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Abstract
The development and application of models, which take the evolution of network 
dynamics into account, are receiving increasing attention. We contribute to this field 
and focus on a profile likelihood approach to model time-stamped event data for a 
large-scale dynamic network. We investigate the collaboration of inventors using EU 
patent data. As event we consider the submission of a joint patent and we explore 
the driving forces for collaboration between inventors. We propose a flexible sem-
iparametric model, which includes external and internal covariates, where the latter 
are built from the network history.

Keywords  Profile likelihood · Network data · Event data · Patent data · Penalized 
spline smoothing · Social network analysis

1  Introduction

The analysis of network data has seen increasing interest in the recent years. Many 
network data thereby contain a dynamic structure, be it the development of network 
ties over time or observations of the network at different time points. Such data 
structures have led to numerous extensions of classical network models. A first paper 
in this direction is Robins and Pattison (2001) who propose temporal dependence 
in an exponential random graph model (ERGM). The idea was generalized in Han-
neke et  al. (2010) towards temporal exponential random graph models (tERGM). 
The principle idea behind the models is to include the network history as covariates 
in the model. This in turn forms a Markov chain of networks. The model class has 
been extended and generalized in various ways. Leifeld et  al. (2018) focus on the 
implementation and added bootstrap methods for evaluating uncertainty. Krivitsky 
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and Handcock (2014) decomposed the network dynamics into the formation of new 
edges and the dissolution of existing edges leading to the separable temporal Expo-
nential Random Graph Model (stERGM).

A different strand of dynamic network models arises if time is considered as 
continuous. Holland and Leinhardt (1977) develop a dynamic model for social net-
works based on a time-continuous Markov process. Snijders (2005) and Snijders 
et  al. (2010) extend this towards so-called stochastic actor-oriented models. The 
latter model is based on the assumption that the evolution of the network occurs 
as the consequence of small changes induced by the actors. It is further assumed 
that the observed network is derived from a Markov process evolving in continuous 
time, though the network is observed only at discrete time points. Greenan (2015) 
combines the approach with hazard function estimation and Cox regression models 
for duration time models (Cox 1972). A closely related model has been proposed 
by Butts (2008) for time-stamped relational data, defined as relational event model 
(REM), which has been used in multiple applications, see, for example, Vu et  al. 
(2015, 2017). We also refer to Stadtfeld and Block (2017) for extensions of this 
model class. For time-stamped relational data, estimation can be carried out using 
a partial likelihood approach. Perry and Wolfe (2013) estimate a Cox multiplica-
tive intensity model for a directed e-mail network. Vu et al. (2011) propose a con-
tinuous-time regression model for time-stamped network data. Estimation routines 
use an efficient partial likelihood approach focusing on large networks. This is also 
pursued in this paper. Instead of partial likelihood approaches, one can also make 
use of complete likelihood estimation, see, for example, Stadtfeld and Geyer-Schulz 
(2011) or Butts and Marcum (2017). A general discussion and comparison of dif-
ferent approaches in dynamic network modelling are found, e.g. Block et al. (2018) 
or Fritz et  al. (2020). Our approach is in line with the Relational Event Models, 
but we extend the model class by including nonlinear time dynamics. In this paper, 
we propose a profile likelihood approach for modelling time-stamped event data for 
large-scale network data. The data describe the collaboration of inventors based on 
joint patents. The successful submission of a new patent is thereby considered as the 
relational event, and the number of joint patents of two inventors provides network-
based count data.

In the cited papers above, all covariate effects are included linearly in the model. 
We propose a semiparametric approach for modelling the covariates in a more flex-
ible way. We follow the idea of penalized spline smoothing as proposed in Ruppert 
et al. (2003) (see also Eilers and Marx 1996; Ruppert et al. 2009). The basic idea 
is to replace linear functions by spline-based functions and to achieve smoothness, 
penalized spline smoothing can be considered as the state-of-the-art smoothing tech-
nique. We refer to Wood (2017) for a general discussion in the framework of (gener-
alized) regression models.

The paper is organized as follows. In Sect. 2, we introduce the patent data with 
some basic ideas and descriptive statistics. In Sect. 3, we give an introduction to the 
notation and motivate the construction of the covariates from the network history. 
We take a closer look on inference and derive how the model can be fitted based on 
a profile likelihood approach. This is extended to penalized spline smoothing. We 
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give a brief outlook on computational issues, before we apply the proposed model in 
Sect. 4 to the example data. Finally, we summarize the most important issues.

2 � Patent data

We will first introduce the patent data in detail before describing the model in the 
next section. We consider all patent applications submitted to the European Pat-
ent Office (EPO) and the German Patent and Trademark Office (Deutsches Pat-
ent- und Markenamt, DPMA), which listed at least one inventor with an address 
on German territory between 2000 and 2013. While this provides a comprehen-
sive database of all inventions filed in patent applications by German inventors, 
we will exemplify the subsequent analysis at two selected industrial areas, namely 
“IT-methods” as well as “food chemistry”. Both areas have numerous patents so 
that data are sufficiently informative. Regarding the quality of the data, we need 
to emphasize that it is in principle possible that some inventors may have submit-
ted applications directly to patent offices of other countries so that these are not 
in our database. In practice, however, such cases are extremely rare, since the 
invention would not enjoy patent protection in the inventors home country. The 
data were extracted from the PATSTAT database of the European Patent Office 
(version October 2018). For each patent, we have information about the submis-
sion day (= time stamp) and for the majority of submission the inventors geo-
graphic coordinates of their registered home address at the time of submission is 
also given in the data. Apparently, the registered address might not be the work 
address, but still we consider it as allocation proxy which will be included as 
covariate subsequently. To do so we assume that the inventor location stays the 
same until new information due to new patent submissions is given.

The data structure is apparently of bipartite type, with inventors being con-
nected through patents. In the subsequent analysis, we focus on the relational 
aspect of the data by defining a relational event if two or more inventors submit 
a joint patent. This implies that single inventor submissions do not count as rela-
tional event while multi-inventor patent submissions lead to multiple relational 
events, all at the same time-point when submitting the patent. To make this point 
more clear, note that a patent with just two inventors corresponds to a single rela-
tional event (= one joint patent), while for instance a patent with three inven-
tors leads to three pairwise relational ties (= three inventor pairs with a joint pat-
ent). The effect that multiple inventor patents will lead to multiple relational ties 
will be taken into account by an increased intensity for ties. Overall we take the 
inventors’ point of view and consider all bilateral joint patents as events. We also 
excluded four patents which had more than 20 inventors. These patents are unu-
sual and may count as outliers. By excluding them, we guarantee that our results 
are not overly influenced by a few patents with a large number of inventors, but 
instead, describe and model the overall pattern in the data.

We focus on two technological areas—IT-methods (classification number 
107) and food chemistry (classification number 118)—with different numbers 
of inventors, patents and therefore network densities. Table  1 summarizes the 
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selected inventor networks, and Fig. 1 visualizes the network, separated for dif-
ferent time intervals. Compared to food chemistry, the IT-methods technological 
area has a higher number of inventors, but a lower number of joint patents and 
single owner-ship patents. The number of patents per inventor is slightly higher 
for food chemistry, while the number of inventors per patent is about the same in 
the two fields.

As time stamp we choose the earliest filing date, which is aggregated on a 
monthly basis. To adjust for incomplete data, we select only patents from the 
full years 2000 till the end of 2013, resulting in 168 months. We are interested 
in inventors that jointly apply for patents. Therefore, we only include inventors 
with at least one joint patent. Note that there are of course single ownership pat-
ents in the data sets if the inventor also has joint patents.

Noticeable is that the number of observed inventor pairs applying for a patent 
is quite small compared to the possible number of pairs (N(N − 1)∕2) . In other 
words the networks exhibit a low density, which is not uncommon in large net-
works. We aim to restrict the analysis to active inventors. To do so, we divide 
the data into four periods, each of three years length. We will analyse each time 
interval separately and include as inventors only those who are active within the 
considered period. We visualize our approach in Fig. 2. We include only active 
inventors in the option set. An active inventor is thereby defined as a person with 
at least one patent within the observed time period of three years (e.g. inventor 
4 or 7 in Fig. 2), or at least one patent within and one beyond the time period 
(e.g. inventor 6 or 8 in Fig.  2), or at least one patent before and one after the 
time period (e.g. inventor 5 in Fig. 2). The first two years of data from 2000 to 
the end of 2001 are used as “burn-in” period. We also point out, that the covari-
ates are based on a five years retrospective interval, meaning that the inventors’ 
history beyond the five years is ignored in the calculation of the covariates. The 
selection of covariates used in our analysis is postponed to Sect. 4.1.

Table 1   Summary statistics of two technological areas for the time period of 14 years

The statistics are summarized and averaged over time

IT-methods Food chemistry

Number of ...
   Inventors 3480 2993
   Patents 1701 2078
   Single owner-ship patents 192 427
   Realized unique inventor pairs 5525 5412
   Patents per inventor Min 1 1

Mean 1.35 1.86
Max 16 36

   Inventors per patent Min 1 1
Mean 2.76 2.68
Max 19 17
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3 � Poisson process network model for count data

3.1 � Model description

We motivate the model by directly referring to our data example. Let Zr be a patent 
indexed with a running number r = 1,… ,R . Each patent from one of the two con-
sidered technological areas can be defined through the following attributes:

–	 tr = time point at which patent r was successfully submitted
–	 Ir = index list of inventors on patent r

(a) IT-methods:

Time period 2 (years 2005 - 2007)

(b) IT-methods:

Time period 4 (years 2011 - 2013)

(c) food chemistry:

Time period 2 (years 2005 - 2007)

(d) food chemistry:

Time period 4 (years 2011 - 2013)

Fig. 1   Visualization of two time periods of the inventor network for IT-methods (107) and food chemistry 
(118). Vertex size represents nodal degree. Colouring is transparent to better examine the clusters. The 
layout uses maximal connected components and applies the layout separately
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–	 zr = additional covariates like geocoordinates of registered addresses of all 
inventors

For a set of actors (inventors) A = {1,… ,N} , we define with Y(t) ∈ ℝ
N×N the matrix 

valued Poisson process counting the number of (joint) patents. To be specific, let

for i, j = 1,… ,N , where Yii(t) defines the number of patents of inventor i including 
single ownership patents. For each of the considered time intervals, we set t = 0 to 
mark the beginning of the three years period. For the network history, we go back 
two years, that is we look at the process for t ∈ [−2, 3] measured in years, while the 
model is fitted to data for t ∈ [0, 3] . We define with Yij,d = Yij(t(d)) the evolving pro-
cess, where 0 ≤ t(1), t(2),… , t(m) ≤ 3 years is the discretized version of time at which 
patents have been submitted. We model the intensity of the above process as

where �0(t) is the baseline intensity and xij(t) is the covariate process, which will 
be defined in the following section. We assume for simplicity that both the baseline 
hazard and the covariate process are piecewise constant between the observed time 
points, that is

Yij(t) = cumulated number of joint patents of inventor i and j

= #{r ∶ (i, j) ∈ Ir, tr ≤ t, r = 1,… ,R}

(1)�0(t) exp
(
xij(t)�

)

2005 2008 2011 20142000

observed time slot
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x
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Fig. 2   Definition of active inventors. The time period from 2000 till the end of 2013 is divided in four 
periods (2002–2004, 2005–2007, 2008–2010 and 2011–2013) of three years each. The data are aggre-
gated on a monthly grid. The years 2000 and 2001 are used as a burn-in time
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To write down the likelihood, we need to define two index sets. First, the events are 
defined through the index set Cd which is the set of all index pairs (inventor pairs) 
which are contributors on a joint patent at time point t(d) . Formally, we define this as

Secondly, we need to define the set of all inventors who are in principle able to work 
together. In our application, this restriction occurs from being in the same techno-
logical area and being an active inventor in the same time interval as defined above, 
see Fig. 2. We call this set option set and denote it as Od . These definitions lead to 
the log-likelihood function

Maximizing the above likelihood with respect to �1,… , �m yields

and inserting this in (2) provides the profile log-likelihood

omitting all constant terms. Looking at (3), we want to point out that the baseline 
intensity takes into account that patents with multiple inventors lead to multiple 
relational events. As discussed above, a joint patent with two inventors gives one 
relational event, while a joint patent with three inventors already gives 3 relational 
events. Apparently, this is mirrored in the size |Cd| , meaning that the numerator in 
the baseline estimate in (3) adjusts for the multiplicity of relational events resulting 
from patents with more than two collaborating inventors.

In principle and based on the Poisson process, we observe at each time point a 
single patent submission only, possibly with multiple authors. In our data, however, 
the time points are discretized so that at each discrete valued time point t(d) we may 
observe more than just one submitted patent. Technically this is not a problem and 
does not require modifications, since in the case of multiple patent submissions the 
definition of the index set Cd remains unchanged, but the index pairs in Cd now refer 
to more than one patent submission. Again, the baseline estimate (3) is increased, 
this time due to multiple patents submitted at the same (discrete) timepoint.

The above profile likelihood can also be motivated through a partial likelihood 
approach, as shown subsequently. Let Yd = (Yij,d) be the process network matrix. We 

�0(t) = �d for t ∈ (t(d−1), t(d)]

xij(t) = xij,d for t ∈ (t(d−1), t(d)].

Cd = {(i, j) ∶ j > i;Yij,d > Yij,d−1}.

(2)

l(�1,… , �m, �)

=

m∑
d=1

[ ∑
(i,j)∈Cd

(
log �d + xij,d�

)
− �d ⋅

( ∑
(i�,j�)∈Od

exp
(
xi�j�,d�

))]

(3)𝜆̂d =
�Cd�∑

(i�,j�)∈Od
exp

�
xi�j�,d𝛽

� ,

(4)l(�) =

m∑
d=1

[ ∑
(i,j)∈Cd

xij,d� − |Cd| log
( ∑

(i�,j�)∈Od

exp(xi�j�,d�)

)]
,
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now assume that the probability for a single change Yij,d = yij,d−1 + 1 is proportional 
to

where 1ij refers to an increment of 1 in entry Yij,d and xij,d is a vector of covariates 
calculated from the previous process matrix Yd−1 . If |Cd| = 1 , i.e. only a single pat-
ent with just two inventors was submitted by inventors i and j at time point t(d) , we 
obtain

If |Cd| > 1 we approximate (5) with

Taking the logarithm, we end up with the profile log likelihood given in (4). We can 
now easily derive the log-likelihood from Eq. (4) and obtain the score function

Defining

allows to write the second-order derivative

In the survival model context, formula (6) is also known as Breslow approximation 
(see Breslow 1974).

3.2 � Semiparametric estimation

We now extend the model towards penalized smoothing techniques to obtain more 
flexibility. We therefore replace the linear predictor �ij,d = xij,d� in (4) through the 
additive nonparametric setting

P(Yd = Yd−1 + 1ij) ∝ exp(xij,d�)

(5)P(Yd�Yd−1) =
exp(xij,d�)∑

(i�,j�)∈Od
exp(xi�j�,d�)

.

(6)P(Yd�Yd−1) =

∏
(i,j)∈Cd

exp(xij,d�)

�∑
(i�,j�)∈Od

exp(xi�j�,d�)
��Cd� .

s(�) =

m�
d=1

� �
(i,j)∈Cd

xT
ij,d

− �Cd�
∑

(i�,j�)∈Od
xT
i�j�,d

exp(xi�j�,d�)∑
(i�,j�)∈Od

exp(xi�j�,d�)

�
.

�i�j�,d =
exp(xi�j�,d�)∑

(k�,l�)∈Od
exp(xk�l�,d�)

J(�) = −

m�
d=1

�Cd�
� �
(i�,j�)∈Od

xT
i�j�,d

xi�j�,d�i�j�,d −

� �
(i�,j�)∈Od

xT
i�j�,d

�i�j�,d

�T� �
(i�,j�)∈Od

xT
i�j�,d

�i�j�,d

�⎤⎥⎥⎦
.
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Here, m(q)(⋅) are smooth but otherwise unspecified functions. To achieve identifi-
ability of the model, we postulate m(q)(0) = 0 for q > 0 , which needs to be taken into 
account in the estimation. To estimate the unknown functions, we employ B-splines 
and replace m(q) by

where B(q),k is a K-dimensional B-spline basis spanning the observed range of covar-
iate x(q) . (see de Boor 1978; Wood 2017).

For simplicity of notation, we now replace the index pair (i,  j) by a single 
index l running from 1 to n =

N⋅(N−1)

2
 . Consequently, we can rewrite

which in matrix form leads to

where B(q),d is the B-spline basis for the q-th covariate built from rows B(q)(x(q),l,d) 
for l = 1,… , n . Setting Bd = (B(1),d,B(2),d,…) and uT = (uT

(1)
, uT

(2)
,…) provides the 

final notation.
With this notation, we can reformulate the profile likelihood in (4) as:

where �Cd
 is a vector defined as

�[n×1] is a vector of ones of length n.
Following Eilers and Marx (1996), we use high-dimensional bases but regu-

larize the estimation by introducing a roughness penalty (see also Ruppert et al. 
2003, 2009). This leads to the penalized smooth log-likelihood

where K(�) is a second-order penalty matrix. The smoothing parameter vector � 
penalizes large differences in adjacent basis coefficients and can be estimated from 
the data. Details are provided in the Appendix B.

�ij,d =m(1)(x(1),ij,d) + m(2)(x(2),ij,d) +… .

m(q) =
∑
k

B(q),ku(q),

�l,d =m(1)(x(1),l,d) + m(2)(x(2),l,d) +… ,

�d =B(1),du(1) + B(2),du(2) + … = Bdu

(7)
m∑
d=1

[
(Bdu)

T
⋅ �Cd

− |Cd| ⋅ log
[
exp(Bdu)

T
⋅ �[n×1]

]]
,

�Cd
=

{
1, if l = (i, j) ∈ Cd

0, otherwise,

(8)lpen(u, �) = l(u) −
1

2
⋅ u

T
K(�)u,
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3.3 � Computational issues

In principle, computation is straightforward, because we can derive the cor-
responding likelihood function and its derivatives. One should bear in mind, 
though, we have a huge option set of pairs of inventors for each time point. A 
data set with N inventors results in N(N − 1)∕2 times T time points and therefore 
in about 18 million data points for, for example, N = 1000 inventors and T = 36 
months. This implies that estimation is numerically demanding, though feasible. 
In fact, on standard machine, the data example discussed in the next section took 
about 250 s to fit a linear model and about 14500 s ≈ 4 h) for the semiparametric 
approach.

For estimating the parameters, we need to maximize the penalized smooth log-
likelihood (8) with its likelihood component defined in (4). To do so, we can make 
use of the flexible toolbox available in the package mgcv (see Wood 2011, for fur-
ther information) in the software R (R Core Team 2017). This becomes possible by 
considering the data and the likelihood as “survival” data and applying proportional 
hazard models combined with a penalized Cox Model, which in turn results through 
a Poisson likelihood (see Whitehead 1980). Estimation can therefore be carried 
out with standard routines after applying some data reorganization (see Tutz et al. 
2016). At each event time t(d) , an artificial response variable yij,d for every inventor 
pair from the option set is included with yij,d = 1 if a patent was submitted at time t(d) 
or yij,d = 0 if not.

4 � Data analysis

4.1 � Covariates

We apply the proposed model to analyse the patent data described in Sect. 2. To do 
so, we first discuss the covariate vector xij,d , which is built from the network his-
tory itself as well as additional covariates. We define network specific covariates as 
endogenous, while the additional covariates are exogenous.

We start with network related covariates, which are described below and visual-
ized in Fig. 3. Simple descriptive analyses are listed in Table 2. First, we take the 
total number of patents of inventor i and j at time point t(d−1). That is

We refer to this quantity as “patents_ij”. Moreover, the number of previous “joint_
patents” of inventor i and j is included as covariate, which is calculated through

Furthermore, a so-called 2-star statistic (“2-star”) is included, which expresses the 
number of inventors that hold a joint patent with inventor i or j. This is obtained 
through

x(1),ij,d = Yii,d−1 + Yjj,d−1.

x(2),ij,d = Yij,d−1.
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A common choice in network analysis is also “triangle” statistics. This counts the 
number of inventors that jointly hold a patent with i and j:

x(3),ij,d =
∑
k ≠ i

k ≠ j

�{Yik,d−1>0}
+

∑
k ≠ j

k ≠ i

�{Yjk,d−1>0}
.

Table 2   Summary statistics for 
the two technological areas

Area IT-methods Food chemistry

No. of inventors 767–900 753–949
No. of edges 993–1373 1188–1711
Density 0.0033–0.004 0.0035–0.0042
“patents_ij” Min 0–0 0–0

Mean 1.38–1.77 2.11–2.64
Max 16–26 27–45

“joint_patent” Min 0–0 0–0
Mean 0–0 0–0
Max 3–7 7–13

“2-star” Min 0–0 0–0
Mean 3.06–3.85 4.11–4.93
Max 32–48 46–61

“triangle” Min 0–0 0–0
Mean 0.01–0.01 0.01–0.01
Max 12–17 14–20

“distance” Min 0 0
Mean 237–272 287–301
Max 777–803 822–1485

Toy network graph at time t(d−1)

patents_ij

i

j

joint_patent

k

m

star2 triangle

i

j

i

j

i

j

k

m

Fig. 3   Visualization of covariates from network history of a toy network graph: number of patents of 
inventor i and j with x(1),ij,d = 6 + 8 (black edges), including self-loops (single ownership patents) and 
multiple patents (first panel). Number of joint patents of inventor i and j with x(2),ij,d = 2 (black edges), 
counting the number of edges of i and j (second panel). Number of inventors that hold a joint patent with 
inventor i or j with x(3),ij,d = 3 + 5 (black nodes in third panel). Number of inventors that jointly hold 
a patent with i and j with x(4),ij,d = 2 (black nodes), counting k twice because of a multi-patent (fourth 
panel)



108	 V. Bauer et al.

1 3

Note that the number of patents ( x(1) ) as well as the number of joint patent holders 
( x(2) ) expresses the centrality of the inventors with respect to number of patents and 
number of collaborative patents, respectively. A summary of the distribution of the 
network-related covariates is given in Table 2. We emphasize that covariates x(1) and 
x(2) are correlated by construction, which also applies to x(3) and x(4) . This should be 
taken into account when interpreting their effects.

As exogenous covariates we include the inventor-pair-specific distance in kilome-
tres, that is

where si,d are the geocoordinates of the address of inventor i and sj,d accordingly and 
|| ⋅ || denotes the Euclidean distance. We assume that the inventors do not move until 
new location information on the basis of submitting a new patent becomes avail-
able. To avoid leverage effects, we truncate distances over 1000 kilometres to 1000 
kilometres.

4.2 � Results

We start with a slightly simpler model than proposed and replace the smooth func-
tions by simple linear functions. This easily allows to compare the effects for the 
two technology areas for the different time periods. All models include the above 
mentioned structural covariates “patents_ij”, “joint_patent”, “2-star”, and “tri-
angle”, and the exogenous covariate “distance [100 km]”. Figure  4 compares the 
estimates for the four considered time periods. The different technology areas show 
more or less the same behaviour. The biggest difference can be seen for the variable 
joint_patent. The more joint patents two inventors have, the more likely they collab-
orate in the future. The estimates for 2-star and triangle are quite small. The distance 
in 100 kilometres has a negative effect on the patents meaning that inventors with 
regional proximity are collaborating more likely.

Next we explore the linearity and extend the model using smooth effects. If 
linearity holds, this will be visible in the semiparametric fit, where the fitted 
smooth function gets a linear line, or, accordingly, if the confidence bands do 
not include a linear shape. We therefore fit the same model but now using the 
semiparametric estimation with splines as proposed. In Fig. 5 we show exemplary 
for the second time period the fit of the model for the two technological areas. 
Estimates for the remaining time intervals can be found in the Appendix. From 
Fig. 5 we see that some functional shapes of the curves shown are more or less 
linear. This demonstrates that the linear model from above seems suitable for this 
effect. Some other effects uncover a nonlinear shape, which is what we emphasize 
and interpret now. The sum of patents of inventor i and j has a negative effect, 
which is clearly nonlinear. In fact, we can see some saturation, meaning that for 

x(4),ij,d =
∑
k ≠ i

k ≠ j

�{Yik,d−1>0}
⋅ �{Yjk,d−1>0}

.

x(5),ij,d = ||si,d − si,d||
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IT (left panel) the negative effect gets stronger until about 3 patents and then stays 
stable. In contrast, the number of joint patents has a positive and strong effect, 
which in fact is clearly linearly. This means that if the inventors have already sub-
mitted several own patents (with other inventors or even single inventor patents), 
their affinity of being involved in new patents decreases nonlinearly. On the other 
hand, if the inventor pair has already joint patents in the past, they are more likely 
to work together in future. The effect of joint patents is linear for the IT industry, 
while for food and chemistry (right panel) there is a nonlinear effect. Note that 
the linear effect, as shown in Fig.  4, primarily expresses the slope of the func-
tional effect for small number of joint patents, but the linear effect is not able to 
express the effect for larger number of joint patents.

The effect of the structural statistics like the number of inventors that hold a joint 
patent with inventor i or j (2 star), respectively, does not show a significant tendency. 
The effect of the number of inventors that jointly hold a patent with i and j(triangle) 
has a small positive bounded influence, even though not that strong than the number 
of joint patents. Again, we see nonlinearity, in particular for triangle). Moreover, 
the geographical distance of two inventors plays an important rule. There is a larger 
positive effect for small distances, which decreases nonlinearly with increasing dis-
tance. For distances larger than 250 kilometres, the effect is almost zero or negative. 
This means that if there is a certain distance between the inventors, it does not mat-
ter how many kilometres exactly. All in all, Fig. 5 uncovers nonlinear effects, so that 
the semiparametric approach appears to be justified.

Figure  6 visualizes the positive effects of “joint_patent” for the four time 
periods exemplary for the food chemistry area. Each time period lasts 36 
months. The tendency of the effects is about the same for all periods; there 
is a steep increase at the beginning, which then becomes bounded. In period 
three and four, the effect decreases and increases, respectively, at the end of the 

patents_ij joint_patent 2−star triangle distance
 [100 km]

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

−2

0

2

time period

es
tim

at
e technological area

IT−methods

food chemistry

Fig. 4   Estimates for different covariates, technological areas and time periods. For each of the four areas 
and four covariates, we have four estimates for the time periods with the corresponding errorbars (stand-
ard error × 2)
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observation period. This should not be interpreted too strictly as the frequency 
of more than 10 joint patents is quite low. We can see similar behaviours for the 
other areas (see Appendix).

Finally, we compare the linear and the semiparametric model by looking at 
the AIC value (Wager et al. 2007). The results are given in Table 3, where the 
minimum AIC value for each model comparison is set to zero. We see that for 
each time interval and for both industries, the semiparametric model is preferred. 
This indicates the necessity to include nonlinear components in the model.
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Fig. 5   Estimated smooth effects for IT-methods (left panels) and food chemistry (right panels) area and 
second time period
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5 � Conclusion

In this paper we propose a flexible approach to model large-scale dynamic network 
data with structural and exogenous covariates. Our approach is based on a profile 
likelihood method exploiting well-established estimation routines. We apply this 
idea to a large data set of patents submitted jointly by inventors from Germany 
between 2000 and 2013. We show advantages of including covariates in a semipara-
metric and therefore flexible way. The results show the driving forces in collabora-
tion of inventors and demonstrate their behaviour over time. The models can be fit-
ted with standard software employing the link to the Cox model and therefore invite 
to be used in other data constellations as well.
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Fig. 6   Estimated smooth effects for “joint_patent” of food chemistry (118) area and different time peri-
ods

Table 3   AIC values for different 
models

Minimum AIC value is set to zero

Period Model IT-methods Food chemistry

1 Linear 1319 2484
Semiparametric 0 0

2 Linear 1135 2490
Semiparametric 0 0

3 Linear 1072 2302
Semiparametric 0 0

4 Linear 1094 1586
Semiparametric 0 0
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Appendix A: Further results

See Figs. 7, 8 and 9
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Fig. 8   Estimated smooth effects for IT-methods (left panels) and food chemistry (right panels) area and 
third time period
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Appendix B: Technical details

The second-order difference penalty matrix can be defined as
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Fig. 9   Estimated smooth effects for IT-methods (left panels) and food chemistry (right panels) area and 
fourth time period



115

1 3

A smooth dynamic network model for patent collaboration data﻿	

with dimension [P ⋅ K × P ⋅ K] and [K × K] , respectively. P is the number of covari-
ates. The second-order penalty matrix K can be derived from K(p) = D

T
2
D2 where 

D2 = D1D2−1 is a recursively obtained difference matrix with

with dimension [(K − 1) × K] . The corresponding derivatives to apply the New-
ton–Raphson algorithm are straightforward:
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