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Abstract
A contestant’s effort depends on her knowledge of her rival’s type. This knowledge is
often limited in real-life contests. We propose a model where the principal of a contest
has commitment power to verifiably disclose contestants’ types. We investigate the
optimal disclosure policy to stimulate contestants’ efforts. Full disclosure stimulates
more (less) effort than full concealment if high-types are more (less) likely than low-
types. However, regardless of the likelihood of types, the optimal policy is that of
contingent disclosure; it is optimal to commit to disclosing if both contestants are
high types and concealing otherwise.

Keywords Contests · Strategic complements · Strategic substitutes · Information

JEL Classification C72 · D82
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1 Introduction

Running relative performance contests is a popular way to stimulate workers’ efforts.
It is estimated that roughly between one third (Loew 2015) and two thirds (The Wall
Street Journal 2012) of firms use some such form of internal ranking. A manager
can provide some information to the competing workers about each others’ types,
and competing workers do not a priori have this information on their rivals unless
informed by the manager. Workers’ types can be, for instance, their past performance,
their inherent ability or even their identity itself. If the manager discloses types before
the proclamation of the winner of the contest (i.e., the worker who obtains the pro-
motion, the tenure, or the bonus), then such a disclosure affects workers’ efforts, and
consequently the firm’s profit.

Analogous information disclosure problems arise in other settings. For instance, the
organizer of a sports tournament might disclose information about players that would
otherwise be too costly or impossible to retrieve by the players themselves; in chess
tournaments, players’ Elo ranking is sometimes displayed on the pairing-list board,
and in the NBA fine-tuned data collected by advanced tracking cameras are disclosed
online. Similarly, scholars compete for grants by submitting research projects, and they
presumably do not know who they are competing against unless the grant-awarding
entity publicly discloses the list of participants. The awareness of a rival’s type affects
a contestant’s effort. For example, an average researcher aware of being shortlisted to
compete for a grant against a leading scholar might give up hope and exert little effort.
In the present paper we explore the effort-maximizing disclosure policy.

Our model has an informed principal (manager, sports tournament organizer, grant-
awarding entity) who maximizes the aggregate effort of two contestants (workers,
players, scholars) who compete in a Tullock contest with discriminatory parameter
r ∈ (0, 1] (Tullock 1980). First, the principal commits to a costless and verifiable dis-
closure policy about contestants’ types (modeled as marginal costs of efforts). Then,
nature assigns a type to every contestant. Contestants know their own type, but their
knowledge of their rival’s type depends on the principal’s disclosure policy.1 Our
model assumes that there are two contestants. This assumption admittedly stylizes
the applications we described, but it allows us to abstract from contestants’ endoge-
nous participation decisions, and thus to isolate the effect of the disclosure policy on
contestants’ efforts. Each contestant is of high-type with probability p ∈ [0, 1], and
low-type with the complementary probability. Types are drawn independently and p
is common knowledge. We find that the probability of high-types p drives the optimal
disclosure policy. We provide an intuitive explanation in what follows.

We describe two building blocks of our results. First, around the equilibrium of our
setup the effort of the high- (low-) type and that of her rival are strategic complements

1 The principal commits to a disclosure policy ex-ante, that is, before observing types. This captures the
idea that the principal chooses and commits to the rules of the contest, among which the disclosure policy,
which are implemented every time the contest is run. This argument is similar to the one in Rayo and Segal
(2010), where the precommitment power of the sender is a way to build long-run reputation in the eyes of
the sequence of “short-run” receivers. In such a repeated game, losses of reputation would jeopardize the
sender’s long-run profits. Moreoever, in “Appendix B.1” we show that the principal is better off committing
to her disclosure policy ex-ante , rather than ex-post, if she could choose.
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Harnessing beliefs to optimally disclose contestants’ types 765

(substitutes). Second, the effort of a contestant, regardless of her type, is maximum
when she is up against a contestant of the same type. We call this situation an even
contest, and its effort the “stimulated effort,” in contrast to an uneven contest and the
“discouraged effort” where types differ.2

With these two building blocks in mind, consider the effect of the probability of
high-types p on the optimal disclosure policy. Trivially, in the extreme case of p ∈
{0, 1}, any attempt to conceal types in order to affect efforts is fruitless since contestants
know p, and thus disclosure policies are all outcome-equivalent. We analyze the case
of a high (low), but non-extreme, value of p in Case I (II) below.

Case I (high p)
Consider a high-type. Under disclosure, a high-type will exert the stimulated effort

with high probability (p) and the discouraged effort with low probability (1 − p).
Under concealment, a high-type believes she is in an even (uneven) contest with high
(low) probability, and knows that her most likely rival (a high-type) has the same
beliefs. Thus, the resulting level of effort of the high-type under concealment is close
to the effort that the principal expects from the high-type under disclosure, which in
fact is the high-type’s stimulated effort with high probability (p) and the high-type’s
discouraged effort with low probability (1 − p).

Consider a low-type. Under disclosure, a low-type will exert the stimulated effort
with low probability and the discouraged effort with high probability. Under conceal-
ment, a low-type believes she is most likely up against a high-type who believes she is
most likely up against another high-type, and so on. Thus, a low-type under conceal-
ment, despite knowing she is most likely up against a high-type, exerts significantly
less effort than in a high-vs-low contest under disclosure, because she knows that her
(most likely) high-type rival believes that the contest is (most likely) even, rather than
uneven. This discouragement of a low-type is obviously only present under conceal-
ment. For brevity, we call this discouragement caused by concealment when p is high
the negative p-Effect (hereafter, “-pE”), which is stronger the more p is far from 1/2
and close to 1.

Case II (low p)
In a nutshell, everything said for Case I carries over by just swapping high- and low-

type, and changing “less ” and “discouragement ” into “more” and “encouragement.”
In fact, the key difference is that now the p-Effect is positive. For brevity, we call this
encouragement caused by concealment when p is low the positive p-Effect (hereafter,
“+pE”), which is stronger the more p is far from 1/2 and close to 0.

The present paper makes the case that the p-Effects drive the optimal disclosure
policy in contests. In fact, we find that in a standard Tullock contest aggregate effort
is maximized by disclosure when p ∈ (1/2, 1) in order to avoid the—pE, and by
concealment when p ∈ (0, 1/2) in order to make the most out of the +pE.3 Conceal-
ment and disclosure yield the same aggregate effort in the remaining cases; namely,

2 When two contestants are of the same type, they maximize the same payoff function, and this typically
yields the maximum individual effort in standard two-player Tullock contests (see, e.g., Baik 1994; Nti
1999).
3 Recall that +pE and -pE are present only under concealment.

123



766 M. Serena

the symmetric prior p = 1/2, because +pE and -pE cancel out, and the degenerate
prior p ∈ {0, 1}. These are the results of Sect. 4.

In Sect. 5, we consider a principal who can precommit to disclosing or concealing
contestants’ types contingently on the realization of types. We show that the optimal
information disclosure, regardless of p, is to commit to disclosing contestants’ types
if contestants are both high-types and concealing all other realizations of types. Such
an optimal contingent disclosure policy thus improves upon the full disclosure and
full concealment policies considered in Sect. 4. The intuition behind this result relies
again on +pE and -pE, and it will be given in Sect. 5, after presenting the result.

After a discussion of the related literature in Sect. 2, the main body of the paper
(Sects. 3–6) includes what is needed to understand the intuition behind the optimal dis-
closure policies, and everything else is moved to the appendices. In particular, Sect. 3
spells out the contest model and the disclosure game. Sections 4 and 5 investigate the
optimal disclosure policy for a principal who maximizes aggregate effort: in Sect. 4
the principal can only commit to either fully disclosing or fully concealing contes-
tants’ types, and in Sect. 5 the principal can commit to disclosing contestants’ types
contingently on the realization of types. Section 6 discusses the results. Appendix A
contains the proofs and Appendix B extensions.

2 Related literature

The most closely related literature is that on how information affects efforts in Tullock
contests (e.g., Hurley and Shogren 1998a; Hurely and Shogren 1998b; Denter et al.
2011; Epstein and Mealem 2013; Heijnen and Schoonbeek 2016; Zhang and Zhou
2016; Chen et al. 2017, 2018b). These papers—in contrast to ours—assume that the
type of one contestant is common knowledge and that of the other is private informa-
tion. In other words, the private information the principal may disclose is one-sided
among the two contestants. We believe that a disclosure policy equally capable of dis-
closing each contestant’s type is a sensible assumption in the applications discussed
in the Introduction. From a more technical perspective, the prevailing assumption of
one-sided private information contest shuts down the higher-order reasoning behind
the p-Effects which drives the results of the present paper. Perhaps one reason for the
popularity of the one-dimensional private information approach is its tractability, in
that it admits a closed-form solution for equilibrium efforts, contrary to our context.4

In fact, in the words of Zhang and Zhou (2016), “It is natural to ask what happens
if both contestants possess private information. Several technical challenges emerge
accordingly, [...] a characterization of the equilibrium is usually not obtainable.” We
sidestep the lack of a closed-form solution by showing that, in Tullock contests, equi-
librium efforts always satisfy a property that depends on contestants’ beliefs about the
rival’s type (see (6) in Appendix A), and that this property suffices to fully characterize
the optimal disclosure policy. Furthermore, this novel property happens to generalize
a well-known wisdom of complete information Tullock contests—namely the ratio

4 Even if r = 1 in (1), a contest does not admit a closed-form solution for equilibrium efforts in our
fully-private information setting unless p ∈ {0, 1/2, 1}. The case p = 1/2 is analyzed in Malueg and Yates
(2004).
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Harnessing beliefs to optimally disclose contestants’ types 767

of types equals the ratio of efforts—to Tullock contests with a variety of contestants’
beliefs about the rival’s type.

The literature has proposed ways that sidestep the lack of a closed-form solution
for the equilibrium efforts of private information Tullock contests: among others,
a modified contest success function (see Wasser 2013), a binary effort space (see
Dubey 2013), or numerical simulations (seeHurley and Shogren 1998a;Wasser 2013).
In particular, Wasser (2013) compared full disclosure and full concealment through
numerical simulations, while in Theorem 1 we formally prove his numerical result
under binary distribution of types; however, not having an analytical result impeded
him from explaining the reason why the probability of high- and low-types is what
drives the optimal disclosure policy. The key role of the probability of high- and low-
types is one of our main contributions, and we show how it extends to some non-binary
distributions (see, Appendix B.3).

The present paper is, to the best of my knowledge, the first to study type-contingent
information disclosure in contests with two-sided asymmetric information. Following
the present paper, Chen et al. (2018a) study the joint optimal design of timing and
information disclosure in Tullock contests, and Lu et al. (2018) study the optimal
information disclosure in all-pay auctions, where an arbitrarily higher effort secures
victory. 5 In particular, Lu et al. (2018) extend the present analysis to all-pay auctions.
Their work considerably contributes to the literature in that they provide a full char-
acterization of the equilibrium bidding function in all-pay auctions under a regime of
contingent information disclosure, where Siegel’s (2014) approach is not applicable.
In contrast to our Tullock success function, the all-pay auction yields payoffs which
are not quasiconcave, hence leading to a nondegenerate mixed strategy equilibrium
even in the complete information case. This generates structural differences between
the two settings which make the results hardly comparable. For instance, in Lu et al.’s
(2018) equilibrium participation depends on beliefs and distribution of types. Further-
more, the elegant characterization of the p-Effects is possible thanks to the strategic
complementarity (substitutability) of the high- (low-) type’s effort around the equilib-
rium, which we find in our setup with Tullock contest success function with exponent
r ≤ 1.6

Other branches of the literature are related to the present paper. First, the literature
on the disclosure of contestants’ dynamic performance (e.g., Aoyagi 2010; Goltsman
and Mukherjee 2011) or of the number of contestants (e.g., Myerson and Wärneryd
2006; Lim and Matros 2009; Fu et al. 2011). Second, the literature on contestants’
incentive to acquire information (e.g., Yildirim 2005; Denter et al. 2011). In our model
it is the principal, rather than the contestants, who has control over the information
that contestants acquire. Third, the literature on contestants’ incentive to disclose their
private information. While players have no incentive to do so in all-pay auctions (e.g.,
Kovenock et al. 2015), in Tullock contests players may want to disclose their infor-
mation (Wu and Zheng 2017). Fourth, and finally, the Bayesian persuasion literature

5 An earlier version of the present paper is Serena (2016), which Lu et al. (2018) cite. The earliest version
is Serena (2014); see the reference in Vázquez Sedano (2015).
6 Beside Lu et al.’s (2018) extension of our results to all-pay auctions, the comparison between expected
aggregate effort under full disclosure or full concealment is in Fu et al. (2014) and Kovenock et al. (2015),
who find that full concealment dominates full disclosure.
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768 M. Serena

(see Kamenica and Gentzkow 2011, henceforth KG), where a sender commits to a
disclosure policy on a stochastic state of the world before its realization. In this class
of models, it is not a novelty to find optimality of contingent information disclosure,
like in our setting; in particular, it is optimal for a sender (i.e., a prosecutor in KG,
and the principal here) to disclose to a receiver (i.e., a judge in KG, and the set of
two contestants here) only the realization which is most favorable to the sender (i.e.,
the defendant being guilty in KG, and both contestants being high-types here) and
to pool the other signals in a strategic way (i.e., randomizing between innocent and
guilty signals in KG, and concealing here). The disclosure policy space is more gen-
eral under the Bayesian persuasion approach than in our setting. Nevertheless, our
disclosure policy space is simpler to implement, in that it involves no stochastic mes-
sages, and thus it requires a weaker commitment condition than Bayesian persuasion.
Furthermore, our disclosure policy space is not affected by the technical challenges
of applying Bayesian persuasion to analyze the disclosure of both contestants’ types.
(Three such technical challenges are discussed by Zhang and Zhou 2016; Section 4).

3 Amodel of a contest

The contest technology. Two contestants, indexed by i = 1, 2, compete for a prize of
value V > 0 by exerting effort ei ≥ 0. Each contestant has a probability of winning a
prize equal to7

pi (ei , e j ) =
{

er
i

er
i +er

j
if ei + e j > 0

1
2 if ei + e j = 0

(1)

with i, j = 1, 2, j �= i , and 0 < r ≤ 1. When at least one player exerts strictly
positive effort, (1) uniquely satisfies a set of appealing axioms (see Skaperdas 1996).

The contestants’ payoff. Contestants are risk-neutral. The cost of effort is linear,
and contestant i is of type θi , which determines hermarginal cost of effort. In particular,
the payoff of a contestant of type θi when she exerts effort ei and her rival exerts effort
e j is

pi (ei , e j )V − ei

θi
.

Contestant’s type θi is an independent draw from the commonly-known prior,8

θi =
{

h
l

with probability p
with probability 1 − p

(2)

with p ∈ [0, 1] and h > l > 0. Thus, being a high-type rather than a low-type brings
about a lower marginal cost of effort.

7 In Appendix B.4 we briefly discuss a more general contest technology.
8 In Appendix B.3 we discuss the case of a continuum of types.
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Harnessing beliefs to optimally disclose contestants’ types 769

Table 1 Possible realizations of contestants’ types, with corresponding probability and aggregate equilib-
rium effort under P = D and P = C
Realizations of {θ1, θ2} Prob. Aggregate effort if D Aggregate effort if C

{h,h} p2 2ehh 2eh

{l,l} (1 − p)2 2ell 2el

{h,l} or {l,h} 2p(1 − p) ehl + elh eh + el

The timing of the game. First, before types are realized, the principal commits to
a verifiable and costless disclosure policy P , which is observed by the contestants.
Then, types are realized, each contestant i learns θi andmay ormay not be informed by
the principal of θ j , according toP . Finally, contestants simultaneously choose efforts.

The principal and the disclosure policy. The principal maximizes the expected
aggregate effort when choosing the disclosure policy P .9 In Sect. 4, the principal
chooses between two extreme disclosure policies on types: disclosure P = D (that
is, contestants are informed of their rival’s type), and concealment P = C (that is,
contestants are not informed and contestants’ posterior belief about their rival’s types
equals the prior (2)). In Sect. 5 we enlarge the space of P’s: the principal commits to
disclosing or concealing contestants’ types contingently on type realizations.10 Each
P induces a system of beliefs for the contestants, and each system of beliefs induces
an expected level of aggregate effort. We discuss the P which maximizes aggregate
effort in the main text, while intermediary results on how systems of beliefs affect
aggregate effort appear in “Appendix A”.

Equilibrium. Since contestants are ex-ante symmetric, it is natural to focus on type-
symmetric equilibria; that is, contestants of the same type follow the same equilibrium
strategy. The existence of a unique equilibrium has already been proved in our setting
(see Einy et al. 2015, and Ewerhart andQuartieri 2019). Our results in themain text are
valid for both interior and corner equilibria; formally, we assume interior equilibrium
throughout the paper, and at the end of “Appendix A” we build on our findings to
explain why considering corner equilibria does not affect our results.

4 Optimal disclosure policy: disclose or conceal?

If the principal chooses between committing to full disclosure (P = D) or full con-
cealment (P = C) only, which one yields the greatest expected aggregate effort?
When committing to a P , the principal does not know whether the contest will be
between two high-types, two low-types, or a high-type and a low-type. Table 1 pro-
vides a summary of the possible realizations of types, the corresponding probabilities,
and the aggregate equilibrium effort (i.e., the principal’s payoff). The notation is as
follows: the first subindex in e is the type of the contestant exerting effort, and the

9 In Appendix B.2 we discuss alternative objective functions for the principal.
10 In Appendix B.1 we discuss the optimal disclosure policy if the principal does not have commitment
power, so that the disclosure policy is de facto chosen ex-post.
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Fig. 1 High-type’s equilibrium efforts as functions of p assuming r = 1, V = 1, l = 1 and h = 2. The lines
ehh and ehl are her two efforts under D. The dashed line disclosure-eh is thus the principal’s expectation
of a high-type’s effort underD. The line concealment-eh is the effort of a high-type under C. The segment
called +pE is the positive p-Effect, which is depicted at p → 0

second subindex is the type of her rival, in case she is told (that is, under D). Thus,
for instance, ehl is the equilibrium effort of a high competing against a low (underD),
and eh is the equilibrium effort of a high who does not know her rival (under C).

If the contest is even—{h,h} or {l,l}—, thenDmaximizes aggregate effort because
it prevents contestants from thinking that they are competing in an uneven contest (i.e.,
2ehh ≥ 2eh and 2ell ≥ 2el ). If instead the contest is uneven—{h,l} or { l,h}—, then C
maximizes aggregate effort because it prevents discouragement. Therefore, finding the
optimal P boils down to the ex-ante trade-off between the benefits of D if the contest
is even and the benefits of C if the contest is uneven. In what follows we gradually
build the intuition that will eventually lead to Theorem 1 using the graphical support
of Figs. 1 and 2.

In Fig. 1 we focus on the effort of a high-type.11 The horizontal lines are her two
possible equilibrium efforts under disclosure—against another high-type or against a
low-type—, where p does not affect efforts and ehh > ehl because evenness of types
stimulate efforts. We call disclosure-eh the effort that the principal expects from the
high-type under disclosure, which equals pehh + (1 − p)ehl . Thus, the disclosure-eh

is a straight line in p going from ehl to ehh , as depicted. We call concealment-eh the
equilibrium effort of a high-type under concealment. Ranking concealment-eh and
disclosure-eh (and concealment-el and disclosure-el in Fig. 2) unveils the optimal
disclosure policy. The concealment-eh is increasing in p because p increases the
probability of an even contest. When p → 0, the high-type believes she is up against

11 Since a closed-form solution for equilibrium efforts does not exist, figures are created using numerical
simulations on the system of FOCs (see (4) and (5) in “Appendix A”) with r = 1, V = 1, l = 1 and h = 2.
This parametrization does not affect the qualitative features of those figures.
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Harnessing beliefs to optimally disclose contestants’ types 771

Fig. 2 Low-type’s equilibrium efforts as functions of p assuming r = 1, V = 1, l = 1 and h = 2. The lines
ell and elh are her two efforts under D. The dashed line disclosure-el is thus the principal’s expectation
of a low-type’s effort under D. The line concealment-el is the effort of a low-type under C. The segment
called -pE is the negative p-Effect, which is depicted at p → 1

a low-type who believes she is up against another low-type who also believes she is up
against another low-type, and so on. In other words, the high-type expects an uneven
contest against a rival who expects an even contest with commonly known types. This
implies that concealment-eh is greater than the disclosure-eh (under disclosure, the
contestants’ unevenness is commonly known).12 This is what we called +pE. The
more p increases in the interval p ∈ (0, 0.5), the less likely there are situations where
the high-type’s and the low-type’s beliefs about the evenness of the contest sharply
differ (as when p → 0), and this is what makes the +pE gradually disappear and
the concealment-eh converge to the disclosure-eh . When p = 0.5, contestants believe
they are taking part in an even or uneven contest with equal probability, and they know
that their rival, regardless of types, has the same beliefs: that is, the two opposing
forces—namely being discouraged (by an uneven contest) and stimulated (by an even
contest)—balance out, and thus the higher-order reasoning “does not distort” efforts.
Additionally, when p ∈ (0.5, 1), the concealment-eh is below the disclosure-eh . The
reason is that a high-type believes she is more likely up against another high-type who
also believes she is more likely up against another high-type, and so on. However,
the high-type knows that if she happens to be against a low-type (i.e., the less likely
contingency), her low-type rival will be discouraged (as she believes she is up against
a high-type who believes she is up against another high-type, and so on; shortly, the
-pE), thus exerting low effort; the possibility of being with low probability 1 − p

12 Note that when p = 0, both concealment-eh and disclosure-eh do not matter because a high-type does
not exist. Nevertheless, we start our explanation with the limiting case p → 0 because this is where the
p-Effect can be immediately grasped.
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Fig. 3 ED[e1 + e2] − EC [e1 + e2]: Difference between the expected aggregate effort underD and under
C as a function of p, assuming r = 1, V = 1, l = 1 and h = 2

against a discouraged low-type decreases the effort of the high-type with respect to a
disclosure setting, where such possibility is clearly not present.

In Fig. 2 the same exercise is carried out for a low-type, with symmetric results.
We briefly repeat the reasoning we made above for a high-type. When p → 1, the
disclosure-el is greater than the concealment-el because a low-type believes she is
up against a high-type who believes she is up against another high-type, and thus the
low-type exerts less effort than elh (i.e., a low-type is discouraged by -pE). When
p = 0.5, the -pE disappears and the disclosure-el equals the concealment-el , while
when p ∈ (0, 0.5) the concealment-el is above the disclosure-el .

Therefore, all forces affecting the high-type and low-type’s efforts point at the same
conclusion: for p ∈ [0, 0.5] both concealment-eh and concealment-el are greater than
the disclosure ones, while for p ∈ [0.5, 1] they are both lower. Thus, if p ∈ [0, 0.5]
concealment is the optimal policy, and if p ∈ [0.5, 1] disclosure is the optimal policy.
These results lead to the optimal P of Theorem 1, which is depicted in Fig. 3. 13

Theorem 1 Under full disclosure or full concealment only, the optimal disclosure
policy for the principal is to commit to full disclosure (full concealment) if high-types
are more (less) likely than low-types; that is, if p ∈ [0.5, 1] (p ∈ [0, 0.5]). The
principal is indifferent between full concealment and full disclosure if and only if the
prior is degenerate, i.e., p ∈ {0, 1}, or symmetric, i.e., p = 0.5.

13 Although parameters h and l do not affect the principal’s optimal disclosure policy, the absolute value
of the difference between aggregate effort under D and under C increases in the ratio h/l. In other words,
the vertical scale of Fig. 3 shrinks for a reduction of h/l, all the way down to the case of h = l, that is, a
flat horizontal line depicting indifference between any P for all values of p. The same holds for r and V ,
which do not affect the principal’s optimal disclosure policy, but scale up or down efforts in each P . The
independence of the optimal P on h, l, r and V also holds in Sect. 5.
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Harnessing beliefs to optimally disclose contestants’ types 773

Despite Theorem 1 answering a very natural question, a plausible reason why the
present paper is the first to provide an answer is the well-known lack of a closed-form
solution for efforts under two-sided private information Tullock contests. In the proof
of Theorem 1 (and later on of Theorem 2), we sidestep the lack of a closed-form
solution by showing that equilibrium efforts always satisfy a property that depends on
contestants’ beliefs about the rival’s type (in “Appendix A”, see (6) for Theorem 1, and
the corresponding (22)–(23) for Theorem 2), and that this property suffices to fully
characterize the optimal disclosure policy.

Theorem 1 is the first of the two main results of the paper. We challenge this
result with five extensions in “Appendix B”. First, we consider ex-post rather than
ex-ante disclosure; we find that the equilibrium efforts are those of full disclosure.
Second, we consider objectives other than the maximization of aggregate effort; we
obtain a similar optimal disclosure policy if the principal maximizes the expected
winning effort, and the opposite optimal disclosure policy to that of Theorem 1 when
the principal minimizes aggregate effort or maximizes the probability of a high-type
winner. Third, we consider the optimal disclosure policy with two tractable cases of
continuum-type distribution drawn from the literature; we find that the link between
the relative likelihood of high- and low-types and optimal disclosure policy goes in the
same direction as that characterized in Theorem 1. Fourth, we spell out the technical
difficulties of deriving the optimal disclosure policy under a contest success function
more general than (1).

5 Optimal contingent disclosure policy

In Sect. 4, the principal could only commit to fully disclosing or fully concealing con-
testants’ types. Can the principal do any better using a partial disclosure policy? This
section shows that the answer is positive, regardless of p, in a specific family of partial
disclosure policies, where the principal commits to disclosing or concealing contes-
tants’ types contingently on the realization of types. The principal needs a stronger
commitment power in order to implement such a contingent information disclosure;
online contests are a setting where such a broadening of the disclosure policy space is
easily implementable.

P is now a vector of three binary variables, each taking the value D or C, where
the first (respectively, second and third) element corresponds to the disclosure choice
in case of realization {h, h} (respectively, {h, l} and {l, l}). Realizations {h, l} and
{l, h} are equivalent for the principal, who hence has no incentive to choose different
disclosure policies to {h, l} and {l, h}. Although the set of P analyzed in this section
formally nests the two extreme cases analyzed in Sect. 4—P = {C, C, C} corresponds
to full concealment, andP = {D,D,D} to full disclosure—, we keep the two sections
separate because: i) the comparison of public and private information contests is of
self-interest, and ii) the more sophisticated disclosure policy in this section might not
be implementable in some real-life situations. As in Sect. 4, P is publicly announced
ex-ante by the principal who commits to it, and no randomization is allowed.

The result of this section is that P = {D, C, C} is optimal for all p’s—that is,
disclosure only when both contestants are high-types yields an expected aggregate
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effort greater than that of full disclosure, full concealment, and any other contingent
disclosure policy.

Theorem 2 Under contingent information disclosure, the optimal disclosure policy for
the principal is to commit to disclosing contestants’ types only when the realization is
{h, h}, if p ∈ (0, 1). That is, P = {D, C, C}. If p ∈ {0, 1}, the principal is indifferent
between any disclosure policies.

The intuition behind Theorem 2 is as follows. First, consider how P = {D, C, C}
affects contestants’ beliefs. A high-type who is not told her rival’s type infers she must
be up against a low-type. Thus, (A) a high-type always knows her rival’s type, and (B)
a low-type never knows her rival’s type. More importantly, (A) and (B) are common
knowledge; in particular, low-types know (A) and high-types know (B). Therefore,
such a P allows the principal, regardless of p, to both:

- avoid the losses due to-pE. -pE is an effort loss that occurs when a low-type is up
against a high-typewho is not aware of being up against a low-type. This situation does
not occur under such a P because low-types know (A), and thus even if a low-type
is up against a high-type, the low-type knows that the high-type is aware of being up
against a low-type.

- benefit from +pE. +pE is an effort gain that occurs when a high-type is up against
a low-type who is not aware of being up against a high-type. This situation does occur
under such a P because high-types know (B), and thus a high-type knows that, when
up against a low-type, this low-type will not be aware of being up against a high-type.

Therefore, the intuition behind Theorem 2 relies on +pE and -pE, as the one behind
Theorem 1. Yet, the optimal disclosure policy of Theorem 1 depends on p whereas
the one of Theorem 2 does not. The reason is that, if only full disclosure or full
concealment are possible, the principal’s priority is either to avoid the losses due to
-pE (and thus disclose) when p is high or to make the most out of the +pE (and
thus conceal) when p is low, whereas if the disclosure policy space admits contingent
disclosures, the principal can simultaneously achieve both goals for all p’s.

While the worst (or effort-minimizing) disclosure policy of Sect. 4 immediately
follows from Theorem 1, Theorem 2 does not characterize the worst contingent dis-
closure policy. For the sake of completeness, we characterize the worst disclosure
policy when contingent information disclosure is possible.

Proposition 3 Under contingent information disclosure and p ∈ (0, 1), the worst
disclosure policy for the principal is to commit to disclosing contestants’ types only
when the realization is {l, l}. That is, P = {C, C,D}.

The intuition behind Proposition 3 is the mirror image of that of Theorem 2; namely
by disclosing only realization {l, l} the principal suffers the losses due to -pE and at
the same time she does not obtain the benefits of +pE. Additionally, Proposition 3 ,
together with Theorem 2 and Theorem 1, yields the full ranking of contingent disclo-
sure policies;

Corollary 4 Consider contingent information disclosure and p ∈ (0, 1). If p ∈
(0, 0.5), the full ranking of policies is

{D, C, C} � {C, C, C} � {D,D,D} � {C, C,D}.
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If p ∈ (0.5, 1), the full ranking of policies is

{D, C, C} � {D,D,D} � {C, C, C} � {C, C,D}.

If p = 0.5, the full ranking of policies is

{D, C, C} � {D,D,D} ∼ {C, C, C} � {C, C,D}.

6 Discussion

We have studied a model of contest where contestants are privately informed of their
types and the principal can commit to publicly disclosing contestants’ types. We have
characterized the optimal disclosure policywhen the principalmaximizes the expected
aggregate effort of the contestants. In particular, full disclosure extracts more (less)
expected aggregate effort than full concealment if high-types are more (less) likely
than low-types.Moreover, if contingent information disclosure is possible, the optimal
disclosure policy is to commit to disclosing contestants’ types onlywhen the realization
of typeswhich ismost favorable for the principal—i.e., contestants are all high-types—
and to concealing the rest.

We have shown that the effect of the disclosure policy on the contestants’ higher-
order reasoning (which we called +pE and -pE) is of first-order importance. In fact,
we find that +pE and -pE are the only forces that affect the efforts of the high-type
and low-type with opposite sign when high-types are more and less likely than low-
types. This asymmetry is the by-product of the fact that, around the equilibrium, a
high-type’s strategy shows strategic complementarity and a low-type’s strategy shows
strategic substitutability. By no means do we attempt to make a statement that optimal
disclosure policies depend in general only on the p-Effects. Rather, two-player Tullock
contests are a suitable environment for singling out and stressing the relevance of the
p-Effects which, although not convoluted, have not received attention in earlier papers,
to the best of our knowledge.

Three shortcomings of our analysis pinpoint room for future research. First, we
ignored contestants’ selection. It may be effort-improving to endow the model with
an entry fee capable of sifting out weak applicants. Second, we abstracted away from
contestants’ participation decision. The announced disclosure policy itself may affect
contestants’ willingness to participate, and we conjecture that concealment deters the
low-types from entering, and that this might be beneficial in terms of expected aggre-
gate effort. Third, the disclosure of information about other contestants that would
otherwise be unknown to contestants has other consequences in addition to the one
considered in the present paper. In fact, disclosure may also trigger communication
among contestants, affect the external visibility of contestants, and create animos-
ity among contestants. We abstracted away from these effects and focused here on
the direct effects on efforts of making contestants’ types publicly available to other
contestants.

Funding Open Access funding enabled and organized by Projekt DEAL.
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Appendix A: Proofs

In thisAppendix, we prove Theorem1 andTheorem2 (togetherwith the full ranking of
policies of Proposition 3 andCorollary 4) by first deriving some equilibrium properties
as “Preliminaries”, and secondbuilding on those preliminaries to prove themain results
in a number of “Steps”.
Proof of Theorem 1

We adopt the compact notation πD−C for ED[e1 + e2] − EC[e1 + e2]; that is, the
difference in the expected sum of efforts under D and under C, which is depicted in
Fig. 3 as a function of p.

First, we spell out some Preliminaries. Second, we prove Theorem 1 in three steps.
Step 1: πD−C = 0 iff p ∈ {0, 0.5, 1}. Step 2: The derivative of πD−C with respect
to p at p = 0.5 is strictly positive. Step 3: πD−C is continuous in p. These three
results together lead to the sign of πD−C as in Fig. 3, hence characterizing the optimal
disclosure policy of Theorem 1 without the need for closed-form equilibrium efforts
under C.

Preliminaries The existence and uniqueness of equilibrium in pure strategies is
already present in the literature.14

Under D, as known in the literature (e.g., Nti 1999), equilibrium efforts are15

ehh = rh

4
V , ehl = rhr+1lr

(hr + lr )2
V , elh = rlr+1hr

(hr + lr )2
V , ell = rl

4
V . (3)

Under C, the system of FOCs has two unknowns (eh and el ), and reads

(FOC of h-type) : p
r

4eh
V + (1 − p)

rer−1
h er

l[
er

h + er
l

]2 V = 1

h
, (4)

(FOC of l-type) : (1 − p)
r

4el
V + p

rer−1
l er

h[
er

h + er
l

]2 V = 1

l
. (5)

14 See Szidarovszky and Okuguchi (1997) for the existence and uniqueness under complete information.
Under incomplete information, Einy et al. (2015) and Ewerhart and Quartieri (2019) prove existence and
uniqueness in a setting that nests our model.
15 The notation for the subindexes of equilibrium efforts is the one introduced at the beginning of Sect. 4.
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The FOCs are necessary and sufficient to characterize the best reply, which is continu-
ously differentiable and bounded.16 To lighten the notation we omit the dependencies
of eh and el on p, h, l, r and V . A type-symmetric equilibrium is a pair (eh, el) satis-
fying (4) and (5).

Finally, isolate the second addends of the left-hand sides in (4) and (5), consider
their ratio,

(1 − p)rer−1
h er

l

prer−1
l er

h

=
1
h − p r

4eh
V

1
l − (1 − p) r

4el
V

⇐⇒ (1 − p)el

peh
=

1
h − p r

4eh
V

1
l − (1 − p) r

4el
V

cross-multiply,

(1 − p)el

l
− (1 − p)2

r

4
V = peh

h
− p2

r

4
V

⇐⇒ 4

r V

(1 − p)el

l
= 4

r V

peh

h
+ (1 − 2p) ,

and finally use the expressions of ehh and ell in (3), in order to derive the following
key relation between equilibrium efforts under D and under C,

el

ell
(1 − p) = eh

ehh
p + (1 − 2p). (6)

Using the above preliminaries (i.e., (3)–(6)), we are ready to proceed with the three
main steps needed to prove Theorem 1.

Step 1. We show that πD−C = 0 iff p ∈ {0, 0.5, 1}. First, we analyze when πD−C
takes the value 0.

πD−C = p2[2ehh − 2eh] + 2p(1 − p)[ehl + elh − eh − el ] + (1 − p)2[2ell − 2el ] = 0,

i.e.,

p2ehh + (1 − p)2ell + p(1 − p)[ehl + elh] − peh − (1 − p)el = 0. (7)

If p = 0 or p = 1, by el = ell and eh = ehh respectively, (7) holds and πD−C = 0.
Thus, from now on we can focus on p ∈ (0, 1).

16 See Yildirim (2005) and Morgan and Várdy (2007).
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Substitution of (3) and (6) into (7) yields

p2
rh

4
V + (1 − p)2

rl

4
V + p(1 − p)

r(h + l)hr lr

(hr + lr )2
V − p

h + l

h
eh − 1 − 2p

4
rlV = 0,

pr
h + l

4
V + (1 − p)

r(h + l)hr lr

(hr + lr )2
V = h + l

h
eh,

pehh + (1 − p)ehl = eh . (8)

Hence, (8) is a condition for the indifference between D and C written in terms of
the efforts exerted by the high-type only. This condition coincides with equality of
concealment-eh and disclosure-eh (see Fig. 1). With a similar procedure used to find
(8)—that is, by substituting (6) into eh rather than into el–we can obtain the value of
el for which the administrator is indifferent between D and C, which symmetrically
to (8) is

(1 − p)ell + pelh = el . (9)

This condition coincideswith equality of concealment-el and disclosure-el (see Fig. 2).
We plug (8) and (9) into (4) and see if any p ∈ (0, 1) solves the resulting equation—
thus, yielding πD−C = 0. 17

First, use (3) to rewrite the indifference conditions (8) and (9) for el and eh as

eh = rh
p(hr + lr )2 + 4(1 − p)hr lr

4(hr + lr )2
V , (10)

el = rl
(1 − p)(hr + lr )2 + 4phr lr

4(hr + lr )2
V . (11)

These efforts are those that, if exerted under full concealment, lead to indifference
between C and D. Now, using (4 ) and (5), we check whether these effort levels are
reached for some parameter values. Hence, we rewrite (4) as

pr
h

4
V + (1 − p)r

her
her

l

(er
h + er

l )
2 V = eh . (12)

Plugging (10) into the right-hand side of (12), and after simple simplifications, we
obtain the following

er
her

l

(er
h + er

l )
2 = hr lr

(hr + lr )2
. (13)

17 Remark: the fact that (8) and (9) are sufficient for πD−C = 0 could have already been noticed in (7),
but we needed to use (6) to show that they are also necessary for πD−C = 0.
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Finally, we plug (10) and (11) where we defined J = p(hr + lr )2 + 4(1− p)hr lr and
K = (1 − p)(hr + lr )2 + 4phr lr into (13), and obtain

hr lr J r K r

(hr Jr + lr K r )2
= hr lr

(hr + lr )2

⇐⇒ l2r K r (Jr − K r ) = h2r J r (Jr − K r ), (14)

and the unique solution of (14) is J = K , which is equivalent to

p(hr + lr )2 + 4(1 − p)hr lr = (1 − p)(hr + lr )2 + 4phr lr

⇐⇒ 4(1 − 2p)hr lr = (1 − 2p)(hr + lr )2,

whose unique solution is p = 0.5. Similar algebra shows that (10), (11) and p = 0.5
satisfy (5)—besides satisfying (4) as proved. Hence, we proved that there are only
three values of p for which πD−C = 0: 0, 0.5, and 1.

Step 2. We write the system (4) and (5) as a unique equation in terms of eh and
parameters only, and then we make use of the implicit function theorem to evaluate
the derivative of πD−C in p = 0.5, and prove that it is strictly positive. That is,

∂πD−C

∂ p

∣∣∣∣∣
p=0.5

> 0.

Remember that efforts under D are not functions of p, unlike the efforts under C. We
omitted this detail so far in the notation, and we now write it when it would otherwise
yield confusion as we need to differentiate with respect to p.
To simplify πD−C we use the same steps used to move from (7) to (8), where we
simplified a p, and get

∂

∂ p

[
p2ehh + p(1 − p)ehl − peh(p)

]∣∣∣∣
p=0.5

> 0,

[
2pehh + ehl − 2pehl − eh(p) − p

∂eh(p)

∂ p

]∣∣∣∣
p=0.5

> 0,

ehh − eh (0.5) >
1

2

(
∂eh(p)

∂ p

∣∣∣∣
p=0.5

)
. (15)

When p = 0.5, we know from Step 1 that πD−C = 0, and hence from (8), eh (0.5) =
ehh+ehl

2 . Therefore, (15) is equivalent to

ehh − ehl >
∂eh(p)

∂ p

∣∣∣∣
p=0.5

(16)
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The left-hand side of (16) is known by (3). The right-hand side is trickier. First, isolate
el in (6) and use ehh and ell from (3) to obtain:

el = 4pleh + (1 − 2p)rlhV

4(1 − p)h
. (17)

Use (17) into (4), and obtain

f (eh, p) ≡ p
r

4eh
V + 4r hr lr r

(1 − p)r+1er−1
h [h(1 − 2p)V + 4peh]r

[4r hr (1 − p)r er
h + (4pleh + hl(1 − 2p)V )r ]2 − 1

h
= 0.

The defined f (eh, p) is an equation in p and eh only, and hence by the implicit function
theorem

∂eh(p)

∂ p

∣∣∣∣
p=0.5

= −
∂ f (eh ,p)

∂ p

∣∣∣
p=0.5

∂ f (eh ,p)
∂eh

∣∣∣
p=0.5

. (18)

We will eventually plug (18) into (16) to conclude the proof of Step 2. We start with
the denominator of (18):

∂ f (eh, p)

∂eh

∣∣∣∣
p=0.5

= ∂ f (eh, 0.5)

∂eh

= ∂

∂eh

[
r

8eh
V + hr lr r

2 (hr + lr )2 eh
V

]∣∣∣∣
p=0.5

= − r

e2h

[
h2r + l2r + 6hr lr

8(hr + lr )2
V

]∣∣∣∣
p=0.5

(19)

Note that when p = 0.5 equilibrium effort is eh = rh h2r +l2r +6hr lr

8(hr +lr )2
V . This is easy to

verify, since p = 0.5 corresponds to the contest of Malueg and Yates (2004)—see
their expression (20). We use this expression into (19) and obtain

∂ f (eh, p)

∂eh

∣∣∣∣
p=0.5

= − 1

heh

∣∣∣∣
p=0.5

.
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Hence, expression (18) reads

∂eh(p)

∂ p

∣∣∣∣
p=0.5

= −
∂ f (eh ,p)

∂ p

∣∣∣
p=0.5

∂ f (eh ,p)
∂eh

∣∣∣
p=0.5

=
(

heh
∂ f (eh, p)

∂ p

∣∣∣∣
p=0.5

)

= rh

4
V + 4r hr+1lr rer

h
∂

∂ p[
(1 − p)r+1[h(1 − 2p)V + 4peh]r

[4r hr (1 − p)r er
h + (4pleh + hl(1 − 2p)V )r ]2

]∣∣∣∣
p=0.5

= rh

4
V + 4r hr+1lr rer

h
∂

∂ p

[
a(p)b(p)

[c(p)]2

]∣∣∣∣
p=0.5

(20)

where we defined

a(p) = (1 − p)r+1,

b(p) = [h(1 − 2p)V + 4peh]r ,
c(p) = 4r hr (1 − p)r er

h + (4pleh + hl(1 − 2p)V )r .

Hence,

∂

∂ p

[
a(p)b(p)

[c(p)]2

]∣∣∣∣
p=0.5

= a′(p)b(p) + a(p)b′(p)

[c(p)]2

∣∣∣∣
p=0.5

− 2a(p)b(p)c′(p)

[c(p)]3

∣∣∣∣
p=0.5

.

(21)

From the definitions of the functions a, b and c compute their values and their deriva-
tives when p = 0.5.

a (0.5) = 1
2r+1 a′ (0.5) = − r+1

2r

b (0.5) = 2r er
h b′ (0.5) = 2r+1rer−1

h [eh − hV /2]
c (0.5) = 2r er

h(hr + lr ) c′ (0.5) = −2r+1hrrer
h + 2r+1lr rer−1

h (eh − hV /2)

123



782 M. Serena

Plug these results into (21) to write (20) in the following way18

∂eh(p)

∂ p

∣∣∣∣
p=0.5

= rh

4
V +

−4r hr+1lr rer
h

[
er

h(r + 1) − rer−1
h (eh − hV /2)[

2r er
h(hr + lr )

]2
+

rer
h2

r+1
[
−hr er

h + lr er−1
h (eh − hV /2)

]
[
2r er

h(hr + lr )
]3

⎤
⎦

= rh

4
V + 4hr+1lr r

lr − hr

(hr + lr )
[
(hr + lr )2 + 4hr lr

] V

−hr+1lr r
lr (2r + 1) + hr (1 − 2r)

(hr + lr )3
V ,

where we used the fact that eh = rh h2r +l2r +6hr lr

8(hr +lr )2
V when p = 0.5.

Therefore, we can finally evaluate expression (16).

rh

4
− rh

hr lr

(hr + lr )2
>

rh

4
+ 4hr+1lr r

lr − hr

(hr + lr )
[
(hr + lr )2 + 4hr lr

] +

−hr+1lr r
lr (2r + 1) + hr (1 − 2r)

(hr + lr )3

⇐⇒ 2r
lr − hr

(hr + lr )2
> 4

lr − hr[
(hr + lr )2 + 4hr lr

]
⇐⇒ 2(hr + lr )2 > r

[
(hr + lr )2 + 4hr lr

]
.

By r ≤ 1, it suffices to show that

2(hr + lr )2 > (hr + lr )2 + 4hr lr

⇐⇒ (hr − lr )2 > 0,

and the result follows.
Step 3. The continuity of eh and el in p directly follows from theMaximumTheorem

applied to contestants’ payoff, which is continuous and strictly concave in own effort.
The continuity of πD−C in p follows from the continuity of eh and el .
Proof of Theorem 2 and Proposition 3

If p ∈ {0, 1}, the principal is trivially indifferent between all disclosure policies.
The ranking between π {D,D,D} and π {C,C,C} is known from Theorem 1. Hence, in
what follows, we focus on p ∈ (0, 1) and on all rankings except the one between
π {D,D,D} and π {C,C,C}.

18 For the sake of brevity, we use eh rather than eh |
p= 1

2
.
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First, we spell out some Preliminaries, including in Lemma 5 two key monotonic-
ities of efforts in beliefs. Second, building on Preliminaries and Lemma 5, we prove
Theorem 2 in three steps. Denoting byπP the expected sum of efforts under disclosure
policy P , we prove that π {D,D,D} > π {C,C,D} (Step 1), that π {D,C,C} > π {D,D,D}
(Step 2), and that π {D,C,C} > π {C,C,C} (Step 3). Finally, note that in all the remaining
policies (i.e., {C,D,D}, {D, C,D}, {D,D, C}, {C,D, C}) contestants perfectly infer
types, and thus they are outcome-equivalent to P ={D,D,D}. Theorem 2 thus fol-
lows from the three steps.

Finally, in order to prove Proposition 3, notice the Steps 1–2 imply π {D,C,C} >

π {D,D,D} > π {C,C,D}, and Step 3 implies that {C, C, C} is not the best policy. In the
additional Step 4 below we prove that {C, C, C} is not the worst policy either. By
Theorem 1 the full ranking of Corollary 4 then follows.

Preliminaries First, we derive two key equilibrium properties, (22) and (23), which
hold for the two new disclosure policies, {C, C,D} and {D, C, C}, by plugging the
appropriate p.

In particular, for policy {C, C,D} we plug p = 1 in (5), as a low-type observing C
under policy P = {C, C,D} is sure she is up against a high-type, and following the
same steps used to derive (6) from (4) and (5) we obtain

4leh − 4(1 − p)hel = prhlV , (22)

and similarly, for policy {D, C, C}, we plug p = 0 in (4), as a high-type observing C
under policy P = {D, C, C} is sure she is up against a low-type, and following the
same steps used to derive (6) from (4) and (5) we obtain

4hel − 4lpeh = (1 − p)rhlV . (23)

The second preliminary result is the following key lemma.

Lemma 5 The equilibrium effort of the low-type decreases in the high-type’s belief of
being in an even contest.

The equilibrium effort of the high-type increases in the low-type’s belief of being
in an even contest.

Proof of Lemma 5 For the sake of the proof of this lemma only, we denote by ph (pl )
the belief of a high (low) type of being in an even contest; that is, of being against
another high (low) type. Hence, we rewrite the system of FOCs (4) and (5) as

{
ph A + (1 − ph)B = 1

h
plC + (1 − pl)D = 1

l
, (24)

where we define

A ≡ r

4eh
V , B ≡ rer−1

h er
l[

er
h + er

l

]2 V , C ≡ r

4el
V , D ≡ rer−1

l er
h[

er
h + er

l

]2 V .

We prove the statements of the lemma building on five intermediary results.
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First, we show that

eh > el . (25)

Assume by contradiction that eh ≤ el . Since 1
h < 1

l , (24) implies

ph A + (1 − ph)B < plC + (1 − pl)D. (26)

Also, it is routine to show that A ≥ B, A ≥ C , C ≥ D and B ≥ D. Thus, A ≥
max{B, C} ≥ min{B, C} ≥ D. If B ≥ C , then a contradiction is immediately reached
by A ≥ B ≥ C ≥ D and (26 ). If instead C > B, then using the definitions of B

and C and cross-multiplying, we obtain
[
er

h + er
l

]2
> 4er+1

l er−1
h , which requires[

er
h + er

l

]2
> 4e2r

l , which in turn can be written as
[
er

h + 3er
l

] [
er

h − er
l

]
> 0. This

contradicts eh ≤ el .
Second, we show that

∂ [ph A + (1 − ph)B]

∂eh
≤ 0 ≤ ∂ [ph A + (1 − ph)B]

∂el
. (27)

Result (27) has an easy economic interpretation; a high type’s marginal payoff from
higher effort is decreasing in eh (as the payoff function is concave), and is increasing
in el for el < eh (encouragement effect). In fact, A decreases in eh . B decreases in
eh because its numerator decreases in eh and its denominator increases in eh . A is
constant in el . B increases in el because

∂ B

∂el
= rer−1

h

rer−1
l

[
er

h + er
l

] − 2re2r−1
l[

er
h + er

l

]3 V

= r2er−1
h er−1

l

er
h − er

l[
er

h + er
l

]3 V > 0,

where the last inequality follows from (25).
Third, as can be proved with similar, thus omitted, steps as for (27),

∂ [plC + (1 − pl)D]

∂eh
≤ 0,

∂ [plC + (1 − pl)D]

∂el
≤ 0. (28)

Result (28) has an analogous economic interpretation as the one provided for (27).
Fourth, we show that efforts are smaller than their complete-information levels in

an even contest, or formally,

eh ≤ rhV

4
and el ≤ rlV

4
. (29)

Consider the first equation of (24). If ph = 1, eh = rhV /4. Consider now the effect
of lowering ph(< 1). Then, by A ≥ B, the convex combination ph A + (1 − ph)B
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decreases in ph . To keep it equal to the constant 1/h, then eh must decrease because
both A and B are decreasing functions of eh , as proved above. Hence, eh ≤ rhV /4.
The proof of el ≤ rlV /4 is analogous.

Fifth, following the same steps used to derive (6), but for the general beliefs ph and
pl as defined in this proof, we generalize ( 6) to

4el
rlV − pl

1 − pl
=

4eh
rhV − ph

1 − ph
, (30)

and recall that both el and eh depend on (ph, pl).
The first statement of Lemma 5 can be written as ∂el/∂ ph < 0. Assume by con-

tradiction that ∂el/∂ ph ≥ 0. The left-hand side of (30) increases in el , and thus by
∂el/∂ ph ≥ 0 it also increases in ph . Since the left-hand side of (30) increases in ph ,
also the right-hand side of (30) has to increase in ph . However,

x−ph
1−ph

decreases in
ph whenever x ≤ 1 (which holds by ( 29)), hence the only way to have the right-
hand side of (30) increasing in ph is that ∂eh/∂ ph ≥ 0. By (28), ∂el/∂ ph ≥ 0 and
∂eh/∂ ph ≥ 0 lead to a contradiction. Therefore, ∂el/∂ ph < 0, proving the first
statement of Lemma 5.

The second statement of Lemma 5 can be written as ∂eh/∂ pl > 0. First, as we
just proved, ∂el/∂ ph < 0, and hence by (28) and plC + (1 − pl)D = 1/l, it must
be that ∂eh/∂ ph > 0. Second, by (27) and ph A + (1 − ph)B = 1/h we obtain
∂eh/∂ pl > 0 ⇐⇒ ∂el/∂ pl > 0. Therefore, the last step to finish the proof of the
second statement of Lemma 5 is to assume that ∂eh/∂ pl ≤ 0 and ∂el/∂ pl ≤ 0 and
obtain a contradiction. For brevity, we denote these two conditions e′

l ≤ 0 and e′
h ≤ 0

in what follows. We differentiate the second equation of (24) with respect to pl (for
the differential of (1 − ph)B we apply the formula in (21))

E︷ ︸︸ ︷[
rer−1

l + plr (r − 1) er−2
l e′

l

]
er

l

F︷ ︸︸ ︷
−plr

2e2r−2
l e′

l

4e2r
l

V +

+

G︷ ︸︸ ︷
−rer−1

l er
h

H︷ ︸︸ ︷
+(1 − pl)

[
r (r − 1) er−2

l er
he′

l + rer−1
l rer−1

h e′
h

]
[
er

h + er
l

]2 V +

I︷ ︸︸ ︷
−
2(1 − pl)rer−1

l er
h

[
rer−1

h e′
h + rer−1

l e′
l

]
[
er

h + er
l

]3 V = 0.

We prove that E + F + G + H + I > 0 in order to achieve a contradiction and thus
end the proof. Term F is trivially positive.19 Term E + G is positive since it can be

19 Recall that we are under assumptions e′
l ≤ 0 and e′

h ≤ 0.
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written as

E + G = re2r−1
l

[
er

h − er
l

]2 + plr (r − 1) e2r−2
l e′

l

[
er

h + er
l

]2
4e2r

l

[
er

h + er
l

]2 > 0.

And similarly,

H + I = (1 − pl )

[
r (r − 1) er−2

l er
he′

l + rer−1
l rer−1

h e′
h

] [
er

h + er
l

] − 2rer−1
l er

h

[
rer−1

h e′
h + rer−1

l e′
l

]
[
er

h + er
l

]3
≥ (1 − pl )

rer−1
l rer−1

h e′
h

[
er

h + er
l

] − 2rer−1
l re2r−1

h e′
h[

er
h + er

l

]3
= (1 − pl )rer−1

l rer−1
h e′

h
er

l − er
h[

er
h + er

l

]3 ≥ 0,

where the last inequality holds true by (25) and e′
h ≤ 0. Therefore, e′

l ≤ 0 and e′
h ≤ 0

lead to a contradiction and the result follows. �
Using (22), (23) and Lemma 5, we are finally ready to proceed with the four main

steps needed to prove Theorem 2 and Proposition 3. The proofs of the four steps are
alike. First, we simplify the difference in the expected sum of efforts under the two
disclosure policies using (6), (22) and (23). Second, we use Lemma 5 to conclude the
proofs.

Step 1. π {D,D,D} > π {C,C,D}.
In this step we denote by eh and el the efforts under C and policy {C, C,D}; that

is, it is commonly known that the high-type does not know her rival’s type and the
low-type knows her rival’s type. The claim is equivalent to

p2(2ehh − 2eh) + 2p(1 − p)(ehl + elh − eh − el) > 0

pehh + (1 − p)(ehl + elh) − (1 − p)el − eh > 0

p
rh

4
V + (1 − p)r

hr lr (h + l)

(hr + lr )2
V − (1 − p)el − eh > 0,

where we used (3) in the last step. Now, use (22) to eliminate eh , and obtain

p
rh

4
V + (1 − p)r

hr lr (h + l)

(hr + lr )2
V − (1 − p)el − (1 − p)

h

l
el − p

rh

4
V > 0

r
hr lr (h + l)

(hr + lr )2
V − h + l

l
el > 0

r
hr lr+1

(hr + lr )2
V > el

elh > el ,(31)

where the last step is implied by (3).
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Now, the low-type is sure she is up against a high-type in both elh and el , but in the
former the high-type’s belief of being up against another high-type is 0 while in the
latter it is p. Therefore, (31 ) follows from the first statement of the Lemma 5.

Step 2. π {D,C,C} > π {D,D,D}.
In this step we denote by eh and el the efforts under C and policy {D, C, C}; that is,

it is commonly known that the high-type knows her rival’s type and the low-type does
not know her rival’s type. The claim is equivalent to

2p(1 − p)(eh + el − ehl − elh) + (1 − p)2(2el − 2ell) > 0

el + peh − p(ehl + elh) − (1 − p)ell > 0

el + peh − pr
hr lr (h + l)

(hr + lr )2
V − (1 − p)

rl

4
V > 0,

where we used (3) in the last step. Now, use (23) to eliminate el , and obtain

p
l

h
eh + (1 − p)

rl

4
V + peh − pr

hr lr (h + l)

(hr + lr )2
V − (1 − p)

rl

4
V > 0

eh > r
hr+1lr

(hr + lr )2
V

eh > ehl , (32)

where the last step is implied by (3).
Now, the high-type is sure she is up against a low-type in both eh and ehl , but in the

former the low-type’s belief of being up against another low-type is 1 − p while in
the latter it is 0. Therefore, (32 ) follows from the second statement of the Lemma 5.

Step 3. π {D,C,C} > π {C,C,C}.
Now both disclosure policies include some concealment, and hence there are two

efforts under C for each type according to the disclosure policy. In this step, we denote
by êh and êl the efforts under C and policy {D, C, C}, that is when it is commonly
known that the high-type does not know her rival’s type and the low-type knows her
rival’s type (ph = 0 and pl = 1 − p), and by ēh and ēl the efforts under C and
policy {C, C, C}, that is when it is commonly known that no type knows her rival’s
type (ph = p and pl = 1 − p). The claim is equivalent to

p2(2ehh − 2ēh) + 2p(1 − p)(êh + êl − ēh − ēl) + (1 − p)2(2êl − 2ēl) > 0

p2
rh

4
V + p(1 − p)êh − pēh + (1 − p)êl − (1 − p)ēl > 0,
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where we used (3). Now, use (23) for policy {D, C, C} to eliminate êh , and (6) for
policy {C, C, C} to eliminate ēh , and obtain

p2
rh

4
V + (1 − p)

h

l
êl − (1 − p)2

rh

4
V − (1 − p)

h

l
ēl + (1 − 2p)

rh

4
V

+(1 − p)êl − (1 − p)ēl > 0

(1 − p)
h

l
êl − (1 − p)

h

l
ēl

+(1 − p)êl − (1 − p)ēl > 0

êl > ēl ,

Now, the low-type knows she is up against a high-type with probability p in both êl

and ēl , but in the former the high-type’s belief of being up against another high-type
is 0 while in the latter it is p. Therefore, êl > ēl follows from the first statement of the
Lemma 5.

Step 4. π {C,C,C} > π {C,C,D}.
Now both disclosure policies include some concealment, and hence there are two

efforts under C for each type according to the disclosure policy. In this step we denote
by êh and êl the efforts under C and policy {C, C,D}, that is when it is commonly
known that the high-type does not know her rival’s type and the low-type knows her
rival’s type (ph = p and pl = 0 ), and by ēh and ēl the efforts under C and policy
{C, C, C}, that is when it is commonly known that no type knows her rival’s type
(ph = p and pl = 1 − p ). The claim is equivalent to

p2(2êh − 2ēh) + 2p(1 − p)(êh + êl − ēh − ēl) + (1 − p)2(2ell − 2ēl) < 0

(1 − p)2
rl

4
V + pêh − pēh + p(1 − p)êl − (1 − p)ēl < 0,

where we used (3). Now, use (22) for policy {C, C,D} to eliminate êl , and (6) for
policy {C, C, C} to eliminate ēl , and obtain

(1 − p)2
rl

4
V + pêh − pēh + p

l

h
êh − p2

rl

4
V − p

l

h
ēh − (1 − 2p)

rl

4
V < 0

pêh − pēh + p
l

h
êh − p

l

h
ēh < 0

ēh > êh .(33)

Now, the high-type knows she is up against another high-type with probability p in
both in both ēh and êh , but in the former the low-type’s belief of being up against
another low-type is 0 while in the latter it is 1 − p. Therefore, (33) follows from the
second statement of the Lemma 5.

Corner equilibria Finally, we are left to show that considering corner equilibria
does not affect the main results. In any corner equilibria, it cannot be that eh = 0,
as it would contradict eh > el (see (25) in the proof of Lemma 5). When el = 0,
the ranking of policies of Proposition 3, and therefore Theorem 2, are not affected. It
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could be proved that el = 0 can be sustained in equilibrium only if r = 1, the belief
of the high-type of being up against another high-type is greater than 4l/h, and only
when P = {C, C,D} , so that the low-type infers to be up against a high-type and the
high-type believes she is up against a high-type with probability p. The reason why
corner equilibria do not affect the results can be immediately noticed in the only two
steps where disclosure policy {C, C,D} plays a role; the proof of Step 1 in the proof
of Theorem 2, which carries over to the case of el = 0, and the proof of Step 4 in the
proof of Theorem 2, which carries over to the case of êl = 0.

Appendix B: Extensions

In this Appendix, we test the robustness of Theorem 1 along four dimensions.
(B.1) Ex-post disclosure. We assumed the principal has ex-ante commitment power.

If the principal lacks such commitment power, then she might have an incentive to
renege on her ex-ante announced disclosure policy once she observes types. Hence,
the disclosure policy is effectively chosen ex-post. In what follows, we claim that con-
cealment under {h, h} or {l, l} is never profitable for the principal, hence concealment
in the only remaining contingency {h, l} makes contestants perfectly infer types, and
thus contestants always exert their equilibrium efforts under full disclosure.

First, when the principal observes {h, h}, she is strictly better-off fully disclosing
types regardless of what she announced before observing types and regardless of the
contestants’ beliefs if she had instead concealed types; in fact, the maximum effort
for a high-type is exerted when she is certain she is up against another high-type
under disclosure. Formally, ehh is the highest effort a high-type ever exerts (see the
expression of ehh in (3) and (29) in the proof of Lemma 5). Thus, the principal is strict
better-off disclosing upon observing {h, h} unless p = 1, in which case any disclosure
policy reaches the maximum ehh .

Analogously, when the principal observes {l, l}, she is also strictly better-off fully
disclosing types; in fact, the maximum effort for a low-type is exerted when she is
certain she is up against another low-type under disclosure (see the expression of ell

in (3) and (29) in the proof of Lemma 5). This is true unless p = 0, in which case any
disclosure policy reaches the maximum ell .

Therefore, ruling out the trivial p ∈ {0, 1} cases, the principal might be weakly
better-off concealing types only when types are {h, l}. However, the ex-post conceal-
ment conveys itself information to contestants, because they know that the principal
was aware of the realization of types when she chose to conceal. Since {h, l} is the
only contingencywhere the principalmight conceal, contestants infer that concealment
implies that types are {h, l}. Therefore, under ex-post disclosure contestants’ types are
always common-knowledge, and thus contestants exert D -equilibrium efforts.

Finally, since with ex-ante commitment power the principal can always achieve the
D-equilibrium efforts, if the principal could choose to commit ex-ante to a disclosure
policy, or wait to first observe types and then choose a disclosure policy, she never has
an incentive to wait and observe types.

(B.2) Principal’s objective function.We assumed the principalmaximizes aggregate
effort. There are plausible alternatives. First, if one has in mind harmful conflicts or
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wasteful lobbying, the principal minimizes aggregate effort; the ranking of policies we
retrieved would then be simply inverted. Second, if one has in mind contests for hiring
new employees or the economics job market, the principal aims for selection of the
most skilled contestant as thewinner;when the principalmaximizes the probability of a
high-type winner, the optimal disclosure policy isD if p ∈ (0, 0.5), C if p ∈ (0.5, 1),
and indifference if p ∈ {0, 0.5, 1}.20 Third, in an architectural or research contest
the principal will eventually only implement the winning project; when the principal
maximizes the expected winning effort (EWE), she favours heterogeneity of efforts
more than when maximizing aggregate effort (see Serena (2017) for the intuition),
and situations of heterogeneity of efforts arise only in uneven contests—{h, l} or
{l, h}. Since in uneven contests the principal is better-off having committed to conceal
types, EWE-maximization increases the incentive to conceal types as opposed to the
standard aggregate effort maximization. In fact, the optimal disclosure policy becomes
to commit to full concealment (disclosure) if p ∈ [0, p̄] ∪ {1} (p ∈ [ p̄, 1]), where
∃! p̄ ∈ ( 12 , 1].

(B.3) Continuum of types. We assumed a binary type space and found a tight link
between the relative likelihood of high- and low-types and the optimal disclosure
policy (see Theorem 1). A natural question is whether this link carries over with a
continuum of types. Due to the well-known lack of tractability of private information
contests with a continuum of types, we rely on two specific results from the literature.
First, Ewerhart (2010) finds that under a particular continuous distribution of types,
the Tullock contest with r = 1 does admit a closed-form solution for equilibrium
efforts. His results can be used to show that the link between the relative likelihood
of types and optimal disclosure policy that we found goes in the same direction of his
special case of continuum type space. In particular, in Ewerhart’s distribution lower
types more likely than higher types, and in fact numerical simulations, available upon
request, on Ewerhart’s distribution show that the aggregate effort is greater under
concealment than under disclosure, thus going in the same direction of the finding of
our Theorem 1. Second,Wasser (2013), in his Table 1, provides numerical simulations
of aggregate effort under complete and private information when the prior follows a
Beta distribution. Wasser’s numerical simulations show that if the skewness of the
Beta distribution is high (low), such that the relative likelihood of higher types over
that of lower types is high (low), then the aggregate effort under complete information
is greater (smaller) than under private information, thus going in the same direction
of the finding of our Theorem 1.

(B.4) General contest success function. We assumed pi (ei , e j ) = er
i /

(
er

i + er
j

)
with r ≤ 1. A generalization to pi (ei , e j ) = f (ei )/

(
f (ei ) + f (e j )

)
, under some

carefully chosen properties of the f (.) function is difficult to achieve. The reason
is as follows. Indifference between disclosure and concealment is achieved when
concealment-eh and disclosure-eh coincide (see Fig. 1), and the same condition holds

20 An easy way to see this is as follows. The principal’s disclosure policy affects the probability of
a high-type winner only when the contest is uneven, which occurs with probability 2p(1 − p). Thus,
besides the usual indifference when p ∈ {0, 1}, full concealment dominates full disclosure if and only
if eh

eh+el
≥ ehl

ehl+elh
= h

h+l , or equivalently
eh
el

≥ h
l . A straightforward consequence of (6) is that

eh
el

� h
l ⇐⇒ p � 1

2 , and thus the result follows.
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for a low-type (see Fig. 2). Where and how many times do concealment-eh and
disclosure-eh cross? Thanks to assumption that f (ei ) = er

i with r ≤ 1,
(A) concealment-eh is concave in p, and thus there is a unique p ∈ (0, 1) for which

it equals disclosure-eh , which is a straight line.
(B) concealment-el is convex in p, and thus there is a unique p ∈ (0, 1) for which

it equals disclosure-el , which is a straight line.
(C) these two unique values of p both occur in p = 0.5.21

More general standard regularity conditions on the function f (.), such as

(Reg): f (0) = 0, f ′ (.) > 0 and f ′′ (.) ≤ 0,

guarantee none of (A)–(B)–(C), and thus it undermines the fact that πD−C = 0 in
a unique point (i.e., in p = 0.5). Can we find an assumption milder than f (ei ) = er

i
and stronger than ( Reg) which would still make πD−C = 0 for a unique p—perhaps
different than 0.5? Guaranteeing (A)–(B) could be easily done with a mild condition
on f ′′′. 22 Nevertheless, without (C), uniqueness of p for which πD−C = 0 is not
granted, andπD−C might cross the horizontal axis several times. In fact, if say p = 0.3
satisfies concealment−eh = disclosure−eh and p = 0.7 satisfies concealment−el =
disclosure−el , then there could be multiple p ∈ [0.3, 0.7] such that πD−C changes
sign.
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