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Abstract
The ongoing rise in e-commerce comes along with an increasing number of first-
time delivery failures due to the absence of the customer at the delivery location. 
Failed deliveries result in rework which in turn has a large impact on the carriers’ 
delivery cost. In the classical vehicle routing problem (VRP) with time windows, 
each customer request has only one location and one time window describing where 
and when shipments need to be delivered. In contrast, we introduce and analyze the 
vehicle routing problem with delivery options (VRPDO), in which some requests 
can be shipped to alternative locations with possibly different time windows. Fur-
thermore, customers may prefer some delivery options. The carrier must then select, 
for each request, one delivery option such that the carriers’ overall cost is minimized 
and a given service level regarding customer preferences is achieved. Moreover, 
when delivery options share a common location, e.g., a locker, capacities must be 
respected when assigning shipments. To solve the VRPDO exactly, we present a 
new branch-price-and-cut algorithm. The associated pricing subproblem is a short-
est-path problem with resource constraints that we solve with a bidirectional labe-
ling algorithm on an auxiliary network. We focus on the comparison of two alterna-
tive modeling approaches for the auxiliary network and present optimal solutions 
for instances with up to 100 delivery options. Moreover, we provide 17 new optimal 
solutions for the benchmark set for the VRP with roaming delivery locations.

Keywords Routing · Vehicle routing · City logistics · Branch-price-and-cut · Service 
level
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1 Introduction

Over the past decade, mail-order trade has shown a strong compound annual growth 
rate, e.g., of 9.6 % in Germany with an overall revenue of 68.1 billion euros in 2018 
(Furchheim et al. 2020). Due to the increasing e-commerce, over 3.5 billion deliv-
eries had to be handled in Germany in 2018 resulting in 12 million deliveries per 
operations day on average (BIEK 2019). These considerable numbers raise the ques-
tion of how to cope with the strongly growing demand and general challenges in 
last-mile logistics. While minimizing logistic costs, operators are also faced with 
issues such as the trend of smaller and smaller truckloads, restrictions imposed by 
urban development and environmental policies, and operational issues like traf-
fic congestion and strict parking regulation (Zhou et  al. 2018). Furthermore, new 
challenges arise from logsumers (DHL 2014) who are allowed to individualize their 
orders by choosing a preferred price, quality, time window, and options for envi-
ronmental friendliness. Consequently, last-mile logistic has been referred to as “the 
bottleneck of e-commerce” (Wang et al. 2014) and “the logistic service providers’ 
nightmare(s)” (Savelsbergh and Van Woensel 2016).

The paper at hand introduces the vehicle routing problem with delivery options 
(VRPDO) which captures one of the most recent trends in last-mile package deliv-
ery related to the introduction of delivery options. The VRPDO is obviously a gen-
eralization of the vehicle routing problem with time windows (VRPTW, Costa et al. 
2019) and the generalized vehicle routing problem with time windows (GVRPTW, 
Moccia et al. 2012) in which each customer request is represented by one or several 
delivery options. The delivery options of a customer differ within the designated 
location and delivery time window. Exactly one delivery option of each customer 
has to be selected.

The VRPDO extends the GVRPTW by two important real-world aspects: First, 
customers can individually prioritize their different delivery options beforehand, 
and the overall customer satisfaction level is taken into account by a given service 
level that must be achieved. Second, some delivery options may share a common 
location, e.g., pick-up points or postal boxes (Janjevic et al. 2019). The capacity of 
these locations is limited, in particular in densely populated areas of cities where 
space is scarce and expensive. For finding an optimal set of routes, both extensions 
lead to a nontrivial interdependence problem, where modifying one route can make 
another route infeasible regarding location capacities or required service level (Drexl 
2012). The objective of the VRPDO is to minimize the overall cost while ensur-
ing a minimum customer satisfaction level as well as not violating location-capacity 
restrictions.

The main contributions of this work are the following: We introduce the VRPDO 
and present a branch-price-and-cut (BPC, Costa et al. 2019) algorithm for its solu-
tion. In particular, we present a set-partitioning problem for the VRPDO, develop 
and analyze two different network structures for the solution of the pricing problem, 
and adapt cutting planes and branching rules. Our extensive computational study 
includes three parts: First, we evaluate the performance of our algorithm for the two 
different network structures on a newly introduced benchmark instance set. Second, 
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we compare our BPC with the state-of-the-art algorithm from the literature on 
benchmark instances for the VRPHRDL and VRPRDL. Last, we conduct a sensitiv-
ity analysis to determine the impact of varying service levels and location capacities 
on routing costs and solution times.

The remainder of the paper is structured as follows: Sect.  2 reviews the perti-
nent literature. Sect. 3 introduces the VRPDO and all necessary notation. Section 4 
describes the BPC algorithm with subsections on the set partitioning formulation, 
the pricing subproblem, valid inequalities, and branching. In Sect. 5, the results of 
the computational study are shown and discussed. Final conclusions are drawn in 
Sect. 6.

2  Literature

To the best of our knowledge, the first basic version of the VRPDO with alternative 
delivery locations for each customer was proposed in the dissertation of Cardeneo 
(2005). Service levels and customer preferences together with location selection 
were considered in the generalized pickup and delivery problem with time windows 
and preferences proposed by Los et al. (2018).

Shared delivery locations such as delivery to parcel lockers and shops have 
recently started to gain attention (Savelsbergh and Van Woensel 2016), as offering 
these in addition to traditional home delivery can significantly alleviate the burden 
of last-mile urban deliveries on both couriers and customers (Zhang and Lee 2016). 
Most customers are satisfied with collecting their delivery from established parcel 
lockers and shops, while others are open for other innovative last-mile delivery con-
cepts such as the use of a reception box, controlled access systems, and trunk deliv-
ery (Felch et al. 2019). The VRPDO can easily represent all these options. Mancini 
and Gansterer (2020) assume that each customer can either chose home delivery, 
or delivery to one of the shared delivery locations, or allow both. Here, custom-
ers receive a monetarily compensation if assigned to a shared delivery location. 
Home deliveries have a time window, while shared delivery locations are restricted 
by a location capacity. This problem is refined in (Grabenschweiger et al. 2021) by 
considering different sizes of parcels and slots of the parcel lockers. Other recent 
contributions on shared delivery locations are (Zhou et  al. 2018; He et  al. 2019; 
Janjevic et al. 2019; Orenstein et al. 2019; Sitek and Wikarek 2019; Enthoven et al. 
2020; Schwerdfeger and Boysen 2020). We refer to (Mancini and Gansterer 2020) 
and (Grabenschweiger et al. 2021) for a more detailed discussion on shared delivery 
locations. Recently, Jungwirth et al. (2020b) introduce the VRP with time windows 
and flexible delivery locations which also considers capacitated shared delivery 
locations and a location cost that can be used to model that customers have prefer-
ences for certain locations. Jungwirth et al. (2020a) discuss a similar problem aris-
ing in hospitals when physical therapists have to be scheduled to treat their patients 
at alternative service locations.

Ghoniem et al. (2013) and Reihaneh and Ghoniem (2017, 2019) consider a joint 
routing and allocation problem that arises in the food delivery context. From a food 
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bank, pallets are first shipped to intermediate delivery sites, from where nonprofit 
organizations pick up the food and bring it to remote places. The delivery option lies 
in the selection of the intermediate delivery sites with the objective to minimize the 
total logistics cost that comprise vehicle routing costs of the food bank and travel 
costs of the nonprofit organization.

The VRPDO also generalizes some other vehicle routing problems. In the VRP 
with multiple time windows (Doerner et  al. 2008), the delivery options of a cus-
tomer have an identical location. The multiple-vehicle traveling purchaser prob-
lem (Manerba et  al. 2017) can be modeled as a VRPDO by considering products 
as customer requests, the suppliers of a certain product as the delivery options, and 
the purchasers as the different vehicles. Moreover, the multi-vehicle covering tour 
problem (Hachicha et al. 2000) can be modeled by introducing one delivery option 
for each customer and each service point covering that customer. Note that none of 
these problems considers location capacities or service-level constraints.

The vehicle routing problem with (home and) roaming delivery locations 
(VRP(H)RDL, Ozbaygin et  al. 2017; Reyes et  al. 2017) is an application-specific 
variant of the GVRPTW and therefore also a special case of the VRPDO. The 
VRP(H)RDL with stochastic travel times has been considered by Lombard et  al. 
(2018); Sampaio Oliveira et  al. (2019); He et  al. (2020). However, customer’s 
acceptance for roaming deliveries seems to be limited, since they have to reveal sen-
sitive information (e.g., tracking data) and trust in the carrier is required (Felch et al. 
2019).

3  Definition of the VRPDO

In the VRPDO, each customer a priori offers one or several delivery options that 
specify a delivery location and a priority. We use priorities that indicate how much 
the customer prioritizes this option, i.e., smaller numbers indicate higher customer 
satisfaction. In addition, shared delivery locations have a limited capacity in terms 
of the number of customers that can be served. Given a set of delivery options for 
each customer request, the VRPDO is the problem of selecting exactly one delivery 
option for each customer and determining a cost-minimal set of feasible routes that 
serve the selected delivery options while respecting the time windows of the deliv-
ery locations and the vehicle capacity. Moreover, the set of routes must respect all 
location capacities and all service-level constraints which require a minimum num-
ber of customers to be served with an option of the respective service level.

The VRPDO can be formalized as follows: Let N denote the set of all 
(customer) requests, L the set of all locations, and P = {1,… , pmax} the 
set of pmax ≥ 1 different (delivery) priorities. A delivery option is a tri-
plet o = (n,�, p) ∈ N × L × P and let O ⊂ N × L × P denote the set of all delivery 
options. In order to identify for an option o ∈ O the associated request, location, 
and priority, we write o = (no,�o, po) . A request  n ∈ N is fulfilled by select-
ing exactly one of the options ON

n
= {(no,�o, po) ∈ O ∶ no = n} . For a feasible 

VRPDO instance, there must exist at least one option per request, i.e., |ON
n
| ≥ 1 

for all n ∈ N . Similarly, we define OL
�
= {(no,�o, po) ∈ O ∶ �o = �} as the set of 
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options belonging to location � ∈ L and OP
p
= {(no,�o, po) ∈ O ∶ po ≤ p} as the 

set of options with priority level p ∈ P or smaller (=better). Moreover, each 
option o ∈ O has a nonnegative service time so.

For each location � ∈ L , a time window [a
�
, b

�
] represents the time period in 

which all deliveries to this location must take place. Additionally, the capacity 
C
�
 limits the number of shipments that can be delivered to that location. A loca-

tion with exactly one associated delivery option is called individual delivery loca-
tion (individual delivery is a.k.a. home or private delivery), all other locations are 
called shared delivery locations and denoted by Lshrd = {� ∈ L ∶ |OL

�
| > 1}.

A fleet of K homogeneous vehicles is housed at the depot 0 for which �0 ∈ L 
denotes the depot location. A vehicle has a capacity Q to serve the demands qn 
of the requests n ∈ N and fixed cost cf  when used. We assume the time window 
[a

�0
, b

�0
] of the depot location to span the whole planning horizon. Traveling 

between location � and �� ∈ L consumes a travel time of t
��′ and a travel cost 

of c
��′ . The travel time t

��′ also includes a required access time needed, e.g., for 
parking a vehicle at �′ before the actual service (=delivery) at �′ can start.

Each priority level  p ∈ P can be characterized by a percentage �p that indi-
cates that at least ⌈�p�N�⌉ delivery requests must be served with priority level p or 
smaller (=better). For this purpose, we assume that priorities are nested and the 
set OP

p
 contains all options o with po ≤ p . Note that the percentage �pmax refers to 

the set OP
pmax = O and is therefore irrelevant.

Example 1 Figure 1 shows an example of a VRPDO instance with five customers 
and eleven options as well as a solution utilizing two vehicles which (together) serve 
exactly one delivery option of each customer. Each customer and her/his options 
are depicted in the same color, e.g., the blue customer can be served either at the 
individual delivery location in the upper left part of the figure or at a shared deliv-
ery location at the bottom left. Note that different customers can have a different 
number of delivery options. The priority level of each delivery option is depicted 
next to it, e.g., the individual delivery location of the green customer has the high-
est priority 1 while his two other green options have a lower priority of 2. Note that 
not all customers must prioritize individual delivery locations over shared delivery 
locations (a counterexample is the red customer). Each shared delivery location is 
depicted as a dotted ellipse around its associated options together with its location 
index ( � ∈ {�1,�2,�3}).

Next, we briefly discuss the role of the location capacities and service-level con-
straints. Regarding location capacities, we can see that location �1 is used to serve 
two customers, location �2 serves one, and no customer is served at location �3 . 
Hence, the solution can only be feasible if C

�1
≥ 2 and C

�2
≥ 1 . Regarding the ser-

vice-level constraints, three options with priority 1 are selected and served and two 
options with priority 2. Hence, the solution is feasible if �1 ≤ 60%.

A (vehicle) route r = (0, o1,… , oh, 0
�) is as sequence of options in which the 

artificial options o0 = 0 and oh+1 = 0� represent the visit of the depot location �0 
at the start and end of the route, respectively. A route r is feasible if it fulfils the 
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capacity and time-window constraints that we define as follows. The demand 
served by route r is q(r) =

∑h

j=1
qnoj

 , so that r is capacity-feasible if q(r) ≤ Q holds 
true. A route is time-window feasible if there exists a schedule 
(T0, T1,… , Th, Th+1) ∈ ℝ

h+2 which complies with the option service times, travel 
times, and time windows, i.e., if Tj−1 + t

�oj−1
,�oj

+ soj−1 ≤ Tj for all 1 ≤ j ≤ h + 1 
(assuming so0 = 0 ) and [Tj, Tj + soj ] ⊆ [a

�oj

, b
�oj

] for all 0 ≤ j ≤ h + 1 . This defini-
tion has the following consequences: a subsequence oi,… , oj of options with 
identical locations 𝓁 = 𝓁oi

= ⋯ = 𝓁oj
 models a single physical stop of a vehicle at 

this location. The above time-window feasibility conditions impose that 
(i) Ti,… , Tj can be considered as the start times when the associated requests are 
served, (ii) Ti + soi ,… , Tj + soj are the respective service end times, and (iii)  the 
time window [a

�
, b

�
] of location � must cover all service times entirely. We stress 

that we have chosen this definition of the time windows (diverging from the 
standard definition for the VRPTW referring to possible service start times) 
because in the VRPDO the total service time at a location is a variable. It results 
from the selection of options that are together served during the one stop of a 
vehicle at the location.

The cost cr of a route r is the sum of the fixed cost and the travel costs between 
the visited locations, i.e., cr = cf +

∑h+1

j=1
c
�oj−1

,�oj

 . The objective of the VRPDO is 
to find a least-cost set of feasible routes together covering exactly one option of 
ON

n
 for all customers n ∈ N respecting the fleet size and location capacities as well 

as achieving the required service level.

Fig. 1  Example of a VRPDO instance and a solution
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4  Branch‑price‑and‑cut

We use a BPC algorithm in order to solve the VRPDO exactly. According to the 
recent survey by Costa et al. (2019), BPC is the leading exact methodology for solv-
ing many types of vehicle routing problems. Section 4.1 presents the extensive for-
mulation of the VRPDO and Sect. 4.2 the pricing subproblem and approaches for its 
resolution. In particular, we describe two competing approaches for modeling the 
underlying network including a discussion of expected pros and cons and a sum-
mary of their properties. Section 4.3 then briefly describes known valid inequalities 
for strengthening the linear relaxation, their adaption for the VRPDO, and separa-
tion algorithms. The branching scheme developed in Sect. 4.4 finally ensures integer 
solutions.

4.1  Extensive formulation

Let Ω denote the set of all feasible routes. The following extensive formulation of 
the VRPDO comprises one binary variables �r per possible route r ∈ Ω indicating 
whether r is part of the solution ( �r = 1 ) or not (=0). The binary coefficients �or 
indicate whether route r ∈ Ω serves option o ∈ O . The model is an extended set-
partitioning formulation and reads as follows: 

 The objective  (1a) minimizes the overall costs of the routes that are selected and 
performed. Constraints  (1b) ensure that each request is served exactly once. For 
each shared delivery location, the number of shipments to this location is bounded 
by constraints (1c). The required service level per priority level is enforced by con-
straints (1d). Finally, constraint (1e) restricts the number of employed vehicles.

(1a)min
∑

r∈Ω

cr�r

(1b)subject to
∑

r∈Ω

∑

o∈ON

n

�
or
�
r
= 1 ∀n ∈ N

(1c)
∑

r∈Ω

∑

o∈OL

�

�
or
�
r
≤ C

�
∀� ∈ L

shrd

(1d)
�

r∈Ω

�

o∈OP
p

�or�r ≥ ⌈�p�N�⌉ ∀p ∈ P

(1e)
∑

r∈Ω

�r ≤ K

(1f)�
r
∈ {0, 1} ∀r ∈ Ω
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For solving the linear relaxation of (1), a column-generation algorithm is used 
(Desaulniers et al. 2005). In the following, the linear relaxation of formulation (1) 
in which the set of all feasible routes Ω is replaced by a subset Ω̄ ⊂ Ω is denoted as 
restricted master program (RMP). Column generation alternates between the reopti-
mization of the RMP and the solution of the pricing subproblem that either gener-
ates new negative reduced-cost variables (=routes) to be added to Ω̄ , or proves that 
none exists. In the latter case, the column-generation process terminates with a solu-
tion to the linear relaxation of the extensive formulation.

4.2  Column generation

Let (�n)n∈N denote the dual prices of the constraints  (1b), (�
�
)
�∈Lshrd of the con-

straints (1c), (�p)p∈P of constraints (1d), and � of the fleet-size constraint (1e). Then, 
the reduced cost c̄r of a route r ∈ Ω is given by

The pricing problem asks for a feasible route with minimal reduced cost. We show 
in the following that it is a variant of the shortest path problem with resource con-
straints (SPPRC, Irnich and Desaulniers 2005). SPPRCs can be solved with a 
dynamic-programming labeling algorithm that creates partial paths starting from an 
origin vertex moving forward to a destination vertex of the network.

Next, we present two different possibilities to model the underlying network. A 
unified labeling algorithm for both networks is described in Sect.  4.2.2. Standard 
acceleration techniques are presented in Sect. 4.2.3.

4.2.1  Network modeling

An important characteristic of the VRPDO is that in many realistic instances several 
options share the same physical delivery location. This happens, e.g., when different 
customers choose the same delivery locker or the same shop as a potential option. 
Moreover, customers living together in the same apartment building and allowing 
home delivery is another case of identical locations.

One of our leading questions was whether these identical locations can be 
exploited so that a tailored solution approach works better than one that does not 
anticipate the identical locations. The commodity-constrained split delivery vehi-
cle routing problem (C-SDVRP, Archetti et al. 2016) is an example of a VRP in 
which the solution approach can be tailored to exploit identical locations. In this 
problem, the total demand of a customer can be split into given smaller demands 
(the different commodities requested) which can be served by one or several vis-
its to the customer. A straightforward approach for modeling and solving the 
C-SDVRP is to reduce it to a standard CVRP, as done in (Archetti et al. 2016), 
where each customer vertex is duplicated as many times as the number of com-
modities requested by the customer. Each duplicated vertex has a demand given 
by the weight of the corresponding commodity. A solution approach may either 

(2)c̄r = cr − 𝜇 −
∑

n∈N

∑

o∈ON
n

𝛼or𝜋n −
∑

�∈Lshrd

∑

o∈OL
�

𝛼or𝜌� −
∑

p∈P

∑

o∈OP
p

𝛼or𝜈p.
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disregard or exploit the fact that this new CVRP instance has customers with 
identical locations. The recently presented approach of Gschwind et  al. (2019) 
is of the latter type and heavily benefits from working on a transformed underly-
ing graph with a macroscopic level considering locations and a microscopic level 
considering the commodities of each customer separately.

In the same spirit, we present two modeling approaches for the underlying 
network. The first one uses an option-based network Gopt = (Vopt,Aopt) . In Gopt , 
all vertices represent either options or the depot. No information about identi-
cal locations is exploited. Using options as vertices emphasizes that they are the 
basic objects that can be served. In Fig. 1, each depicted package and house rep-
resents one option so that the routes directly connect two options (or the depot 
with an option in either direction). Formally, the vertex set Vopt of the option-
based network is given by {0, 0�} ∪ O . The arc set Aopt contains all feasible direct 
connections between vertices, i.e., Aopt ⊂ Vopt × Vopt.

The second network, the location-based network Gloc = (V loc,Aloc) , is more 
sophisticated as it makes use of the location information of options. All options 
are grouped according to their respective location. The idea of the location-based 
network is to significantly reduce the number of arcs at the cost of adding two 
artificial vertices e

�
 and f

�
 for each shared delivery location � ∈ Lshrd modeling 

the entry and exit point of that location, respectively.
Formally,

denote the sets of all entry and exit vertices, respectively. (Conversely, to refer to 
an entry or exit’s location, we write �e = �f = � for � ∈ Lshrd .) Then, the vertex set 
is given by V loc = {0, 0�} ∪ O ∪ E ∪ F = Vopt ∪ E ∪ F . Entering (exiting) a shared 
delivery location is only possible by using the entry (exit) vertex of that location. 
Thus, the arc set can be characterized by

where the first row refers direct connections between options at individual deliv-
ery locations, the second row internal connections of a shared delivery location, the 
third row connections between exit/entry vertices and individual delivery locations, 
and the last row connections between exit and entry vertices. For the sake of clarity, 
all arcs of the location-based network are summarized in Table 1. Note that typi-
cally time-window constraints and demands allow to eliminate infeasible arcs so that 
Aloc is a proper subset of the indicated arc set (this is also the reason why we write 
Aloc ⊆ …).

E = {e
�
∶ � ∈ Lshrd} and F = {f

�
∶ � ∈ Lshrd}

Aloc ⊆{(i, j) ∈ Aopt ∶ �i,�j ∉ Lshrd}

∪ {(e
�
, j) ∈ E × Vopt ∶ �j = �} ∪ {(i, f

�
) ∈ Vopt × F ∶ �i = �}

∪ {(f
�
, j) ∈ F × Vopt ∶ �j ∉ Lshrd, j ≠ 0}

∪ {(i, e
�
) ∈ Vopt × E ∶ i ≠ 0�,�i ∉ Lshrd}

∪ {(f
�
, e�

�
) ∈ F × E ∶ � ≠ �

�},
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Example 2 We consider the situation that a route serves six options 
o1, o2, o3, o4, o5, o6 in the given order. Associated with these options are four differ-
ent locations �o1

 ,  �o2
= �o3

= �o4
 , �o5

 , and �o6
 . Moreover, we assume that the sec-

ond and penultimate location, i.e., � = �o2
 and �� = �o5

 , are the only shared delivery 
locations in this example.

In the option-based network, the resulting route is represented by the path 
P
opt = (0, o1, o2, o3, o4, o5, o6, 0

�). In the location-based network, the path is 
P
loc = (0, o1, e� , o2, o3, o4, f� , e�� , o5, f�� , o6, 0

�).
Table 2 compares the option-based and location-based networks regarding the 

sizes of the vertex and arc sets as well as regarding the strength of the domi-
nance that is used in the dynamic-programming labeling algorithm for solving the 
pricing problem. The following example explains what is meant by strength of 
dominance:

Example 3 We consider two feasible routes that have no options in common. Moreo-
ver, option o1 is served by the first route while option o2 is served by the second 
route. In addition, we assume that the options have the identical delivery location 
� = �o1

= �o2
.

Then, in the option-based network, the paths P1 and P2 representing the two 
routes are vertex disjoint, except for the two depot vertices 0 and 0′ . As a conse-
quence, no dominance can occur between labels associated with proper partial paths 
that occur when constructing the two paths.

Table 1  Arcs in the location-based network; entry “–” if no such arc exists, entry “ ✓ ” if all such arcs 
exist, and a condition under which some of the arcs exist

from ↓       to → 0′ e
�� ∈ E f

�� ∈ F o
� ∈ O ∶ �

o�
∉ L

shrd
o
� ∈ O ∶ �

o�
∈ L

shrd

0 – ✓ – ✓ –
e
�
∈ E – – – – �o� = �

f
�
∈ F ✓ � ≠ �

′ – ✓ –
o ∈ O ∶ �o ∉ Lshrd ✓ ✓ – no ≠ no′ –

o ∈ O ∶ �o ∈ Lshrd – – �o = �
� – �o = �o� , no ≠ no�

Table 2  Comparison of the option-based network and the location-based network

Δ denotes the size of the largest set OL

�
 for � ∈ L

shrd

Option-based network Location-based network
G

opt = (Vopt,Aopt) G
loc = (V loc,Aloc)

Vertices less ( −2|Lshrd|) more ( +2|Lshrd|)
Arcs many more; O (|O|2) much less; O (|L|2) +O (|Lshrd|Δ2)

Dominance weaker stronger
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In contrast, in the location-based network, the two paths are

and

i.e., they have at least the additional entry and exit vertices is common. At these 
vertices e

�
 and f

�
 , partial paths associated with the two routes are compared by the 

dominance algorithm.

We can summarize that, in the location-based network, more partial paths are sup-
posed to meet at the entry and exit vertices of their common shared delivery locations. 
Consequently, there are more possibilities that labels dominate each other so that the 
dominance is stronger.

Moreover, the main driver for the computational effort of a labeling algorithm is the 
network size, because it impacts the number of labels that are generated and compared 
against each other using the dominance algorithm. Since labels are extended along 
arcs, also the two last points in combination with Table 2 speak in favor of the location-
based network. Therefore, we initially expected that a BPC algorithm with pricing over 
the location-based network would clearly outperform the other BPC algorithm using 
the option-based network. The later computational experiments presented in Sect. 5.2 
will, however, show that results are less clear cut. This came very unexpectedly for us.

4.2.2  Unified labeling algorithm

We now present the labeling algorithm in a unified way so that the description is cor-
rect for both networks. To this end, let G = (V ,A) ∈ {Gopt,Gloc} be the option-based 
or location-based digraph.

It is helpful to first introduce the dual price of a vertex i ∈ V that we defined as

Then, the travel time and reduced cost of an arc (i, j) ∈ A are defined as

respectively.
As in all VRPTW variants, we can remove infeasible arcs. Regarding the time-

window constraints, we can remove all arcs (i, j) ∈ A with a
�i
+ t̄ij > b

�j
 . Moreover, 

(0,… , e
�
,… , o1,… , f

�
,… , 0�)

(0,… , e
�
,… , o2,… , f

�
,… , 0�),

(3)
dual(i) =

�
�ni + �

�i
+

∑
p≤pi

�p, if i = (ni,�i, pi) ∈ O

0, otherwise

+

�
� − cf , if i = 0 or i = 0�

0, otherwise
.

(4)
t̄ij = t

�i,�j
+

{
si, if i = (ni,�i, pi) ∈ O

0, otherwise
and

c̄ij = c
�i,�j

−
1

2
(dual(i) + dual(j)),
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for (i, j) ∈ O × O the arcs with qni + qnj > Q can be eliminated. Note that the condi-
tions in Table 1 already ensure that ni ≠ nj holds.

Since the routing cost between two options of the same shared delivery location 
is 0, the order in which these options are served does not matter. In the following, we 
therefore reduce the symmetry of the network by eliminating the arcs in one direc-
tion. Let a total ordering < of all options be given, i.e., either i < j or j < i holds for 
all i, j ∈ O, i ≠ j . The arcs of set (i, j) ∈ O × O with �i = �j and i > j can be removed 
from A . Note that with this symmetry reduction we partially exploit location-spe-
cific information also in the option-based network.

A partial path Pi = (0,… , i) starts at the depot 0 and ends at some vertex i ∈ V  . 
The associated label Li = (i,Ci,Qi, Ti, Si) comprises the attributes 

i:  the last visited vertex,
Ci:  the accumulated reduced cost,
Qi:  the accumulated load,
Ti:  the earliest arrival time at i, and
Si:  the set of the requests served along the partial path Pi.

 For the trivial partial path (0) , the initial label is given by 
L0 = (0,C0,Q0, T0, S0) = (0, 0, 0, a

�0
, �) . Labels are propagated over arcs toward the 

destination vertex with the help of so-called resource extension functions (REFs, 
Irnich and Desaulniers 2005). An arbitrary label Li = (i,Ci,Qi, Ti, Si) is extended 
along an arc (i, j) ∈ A creating a new label (j,Cj,Qj, Tj, Sj) using the following REFs: 

The extended partial path Pj = (0,… , i, j) is feasible if the following constraints are 
fulfilled:

To avoid the enumeration of all feasible paths, provable redundant labels are 
eliminated through a dominance criterion. Let two labels Li = (i,Ci,Qi, Ti, Si) and 
L�
i
= (i,C�

i
,Q�

i
, T �

i
, S�

i
) of two different partial paths ending at the same vertex i ∈ V  

(5a)Cj = Ci + c̄ij

(5b)Qj =

{
Qi + qnj , if j = (nj,�j, pj) ∈ O

Qi, otherwise

(5c)Tj = max{a
�j
, Ti + t̄ij}

(5d)Sj =

{
Si ∪ {nj}, if j = (nj,�j, pj) ∈ O

Si, otherwise

Qj ≤ Q

Tj ≤ bj

nj ∉ Si, if j = (nj,�j, pj) ∈ O



889

1 3

The last-mile vehicle routing problem with delivery options  

be given. Label Li dominates L′
i
 if Ci ≤ C′

i
 , Qi ≤ Q′

i
 , Ti ≤ T ′

i
 , and Si ⊆ S′

i
 holds. A 

dominated label can be discarded as long as a dominating label is kept.
Note that the use of a dominance rule always plays with the tradeoff between the 

effort resulting from less labels to be generated and further extended and the effort 
from applying the dominance algorithm itself. For the location-based network, we will 
investigate different dominance strategies varying the vertices at which the dominance 
is applied. Dominance can be checked at every vertex (full dominance) or only at some 
vertices (reduced dominance). Examples for the latter are dominance only at option 
vertices or dominance at all vertices but not at the option vertices of shared delivery 
locations. These three strategies are computationally evaluated in Sect. 5.2.

4.2.3  Acceleration of the labeling

We apply bidirectional labeling which has become a quasi-standard for accelerating the 
solution of SPPRC labeling algorithms (Righini and Salani 2006). In a bidirectional 
labeling algorithm, forward and backward labels are only extended up to a half-way 
point that splits the domain of a monotone resource into two intervals, one for exten-
sion of forward and one for the extension of backward labeling.

Backward labels refer to backward partial paths (j,… , 0�) staring at a vertex j ∈ V  
and ending at the destination depot 0′ . For the trivial backward partial path (0�) , the 
initial label is B0� = (0�,C0� ,Q0� , T0� , S0� ) = (0�, 0, 0, b

�0
, �) . Note that the time attrib-

ute in the backward case represents an as-late-as-possible schedule. Backward labels 
are propagated against the arc direction toward the source vertex. An arbitrary label 
Bj = (j,Cj,Qj, Tj, Sj) is extended backward over an arc (i, j) ∈ A creating a new label 
Bi = (i,Ci,Qi, Ti, Si) defined by: 

The extended partial path Pi = (i, j,… , 0�) is feasible if Qi ≤ Q , Ti ≥ ai , and ni ∉ Sj 
if i ∈ O.

Let two backward labels Bj = (j,Cj,Qj, Tj, Sj) and B�
j
= (j,C�

j
,Q�

j
, T �

j
, S�

j
) of two 

different backward partial paths starting at the same vertex j ∈ V  be given. Label Lj 
dominates L′

j
 if Cj ≤ C′

j
 , Qj ≤ Q′

j
 , Tj ≥ T ′

j
 , and Sj ⊆ S′

j
 holds.

The acceleration of a bidirectional labeling approach results from the considera-
tion of a monotone resource, the time attribute here, for which a half-way point H is 
defined: Forward labels with a time attribute T > H as well as backward labels with 

(6a)Ci = Cj + c̄ij

(6b)Qi =

{
Qj + qni , if i = (ni,�i, pi) ∈ O

Qj, otherwise

(6c)Ti = min{b
�i
, Tj − t̄ij}

(6d)Si =

{
Sj ∪ {ni}, if i = (ni,�i, pi) ∈ O

Sj, otherwise
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a time attribute T ≤ H are not further extended. This mitigates the often observed 
combinatorial explosion that happens when partial paths with many arcs are gener-
ated. We use a dynamic half-way point as defined in (Tilk et al. 2017) to balance the 
labels generated in forward and backward labeling.

The merge step considers a forward label Li = (i,Ci,Qi, Ti, Si) for a partial path 
(0,… , i) and a backward label Bi = (i,Cbw

i
,Qbw

i
, Tbw

i
, Sbw

i
) for a backward partial 

path (i,… , 0�) . The two labels can be merged, i.e., the concatenation (0,… , i,… , 0�) 
represents a feasible VRPDO route r if the following conditions hold:

The conditions take into account that both (5) and (6) model the operations at the 
merge point i so that correction terms are needed to not double count. The reduced 
cost of the route r is c̄r = Ci + Cbw

i
.

The bidirectional labeling takes by far the largest portion of the computation time 
in the overall BPC algorithm. To further speed up the solution process, two addi-
tional techniques are used. First, we adapt the ng-path relaxation (Baldacci et  al. 
2011) with a more powerful dominance rule that comes at the cost of introducing 
nonelementary routes as solutions to the pricing subproblem leading to a weaker 
linear relaxation bound. We adopt the ng-path relaxation as follows: For each loca-
tion � , we define a neighborhood N

�
⊂ N that contains the � closest requests to � 

(ties are broken arbitrarily). We define the distance of a request n to a location � as 
min{c

�,�o
∶ o ∈ ON

n
}.

Second, the labeling is solved heuristically but typically faster using a limited 
discrepancy search (Feillet et al. 2007). In the heuristic labeling algorithm, the set 
of outgoing arcs of each vertex is partitioned in good and bad arcs. Then the total 
number of bad arcs that can be traversed in a route is limited by some upper bound. 
Section 5 provides further details.

4.3  Valid inequalities

To strengthen the linear relaxation of (1), two classes of valid inequalities for the 
VRPTW are adapted: k-path inequalities (KPIs, Kohl et al. 1999) and limited mem-
ory subset-row inequalities (LmSRIs, Pecin et al. 2017). We briefly describe them in 
the following.

Let S ⊆ V  be a subset of vertices. We say that S contains a request n ∈ N if it 
contains all options associated with n , i.e., On ⊆ S . The KPI for S is given by

Qi + Qbw
i

≤

{
Q − qni , if i = (ni,�i, pi) ∈ O

Q, otherwise

Ti ≤ Tbw
i

Si ∩ Sbw
i

=

{
{ni}, if i = (ni,�i, pi) ∈ O

�, otherwise

(7)
∑

r∈Ω

∑

(i,j)∈�−(S)

er
ij
�r ≥ k(S),
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where �−(S) is the set of all in-going arcs into vertex set S, er
ij
 an integer coefficient 

counting how often arc (i, j) ∈ A is used by route r, and k(S) the minimum number of 
vehicles need to serve all requests contained in S. KPIs are robust, meaning they do 
not change the structure of the pricing problem: the dual price of the KPI for S must 
simply be subtracted from the reduced cost of the arcs in �−(S) . The minimum num-
ber k(S) of vehicles can be substituted by any lower bound. This lower bound can be 
determined either considering the demand or time-window constraints. In the first 
case, we separate the KPIs by applying two shrinking heuristics presented by Belen-
guer et al. (2000) and Ralphs et al. (2003), the extended shrinking heuristic and the 
greedy shrinking heuristic, respectively. In the second case, we restrict ourselves to 
the case k(S) = 2 and use the heuristic proposed by Kohl et al. (1999) to generate 
candidate sets S.

SRIs were first introduced for the VRPTW by Jepsen et al. (2008). Let S ⊂ N be 
any subset of requests and let hS

r
 be the number of times the route r serves a request 

in S. As proposed by Jepsen et al. (2008), we restrict ourselves to SRIs defined on 
three requests, i.e., |S| = 3 , because violated SRIs of this type can be separated by 
straightforward enumeration. The corresponding SRI for S is then given by

SRIs comprise a family of nonrobust cuts meaning that for each SRI with a positive 
dual value an additional binary attribute has to be added in the labeling algorithm. 
Moreover, the standard dominance rule of Sect. 4.2.2 has to be modified to effec-
tively cope with the additional attributes (we refer to, Jepsen et al. 2008, for details).

The presence of many SRIs often drastically increases the practical difficulty of 
the pricing problem. To alleviate these negative effects, Pecin et  al. (2017) intro-
duced LmSRIs that use an S-specific memory for the associated binary attribute. The 
role of the memory is very similar to the neighborhoods in the ng-path relaxation. 
With a complete memory, LmSRIs are identical to standard SRIs. However, with a 
S-specific memory, the difficulty of the pricing subproblem is typically reduced. We 
use the same separation algorithm and vertex memory as described by Pecin et al. .

4.4  Branching

To finally compute integer solutions for (1), branching may be necessary. We use a 
hierarchical four-level branching scheme and apply a best-first search to determine 
the next branch-and-bound node to process. Let (�̄�r) be the current solution of the 
RMP.

First, we branch on the total number of vehicles used, whenever F̄ =
∑

r∈Ω �̄�r is 
fractional. We create two branches enforcing either 

∑
r∈Ω 𝜆r ≤ ⌊F̄⌋ or 

∑
r∈Ω 𝜆r ≥ ⌈F̄⌉.

At the second level, we branch on whether an option is used to fulfill a customer 
request. We select an option o∗ ∈ O for which the value 

∑
r∈Ω 𝛼o∗r�̄�r is fractional and 

closest to 0.5 (ties are broken arbitrarily). Instead of adding a constraint, we directly 

(8)
∑

r∈Ω

⌊
hS
r

2

⌋
�r ≤ 1.
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implement the branching decision by manipulating the vertex set V of the underlying 
network. In the first branch, option o∗ is removed from V  . In the second branch, all 
options {o ∈ O ∶ o ≠ o∗, no = no∗} are removed from V  . Moreover, all route vari-
ables that do not comply with the branching decision are removed from the RMP.

The third level decides on the integer flow over arcs (i, j) ∈ A . For all arcs 
(i, j) ∈ A , we compute the value ēij =

∑
r∈Ω er

ij
�̄�r and select the arc (i∗, j∗) for which 

the value ēi∗j∗ − ⌊ēi∗j∗⌋ is fractional and closest to 0.5. Two branches are created by 
adding the constraint 

∑
r∈Ω er

i∗j∗
𝜆r ≤ ⌊ēij⌋ and 

∑
r∈Ω er

i∗j∗
𝜆r ≥ ⌈ēij⌉ to the RMP, 

respectively. Note that this branching rule reduces to standard binary arc branching 
in the option-based network where it can be enforced directly on the underlying net-
work by removing arcs. Note also that, for the option-based network, this branching 
rule guarantees integer route variables.

For the VRPDO and the location-based network, integer flows on arcs do not 
guarantee that the route variables are integer. Therefore, the fourth level applies the 
additional branching rule based on the flow-splitting method proposed by Feillet 
et al. (2005). Given a subpath (i, f , e, j) with f ∈ F and e ∈ E , we branch on the flow 
induced by all routes that exactly traverse this subpath. This flow value must either 
be zero or one, which can be seen as follows. The flow on the two arcs (i, f ) and (e, j) 
is necessarily binary, because the network structure ensures that i and j are option 
vertices, i.e., i, j ∈ O . If the two arcs are traversed by a route in this order, the flow 
on the subpath is one. Otherwise, the two arcs are traversed by different routes or not 
in the given order so that the flow on the subpath is zero. We always select a subpath 
(i∗, f ∗, e∗, j∗) with flow closest to 0.5. These branching decisions change the structure 
of the pricing problem and a new resource for each of these branching decision has 
to be added to the label. It is worth mentioning that, in our computational experi-
ments, it was never necessary to apply the fourth branching rule (for a more detailed 
discussion, we refer to Desaulniers et al. 1998; Jans 2010).

5  Computational results

The BPC algorithm is implemented in C++ and compiled with MS Visual Studio 
2015 into 64-bit single-thread code. The callable library of CPLEX 12.9.0 was used 
for (re)optimizing the RMPs and to determine an integer solution based on the col-
umns generated so far when reaching the time limit. All results were obtained using 
a standard PC with an IntelⓇ Core™ i7-5930K processor clocked at 3.5 GHz and 
64 GB RAM running Microsoft Windows 10 Education.

This Computational results section is structured as follows: In Sect. 5.1, we intro-
duce the considered benchmark instances. Section 5.2 compares the results obtained 
with the two networks used for solving the subproblem. To evaluate the perfor-
mance of our algorithm, we also solve benchmark instances of the VRPRDL and 
the VRPHRDL and compare our results with those using the current state-of-the-art 
algorithm from the literature in Sect. 5.3. Finally, we explore the impact of different 
service levels and location capacities on total costs, computation times, and number 
of optimally solved instances in Sect. 5.4.
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5.1  Benchmark instances

We test our BPC algorithm described in Sect. 4 on two benchmark sets. The first 
set is specifically generated for this study, since the VRPDO is a new problem. The 
instance set is divided into twelve instance classes with ten instances each differing 
in the number of requests (25 or 50), the number of options (on average 1.5 options 
per request in class V  and two  options in class U ), and the time-window widths 
(small, medium, or large). Priorities between 1 and 3 are uniformly distributed over 
the options of a request. All instances have a planning horizon of 12 hours (=720 
minutes) and the average time-window width for individual delivery and shared 
delivery locations is either 60 and 240 (small), 120 and 480 (medium), or 240 and 
600 (large) minutes, respectively. Locations are randomly placed in a 50 times 50 
grid. Travel costs and times are computed as Euclidean distances, multiplied by 10 
and rounded up.

Travel times include a location preparation time, e.g., for parking, which is 6 min-
utes for individual delivery locations and 4 minutes for shared delivery locations. 
Note that shared delivery locations such as shops and locker are usually faster acces-
sible. The number of shared delivery locations is |N|∕5 , each location has a capac-
ity of between three and five requests. Options at shared delivery locations have a 
service time of 2 minutes, while options at individual delivery locations have a ser-
vice time of 5 minutes. This reflects that usually deliveries to a shop or a locker can 
be processed faster than those to private homes. The vehicle capacity is  150 and 
demands are drawn uniformly at random from the interval [10, 20]. We assume that 
there is a sufficient number of vehicles available at the depot. The fixed costs of a 
vehicle are set to 100 000 so that they are dominating the travel costs. As a result, 
we model the hierarchical objective of minimizing the number of vehicles first and 
the total travel cost second. Note that the service-level parameters ( �p for p = 1, 2 ) 
are not part of the instance data. The benchmark set is available at https:// logis tik. 
bwl. uni- mainz. de/ resea rch/ bench marks.

The second benchmark set has been introduced by Reyes et  al. (2017) and is 
divided into 60 instances for the VRPRDL and 60 instances for the VRPHRDL. All 
120 instances are randomly generated with a size ranging from 15 to 120 requests 
clustered to a maximum of six options per request. We adjust the data of this bench-
mark set as suggested by Ozbaygin et al. (2017) such that the triangle inequality for 
travel cost and travel times holds.

5.2  Comparison of the option‑based and location‑based networks

Recall from Sect. 4.2.1 that the pricing problem can be modeled and solved on 
two different networks, the option-based network and the location-based network. 
The consideration of the network size (number of arcs) and of potential domi-
nance between labels suggested that the location-based network may be superior 
over the option-based network.

However, the following experiments are designed with the intention to make 
the comparison as fair and clear as possible. To this end, we separately analyze 

https://logistik.bwl.uni-mainz.de/research/benchmarks
https://logistik.bwl.uni-mainz.de/research/benchmarks
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the solution of the linear relaxation of the master problem (1) (Sect. 5.2.1) and 
the behavior in the branch-and-bound tree when cutting and branching take place 
(Sect.  5.2.2). One point is that results for the linear relaxation are significantly 
less scattered regarding computation times, because slightly different trajectories 
of the column-generation processes often lead to completely different branching 
decisions and hereby to strongly varying branch-and-bound trees.

Moreover, for the linear relaxation, the two networks can be used interchange-
ably. In contrast, the possibilities of making cutting and branching decisions dif-
fer in the two networks. For every arc a ∈ Aloc in the location-based network, 
there is a corresponding set B ⊂ Aopt of arcs in the option-based network so that 
any constraint considering the flow over a can also be formulated as a flow con-
straint over B. This correspondence is detailed in Table 3. As a result, any cutting 
and branching decision formulated as a flow constraint in the location-based net-
work can also be formulated as a flow constraint in the option-based network. 
However, the reverse is not true, because arcs in the option-based network may 
refer to subpaths in the location-based network. For example, an option-based arc 
(i, j) ∈ Aopt with �i,�j ∈ Lshrd and �i ≠ �j refers to the subpath (i, f

�i
,e
�j

,j) in the 
location-based network. The use of such a subpath cannot be formulated directly 
with arc-flow variables of the location-based network. The experiments for pro-
ducing integer solutions must therefore be designed so that results are still 
comparable.

5.2.1  Linear relaxation results

In the first experiment, we compare the linear-relaxation solutions when either the 
option-based or the location-based network is used in the pricing problem. We use 
the first benchmark, i.e., the self-generated VRPDO instances with the service lev-
els of �1 = 0.8 and �2 = 0.9 . Pretests have shown that 10 is a reasonable ng-neigh-
borhood size. Furthermore, for the limited discrepancy search, good arcs are deter-
mined in each pricing iteration according to the current reduced cost of the arcs. 
Only one bad arc per path is admissible.

Table 3  Correspondence between arcs of the location-based network and arc sets in the option-based net-
work

Location-based network Option-based network

arc a ∈ A
loc corresponding set B ⊂ A

opt of arcs

(o, o�) o ∈ Vopt, o� ∈ Vopt {(o, o�)}

(o, e
�
) o ∈ Vopt, e

�
∈ E {(o, i) ∈ Aopt ∶ �i = �}

(o, f
�
) o ∈ Vopt, f

�
∈ F {(o, i) ∈ Aopt ∶ �i ≠ �}

(e
�
, o) e

�
∈ E, o ∈ Vopt {(i, o) ∈ Aopt ∶ �i = �}

(f
�
, o) f

�
∈ F, o ∈ Vopt {(i, o) ∈ Aopt ∶ �i ≠ �}

(f
�
, e

�� ) f
�
∈ F, e

�� ∈ E {(i, j) ∈ Aopt ∶ �i = � and �j = �
�}
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We use four pricing heuristics, where the maximum number of outgoing good 
arcs per vertex is 2, 4, 8, and 14, respectively. Note that a reduced option-based 
network and a reduced location-based network are not at all equivalent. In order to 
eliminate the impact of the heuristical network reduction, all four pricing heuristics 
use the option-based network. The exact pricing is then performed with the two dif-
ferent networks. Note that typically the exact solution of the pricing problems con-
sumes more than 25  % of the total computation time. This implies that with this 
setup any substantial impact of the underlying network should become observable.

Finally, the RMP is initialized with one big-M variable that covers all requests, 
fulfills all priority constraints, and has no impact on other constraints. The time limit 
is two hours.

Table  4 displays aggregated results of the experiments grouped by classes of 
instances. Columns “#sol” give the number of solved linear relaxations per group 
of ten instances and “Time (s)” the average consumed computation time in seconds 
(unsolved instances are considered with 7200 seconds). For the setup described 
above, the comparison of the option-based network and the location-based network 
can be found in the columns headlined “Option-based network” and “Location-
based network, default strategy.” The same 114 of 120 VRPDO instances are solved. 
Moreover, the computation times per class and in total are very similar.

We have carefully checked and analyzed the results and have found out the fol-
lowing: The majority of the computation time is spent in the dominance algorithm. 
Neither the creation of new labels in the extension step, nor the merge procedure of 
the bidirectional labeling account for a considerable share of the computation time. 
Moreover, the computation time of the dominance algorithm differs for different 

Table 4  Aggregated linear relaxation results for the VRPDO benchmark

Option-based 
network

Location-based network

default strategy unwise strategy clever strategy

Class #sol Time (s) #sol Time (s) #sol Time (s) #sol Time (s)

V.25.small 10 5.7 10 5.8 10 6.2 10 6.5
V.25.medium 10 12.5 10 14.0 10 13.3 10 14.6
V.25.large 10 16.8 10 17.4 10 17.2 10 17.4
V.50.small 10 350.7 10 337.6 10 404.5 10 313.9
V.50.medium 10 647.2 10 664.1 10 683.8 10 622.4
V.50.large 8 2534.0 8 2558.8 8 2670.9 8 2560.3
U.25.small 10 2.0 10 1.9 10 2.3 10 2.0
U.25.medium 10 85.1 10 94.1 10 92.7 10 88.2
U.25.large 10 176.4 10 182.0 10 237.9 10 177.9
U.50.small 10 52.9 10 51.1 10 60.3 10 53.0
U.50.medium 9 1327.0 9 1324.6 9 1671.6 9 1328.3
U.50.large 7 3142.5 7 3169.2 7 3196.6 7 3159.0
Total/Avg. 114 696.1 114 701.7 114 754.8 114 695.3
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types of vertices. For example, in the location-based network, the dominance on 
average consumes more time at entry and exit vertices than at option vertices.

We have designed a second experiment in order to highlight the impact that the 
dominance algorithm has on the overall performance. Recall that the default strategy 
is to apply dominance at every vertex. We define two alternative dominance strate-
gies, one unwise and one clever.

In the unwise strategy, the dominance algorithm is only applied at option vertices. 
This eliminates the potentially superior possibility of the location-based network to 
compare paths not comparable in the option-based network (see Example 3). We can 
expect a worse performance compared to the default strategy.

In the clever strategy, the dominance algorithm is omitted at option vertices of 
shared delivery locations. The reasoning behind this strategy is that already the 
initial and inevitable dominance performed at the entry vertex of a shared deliv-
ery location eliminates most of the labels that are discarded at an associated option 
vertex when the default strategy was used. Moreover, the dominance at the exit ver-
tex of a shared delivery location actually ensures the elimination of all extensions 
of labels that were eliminated at option vertices of the same location in the default 
strategy. Hence, the clever strategy can only extend useless labels internally at a 
shared delivery location.

The last two blocks of Table 4 contain aggregated results for the unwise and the 
clever strategy. These results confirm the expectations, i.e., the column-generation 
algorithm on the location-based network using the clever strategy is superior to the 
one using the default strategy and, in turn, the latter is superior to the one using the 
unwise strategy. The differences are, however, not really large, the average computa-
tion times are 695.3 , 701.7 , and 754.8 seconds, respectively. It is more important 
that even with the clever strategy, the difference to the approach using the option-
based network is minor.

5.2.2  Integer results

For the full BPC algorithm, we rely on the clever strategy when using the location-
based network. Moreover, the following reasonable parameters have been identi-
fied during pretests: A maximum of ten SRIs in total and 5 per cutting iteration are 
allowed, since pricing problems rapidly become harder after adding SRIs. For KPIs, 
only sets S that contain not more than 20 requests are allowed. All valid inequalities 
are separated up to the second level of the branch-and-bound tree. For all branching 
and cutting constraints, we use the location-based network as a basis since each arc 
of the location-based network corresponds to a set of arcs in the option-based net-
work as summarized in Table 3. Hence, in that direction all dual prices of arcs can 
be transferred in a straightforward way.

Table 5 summarizes in aggregated form the results for the integer problem (1). As 
additional information, columns headlined with “#BB” give the average number of 
branch-and-bound nodes solved and columns “#SRIs” and “#KPIs” the number of 
separated valid inequalities of the respective type. The average number of branch-
and-bound nodes solved is computed only over those instances that are solved to 
proven optimality.
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As for the linear relaxation, results do not differ significantly for the two network 
types. In both cases, the BPC algorithm solves 78 instances to optimality in less than 
40 minutes on average.

The integer results, compared over the different classes of instances, reveal the 
normal behavior of a BPC approach applied to a VRPTW variant: With increas-
ing time-window widths and number of requests, the computation times grow 
even stronger. While all instances with small time windows and 25 options can be 
solved exactly within the time limit, medium and large time windows in combina-
tion with more options provide more challenging instances. At the end, only three 
of 20  instances with large time windows and 50  options are solved to optimality. 
Detailed results for all 120 VRPDO instances can be found in the Appendix in A.

5.3  Results for the VRP with roaming delivery locations

We now report the results we obtained by applying our BPC algorithm to the 
VRPRDL and VRPHRDL benchmarks. The current state of the art for exactly solv-
ing these problems is the branch-and-price algorithm of Ozbaygin et al. (2017).

These benchmarks differ significantly from the VRPDO benchmark, because 
time windows are more narrow so that instances require less computational effort. 
Therefore, we adjust our branching and cutting strategies in the following way: First, 
we allow up to 200 SRIs in total and 10 per round of separation. Second, we do not 
use the second-level branching rules (deciding whether a specific option is used), 
since there are many more options per request on average compared to the VRPDO 
instances making these branching decision less effective. Third, we apply strong 
branching with up to ten branching candidates (Achterberg 2007). For each can-
didate, a heuristic evaluation of the lower bound of the child node is performed by 

Table 5  Aggregated integer results for the VRPDO benchmark

Class Option-based network Location-based network

#sol Time (s) #BB #SRIs #KPIs #sol Time (s) #BB #SRIs #KPIs

V.25.small 10 33.9 27.0 8.9 6.6 10 44.7 25.0 8.9 6.6
V.25.medium 10 489.5 26.9 10.0 5.2 10 563.3 26.9 10.0 5.2
V.25.large 10 938.3 104.9 8.0 4.6 10 875.6 83.0 8.0 4.6
V.50.small 6 4090.9 682.2 10.0 5.8 6 3908.8 450.5 10.0 5.9
V.50.medium 4 4861.7 63.5 9.5 7.2 4 4861.7 64.3 9.5 7.0
V.50.large 2 6227.6 48.0 7.0 4.2 2 6248.9 45.0 7.0 4.4
U.25.small 10 23.6 13.8 9.5 1.7 10 26.5 13.9 9.5 1.7
U.25.medium 9 1089.3 44.1 9.0 4.8 9 1116.3 44.0 9.0 5.4
U.25.large 9 1595.0 44.6 10.0 6.1 9 1680.6 48.1 10.0 6.1
U.50.small 6 4020.6 280.3 10.0 4.5 6 4165.8 478.8 10.0 4.3
U.50.medium 1 7014.2 49.0 9.0 5.2 1 7049.4 49.0 9.0 4.3
U.50.large 1 6559.4 5.0 7.0 0.2 1 6622.9 9.0 7.0 0.3
Total/Avg. 78 2337.1 111.6 9.2 5.1 78 2349.2 106.4 9.2 5.1
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using only the first two pricing heuristics to generate routes. We then choose the 
branching decision that maximizes the minimum of the lower bounds of its children.

As done in (Ozbaygin et al. 2017), we set the computation time limit to 2 hours 
for the instance with up to 60 requests and 6 hours for the 120-request instances. 
Table 6 shows aggregated results comparing the two solution approaches. The col-
umn entries have the same meaning as in the sections before. For the VRPRDL, our 
BPC solves all instances with an average computation time less than 15 minutes 
while Ozbaygin et al. (2017) solved 52 of the 60 instances where the largest class 
however requires more than 4 hours on average. For the VRPHRDL, Ozbaygin et al. 
(2017) did not report solution times for the 40-request instances. Their branch-and-
price algorithm solves 24 of the 40 remaining VRPHRDL instances, while our BPC 
solves 33 of them and all 40-request instances. Summarizing, we find eight optimal 
solutions for previously unsolved VRPRDL instances and nine for the VRPHRDL. 
In comparison over all instances solved by both algorithms, ours is on average more 
than 20 times faster than the one of Ozbaygin et al. (2017).

5.4  Sensitivity analysis

During the experiments, we observed that the presence of service-level and loca-
tion-capacity constraints often makes VRPDO instances practically more difficult 
to solve. Therefore, we perform and present a sensitivity analysis to more precisely 
explore the impact of different service levels and location capacities on total costs, 
computation times, and number of optimally solved instances.

Regarding the service-level constraints  (1d), we vary the required ser-
vice level for the first priority between 60  % and 100  % in steps of 4  %, i.e., 
�1 ∈ {0.6, 0.64, 0.68,… , 0.96, 1.0} . Note that an increase of 4  % means that one 
more customer has to be served with first priority for the 25-customer instances and 
two more for the 50-customer instances. In order to keep the scenarios simple, the 
second priorities are set to �2 = 0 . Regarding the location-capacity constraints (1c), 

Table 6  Comparison with results of Ozbaygin et al. (2017) on VRPRDL and VRPHRDL benchmarks

Problem |N|  Ozbaygin et al. (2017) Our results

#sol Time (s) #BB #sol Time (s) #BB #SRIs #KPIs

VRPRDL < 30 20 1.8 247.9 20 0.4 3.0 6.7 0.0
40 19 765.7 1896.4 20 7.5 14.1 69.7 2.6
60 10 76.4 949.6 10 3.0 5.4 21.7 0.1
120 3 16154.5 4481.2 10 872.2 113.9 127.1 0.6

VRPHRDL < 30 19 371.2 1550.8 20 1.3 3.1 9.9 0.0

40 ––- not available ––- 20 10.4 11.0 38.1 0.4
60 5 4006.0 771.4 10 150.1 16.7 95.2 0.5
120 0 21600.0 0.0 3 17371.1 61.4 150.1 1.7

76 93(+20)
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we only consider two scenarios where either capacities remain as given or are com-
pletely disregarded. The latter scenario assumes that location capacity is always suf-
ficient. With these parameter variations, we create 22 scenarios for each original 
VRPDO instance. The one with �1 = 1.0 and without location capacities leads to a 
standard VRPTW in which all first-priority options are the customers.

To limit the computational burden, we a priori restrict ourselves to those VRPDO 
instances solved in less than 3600 seconds when setting the service levels to �1 = 0.8 
and �2 = 0.9 . This results in 69 instances for each scenario. For all scenarios, we set 
the computation time limit to 3600 seconds.

Figure 2 summarizes the results of the sensitivity analysis. For each scenario, the 
figure shows the number of instances solved to optimality (in red), the average solu-
tion cost (in green), and the average computation time (in blue). Averages over total 
costs and computation times are computed only over those 41  VRPDO instances 
that have been solved to optimality in all scenarios. (This avoids a bias toward more 
difficult instances.) Moreover, the solid curves depict the scenarios with location 
capacities and the dashed curves those without.

We can see that between 50 and 65 instances per scenario can be solved to opti-
mality (#sol). The trend is that the number of optima computed increases for higher 
service levels. Moreover, consistently more instances can be solved when locations 
have restricting capacities. The curve showing average computation times confirms 
that the (practical) difficulty decreases when the service level increases. For exam-
ple, the average run times decrease by around 75 % over the 60–100 % service-level 
interval for the scenarios without capacity. Moreover, the runtime per service level 
is on average 25 % higher when location capacities are disregarded.

Fig. 2  Sensitivity analysis, impact of service-level and location-capacity constraints
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Note also that for average computation times and number of solved instances 
(#sol), the impact of the service level is strongest, i.e., the absolute slope of the 
curves is highest, for values of �1 between 0.7 and 0.85, both in the capacitated and 
uncapacitated case in our benchmark.

Regarding the average routing costs, we can see, as expected, that, increasing the 
service level leads to an increase in total costs (around 22 % higher for �1 = 1.0 than 
for �1 = 0.6 with location-capacity constraints). With uncapacitated locations, the 
average cost decreases by around 7 %.

In summary, the practical difficulty of the VRPDO increases when constraints 
are relaxed. This is true for service-level requirements as well as location-capacity 
constraints. We interpret these observations in the following way: the possibility to 
really choose between more options is the main driver of the computation time and 
therefore also for the capability to actually solve VRPDO instances.

6  Conclusions and outlook

In this paper, we have introduced the vehicle routing problem with delivery options 
(VRPDO) as an extension of the generalized VRPTW. The extension consists of 
service-level constraints that consider the given priorities for the different options 
of fulfilling a delivery request. Moreover, subsets of options may refer to the same 
physical location for which capacity constraints can be specified. Both service-level 
and location-capacity constraints are inter-route constraints as defined in (Hempsch 
and Irnich 2008) and (Irnich et al. 2014, Sect. 1.3.5) making VRPDOs much more 
difficult than VRPTWs.

This statement is supported by the comprehensive sensitivity analysis that we 
performed. In a nutshell, the possibility to choose between options is the main driver 
of the practical difficulty of the VRPDO. We found also that more binding service-
level and location-capacity constraints make instances less difficult, i.e., average 
computation times decrease and within a given time limit relatively more instances 
can be solved.

Additionally, we applied a sensitivity analysis of the effects of using different ser-
vice levels and restricting or nonrestricting location capacities. We have seen that 
otherwise identical instances tend to become easier when location capacities are 
restricted. Analyzing costs, we conclude that offering customers the choice of dif-
ferent delivery options can reduce routing costs while a reasonable service level can 
be provided.

We see an important value in the fact that the VRPDO model allows us to 
quantify the impact that service-level and location-capacity constraints have on 
the routing costs. Service levels are typically not naturally given, but the result of 
negotiations between the carrier and its partners or found by trading costs against 
customer expectations. In this spirit, the new model allows us to more deeply 
study independencies and to finally make cost-based decisions.

The exact solution approach we propose for solving VRPDO instances is based 
on branch-price-and-cut (BPC). It utilizes a route-based extended set-partition-
ing formulation. For generating routes in the pricing subproblem, we proposed a 
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unified labeling algorithm and offered two alternative networks. On the one hand, 
the option-based network is straightforward because only options and depots are 
represented by vertices. On the other hand, the location-based network makes use 
of the fact that often different options share the same physical location. It has the 
superficial advantages of having fewer arcs and allowing for a stronger dominance 
than the location-based network. Surprisingly, the use of the location-based net-
work does not pay off in the BPC algorithm, since both networks perform equally 
well when used for pricing. Our experiments revealed that the computational 
effort of the dominance algorithm is the key factor in the performance compari-
son. In the location-based network, the additional effort of checking dominance at 
the extra entry and exit vertices of each shared delivery location is not overcom-
pensated by the above-named advantages. We suspect another factor to diminish 
the otherwise positive effects of grouping options of a location. In the VRPDO, 
one cannot perform the effective preprocessing on the arcs inside the same loca-
tion as done in (Archetti et al. 2015; Gschwind et al. 2019) for the commodity-
constrained split delivery VRP.

The computational experiments have shown that the BPC algorithm is highly 
competitive. For the comparison of the pricing networks and the sensitivity analy-
sis, we introduced 120 new benchmark instances of the VRPDO with a variety of 
characteristics such as different number of requests, number of options per request, 
and time-window widths. We were able to compute provably optimal solutions for 
78 of the 120 instances. To compare our BPC algorithm against the only other exact 
approach for a slightly simpler problem, we solved the benchmark sets for the VRP 
with roaming delivery locations. On this benchmark, we computed 17 new optimal 
solutions with an average computation time that is approximately 20 times faster 
than the former state of the art.

We see several interesting paths for future research extending the here studied 
VRPDO. First, revenue related aspects could be integrated in the sense that custom-
ers may pay for preferred options or carriers may give a discount or bonus when 
customers accept lower-prioritized delivery options. Second, we have introduced the 
VRPDO as a static and deterministic problem. However, in reality, location capaci-
ties, e.g., at lockers, are not completely known in advance. Over the day, customers 
retrieve their deliveries from lockers making the capacity time-dependent and sto-
chastic. Third, we have observed that integrality gaps of the VRPDO instances are 
larger compared, e.g., to those of typical VRPTW instances. Therefore, research on 
finding tighter formulations with the help of problem-specific valid inequalities is 
worthwhile.
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