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Abstract
In most modern energy markets, electricity is traded in pay-as-clear auctions. Usu-
ally, multiple sequential markets with daily auctions, in which each hourly product is 
traded separately, coexist. In each market and for each traded hour, each power pro-
ducer and consumer submits multiple price and volume combinations, called bids. 
After all bids are submitted by the market participants, the market-clearing price 
for each hour is published, and the market participants must fulfill their accepted 
commitments. The corresponding decision problem is particularly difficult to solve 
for market participants with stochastic supply or demand. We formulate the energy 
trading problem as a dynamic program and derive the optimal bidding functions 
analytically via backward recursion. We demonstrate that, for each hour and market, 
the optimal bidding function is completely defined by two bids. While we focus on 
power producers with stochastic supply (e.g., wind or solar), our model is applicable 
to power consumers with stochastic demand, as well. The optimal policy is applica-
ble in most liberalized energy markets, virtually independent of the structure of the 
underlying electricity price process.

Keywords OR in energy · Bidding function · Renewable energy · Multiple markets · 
Forecast evaluation

1 Introduction

The energy supply is one of the fundamental needs of modern society. Meeting this 
need results in a multitude of decision problems on all planning levels. Strategic 
decision problems include the setup of conventional power plants or the expansion 
of the electricity grid. The tactical decision level includes the harvest planning and 
inventory planning of biomass (e.g., Ying et al. 2020). Decisions on the operative 
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planning level include the profit-maximizing management of energy storages or 
minimizing the operational cost of microgrids. Since these decision problems are of 
high practical and scientific importance, multiple literature reviews are dedicated to 
these topics (e.g., Rahman et al. 2015; Weitzel and Glock 2018; Jin et al. 2020).

One operative decision problem faced by most energy producers is selling the 
produced electricity in an energy market. To match the electricity supply and 
demand and guarantee grid stability, electricity is traded in advance. Therefore, mar-
ket participants must schedule their energy production and consumption some time 
before the actual delivery. In day-ahead auction markets, the hourly products (com-
mitment for production or consumption in a specific 60-min time slot) are traded 
more than 24 h ahead of physical delivery. This is especially difficult for power 
producers with stochastic supply (e.g., wind or solar), as they must trade based on 
their production forecast. The market participants submit up to N price and volume 
combinations 

(
pi, xi

)
, i ∈ {1,… ,N} for each hourly product (e.g., N = 25 combina-

tions in the Spanish markets). A price and volume combination is called a bid. After 
the market is cleared, the market participants must fulfill their accepted bids to the 
hourly market clearing prices (MCP). A buying bid is accepted if the corresponding 
price is greater than the MCP, while a selling bid is accepted if the corresponding 
price is less than the MCP. Since these discrete bids map each MCP to a volume, the 
resulting staircase function is called bidding function.

As the time for physically delivering the electricity nears, the production fore-
cast becomes increasingly reliable. Therefore, in most energy markets, one or more 
intraday auction markets exist, which allow the market participants to adjust their 
commitments. Again, market participants must submit multiple bids for each traded 
product. This sequence of events is illustrated in Fig. 1.

In this paper, we analytically derive the optimal bidding functions for market 
participants with stochastic demand or supply in sequential electricity auction mar-
kets. These market participants can be utility providers, wind or solar power plants, 
aggregators, or multiple of these assets combined to a virtual power plant. In our 
numerical study, we focus on a wind power producer in the Spanish electricity mar-
kets (up to seven sequential markets), but our approach is applicable to most lib-
eralized energy auction markets. In addition, our approach is applicable with most 
electricity price processes. To demonstrate the gains from the analytically derived 
optimal policy, we compare this with two benchmark approaches.

Fig. 1  Sequence of events
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Our paper contributes to the existing literature in two ways. First, we formulate 
the energy trading problem as a dynamic program in which the decision is a bidding 
function with a continuous domain and solve it analytically. As we demonstrate, the 
optimal bidding function is a simple decision rule and is completely defined by two 
discrete bids. Therefore, our approach is applicable in real-world markets. Second, 
since our approach can be applied with state-of-the-art price processes, we present 
a strong evaluation tool for the forecasting community to show the financial benefits 
of an enhanced price forecast.

This paper is structured as follows: Sect. 2 is a brief literature review. In Sect. 3, 
we formulate the decision problem as a dynamic program and solve it analytically in 
Sect. 4. Section 5 presents the data for our numerical study in Sect. 6, while Sect. 7 
concludes the paper.

2  Literature review

The profit-maximizing trading in energy markets is a highly active research field. 
Therefore, multiple literature reviews are dedicated to this topic (e.g., Fathima and 
Palanisamy 2015; Rahman et al. 2015; Weitzel and Glock 2018). We focus our lit-
erature review on the trading in multiple markets. In most countries, multiple elec-
tricity markets coexist which are used sequentially by the market participants. Since 
the integrated or coordinated trading in these markets can dramatically increase the 
complexity of the decision problem, most authors focus on a single market setting, 
while other markets are (if at all) only included implicitly (e.g., Jiang and Powell 
2015; Gönsch and Hassler 2016; Zhou et al. 2016; Franz et al. 2020; Ghavidel et al. 
2020; Finnah and Gönsch 2021). Like in sequential auction markets, a product can 
be traded multiple times in a continuous intraday market. The key difference is that 
in continuous intraday markets, the current energy price is observable. While this 
opportunity is often ignored and products are only traded once, some papers model 
multiple trades (e.g., Aïd et al. 2016; Bertrand and Papavasiliou 2020; Boukas et al. 
2020).

Löhndorf et  al. (2013) formulate the decision problem of an owner of a hydro 
storage with stochastic inflow on the German day-ahead and continuous intraday 
market as a dynamic program and use an approximate dual dynamic program-
ming approach to solve it. The energy price processes are based on a few funda-
mentals, such as the mean temperature, total solar power generation, and gas price. 
To apply their heuristic, the underlying stochastic processes are discretized. Mean-
while, Ding et al. (2015) use stochastic programming to (re-) optimize the manage-
ment of a wind turbine combined with an energy storage on the Spanish day-ahead, 
intraday, and real-time market. Here, they employ four different timescales down 
to one minute to capture the dynamics of the real-time market. Ding et al. (2015) 
do not optimize all considered markets integrated but use the different stochastic 
programs in a receding horizon manner. The authors assume that the next market’s 
price is deterministic. This dramatically decreases the complexity, as the price com-
ponents of the bids are not needed. Furthermore, Crespo-Vazquez et al. (2018) focus 
on a wind power producer with an energy storage on two Spanish auction markets 
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and an implicit modeled balancing market with hourly products; the other auction 
markets are ignored. The decision problem is formulated as a stochastic program 
with an optimization horizon of 24 hours. Again, the price component of the bids is 
not modeled. Heredia et al. (2018) use multistage stochastic programming (MSSP) 
to optimize the management of a wind turbine combined with an energy storage. 
The considered power producer maximizes the daily profits on two Spanish auction 
markets and a reserve power market. Therefore, the Spanish energy markets are not 
modeled in full complexity. Rintamäki et al. (2020) considers the integrated trading 
in two energy markets of an energy producer with controllable load. The problem 
is modeled as a bi-level program. The upper level is a stochastic program that mod-
els the integrated trading, itself, while the lower-level problems are the dispatching 
problems on the day-ahead and intraday market. Sequential bidding in a day-ahead 
and a balancing market is considered in, e.g., Boomsma et al. (2014); Kumbartzky 
et al. (2017); Kongelf et al. (2019); Mazzi et al. (2019). Most authors restrict them-
selves to a small number of markets. This is because the computational burden of 
MSSPs increases exponentially in the number of markets. Therefore, the Spanish 
electricity market, which consists of seven sequential markets, cannot be handled in 
full complexity using this approach. The first to handle all seven Spanish markets 
is Wozabal and Rameseder (2020). In contrast with the rest of the literature, the 
authors model the trading problem for the Spanish electricity market as a dynamic 
program, in which each decision stage corresponds to one market. Since the com-
putational burden of dynamic programs increases only linearly in the number of 
stages/markets, Wozabal and Rameseder (2020) can solve the trading problem effi-
ciently but heuristically with an approximate dual dynamic programming approach. 
Wozabal and Rameseder (2020) propose two model variants: one without updating 
the power production forecast and one with updates. We refer to the more interest-
ing model with production forecast updates. As no energy storage is modeled, each 
day can be optimized separately. However, Wozabal and Rameseder (2020) modeled 
the dynamic program for all 24 h at once, even if the hours could be modeled inde-
pendently, as well. To determine the bids for each stage (market), different quanti-
ties are mapped to the hour-dependent price points selected previously. The authors 
demonstrate the influence of the underlying price process (e.g., distribution of noise) 
and include risk aversion by optimizing the nested Conditional Value-at-Risk. Since 
the state space must include all Markovian features of the underlying price and pro-
duction processes, Wozabal and Rameseder (2020) use only the most recent market 
prices and production forecast as state-dependent features. Due to missing produc-
tion data, the authors focus primarily on a setting without updating the power pro-
duction forecast in their numerical study.

It is common in the literature that the prices and volumes of the bids are not opti-
mized simultaneously. This is because the simultaneous price and volume decisions 
result in nonlinear and non-concave decision problems. Therefore, most authors 
decide on either the prices pi or the volumes xi , while the counterpart is given by 
parameters (e.g., Morales et  al. (2010); Löhndorf et  al. (2013); Boomsma et  al. 
(2014); Guerrero-Mestre et al. (2016); Mazzi et al. (2019); Wozabal and Rameseder 
(2020)). This reduces the computational burden but leads to sub-optimal decisions. 
A consequence is that the modeled decision problem must be (partially) replaced by 
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the sample average approximation (SAA), which lowers the quality of the solution 
again. The computational burden of the SAA formulation increases in the number of 
samples used, which are needed to capture state-of-the-art stochastic processes with 
their correlations.

In summary, to the best of our knowledge, no paper solves the energy trading 
problem in sequential markets analytically. In contrast, for single market settings 
analytical solutions exist in the literature (e.g., Kim and Powell (2011); Densing 
(2013); Aïd et  al. (2016)). Kim and Powell (2011) model the hour-ahead market 
trading of an energy storage combined with a wind farm as a dynamic program but 
ignore price–volume bids. For the analytical solution, Kim and Powell (2011) need 
assumptions regarding the stochastic processes of the wind power production and 
the energy prices. Densing (2013) analytically solve the price–volume bidding of 
an energy storage in an auction market. For this, the lower and upper bound of the 
energy storage is ignored and only the expectation of the storage level is constrained. 
Aïd et  al. (2016) minimize the imbalance cost in the continuous intraday market 
under stochastic demand, production, and prices. Further, a controllable thermal 
power plant is integrated. Aïd et al. (2016) analytically solve a relaxed problem that 
allows negative production. The solution of the relaxed problem is used to solve the 
non-relaxed problem heuristically.

3  Dynamic program

In this section, we present our dynamic program based on Wozabal and Rameseder 
(2020). As these authors note, without storage, each day can be optimized separately. 
However, Wozabal and Rameseder (2020) optimize all hours jointly. We model our 
dynamic program for a single hourly product, as these can be optimized indepen-
dently. Instead of deciding on discrete bids (pi, xi) , we decide on a bidding function 
x(⋅) with a continuous domain that maps each price p to a volume x(p). We demon-
strate that the value functions of the trading problem are linear in the market posi-
tion and can be derived analytically. Additionally, we demonstrate that the optimal 
bidding functions of the trading problem are defined by two discrete bids. Moreover, 
our approach is virtually independent of the structure of the underlying stochastic 
processes and can be applied with state-of-the-art price processes.

We denote the number of markets on which a product can be traded as T. The 
index t ∈ {0,⋯ , T} denotes the number of markets on which a product has already 
been traded.

3.1  Exogenous information

The exogenous information Wt+1 describes the information that becomes known 
after the power producer trades on market t but before trading on market t + 1 . After 
the power producer trades on market t, the MCP of this market Pt+1 ∈

[
Pmin,Pmax

]
 

is published. Pmin and Pmax denote the minimum and maximum market prices. In 
addition, as the time until the physical delivery of the electricity decreases, the 
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power production forecast becomes more reliable. Consequently, the power pro-
ducer updates the production forecast. We denote the power producer’s forecast of 
the power production during physical delivery, immediately before trading on mar-
ket t + 1 as Yt+1 . These updates contrast with Wozabal and Rameseder (2020), who 
update the production forecast only once before trading on the last market T. We 
extend our model by a multidimensional dummy information variable �t+1 , which 
includes all the information necessary for the underlying price and production pro-
cesses. This could include the last market prices, load forecasts, natural gas prices, 
temperature, weather forecasts, and many other factors.

We do not assume specific characteristics of the underlying stochastic processes, so 
correlation between these can be considered.

3.2  State variable

The state St includes everything the power producer’s decision depends on. The 
decision depends on the current market position Rt and all known information Wt . A 
positive position Rt is a commitment for delivery, while a negative Rt is a commit-
ment for consumption.

3.3  Transition function

The transition of the exogenous part Wt of the state St is described by the underlying 
stochastic processes. The transition of the market position is given by

The transition is determined by the decided bidding function xt(⋅) and the stochastic 
market clearing price Pt+1 . A positive xt

(
Pt+1

)
 corresponds to selling energy, while a 

negative one corresponds to buying energy.

3.4  Action variable

As we model the decision problem with a bidding function with a continuous 
domain, the power producer’s decision is the function xt(⋅) , which maps each pos-
sible MCP Pt+1 ∈

[
Pmin,Pmax

]
 to a volume xt

(
Pt+1

)
 . In most countries, the bidding 

function must be non-decreasing (e.g., OMIE (2018)).
Market participants are registered with a maximum and minimum position.

(1)Wt+1 =
(
Yt+1,Pt+1,�t+1

)

(2)St =
(
Rt,Wt

)
=
(
Rt, Yt,Pt,�t

)

(3)Rt+1

(
St, xt(⋅),Wt+1

)
= Rt + xt

(
Pt+1

)

(4)Rmin ≤ Rt ≤ Rmax ∀t



7

1 3

Optimal bidding functions for renewable energies in sequential…

For power producers, the maximum position is typically the rated capacity of the 
power plant.

As we assume that the power producer is a price-taker, we restrict the deviation 
of the position from the production forecast to prevent excessive speculation, par-
ticularly on the later markets, which are usually less liquid.

with maximum absolute deviation ct+1 . This is in contrast to Wozabal and Rame-
seder (2020), in which the trading decisions are constrained on all but the last mar-
ket. This is crucial, since the last market is typically the least liquid one.1

Like Wozabal and Rameseder (2020), we do not allow systematic over- or under-
production; therefore, we set YT−1 − RT = 0 , which is a special case of the above 
restriction ( cT = 0).

Combined, the restrictions can be written as

with the time- and state-depending lower bound Xmin
t

(
Yt
)
 and upper bound Xmax

t

(
Yt
)
 

and maximum and minimum position

In summary, the decision xt(⋅) is a non-decreasing function

3.5  Contribution function

The contribution function describes the producer’s one-stage revenue. Since we use 
the common price-taker assumption (e.g., Jiang and Powell (2015); Gönsch and 
Hassler (2016); Crespo-Vazquez et al. (2018); Heredia et al. (2018); de la Nieta et al. 
(2020); Wozabal and Rameseder (2020)), the power producer does not influence the 
market price, and the contribution function is relatively obvious.

(5)−ct+1 ≤ Yt − Rt+1 ≤ ct+1 ∀t

(6)Xmin
t

(
Yt
)
= Rmin

t+1

(
Yt
)
− Rt ≤ xt(⋅) ≤ Rmax

t+1

(
Yt
)
− Rt = Xmax

t

(
Yt
)
∀t

(7)Rmin
t+1

(
Yt
)
= max

{
Rmin, Yt − ct+1

}
∀t

(8)Rmax
t+1

(
Yt
)
= min

{
Rmax, Yt + ct+1

}
∀t

(9)xt ∶
[
Pmin,Pmax

]
→

[
Xmin
t

(
Yt
)
,Xmax

t

(
Yt
)]

(10)Ct

(
St, xt(⋅),Wt+1

)
= xt

(
Pt+1

)
⋅ Pt+1

1 Wozabal and Rameseder (2020) constrained the trading decisions on all markets in a setting without 
updating the production forecast.
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3.6  Value function

The power producer’s optimization problem can be written as the Bellman 
equation.

subject to the boundary conditions

and (9) and xt(⋅) non-decreasing. ft+1(⋅) is the probability distribution function of the 
market prices Pt+1 . The optimal policy, which is the optimal bidding function xt(⋅) , 
depends on the current state St . The initial state S0 is straightforward, with the initial 
position R0 = 0 and P0 = � , as the first market has no previous market.

To ease the analytical solution, we reformulate the Bellman equation.

with

and

Here, the same constraints must be respected. For the reformulation, one can use 
(a special case of) Pontryagin’s maximum principle. This allows for converting the 
infinite-dimensional optimization problem into infinite one-dimensional optimiza-
tion problems. The intuition for this is that since the bidding function xt(⋅) maps 
each MCP Pt+1 to a volume xt

(
Pt+1

)
 and does not influence the system’s behavior for 

other possible outcomes, we can optimize xt
(
Pt+1

)
 for each Pt+1 individually. This 

allows us to interchange the maximization step with the expectation with respect 
to the MCP. Therefore, we can treat the here-and-now decision as a wait-and-see 
decision.

(11)Vt

(
St
)
= Vt

(
Rt,Wt

)
= max

xt(⋅)
�
[
Ct

(
St, xt(⋅),Wt+1

)
+ Vt+1

(
St+1

)|Wt

]

(12)
= max

xt(⋅)

Pmax

∫
Pmin

ft+1
(
Pt+1|Wt

)
⋅ �

[
xt
(
Pt+1

)
⋅ Pt+1

+Vt+1

(
Rt + xt

(
Pt+1

)
,Wt+1

)|Wt,Pt+1

]
dPt+1

(13)VT

(
ST
)
= 0 ∀ST

(14)Vt

(
St
)
=

Pmax

∫
Pmin

ft+1
(
Pt+1|Wt

)
⋅max

z
Gt+1

(
St,Pt+1, z

)
dPt+1

(15)Gt+1

(
St,Pt+1, z

)
= �

[
z ⋅ Pt+1 + Vt+1

(
Rt + z,Wt+1

)|Wt,Pt+1

]

(16)xt
(
Pt+1

)
= arg max

z

Gt+1

(
St,Pt+1, z

)
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4  Analytical solution

In this section, we solve the dynamic program analytically using backward recur-
sion. To accomplish this, we prove that the value functions are linear in the position 
Rt . For this, we define the sets P+

t+1

(
St
)
 and P−

t+1

(
St
)
.

The expectations in (17) and (18) are conditioned on the currently known infor-
mation Wt and the next market’s outcome Pt+1 . P

+
t+1

(
St
)
 is the set of prices Pt+1 

for which the expectation of the next price Pt+2 is greater than Pt+1 . Meanwhile, 
P
−
t+1

(
St
)
 is the set of prices Pt+1 for which the expectation of the next price Pt+2 is 

less than or equal to Pt+1.

Condition 1 sup
(
P
+
t+1

(
St
)) ≤ inf

(
P
−
t+1

(
St
))
∀St, t ≤ T − 2.2

If Condition 1 holds, there exists a threshold P∗
t+1

 with 
sup

(
P
+
t+1

(
St
)) ≤ P∗

t+1
≤ inf

(
P
−
t+1

(
St
))

 such that prices below P∗
t+1

 lead to 
increasing market prices, while prices above P∗

t+1
 lead to decreasing market 

prices (in expectation). This is illustrated for the Ornstein–Uhlenbeck process 
Pt+2 = �� + (1 − �)Pt+1 + �t+1 with mean � = 50€∕MWh and mean-reverting 
parameter � = 0.7 in Fig. 2.

(17)P
+
t+1

(
St
)
∶=

{
Pt+1 ∈

[
Pmin,Pmax

]
∶ Pt+1 < �

[
Pt+2|Wt,Pt+1

]}

(18)P
−
t+1

(
St
)
∶=

{
Pt+1 ∈

[
Pmin,Pmax

]
∶ Pt+1 ≥ �

[
Pt+2|Wt,Pt+1

]}

Fig. 2  Illustration of price sets. Illustrated with the Ornstein–Uhlenbeck process 
P
t+2 = �� + (1 − �)P

t+1 + �
t+1 with mean � = 50€∕MWh and mean-reverting parameter � = 0.7 . 

P
min = 0€∕MWh , Pmax = 180.3€∕MWh . The threshold is P∗

t+1
= � = 50€∕MWh

2 Note sup
(
�
)
= −∞ and inf

(
�
)
= ∞.
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An intuitive and sufficient (not necessary) condition for Condition 1, which holds 
for most price processes, is that the expected market price of market t + 2 increases 
less in Pt+1 than the identity Pt+1 , itself. For the common linear price processes, this 
sufficient condition is that the regression coefficient of Pt+1 in the price process of 
Pt+2 is less than or equal to one.

Condition 1 holds for most energy price processes due to the mean-revert-
ing behavior of energy prices (e.g., Weron (2014)). If the MCPs on market t + 1 
are high, more conventional power producers begin to sell energy on market t + 2 , 
which lowers the price. Meanwhile, if the MCPs on market t + 1 are low, power pro-
ducers buy energy on market t + 2 to reduce their position (commitment for produc-
tion), thereby increasing the price.

Proposition 1 If Condition 1 holds, the value functions can be written as:

with an appropriate function gt
(
Wt

)
.

For a proof see Appendix 1.

Proposition 2 If Condition 1 holds, the optimal bidding functions are described by 
two price and volume combinations 

(
pi
t
, xi

t

)
 . 

Case a:  Xmin
t

(
Yt
) ≤ 0 ≤ Xmax

t

(
Yt
)

Case b:  Xmin
t

(
Yt
)
> 0

Case c:  Xmax
t

(
Yt
)
< 0

 with sup
(
P
+
t+1

(
St
)) ≤ P∗

t+1
≤ inf

(
P
−
t+1

(
St
))

.

(19)Vt

(
St
)
= −�

[
Pt+1|Wt

]
⋅ Rt + gt

(
Wt

)
∀t ≤ T − 1

(20)
(
p1
t
, x1

t

)
=
(
P∗
t+1

,Xmin
t

(
Yt
))

(21)
(
p2
t
, x2

t

)
=
(
P∗
t+1

,Xmax
t

(
Yt
))

(22)
(
p1
t
, x1

t

)
=
(
Pmin,Xmin

t

(
Yt
))

(23)
(
p2
t
, x2

t

)
=
(
P∗
t+1

,Xmax
t

(
Yt
))

(24)
(
p1
t
, x1

t

)
=
(
P∗
t+1

,Xmin
t

(
Yt
))

(25)
(
p2
t
, x2

t

)
=
(
Pmax,Xmax

t

(
Yt
))
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Proposition 2 is derived from the optimal bidding function x∗
t
(⋅) in the proof 

of Proposition 1 in Appendix 1 by translating the bidding function into discrete 
bids to be in line with the market rules. If Pt+2 is continuous (e.g., linear) in Pt+1 , 
P∗
t+1

 can be derived by solving �
[
Pt+2|Wt,P

∗
t+1

]
= P∗

t+1
 with P∗

t+1
∈
[
Pmin,Pmax

]
 . If 

no solution in 
[
Pmin,Pmax

]
 exists, P∗

t+1
 is the lower bound Pmin or the upper bound 

Pmax . In the numerical study, we solve this equation analytically. In general, if 
�
[
Pt+2|Wt,P

∗
t+1

]
= P∗

t+1
 cannot be solved in closed form, the threshold P∗

t+1
 can be 

found by using a simple line search on the Pt+1 values.
The optimal policy is a simple decision rule: As long as the expected MCP of 

market t + 2 is less than Pt+1 , it is best to sell as much as possible, while as long 
as the expected MCP of market t + 2 is above Pt+1 , it is best to buy as much as 
possible. This simple rule is defined by (20) and (21). If the power producer is 
forced to sell (Case b) or buy (Case c) energy due to the stochastic transition of 
the production forecast, the power producer must use a so-called price-accept-
ing bid. The optimal bidding function is illustrated in Fig. 3. The threshold P∗

t+1
 

depends on the conditioned distribution of the MCP of market t + 2 . Therefore, 
P∗
t+1

 is influenced by the currently known exogenous information Wt , including 
the most recent production forecast Yt , the last market price Pt , and all informa-
tion in �t.

Moreover, the optimal bidding function does not depend on information fur-
ther ahead. Instead, the optimal policy iteratively compares the next two markets. 
This is a beneficial property, as it reduces the market participant’s forecasting 
effort to the next two markets. The optimal bidding function buys energy on mar-
ket t + 1 for all prices that satisfy Pt+1 ≤ �

[
Pt+2|Wt,Pt+1

]
 . Therefore, the market 

participant buys the energy cheaper (in expectation) compared to waiting for trad-
ing on market t + 2 (visa verse for selling energy). Since the position could be 
closed on the next market, this trading strategy is always beneficial, regardless of 
information further ahead.

5  Data for the numerical study

In this section, we specify the parameters of our decision problem that are used 
in our numerical study in Sect. 6. We benchmark the optimal policy against two 
alternative approaches over an entire year for the Spanish electricity market via 
simulation and a backtest.

The Spanish electricity market consists of one day-ahead market (DM) and 
six intraday markets (IM1 to IM6), though not all products can be traded on 
all markets. The traded products and market closures are presented in Table  1. 
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Depending on the hour h ∈ {1,… , 24} , we denote the number of markets on 
which a product can be traded as Th.

In the Spanish electricity market, market participants are registered as producers 
or consumers. While for producers, the market position must be non-negative, the 
position of consumers must be non-positive. In the numerical study, we consider a 
producer with a wind turbine with a rated capacity of 1 MW, which is a typical-size 
wind turbine. On average, a Spanish wind farm has a rated capacity of 20 MW 

(26)Th =

⎧
⎪⎪⎨⎪⎪⎩

3 , h ∈ {1,… , 4}
4 , h ∈ {5,… , 7}
5 , h ∈ {8,… , 11}

6 , h ∈ {12,… , 15}
7 , h ∈ {16,… , 24}

(a) Case a (b) Case b

(c) Case c

Fig. 3  Optimal bidding function
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installed. Therefore, the maximum position is Rmax = 1 , while the minimum position 
is Rmin = 0 . We set the parameters for the maximum difference between the position 
and the production forecast as ct,h =

Th−t

Th
 . In the Spanish energy markets, the mini-

mum market price is Pmin = 0€∕MWh , while the maximum market price is 
Pmax = 180.3€∕MWh (OMIE 2018).

The stochastic process for the update of the power producer’s production forecast 
is given in Sect. 5.1, and the price processes are stated in Sect. 5.2. All explanatory 
variables in the stochastic processes are governed by the dummy information vari-
able �(⋅) defined in Sect. 3.1 and therefore influence the optimal policy. The alterna-
tive trading policies for the numerical study are presented in Sect. 5.3. We index the 
days of physical delivery with d. We consequently denote the production forecast 
and MCP of market t, hour h, and day d as Yd

t,h
 and Pd

t,h
 . Moreover, we denote the 

optimal price threshold of market t, hour h, and day d as Pd∗
t,h

.

5.1  Stochastic process for the wind power forecast

For the numerical study, we do not need a stochastic process for the actual wind 
power production, itself; rather, we need a stochastic process for the wind power 
producer’s forecast of the wind power production. To the best of our knowledge, no 
suitable time series for the estimation of such a stochastic process is publicly avail-
able, so we must generate our own. In Sect. 5.1.1, we construct the time series of 
the wind power producer’s forecast of the wind power production. This time series 
is used together with historical prices in the backtest in Sect. 6.2. To simulate the 
bidding behavior of the wind power producer in Sect. 6.1, we estimate the stochastic 
process for the update of the wind power producer’s forecast in Sect. 5.1.2. For this, 
we use the time series generated in Sect. 5.1.1 as input data.

5.1.1  Production forecast time series

In this section, we construct a time series of the wind power producer’s forecast of 
the actual wind power production. To achieve this, we employ the hourly production 

Table 1  Overview of the Spanish markets (OMIE 2018; Wozabal and Rameseder 2020)

DM IM1 IM2 IM3 IM4 IM5 IM6

Market opening 00:00 17:00 21:00 01:00 04:00 08:00 12:00
Market closure 11:00 18:45 21:45 01:45 04:45 08:45 12:45
Publication of results 16:00 19:30 22:30 02:30 05:30 09:30 13:30
Traded products 01-24 01-24 01-24 05-24 08-24 12-24 16-24
Number of traded hours 24 24 24 20 17 13 9
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data of the wind turbine of Sotavento (2019) and scale the power production data to 
the considered rated capacity (1 MW). We denote the scaled production as yd

h
 . Since 

approximately 1.6 % of the data are missing, we linearly interpolate these missing 
data with the adjacent productions.

We estimate different stochastic processes with production data that is known 
immediately before the market t closes (multi-step ahead forecasting). While trad-
ing the products with physical delivery on day d on market t, we denote the num-
ber of realized observations at d′ ≤ d as �d

t

(
d′
)
 ; these are presented for d� = d and 

d� = d − 1 in Table 2. For an overview of multi-step ahead forecasting, see Taieb 
et al. (2012) or Wang et al. (2016).

For the wind power process, we adopt an autoregressive model. See Jeon et al. 
(2019) for an overview of state-of-the-art wind power processes.

with noise �d
t,h

 , regression parameters �(⋅)

t,h
 , and the point estimator for future produc-

tion Yd
t,h

 . While trading the products with physical delivery on day d, we use all real-
ized productions of the previous two days (d,d − 1,d − 2 ). This accounts for short-
term weather changes. The last sum includes all realizations at the same hour of the 
previous 25 days ( d − 3 to d − 25 ), which accounts for long-term weather effects.

To fit (27) s.t.(28), we use the least absolute shrinkage and selection operator 
(lasso) and select the penalty factor for the regression parameters with the Bayesian 
information criterion (BIC). To generate the production forecast time series for the 
days ranging from 01 November 2018 to 31 October 2019, the data are fitted with 
a moving window of two years (initial window: 01 November 2016 to 31 October 
2018). The production forecast Yd

t,h
 is always non-negative and less or equal to the 

rated capacity of the wind turbine.
We measure the out-of-sample deviation of the forecasted and realized power 

production for the days from 01 November 2018 to 31 October 2019. For this, the 
considered measurements are the mean absolute error (MAE), root mean squared 
error (RMSE), and median absolute deviation (MAD). We do not report the mean 
absolute percentage error (MAPE), as the wind power production is often zero. 
The measurements are summarized in Table 5 displayed in Appendix 2. The error 

(27)yd
h
= Yd

t,h
+ �d

t,h

(28)

s.t.

Yd
t,h

= �0
t,h

+

�d
t
(d)∑

k=1

�
1,k

t,h
yd
k
+

�d
t
(d−1)∑
k=1

�
2,k

t,h
yd−1
k

+

24∑
k=1

�
3,k

t,h
yd−2
k

+

23∑
k=1

�
4,k

t,h
yd−2−k
h

Table 2  Data used for wind 
power processes

DM IM1 IM2 IM3 IM4 IM5 IM6

Market closure 11:00 18:45 21:45 01:45 04:45 08:45 12:45
�d

t
(d) 0 0 0 1 4 8 12

�d

t
(d − 1) 10 18 21 24 24 24 24
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measurements are computed using the errors of all hours/products that can be traded 
in decision stage t. Since all measurements decrease in the decision stage, the power 
production forecast becomes more reliable.

5.1.2  Updating the production forecast

In this section, we estimate a stochastic process that models the behavior of the wind 
power producer’s forecast of the actual wind power production. This process is used 
for the simulation in Sect. 6.1. Here, we use the time series of Sect. 5.1.1 as input 
data.

For this, we adapt the method of Wozabal and Rameseder (2020) and model 
the wind-power producer’s forecast as a non-parametric discrete Markov process. 
To do so, we cluster for each hour h and for each decision stage t, the production 
forecast data via k-means clustering. The cluster centroids define the states of the 
Markov process. The discrete transition probabilities from a state in stage t to a state 
in stage t + 1 are estimated by the share of data assigned to the corresponding cluster 
centroids.

We perform the k-means clustering with the city-block norm and 11 clusters on 
the days ranging from 01 November 2018 to 31 October 2019. The MAE, RMSE, 
MAPE, and MAD are summarized in Table 6 displayed in Appendix 2. We report 
the error measurements computed over all decision stages.

5.2  Price processes

In this section, we state the stochastic processes for the electricity prices. The sto-
chastic process for the day-ahead market is stated in Sect. 5.2.1, while the process 
for the intraday markets is introduced in Sect. 5.2.2. To estimate the electricity price 
processes for the days from 01 November 2018 to 31 October 2019, we fit the mod-
els on the data of OMIE (2019) with the same moving window as in Sect. 5.1.

5.2.1  Day‑ahead market price process

The wind power producer’s decision for the day-ahead market depends on the condi-
tioned expectation of the first intraday market’s (IM1) prices. As our intraday price 
process in Sect. 5.2.2 includes the day-ahead market price as explanatory variable, 
we need a stochastic process for the day-ahead market prices Pd

1,h
 to derive this.

We model the day-ahead market prices with the multivariate auto-correlated 
process proposed by Ziel (2016), which depends on all realized day-ahead market 
prices of the last week and the day of the week.

with day of the week dummies

(29)Pd
1,h

= 𝛽0
1,h

+

7∑
j=1

𝛽
j

1,h
DoWd

j
+

7∑
j=1

24∑
k=1

𝛽
j,k

1,h
P
d−j

1,k
+ 𝜖d

1,h
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with regression parameters �(⋅)
1,h

 and noise 𝜖d
1,h

 . The stochastic process is fitted using 
lasso with the BIC. Table 7 in Appendix 2 presents the corresponding out-of-sam-
ple error measurements. We do not assume a specific distribution for the noise 𝜖d

1,h
 . 

While simulating the day-ahead market prices, we use bootstrapping. More pre-
cisely, we randomly draw a vector of noises out of the residuals, which allows for 
considering the correlation between the noises of the hours. If a sampled day-ahead 
market price is below the lower bound Pmin or exceeds the upper bound Pmax , the 
sample is capped. This never happens in the numerical study.

5.2.2  Intraday market price process

For the intraday market prices, we assume linear dependence on all published mar-
ket results of the same day.

Ht denotes the first hour traded on the intraday market t and is presented in Table 1. 
Again, we use lasso with the BIC to estimate the multivariate price model. Condi-
tion 1 is never violated. Table 8 displayed in Appendix 2 summarizes the out-of-
sample MAE, RMSE, MAPE, and MAD of the estimated process; these indicate 
that the intraday market prices are much easier to predict than the day-ahead mar-
ket prices. As with the day-ahead market price process, we employ bootstrapping to 
draw sample intraday market prices in the numerical study. Again, a sampled intra-
day market price is capped if the sample is not in the feasible range [Pmin,Pmax] . In 
the numerical study, this happens in less than 0.003 % of cases.

5.3  Alternative trading strategies

To demonstrate the financial benefits of using the analytically derived optimal pol-
icy, we compare it with two benchmark approaches: a myopic policy and a rolling 
horizon policy. To ease the explanation and align with the notation used in Sect. 3, 
we ignore the indexes h and d. 

Optimal policy:  This is the policy derived in Sect.  4. Here, the 
price threshold is derived analytically by solving 
�
[
Pt+2|Wt,P

∗
t+1

]
= P∗

t+1
 with P∗

t+1
∈
[
Pmin,Pmax

]
 . If no 

solution in 
[
Pmin,Pmax

]
 exists, P∗

t+1
 is the lower bound Pmin 

or the upper bound Pmax . This never occurs in the numer-
ical study.

(30)DoWd
1
=

{
1, d is Monday

0, otherwise
,⋯ ,DoWd

7
=

{
1 , d is Sunday

0 , otherwise

(31)Pd
t,h

= 𝛽0
t,h

+

t−1∑
𝜏=1

24∑
k=H𝜏

𝛽
𝜏,k

t,h
Pd
𝜏,k

+ 𝜖d
t,h
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Myopic policy:  The myopic policy sells or buys energy to ensure that the 
position is equal to the power producer’s forecast of the 
power production during physical delivery Yt . For this, 
the bidding function is a single price-accepting bid, in 
which the volume is defined by Yt − Rt . Note that since 
power producers are obligated to clear predictable devia-
tions from the position, the myopic policy is the simplest 
practically feasible policy.

Rolling horizon policy:  The rolling horizon policy solves a deterministic opti-
mization problem at each decision stage t while being 
in state St . Again, the bidding function is a single price-
accepting bid and is completely defined by a volume. We 
denote the volume decision by the rolling horizon policy 
at decision stage t in state St as xRH

t
 . 

 The deterministic optimization problem (32) s.t. (33) to (35) is reoptimized in each 
decision stage. Thus, in stage t, only the decision xRH

t
 is used. The expectations in 

(32) and (34) are conditioned on the currently known information Wt . To reflect this 
with our estimated stochastic processes, we use the law of total expectation. In con-
trast with the optimal policy, the rolling horizon policy uses information over the full 
decision horizon. Rolling horizon policies are very popular for solving operations 
management problems under uncertainty (see Chand et al. (2002) for an overview).

Compared to the optimal policy, the rolling horizon policy has the disadvantage 
that it solves a simplified problem and does not use price–volume bids. Therefore, 
it would be fairer if we model price–volume bids by matching volumes to previ-
ously chosen price points. This is a common technique to model price–volume bids 
(see Sect.  2). Overall, we compare the optimal policy only with a myopic policy 
and a direct look-ahead (rolling horizon) policy. See Powell (2019) for an overview 
of further techniques to derive a policy. Especially, we do not benchmark against 
a value function approximation approach like approximate dual dynamic program-
ming (e.g., Löhndorf et al. (2013); Wozabal and Rameseder (2020)). We do not tune 
the rolling horizon policy and do not implement further approaches for two reasons: 
First, these approaches are sample based and/or require discretized price processes, 

(32)
T−1∑
�=t

xRH
�

⋅ �
[
P�+1|Wt

]

(33)
s.t.

R�+1 = R� + xRH
�

∀� ∈ {t,… , T − 1}

(34)− c�+1 ≤ R�+1 − �
[
Y� |Wt

] ≤ c�+1 ∀� ∈ {t,… , T − 1}

(35)Rmin ≤ R�+1 ≤ Rmax ∀� ∈ {t,… , T − 1}
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which lowers solution quality. Second, these approaches are computational more 
expensive as the superior optimal policy.

6  Numerical study

In the numerical study, we compare the optimal policy with the two benchmark 
approaches. In Sect.  6.1, we compare the approaches on a multitude of simulated 
trajectories. Meanwhile, in Sect.  6.2, we demonstrate how the approaches would 
have performed in the past based on a backtest. In the numerical study, we consider 
multiple settings. 

Basic:  The Basic setting is the setting described in the paper thus far.
Unrestricted:  In the Unrestricted setting, we do not restrict the deviation of 

the position from the current production forecast. Therefore, 
in this setting, we set ct,h = 1 for t < Th . Relaxing this restric-
tion is problematic for large power producers, which can influ-
ence the market prices on the later, less liquid markets. The 
myopic policy does not benefit from the Unrestricted setting, 
as this policy always uses ct,h = 0.

Limited trading TL:  In this setting, we limit the trading of the wind power pro-
ducer to the first TL markets. After trading on the first TL mar-
kets with a look-ahead policy (optimal or rolling horizon), the 
power producer switches to the myopic policy. The Limited 
trading TL setting with TL = 6 is equal to the Basic setting. 
For TL = 0 , the power producer always trades with the myopic 
policy. Limiting the use of the optimal policy can slightly 
reduce the price forecasting effort of the power producer, as 
price processes for the later markets might not be needed. 
However, this does not hold for the rolling horizon policy, 
which uses the price processes of all markets at each decision 
stage.

6.1  Policy evaluation

This section shows the financial benefits of the optimal policy based on the assumed 
stochastic processes. We simulate 100 trajectories, in which each trajectory consists 
of an entire year. Since we estimated the price processes for 365 days with a mov-
ing window, we have a unique set of estimated models for each day. The noise of 
the multivariate price processes is sampled using bootstrapping. More precisely, 
for each day and each decision stage t, we randomly draw a vector of noises out 
of the residuals with the same decision stage. The power producer’s forecast of the 
power production follows the estimated transition probabilities. For each approach 
and each setting, we use the same out-of-sample random numbers and report the 
mean revenue in euros over the complete year and the standard deviation (SD) of 
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the yearly revenue. For a better comparison, we report the mean revenue relative to 
the mean revenue of the optimal policy in the Basic setting in percent. The data are 
summarized in Table 3.

Table 3 displays the mean and the standard deviation of the yearly revenue for 
each setting and each policy after 100 simulations, with common random numbers 
for each policy and setting. The difference between the mean revenue of all policies 
is significant. The standard deviations are very low (less than 1% of the mean), since 
a year consists of multiple thousands of trades. This reveals that there is no need for 
a risk-averse optimization. In the Basic setting, the optimal policy outperforms the 
rolling horizon policy by more than 3400 EUR, or approximately 3.8 percentage 
points. The increased revenue scaled to the average 20 MW wind farm is greater 
than 68,000 EUR per year. Compared with the myopic policy (Setting Limited trad-
ing 0), the optimal policy increases the revenue by 7.2 percentage points, or more 
than 5500 EUR.

Comparing the look-ahead policies in the Unrestricted setting reveals that the 
optimal policy benefits more from removing the constraints for the position than 
does the rolling horizon policy. Since this constraint restricts trading in the later 
markets the most, this indicates that price–volume bids are especially important in 
the less liquid and therefore more volatile markets.

The difference between the optimal policy and the rolling horizon policy 
decreases in the number of optimized markets. In the Limited trading 0 setting, 
both policies are equal to the myopic policy. The value of considering an additional 
market in Limited trading TL setting decreases in TL , due to two reasons. First, the 
number of traded products decreases; second, the constraint for the position is more 
restrictive on the later markets.

6.2  Backtesting

In this section, we repeat the numerical study performed in the previous section 
but evaluate the policies and settings using real-world data. Since we estimate 

Table 3  Policy evaluation on different settings

Setting Optimal policy Rolling horizon policy

Mean [EUR] Mean [%] SD [EUR] Mean [EUR] Mean [%] SD [EUR]

Basic 89814.09 100.00 757.34 86407.59 96.21 762.09
Unrestricted 92599.68 103.10 840.57 86942.70 96.80 847.61
Limited trading 5 89523.25 99.68 762.08 86253.18 96.04 761.88
Limited trading 4 89021.66 99.12 758.50 86096.57 95.86 758.38
Limited trading 3 88430.84 98.46 752.92 86046.23 95.80 765.23
Limited trading 2 87547.83 97.48 734.00 85769.25 95.50 754.89
Limited trading 1 86293.30 96.08 728.87 85490.73 95.19 745.64
Limited trading 0/

Myopic policy
84262.72 93.82 642.34 84262.72 93.82 642.34
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the price processes and production forecast time series in Sect.  5.1.1 using a 
moving window, all data in this section are out of sample.

Table 4 presents the revenue of the different approaches and settings based on 
real-world data. Additionally, we report the revenue relative to the revenue of 
the optimal policy in the Basic setting. In the backtest, the different approaches 
and settings behave similarly as in Sect.  6.1. The optimal policy outperforms 
the rolling horizon policy in the Basic setting by 2.7 percentage points. Scaled 
to the average 20 MW wind farm, this would equate to approximately 47,500 
EUR. This demonstrates the importance of price–volume bids and is aligned 
with Wozabal and Rameseder (2020). The authors applied their heuristic on a 
setting with and without price–volume bids. The price–volume bids increase the 
revenue by 2.6%.

To consider the actual decisions of the wind power producer with the optimal 
policy, we plot the price threshold Pd∗

t+1
 for each hour in Fig. 4.

Figure  4 displays the box plots for the price threshold Pd∗
t+1

 for each hour h 
over all decision stages t ≤ Th − 2 . We exclude the last market, as the power pro-
ducer uses a price-accepting bid in the decision stage Th − 1 . In addition, Fig. 4 
includes the hourly average market prices. Here, the average is computed over 
the entire year and all decision stages t ≤ Th − 2 . The median price thresholds 
(red lines) are close to the average market price for each hour. For most hours, 
50% of the data (blue boxes) are within ±5€∕MWh of the median price thresh-
old, while the whiskers contain the other 50% of the data. This reveals that for 
t ≤ Th − 2 , the price threshold Pd∗

t+1
 was never a price-accepting bid.

Table 4  Policy backtest on different settings

Setting  Optimal policy Rolling horizon policy

Revenue [EUR] Revenue (%) Revenue [EUR] Revenue (%)

Basic 86906.41 100.00 84528.35 97.26
Unrestricted 87973.25 101.23 84568.90 97.31
Limited trading 5 86755.04 99.83 84453.75 97.18
Limited trading 4 86407.52 99.43 84378.94 97.09
Limited trading 3 86234.80 99.23 84319.06 97.02
Limited trading 2 85921.18 98.87 84234.72 96.93
Limited trading 1 85308.74 98.16 83796.73 96.42
Limited trading 0/

Myopic policy
83047.30 95.56 83047.30 95.56
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7  Conclusion

In this paper, we modeled the trading in sequential energy markets for profit-maxi-
mizing (cost-minimizing) market participants, with exogenous production and con-
sumption as a dynamic program. This model accounts for updating the production/
consumption forecast over the entire trading horizon. In addition to the common 
price-taker assumption, the model does not need specific assumptions about the 
underlying stochastic processes and can handle state-of-the-art forecasts. We solved 
the trading problem analytically for price processes that meet a weak condition. This 
condition holds in practice due to the mean-reverting behavior of energy prices. The 
optimal policy is a simple decision rule. We compared the optimal policy with two 
benchmark approaches in different settings via simulation and real-world data. Com-
pared with numerical optimization, the analytically derived optimal policy dramati-
cally reduces the computational burden for the market participants; this is especially 
beneficial for small market participants, which cannot afford the know-how and 
infrastructure needed for complex numerical approaches.

The simple decision rule is optimal only because of the price-taker assumption, 
which is common in the literature. While this assumption holds for small market 
participants, our decision rule cannot be applied by a large share of small market 
participants at the same time or by price-makers. Therefore, future research should 
weaken the price-taker assumption, which would lead to nonlinear value functions 
and nonlinear bidding functions. Afterward, these nonlinear bidding functions can 
be approximated by discrete bids. These approximated bids might not be optimal but 
should be close to an optimal solution.

Another possible research avenue is to further investigate the benefits from the 
optimal policy. The optimal policy can be benchmarked against a tuned rolling hori-
zon policy that accounts for price–volume bids and against approximate dynamic 
programming approaches. Additionally, the optimal policy with continuous price 

Fig. 4  Box plot of price thresholds for each hour
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processes can be benchmarked against the optimal policy with discretized price pro-
cesses, which are often needed for approximate dynamic programming approaches. 
These investigations can provide valuable insights on how much is lost from dis-
cretization and from suboptimal decisions. Especially for similar decision problems 
without analytical solution, this would answer an important question: Should one 
design an approximate dynamic programming algorithm that handles price pro-
cesses well, or should one accept inferior stochastic processes and aim for high solu-
tion quality?

Appendix 1: Proof of Proposition 1

Proposition 1 If Condition 1 holds, the value functions can be written as:

with an appropriate function gt
(
Wt

)
.

Proof The proof is by induction over t.
Induction basis t = T − 1 : The decision xT−1(⋅) is fully determined by the restric-

tion YT−1 − RT = 0 . With the transition function (3) follows:

With the boundary condition (13), for the value function VT−1 follows:

with an appropriate function gT−1
(
WT−1

)
.

Induction step t + 1 ⇒ t:

(36)Vt

(
St
)
= −�

[
Pt+1|Wt

]
⋅ Rt + gt

(
Wt

)
∀t ≤ T − 1

(37)xT−1(⋅) = YT−1 − RT−1

(38)VT−1

(
ST−1

)
=

Pmax

∫
Pmin

fT
(
PT |WT−1

)
⋅ �

[(
YT−1 − RT−1

)
⋅ PT |WT−1,PT

]
dPT

(39)= −�
[
PT |WT−1

]
⋅ RT−1 + �

[
PT |WT−1

]
⋅ YT−1

(40)= −�
[
PT |WT−1

]
⋅ RT−1 + gT−1

(
WT−1

)

(41)max
z

Gt+1

(
St,Pt+1, z

)
= max

z
�
[
z ⋅ Pt+1 + Vt+1

(
Rt + z,Wt+1

)|Wt,Pt+1

]

(42)= max
z

�
[
z ⋅ Pt+1 − �

[
Pt+2|Wt+1

]
⋅

(
Rt + z

)
+ gt+1

(
Wt+1

)|Wt,Pt+1

]

(43)
= max

z
z ⋅

(
Pt+1 − �

[
Pt+2|Wt,Pt+1

])
+ �

[
−Pt+2 ⋅ Rt + gt+1

(
Wt+1

)|Wt,Pt+1

]
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The function Gt+1 is linear in z. Thus, depending on the sign of the coefficient of z, 
an optimal solution is either the minimum or maximum argument. Therefore, an 
optimal bidding function x∗

t

(
Pt+1

)
= arg max

z

Gt+1

(
St,Pt+1, z

)
 is:

As by assumption sup
(
P
+
t+1

(
St
)) ≤ inf

(
P
−
t+1

(
St
))

 , the optimal decision x∗
t
(⋅) is non-

decreasing in Pt+1 . Therefore, the value function is:

(44)x∗
t

(
Pt+1

)
=

{
Xmin
t

(
Yt
)
= Rmin

t+1

(
Yt
)
− Rt for Pt+1 ∈ P

+
t+1

(
St
)

Xmax
t

(
Yt
)
= Rmax

t+1

(
Yt
)
− Rt for Pt+1 ∈ P

−
t+1

(
St
)

(45)

Vt

(
St
)
= max

xt(⋅)

Pmax

∫
Pmin

ft+1
(
Pt+1|Wt

)
⋅ �

[
xt
(
Pt+1

)
⋅ Pt+1

− �
[
Pt+2|Wt+1

]
⋅

(
Rt + xt

(
Pt+1

))

+gt+1
(
Wt+1

)|Wt,Pt+1

]
dPt+1

(46)
= max

xt(⋅)

Pmax

∫
Pmin

ft+1
(
Pt+1|Wt

)
⋅ �

[
xt
(
Pt+1

)
⋅ Pt+1 − Pt+2 ⋅

(
Rt + xt

(
Pt+1

))

+gt+1
(
Wt+1

)|Wt,Pt+1

]
dPt+1

(47)

= ∫
P
+
t+1(St)

ft+1
(
Pt+1|Wt

)
⋅ �

[(
Rmin
t+1

(
Yt
)
− Rt

)
⋅ Pt+1

− Pt+2 ⋅
(
Rt +

(
Rmin
t+1

(
Yt
)
− Rt

))

+gt+1
(
Wt+1

)|Wt,Pt+1

]
dPt+1

(48)

+ ∫
P
−
t+1(St)

ft+1
(
Pt+1|Wt

)
⋅ �

[(
Rmax
t+1

(
Yt
)
− Rt

)
⋅ Pt+1

− Pt+2 ⋅
(
Rt +

(
Rmax
t+1

(
Yt
)
− Rt

))

+gt+1
(
Wt+1

)|Wt,Pt+1

]
dPt+1
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with an appropriate function gt
(
Wt

)
 .   ◻

Appendix 2: Error measurements of the estimated stochastic 
processes

See Tables 5, 6, 7 and 8.

(49)

=

Pmax

∫
Pmin

ft+1
(
Pt+1|Wt

)
⋅ �

[
−Rt ⋅ Pt+1|Wt,Pt+1

]
dPt+1

+ ∫
P
+
t+1(St)

ft+1
(
Pt+1|Wt

)
⋅ �

[
Rmin
t+1

(
Yt
)
⋅ Pt+1

−Pt+2 ⋅ R
min
t+1

(
Yt
)
+ gt+1

(
Wt+1

)|Pt+1

]
dPt+1

+ ∫
P
−
t+1(St)

ft+1
(
Pt+1|Wt

)
⋅ �

[
Rmax
t+1

(
Yt
)
⋅ Pt+1

−Pt+2 ⋅ R
max
t+1

(
Yt
)
+ gt+1

(
Wt+1

)|Pt+1

]
dPt+1

(50)= −�
[
Pt+1|Wt

]
⋅ Rt + gt

(
Wt

)

Table 5  Error measurements of 
the power production process

Decision stage t MAE RMSE MAD

0 0.162 0.210 0.129
1 0.149 0.194 0.116
2 0.141 0.186 0.108
3 0.138 0.185 0.102
4 0.140 0.189 0.102
5 0.137 0.185 0.097
6 0.124 0.168 0.085

Table 6  Error measurements 
of the stochastic process for 
updating the production forecast

MAE RMSE MAPE MAD

0.038 0.057 23.138 0.024
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