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Abstract
Structural break tests are often applied as a pre-step to ensure the validity of subsequent
statistical analyses. Without any a priori knowledge of the type of breaks to expect,
eye-balling the data can indicate changes in some parameter, e.g., the mean. This,
however, can distort the result of a structural break test for that parameter, because the
data themselves suggested the hypothesis. In this paper, we formalize the eye-balling
procedure and theoretically derive the implied size distortion of the structural break
test. We also show that eye-balling a stretch of historical data for possible changes in
a parameter does not invalidate the subsequent procedure that monitors for structural
change in new incoming observations. An empirical application to Bitcoin returns
shows that taking into account the data-dredging bias, which is incurred by looking at
the data, can lead to different test decisions.

Keywords Data-dredging bias · Hypothesis test · Monitoring · Structural breaks

JEL Classification C12 (Hypothesis Testing) · C18 (Methodological Issues)

1 Motivation

The importance of plotting the data as a first step of a statistical analysis is stressed in
numerous textbooks (e.g., Ruppert and Matteson 2015; Brockwell and Davis 2016).
For instance, Brockwell and Davis (2016, p. 12) recommend time series plots to check
whether there are ‘any apparent sharp changes in behavior’. If such a change is present
in the data, yet is ignored in the subsequent analysis, the conclusions drawn from the
data may be invalid (see, e.g., Baltagi et al. 2013; Demetrescu and Hanck 2013; Har-
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144 Y. Hoga

vey et al. 2013; Xu 2015). For instance, Xu (2015) shows that if a structural break
in the error variances is ignored, standard tests for the the constancy of regression
coefficients suffer from size distortions—even asymptotically. To avoid such mislead-
ing test results, applying a formal structural break test is typically recommended as a
pre-step to the actual statistical analysis of the data.

However, one problem with the recommendation to look for ‘any apparent sharp
changes in behavior’ is that the decision to apply the structural break test has been
informed by the data. Hence, any change point test, if it is to be valid, needs to hold
size conditional on having looked at the data. Of course, such tests are exclusively
constructed to hold size unconditionally and, hence, suffer from size distortions if
applied otherwise. The first main aim of this paper is to quantify these size distortions
for structural break tests that are applied conditional on large deviations being observed
in the data. We show that these size distortions can become so large that a true null is
rejected with certainty.

This changes when one moves from a structural break context, where all data are
available in advance, to a monitoring context, where—after having observed some
training data—the data become available ‘as you go’ for sequential tests of parameter
stability. Of course, ex ante it may be unclear precisely which parameters to monitor
for constancy. One possibility may be to monitor a parameter, whose estimates have
fluctuated somewhat in the training data. Then, similarly as above, the monitoring
procedure needs to hold size conditionally on large fluctuations in the training data.
The second main aim of this paper is to show that, unlike for one-shot structural break
tests, this is indeed the case.

We mention that the issue of investigating the data to ‘decide’ which hypotheses to
test is an old one. Selvin and Stuart (1966) call this ‘hunting’, because the investigator
hunts for hypotheses to be tested based on the data. They illustrate the practice with
Pearson’s χ2 goodness-of-fit (GoF) test. In applications, a possible distribution for the
data is usually not chosen ex ante, but ex post by eye-balling a histogram. This practice
is to some extent unavoidable, as in our structural break example. Selvin and Stuart
(1966) conclude with regard to hunting that ‘the only criticism to be made is of the
delusion that one has to pay no price for the sport.’ Interestingly, while in general the
bias incurred by hunting—as in the GoF example—is hard to quantify, it is possible
for monitoring procedures and (up to a single unknown parameter) also for structural
break tests.

Even outside the statistical literature, testing hypothesis on the same data that
inspired it is known to be harmful. In the social sciences, Kerr (1998) calls this HARK-
ing (Hypothesizing After the Results are Known) and defines it as presenting a post
hoc hypothesis (i.e., one informed by the collected data) as an a priori hypothesis.
Among others, Simmons et al. (2011) and Gelman and Loken (2014) point out that
data analyses in the social sciences are often driven by the observed data, and show
that this contributes—among other factors—to the prevalence of false negatives in
published work (which is a finding that has led to the so-called replication crisis).
This is as in our one-shot structural break setting, where the data-inspired hypothesis
(‘there is a structural break in the data’) is more likely to be accepted evenwhenwrong,
producing a false negative.
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Quantifying the data-dredging bias 145

The remainder of the paper proceeds as follows. Section 2 states and discusses
the main theoretical results of this paper. The proofs of these results are deferred to
the Appendix. An empirical application to Bitcoin returns in Sect. 3 demonstrates
that if the decision to apply a structural break test is made conditional on the data,
different results may be obtained when this fact is taken into account. The final Sect. 4
concludes.

2 Main results

2.1 Structural break tests

Let X1, . . . , Xn denote the (possibly multivariate) observations to be tested for a
structural break in some scalar parameter γi of their respective distribution function Fi
(i = 1, . . . , n). For instance, γi may be themean or the variance of a component series,
or it may denote the correlation or tail dependence coefficient of two components of
the series. Structural break tests for these parameters are well-established (see, e.g.,
Inclan and Tiao 1994; Vogelsang 1998; Wied et al. 2012; Hoga 2018). Interest in
change point tests focuses on the null hypothesis

HS
0 : γ = γ1 = · · · = γn,

i.e., the constancy of the parameter γ over time.
Let γ̂ (0, t) denote an estimate of γ based on the subsample X1, . . . , X�nt�. Here, �·�

rounds down to the nearest integer. Further, let D[0, 1] denote the space of real-valued
functions on [0, 1] that possess left-hand limits and are right-continuous (Davidson
1994). We make the following high-level assumption under HS

0 :

Assumption 1 It holds that, as n → ∞,

t
√

kn
[

γ̂ (0, t) − γ
] d−→ σW (t) inD[0, 1],

where σ > 0, kn → ∞, and {W (t)}t∈[0,1] denotes a standard Brownian motion.

Such a functional central limit theorem has been shown to hold for many param-
eters. For the leading case kn = n, it holds (e.g.) for the mean (Davidson 1994), the
variance (Wied et al. 2012), correlation (Wied et al. 2012) and Kendall’s tau (Dehling
et al. 2017). For extreme value quantities, whose estimators typically depend only on
a vanishing fraction of the sample, a scaling different from

√
n is required in Assump-

tion 1. For instance, Assumption 1 holds for the tail index (Hoga 2017a), an extreme
quantile estimator (Hoga 2017b) and the tail dependence coefficient (Hoga 2018) for
some kn = o(n). For feasible break testing, the nuisance parameter σ in Assumption 1
needs to be estimated consistently. To that end, we impose the following assumption
under HS

0 :

Assumption 2 There exists an estimator σ̂ satisfying σ̂
p−→ σ , as n → ∞.
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146 Y. Hoga

The usual recursive test statistic for testingHS
0 is

Tn = 1

σ̂
sup

t∈[0,1]

∣

∣

∣t
√

kn
[

γ̂ (0, t) − γ̂ (0, 1)
]

∣

∣

∣

d−→ sup
t∈[0,1]

|W (t) − tW (1)| , n → ∞,(1)

where the convergence follows fromAssumptions 1 and 2 and the continuousmapping
theorem together with Slutsky’s theorem (Davidson 1994). Here, fluctuations in the
recursive parameter estimates γ̂ (0, t) that deviate ‘too much’ from the full-sample
estimate γ̂ (0, 1) are taken as evidence against the null. Based on the (1− α)-quantile
cSα of the limiting distribution in (1), we reject HS

0 at significance level α ∈ (0, 1) if
Tn > cSα , since from (1)

Pr
{

Tn > cSα
}

−→ α, n → ∞. (2)

However, often the decision to apply a structural break test (usually to validate the
intended subsequent statistical analysis) is not made before the data have been col-
lected. Rather, as pointed out in the Motivation, it is made afterwards based on having
observed some large deviations in the series. This eye-balling may be formalized as
testing if and only if t |γ̂ (0, t) − γ̂ (0, 1)|/σ̂ > δ/

√
kn for some t ∈ [0, 1], where

the ‘if and only if’-part of course constitutes a crude approximation. Here, the pre-
factor t discounts a large deviation that is based on very few data points for small t ; the
inclusion of

√
kn reflects smaller expected fluctuations in larger samples; σ̂ 2 estimates

the asymptotic variance of γ̂ (0, 1) and, hence, reflects estimation uncertainty; finally,
δ > 0 determines the (unknown) sensitivity of the visual inspection. In other words,
δ is the parameter for which eye-balling for changes can be best approximated by the
conditioning event {supt∈[0,1] t |γ̂ (0, t) − γ̂ (0, 1)|/σ̂ > δ/

√
kn}.

Of course, this approximation of the eye-balling heuristic may not be perfect, but
we argue that it is close enough to be interesting. For instance, plots of t �→ γ̂ (0, t)
are often used as a diagnostic tool indicating structural change; see, e.g., Quintos et
al. (2001, Fig. 3) or Wied et al. (2012, Fig. 1). For obvious reasons, we call the above
procedure ‘formalized’ eye-balling.

Now, carrying out the structural break test if only if t |γ̂ (0, t)−γ̂ (0, 1)|/σ̂ > δ/
√
kn

for some t ∈ [0, 1], the probability that should be controlled is

Pr

{

Tn > cSα

∣

∣

∣

∣

1

σ̂
sup

t∈[0,1]
{t |γ̂ (0, t) − γ̂ (0, 1)|} > δ/

√

kn

}

, (3)

and not Pr
{

Tn > cSα
}

as in (2). Of course, the conditioning event in the above proba-
bility may also be written as {Tn > δ}. We prefer to write it as in (3) to emphasize the
‘formalized’ eye-balling rationale of the conditioning.

Remark 1 To appreciate the difference between the conditional and unconditional
approach, consider trajectories X (b)

1 , . . . , X (b)
n (b = 1, . . . , B) for which (2) holds

underHS
0 . Then, for sufficiently large n, one expects to rejectHS

0 in the unconditional
procedure for Bα of these trajectories. In contrast, the conditional approach considers
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Quantifying the data-dredging bias 147

only those, say k, trajectories {X (bi )
1 , . . . , X (bi )

n }i=1,...,k with visually apparent indica-
tions of change, i.e., those trajectories satisfying supt∈[0,1] {t |γ̂ (0, t) − γ̂ (0, 1)|}/σ̂ >

δ/
√
kn . If one rejectsHS

0 for each of these k trajectories where the test statistic exceeds
cSα , one cannot expect a rejection in (the desired number of) kα cases, but instead the
number of rejections is much higher, since only trajectories with large fluctuations are
considered in the first place.

Formally, the asymptotic rejection probability is given by the following

Theorem 1 Suppose Assumptions 1 and 2 hold. Then, under HS
0 , as n → ∞,

Pr

{

Tn > cSα

∣

∣

∣

∣

1

σ̂
sup

t∈[0,1]
{t |γ̂ (0, t) − γ̂ (0, 1)|} > δ/

√

kn

}

−→
{

1, δ > cSα,
α
f (δ) , δ ≤ cSα,

(4)

where f (x) = 2
∑∞

n=1(−1)n−1 exp{−2n2x2} = Pr
{

supt∈[0,1] |W (t) − tW (1)| ≥ x
}

∈ [0, 1].
As a simple application of the elementary conditional probability formula, the

proof of Theorem 1 is almost trivial. The main insight afforded by Theorem 1 is
that the textbook recommendation to look for ‘any apparent changes in behavior’
(Brockwell and Davis 2016, p. 12) should come with a warning that, if the formal
structural break test is applied as usual (i.e., with the same critical value cSα suggested
by the unconditional test), it rejects the null more often than it should. Moreover, the
influence of the conditioning can be quantified up to the parameter δ. This is in contrast
to the example of GoF tests mentioned in the Motivation. There, the act of looking
at a histogram and spotting a resemblance with some parametric distribution is much
harder to formalize and, hence, the impact on a subsequent GoF test much harder to
quantify.

Specifically, Theorem 1 formalizes the intuition that if there is preliminary (‘for-
malized’ eye-balling) evidence in the data that a null hypothesis is false, then that null
is more likely to be rejected, because the other cases—where there is no preliminary
evidence—are not considered. Since the conditioning event in (4) may be equivalently
written as {Tn > δ}, it is clear that, in case δ > cSα , the true null is rejected not only
asymptotically with probability one, but even almost surely in finite samples. Even for
a less stringent testing condition with δ ≤ cSα the conditional (asymptotic) rejection
probability under the null, α/ f (δ), is larger than α. Only when δ = 0, i.e., when there
is no conditioning, is the desired type I error rate of α attained.

Nonetheless, if δ is known (which is typically not the case), there is a way to keep
a desired confidence level α even in the conditional test. For a fixed δ > 0, one simply
chooses α∗ = α f (δ) ∈ (0, α). Then, by (4),

Pr

{

Tn > cSα∗
∣

∣

∣

∣

1

σ̂
sup

t∈[0,1]
{t |γ̂ (0, t) − γ̂ (0, 1)|} > δ/

√

kn

}

−→ α∗/ f (δ) = α, n → ∞.

This means that when the test is only applied if the data provide preliminary evidence
for a structural break, the resulting bias can be corrected by suitably lowering the
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148 Y. Hoga

confidence level of the critical value. In spirit, this is similar to the usual pre-testing
strategy of (suitably) lowering the significance level that avoids inflating type I error
(Giles and Giles 1993).

Remark 2 Theorem 1 only investigates the behavior of the test under the null and
shows it to be oversized. In line with the well-known tradeoff between type I- and type
II-error, this suggests that the test has higher power under the alternative. We refrain
from formally investigating the (local) power of the test, as it is does not hold size and,
hence, is not a valid statistical test.

2.2 Monitoring parameter changes

Let X1, . . . , Xn denote the variables in the training period that are available prior
to monitoring. The goal in monitoring is to detect breaks in some parameter as new
observations Xn+1, Xn+2, . . . become available, and to do so as quickly as possible.
Formally, interest in monitoring centers on sequentially testing

HM
0 : γ = γn+1 = γn+2 = · · ·

given the non-contamination assumption γ = γ1 = · · · = γn , which imposes struc-
tural stability in the training period. Of course, non-contamination can be tested using
the methods of Sect. 2.1. We consider so-called closed-end procedures, where moni-
toring stops after Xn+1, . . . , X�nT � (1 < T < ∞) have been observed.

Let γ̂ (a, b) denote a γ -estimate based on X�na�+1, . . . , X�nb� (0 ≤ a < b ≤ T ).
Define D2[0, T ] as the space of all R2-valued functions on [0, T ] that are right-
continuous with left-hand limits in each component (Davidson 1994). The following
condition is the analogue of Assumption 1 and has likewise been shown to hold for
various estimators (see, e.g., Hoga and Wied (2017)).

Assumption 3 It holds that, as n → ∞,

√

kn

(

t[γ̂ (0, t) − γ ]
t0[γ̂ (t, t + t0) − γ ]

)

d−→ σ

(

W (t)
W (t + t0) − W (t)

)

in D2[0, T − t0],

where σ > 0, t0 > 0, T > max{t0, 1}, and {W (t)}t∈[0,T ] denotes a standard Brownian
motion.

We base monitoring on the moving-sum detector

Mn(t) = 1

σ̂

∣

∣

∣t0
√

kn[γ̂ (t, t + t0) − γ̂ (0, 1)]
∣

∣

∣ , t ∈ [1, T − t0],

where the estimator σ̂ from Assumption 2 is typically calculated from the non-
contaminated training data. The idea behind Mn(t) is that large deviations between
γ̂ (t, t + t0) and the non-contaminated estimate γ̂ (0, 1) indicate a structural change
in the monitoring period. Again by the continuous mapping theorem and Slutzky’s
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Quantifying the data-dredging bias 149

lemma, it follows under Assumptions 2 and 3 that

sup
t∈[1,T−t0]

Mn(t)
d−→ sup

t∈[1,T−t0]
|W (t + t0) − W (t) − t0W (1)| .

Thus, we rejectHM
0 at significance level α ∈ (0, 1) as soon as Mn(t) > cMα for some

t > 1, where cMα is implicitly defined by

Pr

{

sup
t∈[1,T−t0]

|W (t + t0) − W (t) − t0W (1)| > cMα

}

= α.

Hence, one controls the asymptotic probability

Pr

{

sup
t∈[1,T−t0]

Mn(t) > cMα

}

−→ α, n → ∞. (5)

When deciding which parameters tomonitor, onemay choose those whose subsam-
ple estimates have exhibited somevariation in the training period. This again leads us to
consider monitoring for change conditional on supt∈[0,1] {t |γ̂ (0, t) − γ̂ (0, 1)|}/σ̂ >

δ/
√
kn for some δ > 0. As before, the parameter δ is unknown, depending on the sen-

sitivity of the visual inspection by the practitioner. When monitoring conditionally on
having observed some noticeable variation in the training period, one should control

Pr

{

sup
t∈[1,T−t0]

Mn(t) > cMα

∣

∣

∣

∣

1

σ̂
sup

t∈[0,1]
{t |γ̂ (0, t) − γ̂ (0, 1)|} > δ/

√

kn

}

. (6)

If δ could actively be chosen in practice, it should not be chosen too large (larger than
some critical value cSα), because this would already be evidence against γ1 = · · · = γn
(cf. (2)), violating the non-contamination assumption. However, the conditioning in
(6) does not matter asymptotically for monitoring, as shown next.

Theorem 2 Suppose Assumptions 2 and 3 hold. Then, under HM
0 , as n → ∞,

Pr

{

sup
t∈[1,T−t0]

Mn(t) > cMα

∣

∣

∣

∣

1

σ̂
sup

t∈[0,1]
{t |γ̂ (0, t) − γ̂ (0, 1)|} > δ/

√

kn

}

−→ α. (7)

Theorem 2 shows that when the training data inspire a test of HM
0 , the monitoring

procedure can be applied as usual, i.e., with the same boundary cMα as in (5). This
result is reminiscent of the intuition that, while one cannot (without modification at
least) use the same data that inspired a hypothesis to test it, one can simply wait for
fresh (out-of-sample) data to verify it. The limit in (7) would trivially obtain if the
two events in the probability were independent. Yet, this is not the case, as γ̂ (0, 1) is
common to both events, and the underlying Xt ’s may be serially dependent across the
training and monitoring period.
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150 Y. Hoga

Remark 3 The conclusion of Theorem 2 does not depend on the type of detector used.
For instance, using the expanding sum detector En(t) = 1

σ̂
|(t − 1)

√
kn[γ̂ (1, t) −

γ̂ (0, 1)]|would—under a suitable analogue of Assumption 3—lead to the same result.
We omit details for brevity.

Remark 4 Reconsider the set-up of Remark 1. Suppose Assumptions 2 and 3 hold
for the (continued) simulated trajectories X (b)

1 , . . . , X (b)
n , X (b)

n+1, . . . (b = 1, . . . , B).
Then, in sufficiently large samples, one expects to rejectHM

0 based on unconditional
testing for roughly α% of all trajectories; see (5). (This is as in the structural break
setting of Sect. 2.1, where one also rejectsHS

0 for α%of all trajectories.) If monitoring
is done conditionally, then one expects to rejectHM

0 for α% of the k trajectories satis-
fying the conditioning event. (This contrasts with the structural break tests, where—in
the conditional setting—HS

0 is rejected for α/ f (min{δ, α})% of said k trajectories.)
Hence, while (5) and (7) suggest an equal number of type I errors asymptotically,
the trajectories tested are different—in unconditional monitoring all trajectories are
considered, whereas conditional monitoring only considers the fraction, where the
condition is met.

Remark 5 The result illustrated in Remark 4 for the different conditional rejection
probabilities in structural break testing and monitoring has some analogy with the
following example. Suppose a coin comes up heads 9 out of 10 times. This then
raises some suspicion of the fairness of the coin. The data-inspired hypothesis that
the coin is unfair, is then more likely to be accepted as true when tested on the same
observations. (This result is analogous to Theorem 1.) However, tossing the same coin
again 10 times, the ‘unfair coin’ hypothesis—suggested by the first 10 throws—can be
tested on fresh data as if no conditioning took place. (This is analogous to Theorem 2,
where out-of-sample data become available for monitoring.) Of course, while fresh
data is also used in testing HM

0 , the monitoring situation is more complex than the
coin flip example. First, data may be serially dependent in Theorem 2. Second, γ̂ (0, 1)
appears in both the detector Mn(t) and the conditioning event in (6).

3 Empirical application

Here, we illustrate the practical implications of Theorems 1 and 2 . We do so using
Bitcoin log-returns X1, . . . , Xn from 01/01/2016 to 31/12/2019, giving n = 1, 461
observations.1 Böhme et al. (2015) provide a comprehensive review of the crypto-
currency. Due to the rising popularity of crypto-currencies, much research effort has
been devoted to studying Bitcoin, which represents the largest market share among
all crypto-currencies. For instance, Urquhart (2016) investigates the efficiency of the
Bitcoin market using, among others, a classical Ljung–Box test. Most tests (including
Ljung–Box tests) rely on the absence of structural breaks for their validity. However,
as Bitcoins represent a new asset class, ex ante knowledge of the parameters that may
change (e.g., mean, variance, higher order moments, tail index, autocorrelations, etc.)
is hard to justify. Testing for change in all conceivable parameters invariably inflates

1 The data were downloaded from finance.yahoo.com (Ticker Symbol: BTC-USD).
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Quantifying the data-dredging bias 151

type I errors, due to multiple testing issues. So it seems natural to only test for breaks
in parameters that have fluctuated noticeably in the data. Hence, in the following,
we test for breaks in parameters, where ‘formalized’ eye-balling—as described in
Sect. 2.1—indicates a possible change.

We exemplarily consider the first two moments as the most important parameters
determining location and scale. On stretches of stationarity in the data, Assumptions 1–
3 are then likely to be satisfied by theBitcoin log-returns. This is becauseGARCH-type
volatility models have been successfully used in modeling Bitcoin returns (Cheah and
Fry 2015). Carrasco and Chen (2002) show that several GARCH models are mixing
with rates implying suitable functional central limit theorems in Assumptions 1 and 3
to hold (Herrndorf 1985). Likewise the mixing conditions are sufficient for consistent
estimation of the long-run variance σ 2 in Assumption 2 (De Jong and Davidson 2000).

Fix the significance level at α = 0.05. In the ‘standard’ eye-balling method, one
would plot the series of log-returns, and look for preliminary evidence of parameter
change. If such evidence is found, the series would then be subjected to a formal level-
α test, without reflecting in the test that the data themselves suggested the hypothesis.
Alternatively, we use the ‘formalized’ eye-balling approach and assume that visually
inspecting the time series for abrupt changes inspires a subsequent test if and only if√

n
σ̂

supt∈[0,1] {t |γ̂ (0, t) − γ̂ (0, 1)|} exceeds δ. Of course, δ is unknown in practice, but
for illustrative purposes we assume here that it equals the 20%-critical value, i.e., δ =
cSα=0.2 = 1.073. Thus, we apply a test to one of the two parameters—first and second
moments—if the corresponding value of Tn is larger than δ. Without any modification
of the significance level α, this would yield a test of level α/ f (δ) = α/0.2 = 25% by
Theorem 1. By the same theorem, a (conditional) level-α test is however obtained, if
we reject when Tn > cSα∗ = 1.628 for α∗ = α f (δ) = 0.2α = 0.01.

Figure 1 displays the price process and the log-returns of Bitcoin. The prices seem
to indicate returns with positive mean until the peak on December 16, 2017, and a
negative mean in the year thereafter. This strongly suggests the need for a more formal

test of a constant mean. Define SMn (t) =
√
n

σ̂M t |γ̂ M (0, t) − γ̂ M (0, 1)|, where γ̂ M (0, t)

denotes the sample mean of X1, . . . , X�nt�, and σ̂ M is a HAC estimator with Bartlett
kernel and bandwidth �log n�. As the test statistic T M

n = supt∈[0,1] SMn (t) = 1.578 is
larger than the critical value cSα=0.05 = 1.358, the null of a constant mean is rejected.
However, this test incurs a not-accounted-for bias, because the mean break hypothesis
was suggested by the same data that were used for testing.

To account for this bias, we apply the ‘formalized’ eye-balling technique next.
The test statistic for a mean change is larger than δ (T M

n = 1.578 > 1.073 = δ).
Conditional on this result, a level-α test rejects if T M

n > 1.628. Hence, we do not
reject the constant mean hypothesis at a 5%-significance level using the conditional
test.

The plot of t �→ SMn (t) in Fig. 1 graphically illustrates the conflicting results. The
red dotted lines indicate the ‘incorrect’ critical value cSα=0.05 = 1.358 and the ‘correct’
cSα=0.01 = 1.628.While the ‘incorrect’ value is exceeded by SMn (t), the ‘correct’ value
is not. The additional evidence required to exceed the ‘correct’ critical value can be
seen as a compensation for the fact that the data themselves indicated the mean break
hypothesis.
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Fig. 1 From top to bottom: Bitcoin prices in US $, log-returns, plots of t �→ SMn (t) and t �→ SVn (t). The
dashed red lines in the bottom two panels indicate the 1%- and 5%-critical values cSα=0.01 = 1.628 and

cS
α=0.05 = 1.358

The valid conditional test did not reject the constant mean hypothesis. Nonetheless,
the persistence in the price process observed in Fig. 1 indicates the possibility of mean
changes. This suggests that it may be useful to monitor for breaks in the mean starting
in 2020. For instance, in a risk management context, it is particularly important to
detect downward breaks in the mean to avoid losses. The implication of Theorem 2
is that such a monitoring procedure can be applied as if it had not been Fig. 1 that
suggested the hypothesis.

As the conditional test did not reject the null of a constant mean, we may validly
apply a test for a change in the variance by testing for the constancy of secondmoments.

Define SVn (t) =
√
n

σ̂ V t |γ̂ V (0, t) − γ̂ M (0, 1)|, where γ̂ V (0, t) denotes the sample mean

of X2
1, . . . , X

2�nt�, and σ̂ V again denotes a HAC estimator (with Bartlett kernel and

bandwidth �log n�) for the asymptotic variance of γ̂ V (0, 1). The test statistic for a
variance change is once more larger than δ (T V

n = supt∈[0,1] SVn (t) = 1.692 >

1.073 = δ). Conditional on this result, a level-α test rejects the null of a constant
variance, as T V

n = 1.692 > 1.628. Of course, in this case the ‘naive’ test also would
have led to a rejection (because T V

n = 1.692 > 1.358 = cSα=0.05). The plot of
t �→ SVn (t) in Fig. 1 illustrates the result. It also allows to date the (most prominent)
break somewhere around the first half of 2017, where the largest values of SVn (t)
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are attained. Of course, as the variance is not even constant in the training period,
monitoring (using Theorem 2) should not be carried out, due to structural change
contaminating the training period.

The evidence for a break in the variance of Bitcoin returns suggests that either
statistical analyses (such as Ljung–Box tests used to assess market efficiency) need to
be robust to unconditional heteroscedasticity or the analyses have to be restricted to
break-free subsamples.

4 Conclusion

More often than not, hypotheses are generated by data. While, in general, fresh data
is desirable to validly verify a hypothesis, in some applications hypotheses need to
be tested on the same data that generated it (e.g., the structural break hypothesis for
the Bitcoin returns from 2016 to 2019). In situations like these, the bias of having
looked at the data before hypotheses are formulated can frequently not be corrected,
e.g., in goodness-of-fit testing. We show in this note that a correction is theoretically
possible for structural break tests, if the critical value is suitably increased—with the
increase depending on a single unknown constant. This provides one further reason
for the use of large critical values or, equivalently, small significance levels, that
has also been advocated elsewhere (Benjamin 2018). Furthermore, this shows that
the textbook recommendation to visually inspect the data for breaks should carry a
warning that subsequent formal structural break tests need to take into account that the
break hypothesis was suggested by the data. By contrast, whenmonitoring parameters,
‘hypotheses’ generated from the training data can be tested without any correction.
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Appendix

Proof of Theorem 1 We use the elementary conditional probability formula to write

Pr

{

Tn > cSα

∣

∣

∣

∣

1

σ̂
sup

t∈[0,1]
{t |γ̂ (0, t) − γ̂ (0, 1)|} > δ/

√

kn

}
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= Pr
{

Tn > cSα
∣

∣ Tn > δ
}

= Pr
{

Tn > cSα, Tn > δ
}

/Pr {Tn > δ}
= Pr

{

Tn > max{cSα, δ}
}

/Pr {Tn > δ} .

The conclusion now follows from (1) and Proposition 12.3.4 of Dudley (2004). �


Proof of Theorem 2 From the continuous mapping theorem, Slutzky’s lemma and
Assumptions 2 and 3, we obtain, as n → ∞,

Pr

{

sup
t∈[1,T−t0]

Mn(t) > cMα

∣

∣

∣

∣

1

σ̂
sup

t∈[0,1]
{t |γ̂ (0, t) − γ̂ (0, 1)|} > δ/

√

kn

}

=
Pr

{

supt∈[1,T−t0]
1
σ̂

∣

∣t0
√
kn[γ̂ (t, t + t0) − γ̂ (0, 1)]∣∣ > cMα ,

√
kn
σ̂

supt∈[0,1] |t[γ̂ (0, t) − γ̂ (0, 1)]| > δ
}

Pr
{ √

kn
σ̂

supt∈[0,1] |t[γ̂ (0, t) − γ̂ (0, 1)]| > δ
}

−→ Pr
{

supt∈[1,T−t0] |W (t + t0) − W (t) − t0W (1)| > cMα , supt∈[0,1] |W (t) − tW (1)| > δ
}

Pr
{

supt∈[0,1] |W (t) − tW (1)| > δ
} .

(A.1)

The processes {W (t + t0)−W (t)− t0W (1)}t∈[1,T−t0] and {W (s)− sW (1)}s∈[0,1] are
independent, because they are both Gaussian and uncorrelated:

E
{

[

W (t + t0) − W (t) − t0W (1)
][

W (s) − sW (1)
]

}

= min{t + t0, s} − smin{t + t0, 1} − min{t, s} + smin{t, 1} − t0 min{1, s} + t0smin{1, 1}
= s − s − s + s − t0s + t0s = 0.

Hence, the suprema in the numerator of (A.1) are independent, and the ratio in (A.1)
reduces to

Pr

{

sup
t∈[1,T−t0]

|W (t + t0) − W (t) − t0W (1)| > cMα

}

= α

by definition of cMα . The conclusion follows. �
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