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Abstract
We establish the NP-completeness of the variant of the bilevel assignment problem,
where the leader and the follower both have bottleneck objective functions and were
the follower behaves according to the optimistic rule. This result settles a problem that
has been left open by Klinz & Gassner [4OR 7:379–394, 2009].

Keywords Bilevel programming · Combinatorial optimization · Computational
complexity

Mathematics Subject Classification 68Q17 Computational difficulty of problems
(lower bounds, completeness, difficulty of approximation, etc.)

1 Introduction

A bilevel optimization problem consists of two interleaved optimization problems that
are controlled by two non-cooperating decision makers called leader and follower.
Both decision makers have a private objective function, a private set of decision vari-
ables, and a private set of constraints on their variables. Furthermore there are coupling
constraints that connect the decision variables of leader and follower to each other.
Both decision makers want to optimize their private objective function. The decision
making process is as follows. First the leader makes his decision and fixes the values
of his variables, and then the follower reacts by setting his variables. The leader has
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perfect knowledge of the follower’s scenario (objective function, variables, and con-
straints) and also of the follower’s behavior. The follower observes the leader’s actions,
and then optimizes his private objective function subject to the decisions made by the
leader (and subject to all the imposed constraints). As the leader’s objective function
does depend on the follower’s decision, the leader must carefully take the follower’s
reaction into account.

The concept of bilevel optimization goes back to the economic duopoly model of
von Stackelberg ( von Stackelberg 1934) from the 1930s. Over the last two decades,
bilevel optimization has received enormous interest in the optimization community.
We refer the reader to the book by Dempe (2002), to the survey by Brotcorne et al.
(2008), and to the annotated bibliographies of Dempe (2003) and Colson et al. (2005)
for more information on this area. In a recent paper Gassner and Klinz (2009) consider
eight variants of the bilevel assignment problem that arise from the following three
binary choices:

• the objective function of the leader is either of sum type or of bottleneck type;
• the objective function of the follower is either of sum type or of bottleneck type;
• the follower either acts according to the optimistic rule or to the pessimistic rule.

The optimistic and the pessimistic rule clarify the situationswhere the optimal solution
for the follower is not unique: While for the follower all optimal solutions yield the
same optimal objective value, his choice of the concrete optimal solution influences
the objective value of the leader. If the follower acts according to the optimistic rule,
he always chooses among his optimal solutions one that is best for the leader. If the
follower acts according to the pessimistic rule, he always chooses among his optimal
solutions one that is worst for the leader. Gassner and Klinz (2009) establish NP-
hardness for seven of their eight bilevel assignment variants, and leave the complexity
of the eighth variant as an open problem.

The open problem of Gassner &Klinz.An instance of the bilevel bottleneck assign-
ment problem (BiBAP) is built around a bipartite graph G = (V , E). The edge set E
is partitioned into a part E� that is controlled by the leader and a part E f that is con-
trolled by the follower. The leader has his own private weight function w� : E → R

on the edges, and also the follower has a private weight function w f : E → R on the
edges.

The optimization process is as follows. First the leader selects a subset L ⊆ E�,
and then the follower selects a subset F ⊆ E f so that L ∪ F forms a perfect match-
ing in G. The objective of the leader is to minimize his private bottleneck weight
max {w�(e) | e ∈ L ∪ F}, and similarly the objective of the follower is to minimize
his private bottleneckweightmax

{
w f (e) | e ∈ L ∪ F

}
. For simplicity of presentation

we will assume that in the case of infeasible solutions (where L ∪ F does not form a
perfect matching), the objective values of leader and follower become infinitely large.
As a consequence, the leader will always pick some set L that can be extended to a
perfect matching by adding some edges from E f , and the follower will always select
some set F whose union with L forms a perfect matching. Figure 1 summarizes the
resulting bilevel assignment problem, which we call BiBAP.Whenever the minimizer
F in (1b) is not uniquely determined, the follower acts according to the optimistic
rule and among all possible minimizers selects one that (in combination with the set
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minimize max {w (e) | e ∈ L ∪ F} (1a)

so that L ⊆ E ,
and so that F ⊆ Ef solves the follower’s problem

minimize∗ max {wf (e) | e ∈ L ∪ F} (1b)
so that L ∪ F is a perfect matching

Fig. 1 The bilevel bottleneck assignment problem BiBAP studied in this paper

L selected by the leader) yields the best objective value for the leader. In Fig. 1, this
optimistic variant of minimization is indicated by the little star in the superscript in
the follower’s problem.

In this short technical note, we settle the open problem of Gassner andKlinz (2009).
We prove that also the eighth and last variant of the bilevel assignment problem is NP-
complete. Though our proof draws some ideas from Gassner and Klinz (2009), it is
technically very different and uses a number of new ideas.

2 The hardness proof

In this section we present the NP-hardness proof for problem BiBAP. The argument
is done through a polynomial time reduction from the NP-hard BALANCED COM-
PLETE BIPARTITE SUBGRAPH problem; we refer the reader to Garey and Johnson
(1979) and to Johnson (1987) for more information on this problem.

Problem: BALANCED COMPLETE BIPARTITE SUBGRAPH (BCBS)
Instance: A bipartite graph H = (VH , EH ) with bipartition VH = W1 ∪ W2 of
the vertex set and with EH ⊆ W1 × W2; a positive integer k.
Question: Does H contain a complete bipartite subgraph with k vertices on each
side of the bipartition?

Now consider an instance of BCBS consisting of the bipartite graph H = (W1 ∪
W2, EH ) and the integer k. Without loss of generality we assume that both sides W1
and W2 have the same size, and we denote n = |W1| = |W2|; furthermore we will
assume k ≤ n. We construct the following graph G = (V , E) with 4n vertices and
3n2 − |EH | + 1 edges:

• For every vertex v ∈ W1 and for every vertex w ∈ W2, the vertex set V contains
the corresponding vertices a(v) and a′(w).

• Furthermore the vertex set V contains the 2(n − k) vertices b1, . . . , bn−k and
b′
1, . . . , b

′
n−k , and the 2k vertices c1, . . . , ck and c′

1, . . . , c
′
k .• For every v ∈ W1 and w ∈ W2, the edge set E contains the edge {a(v), a′(w)} if

and only if {v,w} /∈ EH .
• The edge set E connects every vertex a(v) to the n vertices b′

1, . . . , b
′
n−k and

c′
1, . . . , c

′
k , and it connects every vertex a′(w) to the n vertices b1, . . . , bn−k and

c1, . . . , ck .
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• Finally the edge set E contains the single edge {ck, c′
k}.

Note that the constructed graph G is indeed bipartite, as every edge connects some
unprimed vertex to some primed vertex. Next let us specify the edge weights for the
leader and for the follower.

• For the leader, the edges e = {a(v), a′(w)} all have weight w�(e) = 1, whereas
the remaining edges in E have weight 0.

• For the follower, the 2n edges e = {a(v), c′
k} and e′ = {a′(w), ck} with v ∈ W1

and w ∈ W2 carry the weight w f (e) = w f (e′) = 1. All other edges in E have
weight 0 for the follower.

Finally, we specify the edge sets E� and E f controlled by leader and follower.

• The set E� consists of the edges {a(v), b′
j } and {a′(w), b j } with v ∈ W1, w ∈ W2

and 1 ≤ j ≤ n − k.
• The set E f contains all the remaining edges: the edges {a(v), a′(w)}, the edges

{a(v), c′
i } and {a′(w), ci }, and the single edge {ck, c′

k}.
This completes the construction of the BiBAP instance. Since all edge weights w�

and w f only take the values 0 and 1, the possible objective values for leader and
follower are 0 and 1. We next state some simple observations on the behavior of the
leader and the follower. Note that the matching L ⊆ E� selected by the leader contains
at most 2(n−k) edges, since every edge in E� is incident to one of the 2(n−k) vertices
b1, . . . , bn−k and b′

1, . . . , b
′
n−k ,

Lemma 1 Let L ⊆ E� be an arbitrary matching chosen by the leader.

(i) If |L| < 2(n − k), then no reaction F ⊆ E f of the follower can yield a perfect
matching L ∪ F for the graph G. Hence in this case, the objective values of the
leader and of the follower are infinite.

(ii) If |L| = 2(n − k), then there exists a reaction F ⊆ E f of the follower that yields
a perfect matching L ∪ F in graph G. Hence in this case, the objective values of
the leader and of the follower are finite.

Proof For (i), observe that the 2(n − k) vertices b1, . . . , bn−k and b′
1, . . . , b

′
n−k are

pairwise non-adjacent and are only incident to edges controlled by the leader. If |L| <

2(n − k), then one of these 2(n − k) vertices will not be saturated by L ∪ F .
For (ii), observe that every matching L ⊆ E� with |L| = 2(n − k) saturates the

2(n − k) vertices b1, . . . , bn−k and b′
1, . . . , b

′
n−k together with n − k of the a-vertices

and n− k of the a′-vertices. The unsaturated vertices may be divided into two groups:
The first group consists of the k unsaturated a-vertices together with c′

1, . . . , c
′
k , and

the second group consists of the k unsaturated a′-vertices together with c1, . . . , ck .
As either group induces a balanced complete bipartite subgraph in G and as all edges
in these two induced subgraph belong to set E f , the follower easily extends L to a
perfect matching L ∪ F for G. �	
Lemma 2 Let L ⊆ E� with |L| = 2(n − k) be some matching chosen by the leader,
and let F ⊆ E f be the optimal reaction of the follower to L.

(i) If F does not contain any of the edges {a(v), a′(w)} with v ∈ W1 and w ∈ W2,
then the leader has objective value 0 and the follower has objective value 1.
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(ii) If F contains one of the edges {a(v), a′(w)} with v ∈ W1 and w ∈ W2, then the
leader has objective value 1 and the follower has objective value 0.

Proof The only edges with non-zero weight for the leader are the edges {a(v), a′(w)},
and all these edges are controlled by the follower. Hence the leader has objective value
0 in (i) and objective value 1 in (ii).

Let U denote the set of vertices a(v) with v ∈ W1 that are not saturated by L , and
let U ′ denote the set of vertices a′(w) with w ∈ W2 that are not saturated by L . Note
that |U | = |U ′| = k. In (i) the follower must saturate the vertices in U by matching
them to c′

1, . . . , c
′
k . As the edge to vertex c

′
k has weight 1 for the follower, his objective

value is 1. In (ii) the follower saturates one of the vertices inU and one of the vertices
in U ′ by picking an edge {a(v), a′(w)} for F . The remaining k − 1 vertices in U can
be matched to c′

1, . . . , c
′
k−1, the remaining k − 1 vertices in U ′ can be matched to

c1, . . . , ck−1, and finally the two vertices ck and c′
k can be matched to each other at

cost 0. This yields an objective value of 0 for the follower. �	
Lemma 3 In the BiBAP instance the leader can reach an objective value of 0, if and
only if the bipartite graph H = (W1 ∪ W2, EH ) in the BCBS instance possesses a
complete bipartite subgraph with k vertices on each side of the bipartition.

Proof (If) First assume that there exist subsets X1 ⊆ W1 and X2 ⊆ W2 with |X1| =
|X2| = k so that X1 ∪ X2 induces a complete bipartite subgraph in H . Then the leader
picks for his set L a perfect matching between b′

1, . . . , b
′
n−k and the vertices a(v)with

v ∈ W1 − X1 together with a perfect matching between b1, . . . , bn−k and the vertices
a′(w) with w ∈ W2 − X2. Since X1 ∪ X2 induces a complete bipartite subgraph in
graph H , the unsaturated a-vertices and a′-vertices induce an independent set in graph
G. Now Lemma 2.(i) completes the argument.

(Only if) Next assume that graph H does not contain a complete bipartite subgraph
with k vertices on each side of the bipartition. Let Y1 ⊆ W1 denote the vertices v ∈ W1
for which L does not saturate a(v), and let Y2 ⊆ W2 denote the vertices w ∈ W2 for
which L does not saturate a′(w). Then |Y1| = |Y2| = k, and by our assumption the
subgraph of H induced by Y1 ∪ Y2 can not be complete. Hence there exists at least
one edge e = {a(v), a′(w)} in G, so that the matching L does neither saturate a(v)

nor a′(w). Lemma 2 yields the small objective value 0 for the follower in case he puts
such an edge e into his set F , and a large objective value 1 for the cases where he does
not use any such edge. Hence the follower will choose such an edge e for F , and will
thereby yield an objective value of 1 for the leader.

Lemma3establishes the correctness of our reduction:Theoptimal objective valueof
the leader in the constructed BiBAP instance tells us the answer to the BCBS instance.
Since the edge weights introduced in the reduction are polynomially bounded in the
instance size, the reduction actually yields NP-hardness in the strong sense. Finally,
we note that the decision version of problem BiBAP is clearly contained in NP. All in
all, we formulate the following summarizing theorem.

Theorem 4 The decision version of the bilevel assignment problem with a bottleneck
objective function where leader and follower have bottleneck objective functions and
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where the follower behaves according to the optimistic rule is NP-complete in the
strong sense.

The polynomial time reduction from BCBS to BiBAP is simple and highly struc-
tured. In the constructed instance of BiBAP, the follower has so little decision power
that behavior according to the optimistic rule and behavior according to the pessimistic
rule yield the same outcome. Furthermore, it can be verified that the behavior of leader
and follower also does not change, if one or both of them switch from bottleneck
objective function to sum objective function. Hence, our construction yields as a by-
product a unified alternative proof for the seven hardness results that have been derived
in Gassner and Klinz (2009). Finally, we remark that our reduction also implies the
inapproximability of problem BiBAP: Unless P = N P , there is no polynomial time
approximation algorithm for BiBAP that approximates the optimal objective value of
the leader with some constant worst case ratio. We omit the straightforward details.
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