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Abstract
Phosphates, and especially potash, play an essential role in the increase in crop 
yields. Potash is mined in Germany in underground mines using a conventional 
drill-and-blast technique. The most commercially valuable mineral contained in 
potash is the potassium chloride that is separated from the potash in aboveground 
processing plants. The processing plants perform economically best if the amount 
of potassium contained in the output is equal to a specific value, the so-called opti-
mal operating point. Therefore, quality-oriented extraction plays a decisive role in 
reducing processing costs. In this paper, we mathematically formulate a block selec-
tion and sequencing problem with a quality-oriented objective function that aims 
at an even extraction of potash regarding the potassium content. We, thereby, have 
to observe some precedence relations, maximum and minimum limits of the out-
put, and a quality tolerance range within a given planning horizon. We model the 
problem as a mixed-integer nonlinear program which is then linearized. We show 
that our problem is NP-hard in the strong sense with the result that a MILP-solver 
cannot find feasible solutions for the most challenging problem instances at hand. 
Accordingly, we develop a problem-specific constructive heuristic that finds feasible 
solutions for each of our test instances. A comprehensive experimental performance 
analysis shows that a sophisticated combination of the proposed heuristic with the 
mathematical program improves the feasible solutions achieved by the heuristic, on 
average, by 92.5%.
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1  Introduction

This paper considers one of the biggest German potash mines. In Germany, the pot-
ash ores are generally found in deep deposits. Hence, potash mines are typically 
underground mines with an area-wide expansion of the deposit, a so-called flat-bed-
ded deposit. According to Musingwini (2016), optimization in underground mine 
planning is not as well developed and widely applied as in open pit mine planning, 
although the logic of the planning is the same. O’Sullivan et al. (2015) state by com-
paring the common mathematical formulations for both open-pit and underground 
mining that scheduling in underground mines is more complex than the scheduling 
in the open-pit mines based on the complex structure of precedence constraints, the 
characteristics of the operations and activities, and the irregularity of the size and 
shape of the blocks. Musingwini indicates that the main reason for the complexity 
difference between open-pit and underground mine planning is that the direction of 
mining in open-pit mines is essentially down and outward to the pit limits. However, 
in underground mines, there are numerous permutations of the direction of mining 
depending on the mining method chosen.

The mostly applied extraction method for flat-bedded deposits of limited thick-
ness is a drill-and-blast technique using the room-and-pillar mining method. By the 
use of the room-and-pillar mining method, the material is extracted across a hori-
zontal plane, and pillars, arranged in regular patterns, are left for support purposes. 
Thus, a grid-like structure is formed, as demonstrated in Fig.  1 (Hamrin 2001; 
Schulze et al. 2016).

By employing a conventional drill-and-blast technique, the mining activities are 
conducted at the salt faces (cf. Fig. 1). At each salt face, the following discrete steps 
(mining operations) must be processed in chronological order (K+S 2013): 

1.	 scaling the mine roof and sidewalls,
2.	 removing the scaled material,
3.	 bolting the roof with anchors,
4.	 drilling large diameter boreholes,
5.	 removing drilling dust,

Fig. 1   Grid structure caused 
by the room-and-pillar mining 
method. Reprinted from Schulze 
et al. (2016)
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6.	 drilling blast holes,
7.	 filling blast holes with explosive substances,
8.	 blasting,
9.	 transporting broken material to a feeder breaker.

During mining operation  4 (see the enumerated list above), large drill jumbos 
drill three adjacent horizontal boreholes with a diameter of 0.28 m and a length 
of 7 m at each salt face. The large boreholes act in particular as a direction guide-
line for blasting. After the detonation (mining operation 8), chambers, so-called 
rooms, are created in the direction of the mining activity (cf. Fig. 1). The height 
and the width of the exploded area are then scaled based on a given plan. Thus, 
after each detonation, a three-dimensional block of potash is removed, and a new 
room of the same size arises. During mining operation 9, the raw material is 
delivered using loaders from each salt face to a feeder breaker, where the lumps 
are broken. After completing mining operations 1 to 9, the position of the cur-
rent salt face is shifted by the respective block’s length, exposing a new salt face, 
which can be operated on directly afterward.

The onward transportation of crude materials from feeder breakers takes place 
using a conveyor belt system to a bunker near the shaft. The excavated crushed 
potash is transported from the bunker through the shaft to the surface. The pot-
ash ores are rich in potassium chloride, sodium chloride, and different associ-
ated minerals. Potassium chloride is a valuable salt that is mainly used as a fer-
tilizer. Furthermore, it is an integral additive in the chemical, medical as well 
as human and animal food-processing industry (Chesworth 2008; USGS 2011; 
Schulze et  al. 2016). After transporting the crude salt to the surface, potassium 
chloride is separated from the extracted potash by flotation, recrystallization, 
or electrostatic separation in aboveground processing plants. For each technical 
device, there is an optimal operating point at which the device has the best per-
formance. This point can be determined based on various factors. The processing 
plants above ground can be most cost-effectively utilized if the amount of potas-
sium contained in the extracted material is equal to a specific value. The equiva-
lent content of potassium oxide is often reported to indicate the percentage of 
potassium by weight in the potassium chloride, where 100% potassium chloride is 
precisely equal to 63.17% potassium oxide (cf. Heinz and von der Osten 1982, p. 
147). As mentioned, at a salt face, a block of potash can be unearthed. For each 
block, the amount of potash is measured according to the dimensions of the exca-
vation. Moreover, the potassium contained in each block of potash in percent is 
determined based on geological investigations. The percentage of potassium con-
tained in the extracted potash from a block is defined as the quality value of the 
corresponding block. Accordingly, the quality value of a block multiplied by the 
amount of potash obtained from that block determines the amount of potassium 
contained. In general, the blocks are different regarding the amount and the qual-
ity value of the potash contained. Moreover, not all the available salt faces and 
the corresponding blocks can be mined within a given planning horizon. There-
fore, the quality of the amount of potash extracted within different time intervals 
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strongly depends on the selected blocks and the sequence of the extraction. Vast 
fluctuations in the quality value result in non-homogeneous output that leads to 
high costs for aboveground processing. Because quality fluctuations occur fre-
quently owing to the way in which the potash is extracted, quality-oriented min-
ing of blocks plays a decisive role in reducing the processing costs.

Newman et  al. (2010) classify the existing approaches and models in mining 
companies according to the planning horizon or the hierarchy level into long-term 
(strategic), medium-term (tactical), and medium- and short-term (tactical-operative) 
problems. In this paper, we consider a medium-term planning horizon. Within the 
planning horizon, we want to have a homogeneous output regarding the quality value 
of the extracted potash. More precisely, the quality value of the extracted material 
should deviate as little as possible from a given quality target value so that the min-
eral processing above ground is conducted economically. In this regard, we want to 
answer two questions: 1. which block should be excavated (i.e., block selection), and 
2.  if a block is extracted, the time at which it is extracted (i.e., block sequencing). 
Taken together, we solve a block selection and sequencing problem with a quality-
oriented objective function at a tactical planning level. For our problem, precedence 
relations, maximum and minimum limits of the output, and a quality tolerance range 
have to be taken into account.

The remainder of the paper is organized as follows: In Sect. 2, the characteriza-
tion of the problem at hand and a literature review are given. Sect. 3 introduces a 
mathematical formulation for our problem. Since some constraints are not linear, 
more decision variables and constraints are introduced to linearize the mathematical 
program. Subsequently, we show that our problem is NP-hard in the strong sense. 
Accordingly, in Sect. 4, we devise a constructive heuristic, which is embedded in 
a multi-start environment and provides good, feasible solutions for the problem 
through a sophisticated time-saving procedure. In Sect. 5, based on some generated 
realistic problem instances, we compare the introduced mathematical program and 
the proposed constructive heuristic. We also show if we solve our problem heuristi-
cally and use the feasible solution found as an initial solution for the mathematical 
program, we obtain much better results, especially for large and challenging prob-
lem instances. The paper concludes with a summary of the achieved results and an 
outlook on future research in Sect. 6.

2 � Problem specification and related literature

For a proper operation, from a geographical point of view, underground mines are 
usually divided into smaller spatial areas, so-called mining districts. Accordingly, 
an underground potash mine has, on average, up to 5  mining districts. The area 
of a mining district may be several square kilometers. Due to this spatial expan-
sion, several tipple areas are constructed for a mining district to divide the area into 
smaller parts avoiding long transportation routes. In each mining district, depend-
ing on its area, 4 to 6 tipple areas are involved. In a tipple area, a feeder breaker is 
installed, where the lumps of the extracted potash in that tipple area are delivered 
to and crushed. As mentioned, the mining operations are conducted at a salt face. 
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Subsequently, the detonation occurs in the mining direction, in which a block of pot-
ash is extracted. After mining operation 8 (blasting), a three-dimensional block of 
potash with the known dimensions is removed, and a room is created. A chain of 
consecutive blocks that are extracted one after another in a certain mining direction 
is defined as an underground location. Since a tipple area can have an extent of up 
to a few 100 meters, several underground locations (usually between 5 and 11) are 
assigned to the single tipple areas. That means the blocks of material extracted from 
each underground location are transported to the feeder breaker installed in the cor-
responding tipple area.

Figure  2 illustrates a tipple area with three underground locations (UL  1 to 
UL 3) that are assigned to a feeder breaker, i.e., the potash unearthed from UL 1 
to UL 3 is transported to the illustrated feeder breaker. In UL 1, three blocks are 
already removed in the mining direction. The associated rooms are designated by 
squares with solid lines. After mining a block, a new salt face (a potential block) in 
the mining direction becomes available. Geological sampling and mining investiga-
tions determine how many of the consecutive blocks in an underground location can 
be removed within a considered planning horizon. In Fig. 2, the dashed squares in 
UL 1 and UL 2 indicate the blocks that can be mined according to the plan for the 
considered time horizon. On the contrary, no further block can be removed in UL 3 
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Fig. 2   A tipple area with associated underground locations. Adapted from Clausen (2013), p. 23
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within the planning horizon. For better clarity, we summarize in Table 1 the afore-
mentioned mining terms.

The excavation of a block can only then be started if the previous blocks in 
the same underground location have been fully excavated. A block has, at most, 
one direct predecessor and, at most, one direct successor block in the correspond-
ing underground location. The time needed to remove a block is the sum of the 
processing times of the required mining operations 1 to 9. Each mining operation 
must be processed by one machine and by one skilled worker. According to the 
speed of the assigned machine and the skill level of the assigned worker, dif-
ferent processing times are needed to accomplish a mining operation. Machines 
and workers are scheduled at the beginning of each work shift at an operational 
planning level (see, e.g., Schulze and Zimmermann 2017; Seifi et al. 2019, and 
Seifi et  al. 2020). Since we deal with a block sequencing problem at a tactical 
planning level, the processing times required for the extraction of blocks must 
be estimated. In doing so, the dimensions or shapes of blocks are crucial factors. 
Moreover, the current status of a block at the beginning of the planning horizon 
affects the needed processing time. For example, a block for which mining opera-
tions 3–9 must be carried out has a shorter processing time than a block for which 
all mining operations 1–9 must still be processed.

In every tipple area, the extracted material is initially carried out via the load-
ers from underground locations to the assigned feeder breaker. The conveyance 
of the extracted potash from the particular tipple areas of each mining district 
takes place through a conveyor belt system to a central bunker system close to 
the shaft, from where the material ultimately reaches the surface. The capacities 
of the conveyor system, the bunker, and the processing plants above ground are 
limited. Hence, in each work shift, an upper limit of the output for each tipple 
area and each mining district must be observed. On the other hand, the primary 
task of mining companies is the extraction of raw minerals. Accordingly, a lower 

Table 1   Definitions of the mining terminology introduced

Term Definition

Block A cube of material with known dimensions removed after a detonation
Feeder breaker A crushing machine in a tipple area where the lumps extracted from the under-

ground locations assigned to this tipple area are delivered to
Mining district The largest unit of an underground mine that comprises some smaller units (see 

the definition of a tipple area)
Pillars Parts of underground mines that are not extracted to support the roof from col-

lapsing
Room A space of known dimensions created after a detonation
Salt face A place at which the mining operations are conducted, i.e., it is the front side of 

the block that is extracted
Tipple area The largest unit of a mining district that is characterized by the assigned under-

ground locations and a feeder breaker
Underground location A chain of consecutive blocks that can be removed in the mining direction
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limit for the total output over the planning horizon must be considered. Moreover, 
a minimum output in each work shift and every mining district must be satisfied.

In our problem, we consider a planning horizon (e.g., a month) that is a union 
of some smaller sub-intervals (e.g., weeks). Within those sub-intervals, the quality 
value of the entire extracted potash must be within a given quality tolerance range. 
The assumptions regarding the length of the planning horizon and the correspond-
ing sub-intervals can be customized according to the current situation of the mine at 
hand. Assume that a set of blocks is excavated within a specific time interval. The 
quality value of the entire extracted material within that time interval is the weighted 
average of the quality values of the removed blocks. Due to our objective, the quality 
value of the extracted material should deviate as little as possible from a given qual-
ity target value. The quality target value in percent typically represents the optimal 
operating point of the processing plant above ground. We speak of a negative devia-
tion if the weighted average of the quality of the extracted material is less than the 
quality target value. Analogously, there is a positive deviation if the weighted aver-
age of the quality of the extracted material is greater than the quality target value. 
For formulating the objective function, we first determine the absolute deviation’s 
value of the weighted average of the output quality from the predetermined qual-
ity target value in each considered sub-interval in the planning horizon. The value 
of the weighted average of the output quality and, thus, the values of negative and 
positive deviations are determined based on the amount of material extracted within 
the considered time interval. Since the amount of material removed is not known a 
priori, determining the deviations from the given target value requires some nonlin-
ear constraints in the mathematical formulation that must be linearized. The aim is 
then to minimize the average of the calculated deviations over the number of sub-
intervals considered in the planning horizon.

Altogether, we minimize a quality-oriented objective function observing the fol-
lowing groups of constraints:

Precedence relations between the blocks in an underground location;
Minimum limit of the output over the entire planning horizon, in each work shift, 
and for every mining district;
Maximum limit of the output for each tipple area and every mining district within 
every single work shift; and
Quality tolerance range over each certain sub-interval in the planning horizon.

Newman et al. (2010), Kozan and Liu (2011), as well as Blom et al. (2019) pub-
lished survey articles on the application of operations research methods in the field 
of mining. Lately, Leite et al. (2020) gave a review on state-of-the-art applications 
of operational research techniques to mining problems taking the mentioned surveys 
into account. Leite et al. (2020) consider (1) layout and design problems, (2) produc-
tion and scheduling problems, and (3) operational equipment allocation problems at 
strategic, tactical, and operational planning levels, respectively; consequently, they 
review the published articles in both open-pit and underground mines.

For more convenience, in Table 2, we list the most significant works published 
in the previous decade that introduce a mathematical formulation for a block 
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scheduling problem in the field of mining. Under columns “Constraints,” we 
observe the three types of constraints we deal with in the problem at hand (Qual-
ity, Quantity, and Precedence). The “OF” column specifies whether the objective 
function is quantity- (“Q”) or monetary-related (“M”).

Regarding our quality-related objective function, we first have to calculate the 
weighted average of the output quality. Assume that a set of blocks B is avail-
able to be extracted. Let Ab and Qb be the amount of material (in tonnes) and the 

Table 2   Literature on block selection and sequencing problems

∙ , constraints for the group are considered; −, constraints for the group are not considered

Constraints OF

Quantity Quality Precedence

Bley et al. (2010) ∙ − ∙ M
Nehring et al. (2010) ∙ ∙ ∙ M
Martinez and Newman (2011) ∙ − ∙ Q
Askari-Nasab et al. (2011) ∙ ∙ ∙ M
Chicoisne et al. (2012) ∙ − ∙ M
Nehring et al. (2012) ∙ ∙ ∙ M
Ramazan and Dimitrakopoulos (2013) ∙ ∙ ∙ M
Clausen (2013) ∙ ∙ ∙ Q
Espinoza et al. (2013) ∙ ∙ ∙ M
Smith and Wicks (2014) ∙ ∙ ∙ Q
Lambert and Newman (2014) ∙ − ∙ M
O’Sullivan and Newman (2015) ∙ ∙ ∙ Q
Montiel and Dimitrakopoulos (2015) ∙ ∙ ∙ M
Lamghari and Dimitrakopoulos (2016) ∙ − ∙ M
Mousavi et al. (2016) ∙ ∙ ∙ M
Jélvez et al. (2016) ∙ − ∙ M
Blom et al. (2016) ∙ ∙ ∙ Other
Liu and Kozan (2016) ∙ − ∙ M
Vossen et al. (2016) ∙ − ∙ M
King et al. (2017) ∙ − ∙ M
Samavati et al. (2017) ∙ − ∙ M
Azzamouri et al. (2018) ∙ ∙ ∙ Q
Reus et al. (2018) ∙ − ∙ M
Samavati et al. (2018) ∙ − ∙ M
Mousavi and Sellers (2019) ∙ ∙ ∙ M
Mai et al. (2019) ∙ ∙ ∙ M
Elsayed et al. (2020) ∙ − ∙ M
Jélvez et al. (2020) ∙ ∙ ∙ M
Campeau and Gamache (2020) − − ∙ M
Rivera Letelier et al. (2020) ∙ ∙ ∙ M
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quality value (in percent) of block b ∈ B , respectively. Moreover, let xb be the 
binary decision variable that is 1 if block b is excavated. Then, the quality value 
of the entire extracted material is the weighted average of the quality values of 
the removed blocks, denoted by q . The value of q (in % ) is calculated as follows:

In the literature, the average proportion of the most valuable mineral contained 
in the ore is indicated as “ore grade.” Martinez and Newman (2011) formulate a 
mixed-integer linear program to minimize the deviations from a given target demand 
for three different ore grades in LKAB’s Kiruna iron ore mine. However, the tar-
get demand for a particular ore grade is given in tonnes. Accordingly, expressed in 
our notation, they only consider the linear term 

∑
b∈B Qb ⋅ Ab ⋅ xb (the amount of 

extracted iron in tonnes) to measure the deviations. Thus, we categorized the pro-
posed objective function as quantity-related. Azzamouri et al. (2018) minimize the 
deviations from the demand for a certain grade of the extracted material, where the 
objective function and the related constraints are formulated quantity-oriented, too. 
Analogously, Clausen (2013) determines the amount of potassium oxide contained 
in the extracted potash in tonnes to minimize the deviations from a given target 
value in an underground potash mine.

In the literature, the quality-related constraints are mostly known as “grade con-
trol constraints” or “grade blending constraints.” Those constraints ensure that q is 
within a permitted tolerance range [Q−,Q+] . Thus, the following inequalities must 
apply:

If we multiply both sides of the above inequalities with the denominator of q , we 
obtain linear constraints (see, e.g., Rivera Letelier et al. 2020). Except for Montiel 
and Dimitrakopoulos (2015) and Blom et  al. (2016), all the quality-related con-
straints observed in the papers from Table  2 are linear grade control constraints. 
Montiel and Dimitrakopoulos (2015) maximize discounted profits in an open-pit 
copper mine. They penalize the deviations regarding mining, processing, transporta-
tion, and blending targets and consider a penalty cost in the objective function. In 
the problem they consider, multiple material types are sent to the available processes 
or to stockpiles where they are blended to meet the quality requirements. The grade 
of the material handled in a given period corresponds to the grade of the stockpiles. 
Montiel and Dimitrakopoulos emphasize in their work that the corresponding blend-
ing constraint is nonlinear; consequently, the authors propose a risk-based heuristic 
approach to tackle the problem without suggesting any linear mathematical formu-
lation. Blom et al. (2016) consider a multiple mine, multiple time-period, open-pit 
production scheduling problem. The authors define the productivity of a mine in 
terms of the desirable utilization of dig and trucking resources, i.e., dig and truck-
ing resources should be fully utilized. In each period, ore produced at each mine 

q =

∑
b∈B Qb ⋅ Ab ⋅ xb∑

b∈B Ab ⋅ xb
.

Q−
≤

∑
b∈B Qb ⋅ Ab ⋅ xb∑

b∈B Ab ⋅ xb
≤ Q+.
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is transported by rail to a set of ports and blended into products for shipping. The 
objective function minimizes the deviation between the composition of port prod-
ucts and desired bounds and maximizes the productivity achieved at each mine. The 
observed objective function is denoted by “Other” in Table 2. The authors propose 
a nonlinear mathematical program to ensure blending constraints at each port while 
generating schedules for each mine. To tackle the problem, Blom et  al. suggest a 
decomposition-based algorithm that can find high-quality solutions.

Our literature review suggests that no one, to the best of our knowledge, has intro-
duced a linearization of the nonlinear quality-related constraints taking a quality-
oriented objective function into account. It is straightforward to show that the sched-
uling problems observing upper and lower limits for the operational resources are 
NP-hard. The computational time required for solving NP-hard problems may be 
affected by the numerical parameters of the input data. A NP-hard problem in the 
strong sense is still NP-hard even when all of its numerical parameters are bounded 
by a polynomial in the length of the input. The contributions of this paper are:

•	 to introduce a linear mathematical program for the problem described;
•	 to show that the problem at hand is NP-hard in the strong sense; and
•	 to introduce a solution approach that provides high-quality solutions for realisti-

cally sized problem instances.

In the next section, we first introduce the original mathematical program in its non-
linear structure and then linearize the corresponding nonlinear constraints. Lastly, 
we show that our problem is NP-hard in the strong sense.

3 � Mathematical model

In this section, we introduce a linear mathematical program for the block selection 
and sequencing problem described in Sect.  2. From an operational point of view, 
we consider �max sub-intervals in the given planning horizon. Each sub-interval � 
consists of several periods, where each period represents one work shift in the corre-
sponding sub-interval. Each work shift is represented by time interval (t − 1, t] . Let 
Tmax denote the number of work shifts in the planning horizon under consideration. 
Thus, a planning horizon of Tmax work shifts is a union of time intervals (t − 1, t] for 
t = 1, 2,… , Tmax and the point in time 0. Our mathematical formulation is based on 
the discrete completion times for the extraction of the blocks that are selected and 
mined in the considered planning horizon. Accordingly, we only focus on the dis-
crete points in time that represent the end times of work shifts in the planning hori-
zon. Note that a completion time at point 0 is not relevant since the point in time 0 is 
not the end time of any work shift in the planning horizon under consideration. Let 
T  be the set of positive, discrete points in time in the entire planning horizon. More-
over, let T1, T2,… , T�max

 be the disjoint subsets of T  , where 
⋃

�∈{1,…,�max}
T� = T  . 

The elements of T� are the positive, discrete points in time that represent the end 
times of the work shifts contained in sub-interval � . In Fig. 3, a planning horizon 
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with Tmax = 12 work shifts and �max = 3 sub-intervals is depicted. The whole plan-
ning horizon is a union of disjoint time intervals [0, 4], (4, 6], and (6, 12]. Since the 
point in time 0 is not the end time of any work shift in T  , we have T = {1, 2,… , 12} , 
where T1 = {1, 2, 3, 4} , T2 = {5, 6} , and T3 = {7, 8,… , 12}.

Table  3 demonstrates the sets, parameters, and decision variables used in the 
mathematical program. Note that the auxiliary decision variable q� is used for better 
clarity in the mathematical formulation and is calculated by definition as follows:

The mathematical program for our problem is formulated as follows:

subject to

q� =

∑
t∈T�

∑
b∈B Qb ⋅ Ab ⋅ xbt

∑
t∈T�

∑
b∈B Ab ⋅ xbt

∀� ∈ {1,… , �max}.

(1)minimize
1

�max

∑

�∈{1,…,�max}

(�+
�
+ �−

�
)

(2)
∑

t∈T

xbt ≤ 1 ∀b ∈ B

(3)
∑

t∈T

t ⋅ xbt = cb ∀b ∈ B

(4)Zb ≤ cb +M ⋅ (1 −
∑

t∈T

xbt) ∀b ∈ B

(5)
∑

t∈T

xlt ≤
∑

t∈T

xbt ∀(b, l) ∈ V

(6)cb ≤ cl − Zl ⋅

(
∑

t∈T

xlt

)
+M ⋅ (1 −

∑

t∈T

xlt) ∀(b, l) ∈ V

1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

=1 =2 =3

Fig. 3   The planning horizon and the associated sub-intervals
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Table 3   Sets, parameters, and decision variables used in the mathematical program

Sets

B Set of blocks in an underground mine
Bk Set of blocks assigned to tipple area k ∈ Kr

Br Set of blocks assigned to mining district r ∈ R

Kr Set of tipple areas in mining district r ∈ R

R Set of mining districts in an underground mine
T Set of positive, discrete points in time in the given planning horizon
T� Set of positive, discrete points in time contained in sub-interval � ( T𝜏 ⊂ T )
V Set of precedence relations between blocks with each element representing an ordered pair of 

blocks; if (b, l) ∈ V ∶ b, l ∈ B , b must be completed before l can be started

Parameters

Ab Amount of potash contained in block b in tonnes
M A constant number with a sufficiently large value (big-M)
P− Minimum output that must be achieved over the planning horizon
P−
r

Minimum output that must be achieved for mining district r over the planning horizon
P−
t

Minimum output that must be achieved within time interval (t − 1, t]

P+
kt

Upper limit of the output for tipple area k within time interval (t − 1, t]

P+
rt

Upper limit of the output for mining district r within time interval (t − 1, t]

Qb Percentage of potassium contained in the extracted material from block b (quality value of block b)
Q− Lower limit of the quality tolerance range in %
Q+ Upper limit of the quality tolerance range in %
Q� Quality target value within sub-interval � in %
Tmax Number of work shifts considered in the planning horizon
�max Number of sub-intervals considered in the planning horizon
Zb Processing time required to extract block b measured in work shifts

Decision variables

cb Positive continuous decision variable; completion time of block b
�−
�

Positive continuous decision variable; negative deviations of the output quality from the quality 
target value over sub-interval �

�+
�

Positive continuous decision variable; positive deviations of the output quality from the quality 
target value over sub-interval �

xbt Binary decision variable; 1, if the excavation of block b is completed in time interval (t − 1, t] , and 
the material removed is available at point in time t; 0, otherwise

Auxiliary decision variables

�−
bt

Positive continuous decision variable that substitutes the product of decision variables xbt and �−
�

�+
bt

Positive continuous decision variable that substitutes the product of decision variables xbt and �+
�

q� Weighted average of the quality value of the extracted blocks during sub-interval �
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We minimize the average of the positive and negative deviations of the quality of 
the output from a given quality target value over the predetermined sub-intervals 
(cf. objective function  (1)). A block can be excavated at most once within the 
entire planning horizon (constraint set  (2)). By definition of decision variable xbt , 
if xbt = 1 , the point in time t represents the completion time of block b. Constraint 
set (3) determines the completion times of blocks. Note that if a block is not exca-
vated, the completion time is 0. Constraint set  (4) guarantees that the completion 
time of a block must be greater than or equal to its processing time, i.e., the mining 
of a block must start during the considered planning horizon. Constraint set (4) is 
active only if a block is excavated. In the corresponding big-M formulation, we can 
choose M equal to Tmax . Constraint sets  (5) and (6) observe a precedence relation 

(7)
∑

t∈T

∑

b∈B

Ab ⋅ xbt ≥ P−

(8)
∑

b∈B

Ab ⋅ xbt ≥ P−
t

∀t ∈ T

(9)
∑

t∈T

∑

b∈Br

Ab ⋅ xbt ≥ P−
r

∀r ∈ R

(10)
∑

b∈Br

Ab ⋅ xbt ≤ P+
rt

∀r ∈ R,∀t ∈ T

(11)
∑

b∈Bk

Ab ⋅ xbt ≤ P+
kt

∀k ∈ Kr ∶ r ∈ R,∀t ∈ T

(12)
∑

t∈T�

∑

b∈B

(Qb − Q−) ⋅ Ab ⋅ xbt ≥ 0 ∀� ∈ {1,… , �max}

(13)
∑

t∈T�

∑

b∈B

(Q+ − Qb) ⋅ Ab ⋅ xbt ≥ 0 ∀� ∈ {1,… , �max}

(14)q� − Q� ≤ �+
�

∀� ∈ {1,… , �max}

(15)Q� − q� ≤ �−
�

∀� ∈ {1,… , �max}

(16)xbt ∈ {0, 1} ∀b ∈ B, ∀t ∈ T

(17)cb ≥ 0 ∀b ∈ B

(18)�+
�
, �−

�
≥ 0 ∀� ∈ {1,… , �max}
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between blocks b and l. If the ordered pair (b, l) is in V , block l cannot be mined if 
block b is not excavated (constraint set (5)). Moreover, constraint set (6) ensures that 
the completion time of block l must be at least by Zl time units greater than the com-
pletion time of block b if block l is ever processed. Constraint sets (7) to (11) ensure 
the minimum and maximum limits of the output. Constraint sets (12) and (13) guar-
antee that the weighted average of the quality value of the excavated blocks during 
every sub-interval ( q� ) is within a permitted tolerance range. Those constraints are 
like “grade control constraints” or “grade blending constraints” explained in Sect. 2.

Constraint sets (14) and (15) determine the lower bounds for �+
�
 and �−

�
 , respectively. 

Since objective function (1) must be minimized, �+
�
 and �−

�
 take the value of the positive 

and negative deviations of the quality of the output from Q� . However, the constraint 
sets are inherently nonlinear. We write the mathematical formula of q� in the inequali-
ties and reduce the left-hand side of each inequality to a common denominator. If we 
multiply both sides of the inequalities by the common denominator, we obtain the fol-
lowing nonlinear inequalities:

In order to formulate a mixed-integer linear program, we introduce positive continu-
ous decision variables �+

bt
 and �−

bt
 to substitute the products xbt ⋅ �+�  and xbt ⋅ �−�  on the 

right-hand sides of the above inequalities, respectively. We, therefore, have the fol-
lowing constraint sets:

By substituting a product of a binary decision variable and a continuous decision 
variable, the upper bound for the substitution variable (here �+

bt
 and �−

bt
 ) must be 

determined. The upper bound is related to the maximum value that the continuous 
decision variable can take if the binary decision variable is 1. Furthermore, the sub-
stitution variable takes the value 0 if the binary decision variable is 0. Constraint 
sets (14-2) and (15-2) guarantee that decision variables �+

bt
 and �−

bt
 take the value of 

zero for all t ∈ T� if block b is not excavated within sub-interval � . Note that each 
block can be mined only once within the entire planning horizon. Thus, it is suf-
ficient if we consider the summation of decision variables �+

bt
 ( �−

bt
 ) and xbt over the 

points in time t ∈ T� . Otherwise, if a block is removed at any point in time t ∈ T� , 
the left-hand side of constraint set (14-2) (constraint set (15-2)) can at most have the 
value of Q+ − Q� ( Q� − Q−):

∑

t∈T�

∑

b∈B

(Qb − Q�) ⋅ Ab ⋅ xbt ≤
∑

t∈T�

∑

b∈B

Ab ⋅ xbt ⋅ �
+
�

∀� ∈ {1,… , �max}

∑

t∈T�

∑

b∈B

(Q� − Qb) ⋅ Ab ⋅ xbt ≤
∑

t∈T�

∑

b∈B

Ab ⋅ xbt ⋅ �
−
�

∀� ∈ {1,… , �max}

(14-1)
∑

t∈T�

∑

b∈B

(Qb − Q�) ⋅ Ab ⋅ xbt ≤
∑

t∈T�

∑

b∈B

Ab ⋅ �
+
bt

∀� ∈ {1,… , �max}

(15-1)
∑

t∈T�

∑

b∈B

(Q� − Qb) ⋅ Ab ⋅ xbt ≤
∑

t∈T�

∑

b∈B

Ab ⋅ �
−
bt

∀� ∈ {1,… , �max}
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Note that the maximum values of the positive deviation ( �+
�
 ) and the negative devia-

tion ( �−
�
 ) are bounded by Q+ − Q� and Q� − Q− , respectively. Subsequently, the fol-

lowing constraint sets determine the values of �+
�
 and �−

�
 that are used in (1):

If we replace constraint sets (14), as well as (15) by constraint sets (14-1), (14-2), 
and (14-3) as well as constraint sets (15-1), (15-2), and (15-3), respectively, we have 
a mixed-integer linear program, where constraint set (16) indicates that decision var-
iables xbt are binary, and in addition to non-negativity constraint sets (17) and (18), 
the following non-negativity constraint set must be considered:

We denote the proposed mixed-integer linear program for our block selection and 
sequencing problem with BSSP.

In what follows, we show that our block selection and sequencing problem is NP

-hard in the strong sense. We introduce a restricted case of BSSP (RBSSP) to which a 
pseudo-polynomial transformation from the well-known 3-PARTITION problem can 
be easily constructed.

We consider an underground mine that has one mining district, over a planning 
horizon of Tmax = T work shifts with �max = 1 . Let the number of blocks be n = 3T . 
We assume that there is only one block in each underground location ( V = � ). Let the 
processing time of all blocks be equal to 1 work shift. Hence, constraint sets  (3) to 
(6) do not have to be observed. Moreover, we assume that the maximum output for 
each tipple area is a very large number with the result that constraint set (11) is always 
satisfied. Since there is only one mining district in the restricted problem, constraint 
sets (7) and (9) are the same. By assuming the minimum output for the entire planning 
horizon equal to 

∑
t∈T P

−
t
 , constraint sets  (7) and (9) are redundant. Furthermore, let 

the quality value of all blocks be equal to Q with Q− < Q < Q+ . Thus, the deviation 
from the quality target value is a constant number regardless of which blocks have been 
excavated. Consequently, all of the quality-related constraint sets are met. We assume 
P+
1t
= P−

t
= (

∑3T

b=1
Ab)∕T . Hence, we can denote P+

1t
= P−

t
 with P. Consequently, the 

restricted problem, RBSSP, can be formulated as follows:

(14-2)
∑

t∈T�

�+
bt
≤ (Q+ − Q�) ⋅

∑

t∈T�

xbt ∀b ∈ B,∀� ∈ {1,… , �max}

(15-2)
∑

t∈T�

�−
bt
≤ (Q� − Q−) ⋅

∑

t∈T�

xbt ∀b ∈ B,∀� ∈ {1,… , �max}

(14-3)
∑

t∈T�

�+
bt
≤ �+

�
∀b ∈ B,∀� ∈ {1,… , �max}

(15-3)
∑

t∈T�

�−
bt
≤ �−

�
∀b ∈ B,∀� ∈ {1,… , �max}

(19)�+
bt
, �−

bt
≥ 0 ∀b ∈ B,∀t ∈ T
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 (cf. constraint set (2))

 (cf. constraint set (8))

(cf. constraint set (10))

RBSSP is not an optimization, but a so-called feasibility problem, i.e., a specific 
decision problem. In this restricted problem, we intend to determine T subsets B1 , 
B2 , … , BT of blocks that are removed at points in time 1, 2,… , T  , respectively, sub-
ject to the constraint sets of the problem.

Garey and Johnson (1979) showed that 3-PARTITION is NP-complete in the 
strong sense.

•	 3-PARTITION
	   Input: a finite set U = {u1, u2,… , u3m} , a bound X ∈ ℕ , and a size s(ub) ∈ ℕ for 

each b = 1,… , 3m , such that X
4
< s(ub) <

X

2
 for each b and 

∑3m

b=1
s(ub) = mX.

	   Question: are there m disjoint subsets U1,U2,… ,Um of U such that: 

If we consider each element ub of the given set U in 3-PARTITION as a block b ∈ B 
in RBSSP, a transformation from an arbitrary instance of 3-PARTITION to an 
instance of RBSSP is given by T = m , Ab = s(ub) , and P = X . This transformation 

Min. Constant number

s. t.

3T∑

b=1

xbt ≤ 1 ∀t ∈ {1,… , T}

3T∑

b=1

(Ab ⋅ xbt) ≥ P ∀t ∈ {1,… , T}

3T∑

b=1

(Ab ⋅ xbt) ≤ P ∀t ∈ {1,… , T}

xbt ∈ {0, 1} ∀b ∈ {1,… , 3T}, ∀t ∈ {1,… , T}

∑

ub∈Ub

s(ub) = X ∀b ∈ {1,… ,m}?
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can be performed in time polynomially in the input length. The length of the con-
structed RBSSP-instance is polynomially related to the length of the given 3-PAR-
TITION instance. Furthermore, the largest number in the constructed instance is 
equal to the largest number of the given 3-PARTITION instance; consequently, the 
conditions of a pseudo-polynomial transformation are met. In a solution of RBSSP, 
we have T subsets of B . Those subsets play the same role as the sets U1,… ,Um in 
the desired partition of U in the 3-PARTITION. As a result, a solution for RBSSP 
exists if and only if the desired partition exists for the given 3-PARTITION instance. 
Thus, RBSSP is NP-complete in the strong sense, and optimization problem BSSP 
is NP-hard in the strong sense.

For NP-hard problems in the strong sense, an optimal solution, especially for 
large and challenging problem instances, cannot generally be found using a MILP-
solver within a reasonable amount of time. In the next section, we propose a heu-
ristic approach that solely seeks a subset of the feasible region using some rules to 
provide good, feasible solutions.

4 � Heuristic solution procedure

In this section, we introduce a constructive heuristic that is embedded in a so-called 
multi-start algorithm. Constructive heuristics gradually generate a complete solu-
tion based on a partial solution. In our heuristic algorithm, at each point in time t, 
eligible blocks are determined according to two different factors. On the one hand, 
a block is eligible if it can be completed at the considered point in time according to 
its processing time and the completion status of its predecessors. On the other hand, 
a block is not eligible if its extraction results in an overrun of the upper limit of the 
output in the associated tipple area and the related mining district. Based on a spe-
cific priority rule, the elements of the eligible set are prioritized. Then, a roulette-
wheel selection procedure is applied to randomly select a block that is scheduled 
next in the planning horizon (its completion time is set to t). After that, the status 
of the mine and, accordingly, the eligible set are updated. The selection procedure 
continues until the eligible set at the considered point in time is empty. By the use of 
the roulette-wheel selection procedure, the next block to be scheduled is randomly 
selected from the eligible set. That means, if the method is carried out several times 
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in a multi-start environment, it is very likely that a large number of feasible solu-
tions are generated. Table 4 outlines the sets, parameters, and variables used in our 
heuristic algorithm.

Algorithm 1 describes the developed multi-start heuristic in detail. 

In our minimization problem, all of the decision variables are non-negative. Thus, 
the objective function cannot take a value smaller than 0. With the prescribed value 
of 𝜉 > 0 , we denote a tiny quality tolerance value of the production process. Accord-
ingly, a feasible solution is called an optimal solution if the associated value of the 
objective function lies in the narrow interval [0, �] . For a given problem instance, 
feasible solutions are generated using priority rule Ψ until the objective value of a 
feasible solution is within the predefined interval or a given time limit is exceeded 
(while-loop at line 2). Within an initialization step (line 3 in Alg. 1), we store for 
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each block b ∈ B the associated mining district Rb and tipple area Kb . Moreover, we 
store the blocks with no predecessor block in set E . For all b ∈ E , the earliest start 
time is 0 ( esb = 0 ). Furthermore, the residual capacities �res

rt
 and �res

kt
 are set to the 

corresponding maximum limits of the output P+
rt
 and P+

kt
 , respectively.

After the initialization step, we pass the entire planning horizon in a for-loop 
(line 4). For the current point in time t, we determine the related sub-interval � 
and put those blocks from E into set ET  that can be completed until t (if-condition 
at line 7). At the beginning of the planning horizon ( t = 1 ), the earliest start times 
of all blocks b ∈ E are 0. Accordingly, only the blocks b ∈ E with processing 
times Zb = 1 can be added to ET  . If no block can be inserted into ET  , the output at 
the point in time t is 0. Hence, constraint set (8) is violated, and no feasible solu-
tion can be found. Thus, the algorithm terminates (line  10). Otherwise, blocks 
from ET  are reconsidered according to the residual capacities of the correspond-
ing mining districts and tipple areas. For block b ∈ E

T  , if Ab does not exceed the 
associated residual capacities (if-condition at line 13), b is inserted into ECT  . In a 
realistic problem instance, we always have:

Table 4   Sets, parameters, and variables used in the heuristic algorithm

Sets

E Set of blocks that have no predecessor, or their predecessor blocks are already excavated

E
CT Set of blocks that can be excavated regarding the considered point in time and the considered 

output capacities ( ECT ⊂ E
T )

E
T Set of blocks that can be excavated regarding the considered point in time ( ET ⊂ E)

Parameters

� A tiny number that is set to 0.0001
Kb Tipple area that contains block b ∈ B

Ψ Prescribed priority rule; Ψ ∈ {1, 2, 3, 4}

Rb Mining district that contains block b ∈ B

� A tiny quality tolerance value of the production process

Variables

b∗ Selected block from ECT  (using a roulette-wheel-selection procedure)
esb Earliest start time of block b according to the completion time of its predecessor; if block b 

does not have any predecessor, esb is 0
�b Probability value of block b
�b Priority value of block b according to prescribed priority rule Ψ
�res
kt

Residual capacity of the output for tipple area k in time interval (t − 1, t]

�res
rt

Residual capacity of the output for mining district r in time interval (t − 1, t]

q
b

�
New value of q� if block b is mined next in sub-interval � in %
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Therefore, at least one block from ET  (if there is any) can always be inserted into 
E
CT  at each point in time. The block that must be scheduled next is selected from 

E
CT  according to the given priority rule Ψ (line 16). For our heuristic, we consider 

four different priority rules. Based on priority rule Ψ ∈ {1, 2, 3, 4} , we determine for 
each block b in ECT  a priority value �b . In the following, we explain the way how �b 
is calculated according to a specific priority rule.

priority rule 1: �b =
1

|Qb − Q� | + �

For this rule, we put emphasis on the quality value of a block. A block with 
a smaller deviation from the quality target value takes a larger priority value. 
This priority rule gives a block that may contribute to a better objective func-
tion value a greater probability to be extracted next. Since some blocks may 
have no deviation from the quality target value, we add a tiny number 𝜖 > 0 to 
the denominator of the fraction. In our work, we set � = 0.0001.
priority rule 2: �b =

Ab

|Qb − Q� | + �

For priority rule 2, we additionally consider the amount of material extracted 
from a block. If quality values of blocks are the same, a block with a larger 
amount of material is given a larger priority value, or—in other words—for the 
same amount of material, a block that has a smaller deviation from the qual-
ity target receives a larger priority value (like priority rule 1). Using priority 
rule 2, the lower limits of output are also considered to avoid generating infea-
sible solutions.
priority rule 3: �b =

1

|qb
�
− Q� | + �

Here, we calculate the value of qb
�
 that represents the change of q� if block b 

is excavated next. A block takes a larger priority value if its excavation results 
in a smaller deviation from the quality target value. We can, therefore, give 
a more considerable priority value to the blocks that allow the best possible 
improvement in the objective function value in each step.

priority rule 4: �b =
{

�, if P−
Rb

is achieved;

Ab, otherwise.

Priority rule 4 helps to avoid infeasible solutions in terms of constraint set  (9). 
For block b, if the lower limit of the output for the corresponding mining district 
Rb is achieved, we set the priority value of block b equal to a tiny number 𝜖 > 0 . 
Otherwise, block b receives a priority value equal to Ab . Using priority rule 4, we 
focus only on finding feasible solutions regarding the lower limits of output.

According to the priority values, all blocks b ∈ E
CT  receive a probability value �b 

as follows:

max
b∈B

{Ab} ≤P+
Rb,t

∀t ∈ T, and

max
b∈B

{Ab} ≤P+
Kb,t

∀t ∈ T.
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We apply a roulette-wheel selection procedure, where each block occupies an area 
on the roulette-wheel proportional to its �b-value (Michalewicz and Fogel 2004, 
Sect. 6.1). That is equivalent to partitioning the interval [0, 1] into |ECT| parts, where 
the b-th sub-interval (part) has the width �b representing block b. Subsequently, a 
random number between 0 and 1 is generated. The sub-interval that contains the 
random number determines block b∗ . At lines  17 and  18, the associated residual 
capacities and the value of q� are updated. If b∗ has a successor l (line 19), we insert 
l in E . The earliest start time of l is set equal to the completion time of b∗ , i.e., esl = t 
(line  21). Block b∗ is then removed from ECT  . Moreover, all blocks b ∈ E

CT  with 
Rb = Rb∗ and Kb = Kb∗ , for which Ab > 𝜌res

Rb∗ ,t
 or Ab > 𝜌res

Kb∗ ,t
 , have to be removed from 

E
CT  (lines 22 and 23). The repeat-until-loop in Alg. 1 will be executed until ECT  is 

empty.
After violating the condition of the repeat-until-loop, t is incremented by one. 

The entire for-loop at line  4 will be executed for all t ∈ T  . We then check the 
feasibility of the solution found according to constraint sets (7), (8), (9), (12), and 
(13). Feasible solutions are stored, and infeasible solutions are discarded.

We observe the loops in Alg. 1 to determine the time complexity of the pre-
sented heuristic approach in every run. The for-loop at line  4 is executed Tmax 
times. Moreover, the for-loop at line 6 and the repeat-until-loop are conducted, at 
most, |B| times. Line 11, the for-loop at line 12, as well as line 16, if-condition at 
line 19, and lines 22 and 23 within the repeat-until-loop have, at most, |B| steps. 
Accordingly, the algorithm has a time complexity of O(Tmax ⋅ |B|2) that implies 
a pseudo-polynomial algorithm. Note that in practical applications, Tmax is given 
as a constant number. Therefore, the time complexity of the algorithm is O(|B|2) , 
and the heuristic proposed is polynomial.

In the next section, we compare the results achieved by a MILP-solver with 
the solutions provided by the proposed heuristic approach. Moreover, we intro-
duce a sophisticated combination of the heuristic and the mathematical program 
to improve the results obtained by the heuristic procedure for the most challeng-
ing problem instances, for which our MILP-solver cannot find a feasible solution 
within a reasonable amount of time.

5 � Computational study

In this section, we perform an experimental performance analysis for the proposed 
mixed-integer linear program and the constructive heuristic. The computational 
study is executed on randomly generated problem instances that are based on real-
world data derived from Clausen (2013). Table 5 shows some parameters that are 
typical for a potash mine and used to generate realistic problem instances.

To normalize the problem instances, we set the number of blocks in each mining 
district r equal to 325. Thus, the problem instances with more underground locations 
have fewer blocks in each underground location and vice versa.

�b =
�b∑

l∈ECT �l
.
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The allowed maximum output in each mining district r for time interval (t − 1, t] 
depends on the number of loaders available in the corresponding mining district 
during the associated time interval. A loader can typically transport 750 tonnes of 
crude material within a work shift. In each work shift, 1 to 4 loader(s) are available 
so that P+

rt
∈ {750, 1500, 2250, 3000} . The minimum output in each mining district 

depends on the capacity of loaders, too. The parameter P−
r
 can be determined as a 

certain percentage � of the capacity of all the available loaders in mining district r 
within the entire time horizon:

The parameter � varies between 70% and 90% , with a step size of 5% . Furthermore, 
the lower limit of the total output is the sum of P−

r
 over the mining districts con-

tained in the underground mine:

The upper limits of the output for tipple areas P+
kt

 are randomly chosen from the set 
{1000, 2000,… , 5000} . Those numbers are given due to the characteristics of typi-
cal feeder breakers. Even though the parameters P+

kt
 have different values in terms of 

tipple areas k, they are the same for all time intervals (t − 1, t] in the planning hori-
zon. In each time interval (t − 1, t] , an output greater than 0 has to be achieved. We 
set the parameter P−

t
 as follows:

We consider a planning horizon of one month that without loss of generality, is sup-
posed to have only four weeks. Each sub-interval � represents a time interval of one 

P−
r
= � ⋅

∑

t∈T

P+
rt

∀r ∈ R.

P− =
∑

r∈R

P−
r
.

P−
t
= min

b∈B
{Ab} ∀t ∈ T.

Table 5   Parameters used to generate realistic problem instances

Parameters Symbols Values

Number of mining districts in an underground mine 1–5
Number of tipple areas in each mining district 4–6
Number of underground locations in each tipple area 5–11
Number of blocks in each underground location 5–10
Amount of material contained in each block in tonnes Ab 700–1200
Quality value of each block in % Qb 9.8–16.2
Lower limit of the quality value of the output in % Q− 11.1
Upper limit of the quality value of the output in % Q+ 14.1
Quality target value for each sub-interval in % Q� 12.6
Processing time of the first blocks in each underground location 

measured in work shifts
Zb 1–9

Processing time of other (not the first) blocks in each underground 
location measured in work shifts

6–12
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week ( �max = 4 ). A week contains 18 work shifts, so that the planning horizon has 
Tmax = 72 work shifts.

The quality values of blocks are stated in percentage and usually have decimals. 
We multiply the quality values of blocks and, accordingly, the quality parameters 
from Table 5 by 100 to avoid rounding errors. For example, a quality value of 13.7% 
is 1370 in a problem instance. As mentioned in Sect. 4, from a practical point of 
view, a solution is called an optimal solution if the associated value of the objective 
function lies within the small interval of [0, �] with 𝜉 > 0 . Parameter � is the quality 
tolerance value of the production process and is chosen to be 0.1% . Like the quality 
values of blocks, we multiply � by 100 as well; � is, therefore, equal to 10.

We distinguish between 5 different test sets according to the number of mining 
districts. Hence, there is 1 mining district in the first test set, 2 mining districts in the 
second test set, and so on (5 mining districts in the fifth test set). We randomly gen-
erated 20 problem instances for each test set using the introduced parameter ranges. 
Additionally, we consider five different levels of � , i.e., � ∈ {70%, 75%,… , 90%} , 
concerning the lower limit of the output ( P−

r
 and accordingly P− , see above). Thus, 

we have 100 problem instances for each �-level. Test sets with 5 mining districts rep-
resent the largest problem instances. On the other hand, the problem instances with a 
�-level of 90% are the most challenging problem instances to solve.

We used GAMS 24.9 to implement our mixed-integer linear program and solved 
the problem instances using CPLEX 12.7.1. We set the solver parameters in the way 
that the solution procedure terminates in the following cases: 

1.	 if a solution found is optimal;
2.	 if a solution found is in the predefined interval [0, 10]; or
3.	 if a time limit of 1800 s is exceeded.

The corresponding solution procedure is called CPLEX. According to the cases 
mentioned above, if we say that CPLEX finds an optimal solution for a problem 
instance, case 1. or case 2. holds.

The heuristic algorithm is implemented in the programming language �++ and 
executed with the compiler Microsoft Visual Studio 2010. Since we use four differ-
ent priority rules in the heuristic, we set the upper limit of the solution time equal to 
450 s for each priority rule. Thus, for each problem instance, we run the multi-start 
heuristic approach for 1800 ( 4 × 450 ) s to have a relatively fair comparison with the 
results of CPLEX, which has a time limit of 1800 s, too. The resulting multi-start 
heuristic approach with four randomized priority rules is called MSH-4R.

All tests are executed on an Intel(R) i7-7700K@4.20GHz machine with 64 GB 
RAM under Windows 10.

We can compare the results achieved by CPLEX and MSH-4R from different 
aspects. On the one hand, the number of problem instances for which no feasible 
solution can be provided is important. On the other hand, we want to know whether 
a feasible solution obtained is optimal, and if not, what can be said about the solu-
tion quality. We discussed that the problem instances with a �-level of 90% are the 
most challenging problem instances to solve, and the ones with 5 mining districts 
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are the largest problem instances. Accordingly, the results of each solution proce-
dure for each �-level and regarding the size of the problem instances are of most 
interest. Our computational study suggests the following results:

•	 In general, the greater the problem instances, the more time CPLEX needs to 
find an optimal solution.

•	 For �-levels of 70% to 85% , CPLEX finds an optimal solution for almost all 
problem instances. However, for the most challenging problem instances with 
� = 90% , CPLEX can hardly find any feasible solution.

•	 MSH-4R can find for all of the problem instances at least one feasible solution 
that is not far from the best solutions found.

•	 MSH-4R using priority rule 3 provides the most high-quality solutions in com-
parison to the other priority rules.

•	 If we use the solutions found by MSH-4R using priority rule 3 as initial solu-
tions for CPLEX, the results found for the most challenging problem instances 
are improved by, on average, 92.5%.

A detailed explanation of the results achieved by the solution approaches is given in 
the following.

Table 6 compares the results achieved by CPLEX with the solutions found by 
MSH-4R. Each row in Table 6 shows the information for a test set that consists of 
20 problem instances. Columns # Optimal depict the number of test instances for 
which CPLEX and MSH-4R could find an optimal solution (see the explanation 
for an optimal solution above). The number of test instances for which a feasible 
solution could be found but the optimality of the solution could not be proven or 
shown is given under columns # Feasible for both solution procedures. Columns 
# Unknown present the number of test instances for which no feasible solution is 
found within the considered time limit (1800 s). Note that the numbers appearing 
under each column cannot be greater than 20. Columns Solution time report the 
average solution time in seconds for the considered 20 problem instances in each 
test set. According to the setting, the average solution time cannot be greater than 
1800 s. Analogous to CPLEX, MSH-4R terminates if a solution found by a given 
priority rule is in the predefined interval [0, 10]. In that case, we say that MSH-
4R finds an optimal solution for a problem instance. Note that MSH-4R is not 
able to state whether a feasible solution with an objective function value greater 
than 10 is optimal or not. For a problem instance solved by MSH-4R, an optimal 
solution may be found by using any priority rule. In those cases, the procedure 
terminates before the time limit (450  s) is exceeded for the respective priority 
rule. The time in seconds under Solution time MSH-4R is the sum of solution 
times taken by every priority rule and cannot be greater than 1800 s ( 4 × 450).

We see in Table 6 that CPLEX could find for the whole 100 problem instances 
with � = 70% an optimal solution. The greater the number of mining districts in 
a test set, the more time CPLEX needs to find an optimal solution. For � = 70% , 
the solution time is, on average, 14 s for the 20 problem instances with 1 mining 
district and 132  s for problem instances with 5  mining districts. For the whole 
100 problem instances with � = 70% , CPLEX needed, on average, 53 s to prove 
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the optimality of the solutions found. For � = 75% , there is the same trend. All 
of the test instances are solved to optimality by CPLEX; the solution time is, on 
average, 26 s for problem instances with 1 mining district and 330 s for problem 
instances with 5 mining districts. Notably, the computational times are higher (for 
the 100 problem instances with � = 75% , the computational time is, on average, 
187.6  s) since the problem instances are more challenging. For �-levels of 80% 
and 85% , the same trend can be seen. For � = 80% ( � = 85% ), CPLEX could opti-
mally solve 98 (90) problem instances. At the �-level of 80% ( 85% ), the solution 
time is, on average, 202 (324) s for the 20 problem instances with 1 mining dis-
trict and 676 (1020) s for the 20 problem instances with 5 mining districts. For 
the other problem instances with � = 80% and � = 85% that could not be solved 

Table 6   Comparison of the results achieved by CPLEX with the solutions found by MSH-4R (each row 
represents a test set including 20 problem instances)

�[in %] |R| # Optimal # Feasible # Unknown Solution time 
[s]

Ave. deviation 
from best. [ %

100
]

CPLEX MSH-
4R

CPLEX MSH-
4R

CPLEX MSH-
4R

CPLEX MSH-
4R

CPLEX MSH-
4R

70 1 20 7 0 13 0 0 14 1392 0.00 7.42
2 20 3 0 17 0 0 22 1615 0.00 8.40
3 20 0 0 20 0 0 44 1800 0.00 14.60
4 20 2 0 18 0 0 52 1740 0.00 12.74
5 20 0 0 20 0 0 132 1800 0.00 13.35

75 1 20 7 0 13 0 0 26 1392 0.00 7.42
2 20 3 0 17 0 0 62 1621 0.00 8.40
3 20 0 0 20 0 0 241 1800 0.00 14.60
4 20 2 0 18 0 0 279 1740 0.00 12.74
5 20 0 0 20 0 0 330 1800 0.00 13.35

80 1 18 7 2 13 0 0 202 1392 0.00 6.48
2 20 3 0 17 0 0 230 1615 0.00 8.40
3 20 0 0 20 0 0 404 1800 0.00 14.60
4 20 2 0 18 0 0 473 1740 0.00 12.75
5 20 0 0 20 0 0 676 1800 0.00 13.35

85 1 18 7 2 13 0 0 324 1392 0.02 5.74
2 17 3 3 17 0 0 568 1615 0.00 7.13
3 18 0 2 20 0 0 788 1800 0.00 14.04
4 19 2 1 18 0 0 904 1740 0.00 12.51
5 18 0 2 20 0 0 1020 1800 0.00 12.86

90 1 7 6 1 14 12 0 1241 1460 0.00 1.07
2 0 2 1 18 19 0 1800 1668 0.00 0.36
3 0 0 0 20 20 0 1800 1800 – 0.00
4 0 1 0 19 20 0 1800 1762 – 0.00
5 0 0 0 20 20 0 1800 1800 – 0.00
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to optimality, CPLEX could find a feasible solution (cf. columns # Feasible). For 
the most challenging problem instances with � = 90% , CPLEX could find for only 
seven  problem instances with 1  mining district an optimal solution within, on 
average, 1241  s. Furthermore, for only two other problem instances, a feasible 
solution could be found by CPLEX. In other words, for 91 problem instances at 
the �-level of 90% , CPLEX cannot find any feasible solutions within a reasonable 
amount of time.

On the contrary, MSH-4R was able to find an optimal solution for 12 problem 
instances each at the �-levels of 70% , 75% , 80% , and 85% as well as for nine problem 
instances with � = 90% (altogether 57 of the whole 500 problem instances). Hence, 
it cannot be said at which level MSH-4R works best. MSH-4R could find for every 
problem instance at every level and with every size at least one feasible solution (the 
numbers under # Unknown MSH-4R are all 0), even for the �-level of 90% . To evalu-
ate the solution quality of the results achieved by MSH-4R, we calculate the average 
of the absolute deviations from the best solutions found (in %

100
 ), which is stated in 

the last columns Ave. deviation from best of Table 6. The following example illus-
trates how the deviation from the best solution found is calculated.

Example 1  Let 6.64 be the objective function value of the best solution found by 
CPLEX ( SC ), and 24.34 the objective function value of the best solution found by 
MSH-4R ( SH ). Since SC ≤ � = 10 is true, we consider SC as an optimal solution. 
Accordingly, the deviation of SC from the best solution found is 0, and the deviation 
of SH from an optimal solution is SH − � = 14.34

%

100
.

Now, let SC = 16.34 and SH = 30.71 . The best solution found is SC and, con-
sequently, the deviation of SC from the best solution found is 0. Independent of 
whether we can prove the optimality of SC or not, the deviation of SH from the best 
solution found is SH − SC = 14.37

%

100
.

For the problem instances with � = 70% , the solutions found by MSH-4R devi-
ate, on average, 11.30 %

100
 ( 0.113% ) from the optimal solution found by CPLEX. The 

minimum value is for the test set with 1 mining district (7.42 %

100
 ), and the maximum 

value belongs to the test set with 3 mining districts (14.60 %

100
 ). For � = 70% , MSH-

4R could find for only 12 problem instances an optimal solution. Hereby, seven prob-
lem instances that are solved to optimality by MSH-4R have 1 mining district. On 
the other hand, for the test set with 3 mining districts, no optimal solution is found 
by MSH-4R. Since the average is calculated over the whole 20 problem instances for 
each test set, the differences regarding the average deviations from the best solutions 
found can be explained by the different number of optimal solutions found for each 
test set. The same trend exists at �-levels of 75% , 80% , and 85% , where the solutions 
found by MSH-4R deviate, on average, 11.3, 11.12, and 10.45 %

100
 from the best solu-

tion found, respectively. We can conclude that the quality of the solutions found by 
MSH-4R is quite promising for the �-levels of 70% , 75% , 80% , and 85% , where opti-
mal solutions for 388 of 400 problem instances are known, which is a strong meas-
ure to evaluate the results. In addition, we see that for � = 90% , where CPLEX could 
find for only nine problem instances a feasible solution, MSH-4R found for all of the 
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100 problem instances at least one feasible solution. Therefore, it is reasonable to 
use MSH-4R to solve the problem instances at the �-level of 90%.

In the next step, we compare the applied priority rules in MSH-4R (cf. Sect. 4) 
in Table  7. The first columns on the left-hand side of Table  7 show the number 
of problem instances for which a specific priority rule exclusively found the best 
solution. For example, in the first row of Table  7, the sum of the numbers under 
Number of best-known solutions exclusively found for rules 1 to 4 is 14. That means 
there are six problem instances in the test set for which the best solution could be 
found by means of at least two different priority rules. At the same line, we see 
that, e.g., priority rule 2 could exclusively find the best solutions for two problem 
instances, which means that the other priority rules could not find the best solution 
for those problem instances. We see in Table 7 that for 407 of the whole 500 prob-
lem instances, the best solutions were exclusively obtained using priority rule  3, 

Table 7   Comparison among 4 priority rules (each row represents a test set including 20 problem 
instances)

� [in%] |R| Number of best-known solutions 
exclusively found

Average tbs ( tfs ) for the best (first) feasible solution 
[s]

Rule 1 Rule 2 Rule 3 Rule 4 Rule 1 Rule 2 Rule 3 Rule 4

70 1 2 0 12 0 186 (0.00) 196 (0.00) 153 (0.00) 186 (0.00)
2 0 0 18 0 249 (0.00) 182 (0.00) 209 (0.00) 260 (0.00)
3 2 0 18 0 229 (0.00) 151 (0.00) 210 (0.00) 223 (0.00)
4 1 0 18 0 256 (0.00) 213 (0.00) 250 (0.00) 258 (0.00)
5 1 0 19 0 231 (0.00) 260 (0.00) 240 (0.00) 267 (0.00)

75 1 2 0 12 0 185 (0.00) 196 (0.00) 153 (0.00) 207 (0.00)
2 0 0 18 0 249 (0.00) 181 (0.00) 209 (0.00) 148 (0.00)
3 2 0 18 0 229 (0.00) 151 (0.00) 210 (0.00) 224 (0.00)
4 1 0 18 0 256 (0.00) 213 (0.00) 250 (0.00) 200 (0.00)
5 1 0 19 0 231 (0.00) 260 (0.00) 240 (0.00) 223 (0.00)

80 1 2 0 12 0 186 (0.00) 196 (0.00) 153 (0.00) 228 (0.00)
2 0 0 18 0 249 (0.00) 181 (0.00) 209 (0.00) 174 (0.00)
3 2 0 18 0 229 (0.00) 151 (0.00) 209 (0.00) 187 (0.00)
4 1 0 18 0 256 (0.00) 213 (0.00) 236 (0.00) 224 (0.00)
5 1 0 19 0 231 (0.00) 259 (0.00) 239 (0.00) 194 (0.00)

85 1 2 0 12 0 186 (0.00) 195 (0.00) 153 (0.00) 238 (0.00)
2 0 0 18 0 249 (0.00) 182 (0.00) 210 (0.00) 194 (0.00)
3 2 0 18 0 229 (0.00) 151 (0.00) 210 (0.00) 232 (0.00)
4 1 0 18 0 256 (0.00) 213 (0.00) 236 (0.00) 204 (0.00)
5 1 0 19 0 231 (0.00) 260 (0.00) 240 (0.00) 254 (0.00)

90 1 3 1 11 0 144 (0.00) 180 (0.00) 190 (0.00) 234 (0.00)
2 0 3 15 0 216 (0.00) 217 (0.00) 227 (0.00) 197 (0.00)
3 0 4 16 0 212 (0.05) 245 (0.00) 261 (0.00) 257 (0.00)
4 1 3 13 0 250 (0.00) 196 (0.00) 214 (3.00) 246 (0.05)
5 0 7 12 1 201 (0.25) 220 (0.05) 214 (0.10) 230 (0.00)
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which suggests priority rule 3 as the most potent rule. Remember that priority rule 3 
enables the best possible improvement regarding the objective function in each step.

Let tbs and tfs be the times in seconds that are taken to find the best (bs) and the 
first feasible solution (fs), respectively. Those times are given on the right-hand side 
of Table 7. MSH-4R using priority rules 1, 2, 3, and 4 needed, on average, 225, 202, 
213, and 220 s, respectively, to find the best feasible solutions. The first feasible 
solution could be quickly found by MSH-4R regardless of the applied priority rules 
(e.g., priority rules 2 and 4 find the first feasible solution by no longer than, on aver-
age, 0.05 s).

We saw that CPLEX performs for � = 90% worse, in particular, with respect to 
the number of feasible solutions found (cf. Table 6). At the �-level of 90% , where we 
have the most challenging problem instances, and where it is tough to find a feasible 
solution by a MILP-solver, MSH-4R can find at least one feasible solution for each 
problem instance. In the following, we introduce another solution approach to tackle 
the problem instances with � = 90% . The idea is to support CPLEX by starting with 
an initial feasible solution that is found by MSH-4R. We distinguish between the fol-
lowing kinds of initial solutions:

first solution (fs): MSH-4R using priority rules 2 and 4 is the fastest approach 
to find a feasible solution (cf. Table 7). That may be the case because both prior-
ity rules consider the amount of material of a block for determining the priority 
values to observe the lower limits of output. If we observe the quality of the solu-
tions found, MSH-4R using priority rule 2 (priority rule 4) could exclusively find 
the best solution for 18 problem instances (one problem instance) with � = 90% . 
Remember that priority rule  2 considers both block’s amount of material and 
the block’s quality deviation from the quality target. By contrast, priority rule 4 
focuses only on the amount of material, which justifies the higher quality of the 
solutions found using priority rule 2 than using priority rule 4. Thus, we solve 
the problem instances at the �-level of 90% by MSH-4R using priority rule 2 and 
store the time tfs . Then, we give the first feasible solution found as an initial solu-
tion to CPLEX and set the upper limit of time equal to 1800 − tfs seconds. The 
corresponding solution approach is called CPLEX with fs.
best solution (bs): Table 7 shows that MSH-4R using priority rule 3 performs 
best among all four priority rules. MSH-4R using priority rule  3 could exclu-
sively find for 67  problem instances with � = 90% the best solution within, on 
average, 221.2  s. Hence, we solve the problem instances at the �-level of 90% 
by MSH-4R using priority rule 3, set the upper limit of the solution time equal 
to 250 s, and store the best feasible solution found. Then, we solve the problem 
instances by CPLEX using the best feasible solutions found by MSH-4R as an 
initial solution with a time limit of 1550 s. The corresponding solution approach 
is called CPLEX with bs.

Table 8 depicts that using an initial solution leads to a much better performance of 
CPLEX at the �-level of 90% . Without using an initial solution, CPLEX could find 
for only nine of 100  problem instances a feasible solution (thereof seven optimal 
solutions) within, on average, 1688 s (cf. Table 6, last 5 rows). If we apply CPLEX 
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with fs, 42  problem instances can be solved to optimality within, on average, 
1414.2 s. Typically, the larger the problem instances, the harder it is to solve. For 
the problem instances with 1 mining district, CPLEX with fs could find an optimal 
solution for 12 of 20 problem instances. For the problem instances with 5 mining 
districts, only five of 20 problem instances can be solved to optimality by CPLEX 
with fs. CPLEX with bs performs even better, where 45 problem instances can be 
optimally solved within, on average, 1403 s (some more problem instances within 
some less time in comparison to CPLEX with fs). The same trend regarding the size 
of the instances is recognizable. We can see that 14 of 20 problem instances with 
1 mining district and five of 20 problem instances with 5 mining districts can be 
solved to optimality by CPLEX with bs.

Finally, we compare the results achieved by MSH-4R with the combination of 
MSH-4R and CPLEX. For this purpose, the average of the absolute deviations from 
the best solution known is depicted in Table 9 for each test set with � = 90% . Let SHi

 
be the objective function value of the best solution found by MSH-4R for problem 
instance i. Moreover, let Sfs

Ci
 and Sbs

Ci
 denote the objective function values of the solu-

tions found by CPLEX with fs and bs for problem instance i, respectively. The num-
bers in parentheses are the average of (SHi

− S
fs

Ci
)∕(SHi

) as well as (SHi
− Sbs

Ci
)∕(SHi

) 
over the problem instances in every corresponding test set. We see that the solutions 
found by CPLEX with an initial solution are much better than the solutions found by 
MSH-4R. In particular, if we first solve a problem instance heuristically using 

Table 8   Comparison of the solutions found by CPLEX with and without initial solutions (each row rep-
resents a test set including 20 problem instances)

� [in%] |R| CPLEX with fs CPLEX with bs

# Opt. # Feas. Solution time [s] # Opt. #Feas. Solution time [s]

90 1 12 8 922 14 6 789
2 12 8 1115 11 9 1298
3 5 15 1626 7 13 1567
4 8 12 1651 8 12 1575
5 5 15 1757 5 15 1786

Table 9   Comparison of the 
solutions found by MSH-4R 
with the results achieved by 
CPLEX using initial solutions 
(each row represents a test set 
including 20 problem instances)

� [in%] |R| Average deviation from the best solution found 
[

%

100
]

MSH-4R CPLEX with fs 
(improvement)

CPLEX with bs 
(improvement)

90 1 3.11 0.98 ( 68.5%) 0.03 ( 99.0%)
2 5.11 1.96 ( 61.6%) 0.27 ( 94.7%)
3 8.88 2.43 ( 72.6%) 0.72 ( 91.9%)
4 8.11 1.93 ( 76.2%) 0.57 ( 93.0%)
5 7.70 1.22 ( 76.2%) 1.21 ( 84.3%)
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priority rule 3 and then give the best feasible solution found as an initial solution to 
CPLEX (CPLEX with bs), the solutions are improved by, on average, 92.5%.

6 � Conclusion

In this paper, we introduced a mixed-integer linear program and a heuristic approach 
to solve a block selection and sequencing problem occurring in underground potash 
mines. In the problem under consideration, we minimized the deviations of the out-
put quality value from a prescribed quality target value. The deviations were calcu-
lated for certain sub-intervals within a given planning horizon.

To evaluate the solution approaches, we randomly generated 100  problem 
instances (5 test sets of 20  problem instances each) based on realistic data. We 
solved the problem instances on 5 different levels in terms of the lower limit of the 
output using the proposed mixed-integer linear program and the suggested con-
structive heuristic. We can conclude that if the MILP-solver starts with an initial 
solution, an optimal solution for a problem instance can be found more quickly. We 
can also say, if we solve a problem instance within a reasonable amount of time 
heuristically using introduced priority rule 3 and then give the best feasible solu-
tion found as an input to the MILP-solver, we obtain quite promising results. Hence, 
practice-relevant problems in potash mines can be solved with an acceptable quality 
within an adequate time frame. Consequently, the results achieved could support the 
decisions of underground mining operators to provide the aboveground processing 
plants with homogenous output by a systematic comparison between the actual and 
target performance.

Further research will apply metaheuristics to improve the results achieved by the 
proposed constructive heuristic. Uncertainty regarding the processing times needed 
to excavate the blocks must also be investigated. On the other hand, the material 
excavated in a work shift can be stored in a bunker during a specific time interval. 
That can lead to another value of the output quality in comparison to having all the 
material conveyed directly to the surface. Ongoing research can distinguish those 
cases to make the generated solutions more realistic.
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