides and Whitlock 1977; Clautiaux et al. 2007; Hifi and Zissi-
mopoulos 1997). To improve their performance, Boschetti et al. (2002) present an
upper bound,which can be used to significantly reduce the number of feasibility checks
that have to be performed. Additionally, Fekete et al. (2007) introduce an approach
to reduce the time that is needed for checking the feasibility of subsets of rectangles,
i.e., whether it can be placed into the container and therefore forms a feasible assort-
ment. They use graph structures to model equivalence classes of assortments and can
determine if a certain rectangle subset is feasible or not by checking it for cycles and
cliques. Their approach relies on a similar idea as the sequence-pair representation
of rectangle-packings (Murata et al. 2003). Here, a possible packing is represented
by two directed graphs encoding a sequence of the rectangles inside the container
from left to right and from bottom to top, respectively. This idea was incorporated
into solution approaches for 2D-KP, e.g., into the heuristics presented in Egeblad and
Pisinger (2009), which extends (Pisinger 2007), where the representation is combined
with a simulated annealing approach.

Next, we give a brief overview of the broad variety of heuristics andmeta-heuristics
that have been applied to 2D-KP. We start with deterministic algorithms, which are
typically embedded in an iterative procedure applying different randomized orderings
of the rectangles. Thefirst type of heuristic used for 2D-KPare quasi-human algorithms
that are inspired by the behavior of humans when solving a given problem. Consider,
for example, the Least-Flexible-First algorithms of Wu et al. (2002), Wu and Chan
(2005), and Huang and Chen (2007). The basic idea is to pack rectangles that are
less flexible due to their size in the beginning, in order to have more flexibility when
finishing up the packing. On the other hand, Wei et al. (2009) presented a Least-
Waste-First heuristic where the rectangles are placed such that empty areas where no
further rectangles can be placed are avoided. The third kind of placing procedures are
so-called Best-Fit algorithms. In general, these heuristics are based on an evaluation
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function. Here, the rectangles are not only chosen and placed in a way such that the
resulting empty space is as small as possible, but they also have to fit “well” with
respect to the already placed ones. Examples for this type of heuristic can be found
in the work of He et al. (2012), de Armas et al. (2012), and in particular in the IBHP
heuristic of Shiangjen et al. (2018). The last deterministic approach we mention here
is the Dynamic Decomposition algorithm of Wang (2017). His idea is to sequentially
decompose the container into smaller parts, pack them with rectangles, and rearrange
them afterwards.

As mentioned above, several meta-heuristics have also been applied to 2D-KP. The
approaches can roughly be partitioned into Greedy Randomized Adaptive Search Pro-
cedures (GRASPs) (MirHassani and Jalaeian Bashirzadeh 2015; Perboli et al. 2011;
Álvarez Valdés et al. 2005), TABU Searches (Álvarez Valdés et al. 2007), Genetic
Algorithms (Beasley 2004; Bortfeldt and Winter 2009), and Simulated Annealing
approaches (Egeblad and Pisinger 2009; Leung et al. 2012). Further, there exist hybrid
heuristics that combine deterministic algorithms andmeta-heuristics (Gonçalves 2007;
Gonçalves and Resende 2006; Hadjiconstantinou and Iori 2007).

The second problem, which is implicitly contained in MDASP, is to select a pre-
defined number of elements from a given set such that the diversity among them is
maximized. In our case this is the set of v-good solutionsFv . This problem is known as
the Maximum Diversity Problem or as Maximum Dispersion Problem (MDP) and is
usually subdivided into the MAX-SUM and the MAX-MIN case. In the first case, the
sum of the distances between the selected elements is maximized, while in the second
case, one aims at maximizing the minimum distance between the chosen elements.
This directly corresponds to our diversity measures δavg and δmin .

Surveys on MDP have been published by Martí et al. (2013) and Sandoya et al.
(2018). As for 2D-KP, there exists a variety of exact approaches to model and solve
MDP, including MIP and IQP formulations (Ghosh 1996; Kuo et al. 1993) as well
as special Branch-and-Bound approaches (Martí et al. 2010). Furthermore, different
meta-heuristics have been used to tackle the problem, including for example GRASP
heuristics (Resende et al. 2010; Silva et al. 2007, 2004), TABU Searches (Duarte and
Martí 2007), and the IteratedGreedyApproach (Lozano et al. 2011). Finally, there also
exist hybrid algorithms (Gallego et al. 2009; Santos et al. 2005) and greedy heuristics
(Ravi et al. 1994).

4 Upper bounds on the diversity

In this section, we introduce two MIQP formulations to derive upper bounds on the
maximum diversity of MDASP instances w.r.t. δmin and δavg . The basic idea is to
relax the problem by including assortments for which there may not exist a feasible
placement in the container but that satisfy the v-criterion, i.e., assortments contained
in Gv := {A ∈ P(R) | v ≤ v(A) ≤ v(C)}.

To simplify notation, we use an alternative expression for the Hamming distance
in the following, namely

123



The maximum diversity assortment selection problem 529

dH (A,A′) = |A�A′|
|A| + |A′| = |A| + |A′| − 2 |A ∩ A′|

|A| + |A′| = 1 − 2 |A ∩ A′|
|A| + |A′| .

4.1 Bounding theminimum-distance-diversity ımin

Lemma 4 Let I := (C,R,m, v, δmin) be an instance of MDASP and let S denote a
feasible selection for I. Then

δmin(S) ≤ 1 − min
{A1,...,Am }⊆Gv

max
i, j∈{1,...,m}

i< j

{
2 |Ai ∩ A j |
|Ai | + |A j |

}
.

Proof From the definition of δmin and since Fv ⊆ Gv it follows that

δmin(S) ≤ max
{A1,...,Am }⊆Fv

min
i, j∈{1,...,m}

i< j

{dH (Ai ,A j )}

= max
{A1,...,Am }⊆Fv

min
i, j∈{1,...,m}

i< j

{
1 − 2 |Ai ∩ A j |

|Ai | + |A j |
}

= max
{A1,...,Am }⊆Fv

⎧
⎨

⎩
1 − max

i, j∈{1,...,m}
i< j

{
2 |Ai ∩ A j |
|Ai | + |A j |

}
⎫
⎬

⎭

= 1 − min
{A1,...,Am }⊆Fv

max
i, j∈{1,...,m}

i< j

{
2 |Ai ∩ A j |
|Ai | + |A j |

}

≤ 1 − min
{A1,...,Am }⊆Gv

max
i, j∈{1,...,m}

i< j

{
2 |Ai ∩ A j |
|Ai | + |A j |

}
. (1)

	

The following MIQP formulation UBmin determines expression (1), i.e., an optimal
selection with respect to δmin in Gv . Its variables and their meanings are listed in
Table 1.

max 1 − z (2)

s.t.
∑

Ri∈R
wi hi cia ≥ v ∀ a ∈ M (3)

∑

Ri∈R
wi hi cia ≤ v(C) ∀ a ∈ M (4)

∑

Ri∈R
(cia + cib) = tab ∀ a, b ∈ M with a < b (5)

cia + cib ≤ 1 + siab ∀ Ri ∈ R, ∀a, b ∈ M with a < b (6)
∑

Ri∈R
siab ≤ 1

2
z tab ∀ a, b ∈ M with a < b (7)
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Table 1 Variables for MIQP model UBmin

Variable Description

cia Binary variable indicating whether Ri is contained in Aa

siab Binary variable indicating whether Ri is contained in Aa and Ab

tab Continuous variable equal to |Aa | + |Ab|
z Continuous variable equal to the non-constant objective function value

cia ∈ {0, 1} ∀ Ri ∈ R, ∀a ∈ M (8)

siab ∈ {0, 1} ∀ Ri ∈ R, ∀a, b ∈ M with a < b (9)

tab ∈ [0, . . . , 2|R|] ∀ a, b ∈ M with a < b (10)

z ∈ [0, 1] (11)

Constraints (3) and (4) ensure that the generated assortments are contained in Gv .
Additionally, tab is equal to |Aa |+|Ab| due to constraint (5). Further, we have siab = 1
if assortments Aa and Ab share rectangle Ri due to constraint (6). Therefore, z is
equal to the maximum value of 2 |Aa∩Ab|

|Aa |+|Ab| among all pairs a, b ∈ M with a < b due to
constraints (7) and because we minimize it in the objective function (2). Note that we
intentionally choose the siab variables to be binary as the gap of the MIQP was tighter
for a majority of the instances when the time limit was hit. This may be because the
solver may not figure out that the variables are implicitly binary and thus benefits from
the additional integrality conditions.

4.2 Bounding the average-distance-diversityıavg

The results from the previous subsection can also be adapted to δavg .

Lemma 5 Let (C,R,m, v, δavg) be an instance of MDASP and let S denote a feasible
selection. It holds that

δavg(S) ≤ 1 − min
{A1,...,Am }⊆Gv

2

m (m − 1)

m−1∑

i=1

m∑

j=i+1

2 |Ai ∩ A j |
|Ai | + |A j | .

Proof From the definition of δavg and since Fv ⊆ Gv it follows that

δavg(S) ≤ max
{A1,...,Am }⊆Fv

2

m (m − 1)

m−1∑

i=1

m∑

j=i+1

dH (Ai ,A j )

= max
{A1,...,Am }⊆Fv

2

m (m − 1)

m−1∑

i=1

m∑

j=i+1

(
1 − 2 |Ai ∩ A j |

|Ai | + |A j |
)
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= max
{A1,...,Am }⊆Fv

2

m (m − 1)

⎛

⎝m (m − 1)

2
−

m−1∑

i=1

m∑

j=i+1

2 |Ai ∩ A j |
|Ai | + |A j |

⎞

⎠

= max
{A1,...,Am }⊆Fv

⎧
⎨

⎩
1 − 2

m (m − 1)

m−1∑

i=1

m∑

j=i+1

2 |Ai ∩ A j |
|Ai | + |A j |

⎫
⎬

⎭

= 1 − min
{A1,...,Am }⊆Fv

2

m (m − 1)

m−1∑

i=1

m∑

j=i+1

2 |Ai ∩ A j |
|Ai | + |A j |

≤ 1 − min
{A1,...,Am }⊆Gv

2

m (m − 1)

m−1∑

i=1

m∑

j=i+1

2 |Ai ∩ A j |
|Ai | + |A j | . (12)

	

The following MIQP formulation UBavg determines expression (12), i.e., an optimal
selection w.r.t. δavg in Gv:

max 1 − 2

m (m − 1)

m−1∑

a=1

m∑

b=a+1

zab (13)

s.t. (3) − (6)
∑

Ri∈R
siab = 1

2
zabtab for all a, b ∈ M with a < b (14)

(8) − (10)

zab ∈ [0, 1] for all a, b ∈ M with a < b. (15)

Most of the variables and constraints here are identical to the ones used in UBmin .
However, here we introduce individual continuous variables (15) for each assortment
pair Aa and Ab to determine their individual contributions using constraints (14) to
the objective function (13).

4.3 Relations between diversity functions and their bounds

If we consider two MDASP instances that only differ by the diversity function, we
can make the following observations.

Lemma 6 Let I1 = (C,R,m, v, δmin) and I2 = (C,R,m, v, δavg) be MDASP
instances with optimal selections S1 and S2, respectively. Then it holds that δmin(S1)

≤ δavg(S2).

Proof Applying Lemma 3 yields δmin(S1) ≤ δavg(S1) ≤ δavg(S2). 	

Corollary 1 Let I1 = (C,R,m, v, δmin) and I2 = (C,R,m, v, δavg) be two instances
of MDASP. Then any upper bound on the diversity of I2 is an upper bound on the
diversity of I1 as well.
This result can directly be applied to our MIQP model UBavg .
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Corollary 2 Let I = (C,R,m, v, δmin) be an instance of MDASP and let S denote
a feasible selection. We have δmin(S) ≤ UB∗

avg(I), where UB∗
avg(I) is the optimal

solution value for the corresponding MIQP model.

However, this bound cannot be tighter than the one we derive using UBmin .

Lemma 7 Let I = (C,R,m, v, δmin). We have UB∗
min(I) ≤ UB∗

avg(I), where
UB∗

min(I) and UB∗
avg(I) denote the optimal solution values for the corresponding

MIQP models.

Proof Let S1,S2 be optimal selections for UBmin(I) and UBavg(I), respectively. By
Lemma 6 and by the optimality of S2, it follows that

UB∗
min(I) = δmin(S1) ≤ δavg(S2) = UB∗

avg(I).

	


5 AnMIQPmodel for MDASP

The rationale behind the following MIQP model for MDASP is the following. We
construct a selectionwithinGv byusing either formulationUBmin orUBavg , depending
on the diversity function of the instance, see Sect. 4 for more details. However, for
each assortment we additionally add the constraints of a MIP formulation for 2D-KP
in order to ensure its feasibility, i.e., we guarantee that the selection is actually a subset
of Fv and therefore feasible itself. In the following example formulation (P) for δmin ,
we use the inequalities of the MIP model of Egeblad and Pisinger (2009). It features
the variables listed in Table 2.

(P)

max 1 − z (16)

s.t.
∑

Ri∈R
wi hi cia ≥ v ∀ a ∈ M (17)

∑

Ri∈R
wi hi cia ≤ wh ∀ a ∈ M (18)

∑

Ri∈R
(cia + cib) = tab ∀ a, b ∈ M with a < b (19)

cia + cib ≤ 1 + siab ∀ Ri ∈ R, ∀ a, b ∈ M with a < b (20)
∑

Ri∈R
siab ≤ 1

2
z tab ∀ a, b ∈ M with a < b (21)

li ja + ri ja + ui ja + oi ja ≥ cia + c ja − 1 ∀ Ri , R j ∈ R with i < j, ∀a ∈ M

(22)

xia − x ja + w li ja ≤ w − wi ∀ Ri , R j ∈ R with i < j, ∀a ∈ M (23)

x ja − xia + w ri ja ≤ w − w j ∀ Ri , R j ∈ R with i < j, ∀a ∈ M (24)

yia − y ja + h ui ja ≤ h − hi ∀ Ri , R j ∈ R with i < j, ∀a ∈ M (25)
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Table 2 Variables for MIQP model (P) for MDASP

Variable Description

cia Binary variable indicating whether Ri is contained in Aa

siab Binary variable indicating whether Ri is contained in Aa and Ab

tab Continuous variable equal to |Aa | + |Ab|
z Continuous variable equal to the non-constant objective function value

xia Continuous variable determining the x-position of Ri inAa

yia Continuous variable determining the y-position of Ri inAa

li ja Binary variable whether Ri is located left of R j in Aa

ri ja Binary variable whether Ri is located right of R j inAa

ui ja Binary variable whether Ri is located under R j in Aa

oi ja Binary variable whether Ri is located over R j inAa

y ja − yia + h oi ja ≤ h − h j ∀ Ri , R j ∈ R with i < j, ∀a ∈ M (26)

0 ≤ xia ≤ w − wi ∀ Ri ∈ R, ∀a ∈ M (27)

0 ≤ yia ≤ h − hi ∀ Ri ∈ R, ∀a ∈ M (28)

li ja, ri ja, ui ja, oi ja ∈ {0, 1} ∀ Ri , R j ∈ R with i < j, ∀a ∈ M (29)

cia ∈ {0, 1} ∀ Ri ∈ R, ∀a ∈ M (30)

siab ∈ {0, 1} ∀ Ri ∈ R, ∀a, b ∈ M with a < b (31)

tab ∈ [0, . . . , 2|R|] ∀ a, b ∈ M with a < b (32)

z ∈ [0, 1] (33)

The objective function (16), constraints (17)–(21) and variables (30)–(33) corre-
spond to model UBmin and construct a selection with maximum
Minimum-Distance-Diversity inGv . On the other hand, constraints (22)–(28) and vari-
ables (27)–(29) originate from the MIP formulation of Egeblad and Pisinger (2009)
for 2D-KP and ensure that the contained assortments are actually feasible. Thereby,
constraint (22) ensures that if rectangles Ri and R j are used in assortment Aa , i.e.,
cia = c ja = 1, then at least one of the four variables li ja , ri ja , ui ja , or oi ja has to be
equal to 1. This implies that Ri has to be placed left of R j (23), right of R j (24), under
R j (25), or over R j (26), which guarantees that the two rectangles do not overlap.
Furthermore, by the definition of the positioning variables xia and yia , see (27) and
(28), each rectangle is placed within the container. Note that the constraints ensuring
the feasibility of the assortments, i.e., (22)–(28), are similar to the constraints in the
formulation of Padberg (2000).

5.1 A benders decomposition algorithm

Next, we describe a Benders decomposition approach for the introducedMIQP formu-
lation for MDASP. For details regarding Benders decompositions, we refer to Benders
(2005) and Geoffrion (1972). To derive it, we subdivide the model into its two sub-
problems. The higher-level problem consists in constructing a diverse selection of
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Algorithm 1 Generic Two-Stage Algorithm
Input: MDASP instance I = (C,R,m, v, δ)

Output: Feasible Selection S or UNSUCCESSFUL
1: Fs ← Sample feasible assortments A for 2D-KP instance C,R with v(A) ≥ v

2: if Fs = ∅ then
3: return UNSUCCESSFUL
4: else
5: return Solution of MDP algorithm for instance Fs ,m, δ

assortments in Gv . The lower-level problems ensure the feasibility of the contained
assortments. Thus, in our case the higher-level problem is UBmin or UBavg , depend-
ing on the diversity function, and the lower-level problem is any MIP formulation
or exact approach for 2D-KP to check the feasibility of the single assortments, e.g.,
the variables and constraints from Egeblad and Pisinger (2009) in example (P). If a
solution for the higher-level problem has been found, but an assortmentA is identified
as infeasible by a lower-level problem, corresponding no-good-cuts

∑

Ri∈A
xia ≤ |A| − 1,∀a ∈ M

are added to the higher-level problem, which is then solved again. These cuts ensure
that no assortment containingA as a subset is considered as feasible by the higher-level
problem. Note that this separation problem, i.e., the lower-level problem, is NP-hard
itself as we need solve an instance of 2D-KP.

6 A generic two-stage heuristic

Next, we present a generic two-stage heuristic for MDASP, see Algorithm 1. In its
first stage, we use any heuristic or exact solution approach for 2D-KP to sample the
space of v-good assortments. We denote this sample set by Fs ⊆ F in the following.
Afterwards,we consider this subset in any exact or heuristic solution approach forMDP
in order to determine a feasible selection of sizem with respect to the diversitymeasure
δ. Note that unless we are able to sample the complete set of v-good assortments, i.e.,
Fv , and do apply an exactMDPapproach, the algorithmdoes not necessarily determine
an optimal solution.

For many MDP approaches from the literature the distances between the assort-
ments have to be known prior to their execution. However, depending on the size ofFs ,
determining them can be quite time-consuming. Thus, we introduce a new heuristic
for MDP that does not rely on the prior availability of these distances.

Our algorithm, which is stated as Algorithm 2, is based on the idea of a random
exchange, i.e., we start with a selectionSb ofm randomly chosen assortments and then
iteratively check if a complete or partial exchangewith another k assortments increases
the diversity of the selection. A similar idea was suggested byGhosh (1996). However,
in his approach the exchange is based on an evaluation of all assortments.We avoid this
by selecting the assortments completely at random and only determine the distances
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Algorithm 2MDP Random Exchange Heuristic
Input: Fs , m, δ, �
Output: Selection Sb

1: Sb ← Randomly choose m assortments A1, . . . ,Am ∈ Fs
2: δb ← δ(Sb)
3: k ← 1
4: While k ≤ �

5: Choose Sr ⊆ Fs \ Sb with |Sr | = � k
100 � at random

6: Sc ← Sb ∪ Sr
7: Determine dH (Ai ,A j ) for all Ai ,A j ∈ Sc with i < j
8: Sb ← Solution of exact MDP approach for Sc,m, δ

9: If δ(Sb) > δb then
10: δb ← δ(Sb)
11: k ← 1
12: Else
13: k ← k + 1
14: EndIf
15: EndWhile
16:
17: Return Sb

between the considered m + k assortments in Sc. Afterwards, we use an exact MDP
formulation, depending on the diversity function that should be maximized, to choose
m assortments from Sc with maximum diversity, see Kuo et al. (1993) for example.
Note that the diversity cannot decrease. The number k of assortments considered for
an exchange increases with every 100 iterations that did not lead to an increase of
the diversity, see line 5 of the algorithm. This count is reset whenever a more diverse
selection is found. The idea here is, in particular when considering δmin , that the
diversity of the selection may depend on distances between multiple assortments.
In this case, the exchange of only one assortment does not lead to an increase in the
diversity. Thus, it is necessary to consider the replacement ofmore than one assortment
at once. Algorithm 2 terminates after � unsuccessful iterations.

7 Computational experiments

In this section, we report on the results of our computational experiments. We
conducted them using the two instances from the MOPTA competition (Problem
description 2019) as well as modified 2D-KP and 2CSP instances, which are widely
known from the literature. We evaluate the results for directly solving an instantiation
of the MIQP formulation and when applying the Benders approach, which were both
presented in Sect. 5, and for an instantiation of our generic two-stage heuristic from
Sect. 6. We compare the three approaches w.r.t. the diversity of the best solution they
determined. Additionally, we present the results of our upper bound computations
using the formulations described in Sect. 4.

Before doing this,we investigate different exact and heuristic approaches for 2D-KP
regarding the best generated solution and the total number of generated assortments.
This is necessary in order to decide which MIP formulation to use within the MIQP
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model and which heuristic to employ in the first stage of the heuristic. For the latter
we are particularly interested in the number of generated assortments that satisfy the
v-criterion.

For our experiments, we considered v = (1 − ε)v∗ with ε = 0.05 as threshold.
Here, v∗ denotes the best solution value which we determined during the 2D-KP runs.
Thus, obtaining good solutions for 2D-KP obviously is a crucial task as the value of
the best solution found by any of the approaches serves as the threshold value for all
successive computational experiments.

7.1 Computational setup

All heuristic algorithms for 2D-KP were implemented in Ada 2012 using the GNAT
Pro 19 compiler (AdaCore: GNAT 2019) and were run on an Intel(R) Xeon(TM) E5-
2690 v4 CPU with 2.60GHz, four cores, and 32 GB RAM. The Benders approach
was coded with Python v3.6 (Python Software Foundation 2020), and for the MIP and
MIQP models Gurobi v9.0 (Gurobi Optimization 2019) was used as solver. For all
computations, we set a time limit of 3,600 seconds. Additionally, for the computation
of the upper bounds the focus of Gurobi was set to primarily improve the bounds.

7.2 Test instances

Since MDASP is a novel optimization problem, an important task was to come up
with test instances. Before explaining how we derived test instances using 2D-KP and
2CSP instances, we first of all explain how the two test instances for the MOPTA
competition were created.

7.2.1 Generation of MOPTA instances

For the AIMMS-MOPTA competition, data generation procedures were devised to
produce problems of any size, that could exhibit some variety in the shape of the
rectangles, as measured by the aspect ratio (height-width ratio), and in the size of the
rectangles, as measured by the surface.

The generation procedure for the first data set has seven parameters
(n, wmin, wmax, θ1, hmin, hmax, θ2). It first generates samples wi and hi of real-
valued random variables Wi and Hi representing the width and height of rectangle i
for i = 1, . . . , n. Wi and Hi follow independent bounded power law distributions
with shape parameters θ1 and θ2 respectively, restricted to the domain [wmin, wmax]
× [hmin, hmax]:

P(w ≤ Wi ≤ w + dw, h ≤ Hi ≤ h + dh) ∝ wθ1hθ2dw dh + o(dw dh)

for w ∈ [wmin, wmax), h ∈ [hmin, hmax). (34)
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This can be done by drawing some ui , vi uniformly in [0, 1] and setting

wi =
(
(wθ1+1

max − w
θ1+1
min )ui + w

θ1+1
min

)1/(θ1+1)
, (35)

hi =
(
(hθ2+1

max − hθ2+1
min )vi + hθ2+1

min

)1/(θ2+1)
. (36)

The real-valued samples are then rounded up to the next integer. The data set was
generated using n = 200,wmin = 40,wmax = 200, θ1 = 1.8, hmin = 40, hmax = 200,
θ2 = 0.8. The container had width 300 and height 400. Having θ1, θ2 > 0 means that
large rectangles are favored over small rectangles in the generation process.

The generation procedure for the second data set has seven parameters
(n, smin, smax, θ3, �min, �max, θ4). It first generates samples si and �i of real-valued
random ratios Si and lengths Li , i = 1, . . . , n, following independent bounded power
law distributions with shape parameters θ3 and θ4 respectively, restricted to the domain
[smin, smax] × [�min, �max], defined similarly to (34):

P(s ≤ Si ≤ s + ds, � ≤ Li ≤ � + d�) ∝ sθ3�θ4ds d� + o(ds d�)

for s ∈ [smin, smax), � ∈ [�min, �max).

It then derives width and height samples wi , hi using a conditional rule: if si ≥ 1,
set wi = �i/si and hi = �i (tall rectangles); if si < 1, set wi = �i and hi = si�i
(flat rectangles). The values are then rounded up to the next integer. The data set was
generated using n = 40, smin = 0.25, smax = 2, θ3 = 0.5, �min = 20, �max = 200,
θ4 = 1. The container was a square of sides of length 500.

The two data generation procedures are not equivalent. It can be checked that when
Wi ,Hi follow truncated power laws, the distribution of the productsWiHi or the ratios
Hi/Wi do not themselves follow power laws. Thus, the two generation procedures
control the distribution of the aspect ratios and surfaces in two different ways.

For both data sets, the parameters were determined after some tuning to make sure
the problems were sufficiently challenging. This was done by estimating the compu-
tational time needed to obtain a pool of ε-optimal solutions to the two-dimensional
knapsack problem formulated following (Hadjiconstantinou and Christofides 1995).
To estimate the times, simplified instances were solved, obtained by scaling down by
a factor 50 the dimensions of the container and rectangles and rounding them up to
the next integer. Scale-and-round was used to reduce the number of binary variables
needed to formulate the problems while hopefully preserving the relative degree of
difficulty among the generated problems. The generation of a solution pool takes more
time than the generation of a single solution but was deemed useful to measure the
complexity of describing the set of good solutions from which a maximally-diverse
solution is subsequently selected.

7.2.2 Derivation of instances from 2D-KP and 2CSP

As mentioned, we additionally created new MDASP instances based on 2D-KP and
2CSP instances, of which plentiful exist in the literature. In particular, we used the
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Table 3 Packages of test instances given in the literature and by the AIMMS-MOPTACompetition. |R|min
is the smallest number of rectangles among all instances of the considered package, while |R|max is the
maximum cardinality ofR among all instances of the package

Package # Instances |R|min |R|max Source

2dcsp 60 20 50 Imahori (2019)

AH 360 1000 1000 Bortfeldt and Gehring (2006)

area 6 33 500 Imahori (2019)

beng 10 20 200 Bengtsson (1982)

Burke 13 10 3152 Burke et al. (2004)

bwmv 500 20 100 Berkey and Wang (1987), Martello
and Vigo (1998)

C 21 16 197 Hopper and Turton (2001)

cgcut 3 16 62 Christofides and Whitlock (1977)

CX 7 50 15,000 Pinto and Oliveira (2005)

gcut 13 10 50 Beasley (1985)

HC 6 7 21 Hadjiconstantinou and Christofides
(1995)

leung 10 10 50 Leung et al. (2003)

N 35 17 197 Hopper (2000)

ngcut 12 7 22 Beasley (1985)

Nice 6 25 1000 Wang and Valenzela (2001)

Nice36 33 100 5000 Wang and Valenzela (2001)

OKP 5 30 97 Fekete and Schepers (2000)

others 4 40 200 AIMMS-MOPTA Competition
Problem description (2019), Babu
and Babu (1999) and Wang Wang
(1983)

Path 6 25 1000 Wang and Valenzela (2001)

Path36 33 25 5000 Wang and Valenzela (2001)

PB 5 10 20 Lai and Chan (1997)

T 35 17 199 Hopper (2000)

ZDF 16 580 75,032 Shiangjen et al. (2018)

test instance packages listed in Table 3 to generate test instances for MDASP. Most
of them can be found on the website of Wei and Wenbin (2019), while the remaining
ones were directly taken from the corresponding sources.

As mentioned above, except for the two instances from the competition, all other
instances originate from 2D-KP or 2CSP. Therefore, in many cases the sum of the
areas over all rectangles approximately equals the area of the given container, because
here the focus often is on the placement of the rectangles within the container. Hence,
if we simply declare them to beMDASP instances, the number of v-good assortments,
for v = (1 − ε)v∗ with ε = 0.05, and the maximum diversities would often be rather
small. On the other hand, if we consider an instance with a set of rectangles R for
which the sum of the areas is much bigger than the area of the container, Fv may
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contain many assortments having Hamming distance 1. Thus, we decided to modify
the instances in order to ensure thatFv has suitable size by scaling down the container
and to thereby guarantee that at least one rectangle has to be contained in at least two
assortments of each feasible selection.

Lemma 8 Let I be an instance of MDASP. Furthermore, let the total area of the given
rectangles inR be AR := ∑

Ri∈R wi hi . If

mv > AR

holds, then at least one rectangle is contained in at least two assortments of each
feasible selection.

Proof Assume there exist m feasible assortments A1, . . . ,Am such that the inter-
section of each pair of differing assortments is empty, i.e., Ai ∩ A j = ∅ for all
i, j ∈ {1, . . . ,m} with i �= j . Further, let AU := ⋃

i∈{1,...,m} Ai be the union of the
considered assortments. Since all assortments are feasible, we have v(Ai ) ≥ v for all
i ∈ {1, . . . ,m}. Then it follows that

AR =
∑

Ri∈R
wi hi ≥

∑

Ri∈AU

wi hi =
m∑

i=1

v(Ai ) ≥ mv,

which is a contradiction. 	


However, as we assume v = (1 − ε)v∗ in the following and do not want to rely on
determining v∗ for every instance, we consider the area of the container v(C) instead.
Hence, the goal is to scale the container such that

m · v(C) > AR.

On the other hand, we additionally want to avoid instances with AR ≤ v(C) since
this could imply that Fv consists of only few assortments for a small ε. Therefore, we
additionally request that

v(C) < AR.

Summing up, our goal is to scale the containers such that

1 < p := m · v(C)

AR
< m.

Our scaling procedure works as follows: If p /∈ (1,m), let sr := h
w

be the side-
ratio of C, and let wmax := maxRi∈R{wi } and hmax := maxRi∈R{hi } be the maximal
width and height among all rectangles in R. Then, we determine the minimum value
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of p ∈ N with p ≥ 2 such that C is scaled, the side-ratio sr is preserved, and each
rectangle ofR still fits into the resulting container. This can be done by determining

pmin =
⌈
max

(
2,

m · sr · w2
max

AR
,
m · h2max

sr · AR

) ⌉
.

The formula can be derived from p = m·w·h
AR , sr ·w = h, and the fact that the rectangles

with maximum width and height still have to fit into the container.
If pmin ∈ {2, . . . ,m−1}, we determine the corresponding integralwidth and height

wnew =
⌈√

pmin · AR
m · sr

⌉
and hnew =

⌈√
pmin · sr · AR

m

⌉
,

and scale C accordingly. Otherwise, we use the original container. Note that if this
procedure led to a container with a greater area than the original one, we eventually
decided to leaveC unchanged. This applies to eleven of the instances from the packages
2csp, OKP, and others. We decided to do that in order to preserve instance specific
properties and to allow only assortments that would have been feasible w.r.t. the
original container.

Note that if a certain instance is not equipped with a container, we proceed analo-
gously by setting sr to the average side-ratio of the rectangles in R, which was done
for the instances of the area package. Finally, we removed instances that occured twice
after the scaling procedure and ended up with a test set consisting of 1,199 instances.
All scaled instances that were used for evaluating the presented solution approaches
are available as csv files at https://cloud.zib.de/s/P3FBm9Wbn499LHY.

7.3 Evaluating solution approaches for 2D-KP

In the remainder of this manuscript, we use the following abbreviations for 2D-KP
algorithms: Concerning the heuristics we use LWF, GRASP, and IBHP for the Least-
Waste-First heuristic ofWei et al. (2009), theGRASPalgorithmofÁlvarezValdés et al.
(2005), and the IBHP heuristic of Shiangjen et al. (2018), respectively. RegardingMIP
formulations, byHC95we refer to the IPmodel of Hadjiconstantinou and Christofides
(1995),BKRS09 abbreviates the IPmodel of Belov et al. (2009), andEP09 corresponds
to the MIP formulation of Egeblad and Pisinger (2009). Recall that we used a time
limit of 3,600 seconds for any computation, so it may happen that the heuristics lead
to better results than the exact approaches.

7.3.1 Evaluation with respect to the best generated assortment

First of all, we compare the above mentioned 2D-KP algorithms w.r.t. the value of
their best generated assortment for each instance in the test set. The exact results can
be found as a csv file at https://cloud.zib.de/s/bn8bd7Wfwj5KgT9. In Table 4, we
present summarized results for the different instance packages. Note that the number
of instances on which the different approaches obtained the best assortment do not
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have to sum up to 1,199 as we counted instances on which two or more algorithms
achieved the best solution multiple times. Additionally, one should keep in mind that
we compare three exact approaches and three heuristics.

The IBHPheuristic outperformed all other approachesw.r.t. the number of instances
on which it determined an assortment with biggest value. This is the case for 1,018 of
1,199 instances, i.e., on 84.9% of the test set. The second-best approach in this context
is the LWF heuristic with 310 of the 1,199 instances (25.9%), followed by approach
EP09 (17.1%), and the GRASP heuristic (16.7%). Thus, when comparing all instances
at once, it seems that IBHP is best suited for obtaining the best generated assortment.
However, if we look at the different instance packages in more detail, we can observe
that while on packages with |R|max > 197 the best generated assortments were indeed
obtained by IBHP, EP09 delivered the best results on packageswith |R|max ≤ 22. This
meets the expectation of the observer as the exact approaches are likely to perform
worse with a growing number of rectangles.

Furthermore, the reasons for the results of the heuristic approaches may be due
to their underlying basic ideas. GRASP relies on the idea of improving an initially
generated assortment by randomly exchanging and moving the contained rectangles.
On the other hand, IBHP and LWF apply sophisticated placing procedures where the
rectangles are scored and placed in a manner such that wasted space is avoided if
possible. However, the placing procedure in IBHP works faster than the evaluation
within LWF, because here every rectangle is scored based on the question if it could
cause wasted space in the next step. Thus, LWF spends more computing time when
determining the scores for the rectangles, which IBHP can use to generate a greater
variety of assortments.

If we compare the MIP approaches with each other, we observe that EP09 leads
to the best results, although HC95 solved bigger instances in terms of the cardinality
of R. This behavior might be explained by the ideas behind the MIP models. HC95
relies on binary variables indicating whether a certain position inside the container
is covered by a placed rectangle or not. This can be advantageous for instances with
a small container. In contrast, EP09 and BKRS09 make use of the relative positions
of the rectangles in their models. In our experiments the constraints modelling the
relative positions in EP09 seem to be more effective than representing the relative
positions by intersections in the projections onto the axes, which is the idea behind
BKRS09.

7.3.2 Evaluation with respect to the number of generated assortments

Next, we compare the three heuristic approaches for 2D-KP w.r.t. the number of
assortments that were generated. We do this, since in the first stage of the generic
two-stage heuristic, the space of feasible v-good assortments Fv has to be sampled
and therefore the number of generated assortments is an important factor. Note that
we do not consider the MIP approaches in this context, as they did not generate
many feasible solutions during the solving process, even for small instances. The
total number of generated assortments and the number of v-good assortments, for
v = (1 − ε)v∗ with ε = 0.05, can be found as a csv file at https://cloud.zib.de/s/
bn8bd7Wfwj5KgT9. Note that for the number of v-good solutions we only counted
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undominated assortments, i.e., assortments which were not contained in any other.
For the total number of assortments, we did not remove the dominated ones, as their
number was too big to complete the removing process within oneweek of computation
time per instance.

First,we compare the different algorithmsw.r.t. the total number of generated assort-
ments. In this case, IBHP obtained the most solutions on 921 of the 1,199 instances,
i.e., on 76.8%, while the GRASP algorithm obtained the most on the remaining 278
ones (23.2%), see Table 5. If we take a closer look on the properties of the different
instances, we can observe that GRASP obtained the most assortments on packages
with |R|max ≤ 197 and Burke.

Next, if we consider the subset of v-good assortments and remove the dominated
ones from it, which we were able to achieve within a week for each of the instances,
the described situation intensifies, see Table 5. In this case, IBHP obtained the most
assortments on 1,003 of the 1,199 instances (83.7%). The biggest instance on which
GRASP delivers results superior to IBHP consists of 500 rectangles and the percentage
of instances where it performs best decreases to 19.4%. Interestingly, LWF was able
to generate the biggest set of assortments on 11 instances.

This behavior can again be explained by the subroutines on which the heuristics
rely. As the scoring procedure within LWF consumes much time, IBHP and GRASP
produce a greater variety of assortments. Further, recall that GRASP did not perform
as good as IBHP in our evaluation w.r.t. the value of the best generated assortment,
see Sect. 7.3.1. Consequently, it obtains a smaller number of generated assortments
in total as its search is limited to a smaller solution subspace. This is in line with
the fact that the number of instances on which GRASP obtains the most assort-
ments decreases when considering only v-good assortments. Recall that we consider
v = (1 − ε)v∗, where v∗ is the best solution value found by any of the approaches,
which gives IBHP an advantage. The former observations may be explained by the
randomness regarding its improvement procedure, which can, in contrast to a more
guided approach like IBHP, be a drawback when considering instances with many
rectangles.

7.4 Evaluation with respect to diversity

Based on the results from the two previous subsections, we instantiated the generic
two-stage heuristic (2SH) with IBHP and the random exchange heuristic presented in
Sect. 6 and use MIP formulation EP09 for the instantiation of the MIQP model.

Next, we are going to compare the results of the solution approaches, discussed in
Sects. 5 and 6. Therefore, we generated instances of MDASP from the scaled 2D-KP
instances by setting m = 6, δ ∈ {δmin, δavg}, and v = (1 − ε)v∗ with ε = 0.05, i.e.,
we created two test instances for each container and set of rectangles. Hence, we ran
every solution approach on 2,398 instances ofMDASP. Recall that we always consider
v∗ to be equal to the value of the best generated assortment of the corresponding 2D-
KP instance, see Sect. 7.3.1. Thus, we ran the MIQP formulation, the corresponding
Benders decomposition approach (BD), and the two-stage heuristic for δmin as well
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Table 6 Number of instances on which the solution approaches obtained the best diversity w.r.t. δmin and
δavg

Package |R|min |R|max # Instances δmin δavg

MIQP BD 2SH MIQP BD 2SH

2dcsp 20 50 60 0 1 59 0 2 58

AH 1000 1000 360 0 0 360 0 0 360

area 33 500 6 0 0 6 0 0 6

beng 20 200 10 0 1 9 0 2 8

Burke 10 3152 13 1 1 10 1 1 10

bwmv 20 100 500 3 24 471 2 49 446

C 16 197 21 0 3 19 0 3 18

cgcut 16 62 3 0 0 3 0 0 3

CX 50 15,000 7 1 0 6 1 0 6

gcut 10 50 13 1 1 11 1 3 13

HC 7 21 6 1 4 0 2 6 0

leung 10 50 10 1 3 8 1 3 7

N 17 197 35 0 6 29 0 9 26

ngcut 7 22 12 4 8 2 7 12 2

Nice 25 1000 6 0 0 6 0 0 6

Nice36 100 5000 33 0 0 33 0 0 33

OKP 30 97 5 0 0 5 0 0 5

others 40 200 4 0 0 4 0 0 4

Path 25 1000 6 0 0 6 0 1 5

Path36 25 5000 33 0 0 33 0 1 32

PB 10 20 5 1 3 1 2 4 1

T 17 199 35 2 5 29 1 7 27

ZDF 580 75,032 16 0 0 14 0 0 16
∑

1199 15 60 1124 18 103 1,092

as for δavg . The detailed results we obtained can be found as a csv file at https://cloud.
zib.de/s/bn8bd7Wfwj5KgT9.

7.4.1 Evaluation with respect to ımin

First, we evaluate the results w.r.t. δmin . Here, the heuristic delivered the best results
on 1,124 of the 1,199 instances, i.e., on 93.7% of the instances and thus was the
best performing approach among all considered algorithms, see Table 6. The second-
best performing one in this context was the Benders approach, solving 60 instances
best, i.e., 5.0%. However, the MIQP formulation was able to solve ten instances to
optimality, while the heuristic obtained only four optimal selections, see Table 7.

When we consider the maximum number of rectangles contained in the instances
and investigate the single packages in more detail, one can observe that the heuristic
performs well on any type of test instance, and outperforms the other approaches on
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Table 7 Minimum and
maximum cardinality ofR of
the instances that are solved best
by the approaches w.r.t. δmin
and δavg

δmin δavg

MIQP BD 2SH MIQP BD 2SH

|R|max 50 29 25,032 50 120 75,032

|R|min 10 10 10 7 7 7

# Optimal 10 0 4 6 15 0

20 of the 23 packages. However, it performs less well on packages where the instances
consist only of few rectangles, see for example HC, ngcut, and PB. Meanwhile, the
Benders approach BD is especially strong when solving instances of this type and led
to the best results on small instances, even if the biggest instance on which it could
obtain the best diversity value consisted of 29 rectangles only. Furthermore, it was able
to generate the most diverse selections on all instance packages with 22 rectangles
or less. Finally, the biggest instance, w.r.t. the number of contained rectangles, for
which the most diverse solution was found by the MIQP formulation, consisted of 50
rectangles.

Possible reasons for these results are on the one hand that the exact approaches,
i.e., MIQP and BD, are likely to perform worse with an increasing number of rectan-
gles. However, the exact approaches benefit from their ability to choose “less dense”
assortments over “dense” ones. By this wemean that it may be advantageous to remove
rectangles from an assortment as long as it stays v-good in order to increase the diver-
sity of the selection. The two-stage heuristic relying on IBHP does not consider this as
it aims at filling up empty space in the constructed assortments by adding rectangles
as long as possible. Nevertheless, this ability seems to be advantageous for instances
with few rectangles and in particular for those, which were originally designed in a
way that nearly all rectangles can be placed.

7.4.2 Evaluation with respect to ıavg

For δavg , we make similar observations. Here, the heuristic obtained the best result
on 1,092 instances, while the Benders approach could solve slightly more instances
better than it did in the case of δmin , i.e., 8.6%. Thus, this approach seems to perform
better in the Average-Distance-Diversity case and its dominance on small instances
w.r.t. the cardinality of R intensifies. Meanwhile, the MIQP formulation could solve
nearly the same amount of instances, see Table 6. Additionally, the Benders approach
is now able to obtain the best result on instances with a size of up to 120 rectangles.

The obtained results can be explained analogously to the δmin case, with the addi-
tional comment that the Benders approach performed better when considering δavg

instead of δmin . This may be due to the corresponding objective functions. When we
are considering δmin , changing one assortment in a selection does often not affect the
overall diversity of the selection since the objective function aims at maximizing the
minimum distance between the assortments. However, for δavg , the goal is to maxi-
mize the sum of the distances between the assortments, so an exchange of assortments
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in a selection has nearly always a direct influence on the objective function. Hence,
the search, which relies on a branch-and-bound tree, is more guided in the latter case.

Thus, we conclude again that the two-stage algorithm using IBHP and the ran-
dom exchange heuristic is the best approach for deriving good solutions for MDASP
instances, but when considering the Average-Distance-Diversity and an instance con-
sisting of only a few rectangles, i.e., of less than 22, then the Benders approach is the
solution approach of choice.

7.5 Evaluation of upper bounds

Finally, we look at the bounds obtained by MIQPs UBmin and UBavg from Sect. 4.
Recall that UBmin is only valid for δmin , while UBavg determines a valid bound for
both diversity functions. It is important to note that any upper bound derived during
the solving process is also valid. The results can be found as a csv file at https://cloud.
zib.de/s/bn8bd7Wfwj5KgT9.

7.5.1 Evaluation with respect to ımin

We start our evaluation with a comparison of both bounds on the instances w.r.t. δmin .
Theminimumdistance between any bound and the best result of any solution approach
to MDASP is in both cases equal to 0, due to instance ngcut01 since the maximum
diversity that could be obtained coincides with the value of the bounds. Furthermore,
the maximum distance between the bounds and best obtained diversity is 1, as for
the biggest instances w.r.t. the number of contained rectangles, only selections with
diversity equal to 0 are obtained, while the bounds are equal to 1.

Concerning the average distance between the bounds and the best obtained diversity,
we can conclude that both bounds are nearly equally strong, with a slight advantage for
UBavg . But UBmin leads to better results on instances with less than 500 rectangles,
making it better suited for smaller instances, while UBavg performs best on instances
with |R| ≥ 500, seeTable 8. Furthermore,UBmin was the best bound for 552 instances,
and UBavg for 730 instances. On how many instances each bound performed best can
be found in Table 9.

Note that, due to Lemma 7, UBmin should take on smaller values than UBavg

but since not all bounds could obtain their optimal value, we end up with UBavg

determining better bounds than UBmin on more than half of the instances, see Table 9.
In fact, the MIQP formulations of UBmin and UBavg were only able to obtain optimal
solutions on 29 and 56 instances, respectively.

Onepossible explanationwhyUBavg obtainedbetter results thanUBmin could again
be due to the objective functions of the underlying MIQPs. While UBavg minimizes a
sum of variables, UBmin aims at minimizing a single value which often works worse
in practice.

7.5.2 Evaluation with respect to ıavg

Finally, we present the results obtained by UBavg for the instances w.r.t. δavg . The
minimum distance between UBavg and the value of a most diverse selection is again
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Table 9 Number of instances
per package on which the
presented bounds performed
best w.r.t. δmin

Package |R|min |R|max # Instances UBmin UBavg

2dcsp 20 50 60 44 33

AH 1000 1000 360 5 315

area 33 500 6 3 3

beng 20 200 10 10 3

Burke 10 3152 13 3 10

bwmv 20 100 500 240 271

C 16 197 21 20 2

cgcut 16 62 3 3 0

CX 50 15,000 7 4 6

gcut 10 50 13 9 4

HC 7 21 6 6 0

leung 10 50 10 9 1

N 17 197 35 34 1

ngcut 7 22 12 12 1

Nice 25 1000 6 6 1

Nice36 100 5000 33 17 23

OKP 30 97 5 5 3

others 40 200 4 4 2

Path 25 1000 6 1 5

Path36 25 5000 33 19 29

PB 10 20 5 5 0

T 17 199 35 30 5

ZDF 580 75,032 16 12 12

∅ 1199 552 730

equal to 0, due to instance ngcut01. We also obtain a maximum distance of 1 between
UBavg and the best diversity due to instance zdf16.

The average distances to the best obtained diversities generated by the solution
approaches to MDASP are depicted in the right column of Table 8. As expected, the
distances between UBavg and the value of the most diverse selection are smaller than
in the case of δmin since the diversity of a selection w.r.t. δavg is bigger than or equal
to its diversity w.r.t. δmin , see Lemma 3. Furthermore, UBavg seems to work best on
packages with instances consisting of 1,000 rectangles or less. Nevertheless, it also
obtains its biggest distance on a package with instances consisting of less than 100
rectangles, i.e., on packageOKP. This suggests that either the solution approaches fail
on determining selections with great diversity or that the relaxation of the conditions
that the considered assortments have to fulfill is too weak. But this issue occurs for the
bounds on δmin as well. However, with an average distance of 0.232 to all considered
instances, UBavg achieves better results for δavg than any bound on δmin .
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8 Conclusion and outlook

In this article, we introduced the Maximum Diversity Assortment Selection Problem
(MDASP), which is a novel generalization of the two-dimensional Knapsack Problem
(2D-KP). First, we mathematically defined MDASP and introduced two diversity-
functions for selections based on the Hamming distance. Afterwards, we presented an
overview of the literature focusing on its two inherent subproblems 2D-KP and MDP.
Next, we introduced two MIQPs that can be used to determine upper bounds on the
diversity of MDASP instances. Based on them, we presented an exact MIQP formu-
lation for MDASP, a Benders decomposition approach for it, as well as a generic
two-stage heuristic. Furthermore, we compared different solution approaches for
2D-KP with respect to the best assortment value and the number of generated assort-
ments. Finally, we investigated the presented solution approaches for MDASP with
respect to the maximum diverse selections they determined.

As amain result, the generic two-stage heuristic instantiatedwith IBHP and the ran-
dom exchange for MDP delivered the best results with respect to the diversity among
the presented solution approaches for MDASP. However, the Benders approaches led
to more diverse selections on instances consisting of only few rectangles, especially
with respect to δavg . Again, it is important to note that it is an exact algorithm, in
contrast to the heuristic.

There are many directions for further research concerning MDASP. First of all,
we are currently working on a possible improvement of the Benders decomposition
approach by using the algorithm presented by Fekete et al. (2007) for determining the
maximality of an assortment. Additionally, it would be beneficial to experiment with
other cuts than the no-good-cuts in order to improve the performance of the overall
Benders approach. For example, one could try to use a variant of “Combinatorial
Benders Cuts” as suggested by Côté et al. (2014). Additionally, it would be interesting
to test a sequence-pair representation based formulation within the presented MIQP
approaches and try to speed up the computations and improve the LP bound by that.

Furthermore, we are investigating the structures of the solutions created by the
different heuristics. The idea herewould be to combine them in order to further broaden
the variety in the set of generated v-good solutions. In this context, a modification of
the shift strategy of IBHP, adapting the strength of the GRASP heuristic for small
instances, would be of great advantage. Additionally, it would be interesting if a
heuristic exchange of rectangles with similar widths and heights could be integrated
into the current approaches in order to improve the diversity between the constructed
assortments.
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