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Abstract
The connection between regularization andmin–max robustification in the presence of
unobservable covariate measurement errors in linear mixed models is addressed. We
prove that regularized model parameter estimation is equivalent to robust loss mini-
mization under amin–max approach.On the example of the LASSO,Ridge regression,
and the Elastic Net, we derive uncertainty sets that characterize the feasible noise that
can be added to a given estimation problem. These sets allow us to determine mea-
surement error bounds without distribution assumptions. A conservative Jackknife
estimator of the mean squared error in this setting is proposed. We further derive con-
ditions under whichmin-max robust estimation of model parameters is consistent. The
theoretical findings are supported by a Monte Carlo simulation study under multiple
measurement error scenarios.

Keywords Measurement errors · Regularized regression · Robust best prediction

1 Introduction

Linear regression is a standard tool in many research fields, such as economics and
biology. It is widely used for analyzing the statistical relation between responses and
covariates. The method relies on the crucial assumption that the data is observed
correctly, which implies the absence of measurement errors during data collection
(Mitra andAlam1980).However, formany applications, this assumption is unrealistic.
Economic indicators are often subject to uncertainty since their values are estimated
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from survey data (Alfons et al. 2013). Biomarker measures may be contaminated due
to errors in specimen collection and storage (White 2011). Further, since big data
sources are more and more used for analysis (Davalos 2017; Yamada et al. 2018),
the measurement error is often not controllable. If the correct data values cannot be
recovered from their noisy observations, linear regression fails to provide valid results.
In that case, methodological adjustments are required to allow for statistically well-
founded results. These adjustments are often summarized under the umbrella term
robust estimation (Li and Zheng 2007).

Robustness is not connoted consistently in statistics. There is a multitude of differ-
ent methods that account for the effects of measurement interference in the estimation
process. Bertsimas et al. (2017) categorize them into two general approaches to robus-
tification, an optimistic and a pessimistic perspective, which they call the min–min

and min–max approach. Let X̃ = X + D be a design matrix that is contaminated
by measurement errors. Here, X ∈ R

n×p denotes the original design matrix without
errors and D ∈ R

n×p is a matrix of error terms. Burgard et al. (2020a, b) assumed that
measurement errors are normally distributed. However, no distributional assumptions
are made here about D. Further, X and D are not required to be independent. Now, for
a loss function g : R

n → R+, R+ = [0,∞), a response vector y ∈ R
n , a perturbation

matrix � ∈ R
n×p, and a set U ⊆ R

n×p, the min–min approach is formulated by

min
β∈Rp

min
�∈U g(y − (X̃ + �)β), (1)

while the min–max approach is characterized by the problem

min
β∈Rp

max
�∈U g(y − (X̃ + �)β). (2)

In both variants, the design matrix is perturbed to account for some possibly contained
additive measurement errors. In the min-min approach, the perturbations� are chosen
minimal with respect to U. This is the most common idea of robustness in statistics.
Bertsimas et al. (2017) refer to it as optimistic, because the researcher is allowed to
choose which observations to discard for model parameter estimation. The primary
concern of the min–min approach is to robustify against distribution outliers. There-
fore, oftentimes distribution information about the measurement errors is required.
Examples ofmin–minmethods includeLeastTrimmedSquares (RousseeuwandLeroy
2003), Trimmed LASSO (Bertsimas et al. 2017), Total Least Squares (Markovsky and
Huffel 2007), as well as M-estimation with influence functions (Huber 1973; Schmid
and Münnich 2014). The min–max method, on the other hand, introduces perturba-
tions that are chosen maximal with respect to U. This idea mainly stems from robust
optimization theory. The objective is to find solutions that are still good or feasible
under a general level of uncertainty. In the process, deterministic assumptions about
U are made, which is then called uncertainty set. The researcher chooses it in accor-
dance to how the additive error might be structured. Bertsimas et al. (2017) refer to
this approach as pessimistic, since model parameter estimation is performed under a
worst-case scenario for the perturbations. Unlike in the min-min approach, the target
is not to robustify against errors of a given distribution, but against errors of a given
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magnitude. This robustness viewpoint has been studied for example by El Ghaoui and
Lebret (1997), Ben-Tal et al. (2009), and Bertsimas and Copenhaver (2018).

In practice, distribution information on the measurement errors is rarely available.
This is particulary the case for big data sources, as the origin of the data is often
unknown. In these settings, it makes sense to adopt robust optimization and regard the
disturbance of X̃ pessimistically. Under this premise, we obtain conservative, yet valid
results. That is to say, the min–max method can be used to achieve robust estimates in
the absence of distribution information on data contamination. Yet, it is not obvious
how to efficiently solve a correspondingmin-max problem (Bertsimas et al. 2011). But
recent results from robust optimization show that it is related to regularized regression
problems of the form

min
β∈Rp

g(y − X̃β) + λh(β), (3)

where λ > 0 and h : R
p → R+ is a regularization. From an optimization stand point,

problems like (3) can be handled better and solved more efficiently. But given the
literature on regularized regression, it is uncommon to regard (3) as robustification.
In many cases, regression models are extended by regularization due to at least one of
the following aspects: (i) allow for high-dimensional inference (Neykov et al. 2014),
(ii) perform variable selection (Zhang and Xiang 2015; Yang et al. 2018), and (iii)
deal with multicollinearity (Norouzirad and Arashi 2019). Apart from these common
applications, Bertsimas and Copenhaver (2018) provided novel insights by showing
that (2) and (3) are equivalent if g is a semi-norm and h is a norm. Unfortunately,
many regularized regression methods do not fit naturally in this framework. Popular
techniques like the LASSO (Tibshirani 1996), Ridge regression (Hoerl and Kennard
1970), or the Elastic Net (Zou and Hastie 2005) use the squared �2-norm as loss
function (g), which is not a semi-norm. Further, many regularizations (h) include
squares or other functions of norms, which are no norms. Given this limitation, it is
desirable to find a more general connection of regularization and robustification that
applies to a broader range of methods.

In this paper, we prove that (2) and (3) are equivalent when g and h are functions
of semi-norms and norms. On the example of linear mixed models (LMMs; Pinheiro
and Bates 2000), we show that regularization obtains efficient estimates in the pres-
ence of measurement errors without distribution assumptions. Given the majority of
regularized regression applications, this introduces a fairly new perspective on these
methods. Past developments mainly focussed on how to robustify regularized regres-
sion under contaminated data (Rosenbaum and Tsybakov 2010; Loh and Wainwright
2012; Sørensen et al. 2015). We show that regularization itself is a robustification.
Building upon this result, we derive uncertainty sets for the LASSO, Ridge regression
and the Elastic Net. They characterize the nature of the respective robustification effect
and allow us to find upper bounds for the measurement errors. From the error bounds,
we construct a conservative Jackknife estimator of the mean squared error (MSE)
for contaminated data. Further, we study conditions under which robust optimization
allows for consistency in model parameter estimation.

We proceed as follows. In Sect. 2, the generalized equivalence is established. We
use it to derive the uncertainty sets resulting from the three regularizations. Next, we
build a robust version of the LMM and show how robust empirical best predictors
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from the model are obtained. Section 3 addresses MSE estimation. We first derive
error bounds from the uncertainty sets. Then, we present the conservative Jackknife
estimator. In Sect. 4, we cover consistency in model parameter estimation. Section 5
contains a Monte Carlo simulation to demonstrate the effectiveness of the method-
ology. Section 6 closes with some conclusive remarks. The paper is supported by a
supplemental material file with eight appendices. Appendix 1 to 7 contain the proofs
of the mathematical developments presented in this study. Appendix 8 contains MSE
calculations for a general random effect structure. This paper contains insights of a
related working paper by Burgard et al. (2019).

2 Min–max robust linear mixedmodel

2.1 Min–max robustification

In Sect. 1, we introduced min–max robustification (2) as a conservative approach to
obtain estimates in the presence of unknown measurement errors. Since it is unclear
to efficiently solve the underlying optimization problem, we now present how it is
related to regularized regression problems (3). For this purpose, the following result
by Bertsimas and Copenhaver (2018) is helpful, as it connects min-max robustification
with regularization.

Proposition 1 (Bertsimas and Copenhaver 2018) If g : R
n → R+ is a semi-norm

which is not identically zero and h : R
p → R+ is a norm, then for any z ∈ R

n,
β ∈ R

p and λ > 0
max
�∈U g(z + �β) = g(z) + λh(β),

where

U =
{
� ∈ R

n×p : max
γ∈Rp

g(�γ )

h(γ )
≤ λ

}
.

Clearly, the proposition directly implies that

min
β∈Rp

max
�∈U g(y − (X̃ + �)β) = min

β∈Rp
g(y − X̃β) + λh(β),

for g, h and U as in Proposition 1. Thus, the framework provided by Bertsimas and
Copenhaver (2018) gives us novel insights into the role of regularization in regression.
The choice of a regularization function h with parameter λ directly constraints the
uncertainty set U, which defines a set of perturbations for the design matrix. In other
words, the regularization controls themagnitude of noise that can be added to X̃. Under
this interference, β is chosen such that the loss is minimal. The effect can be imagined
as a two player game where one player tries to minimize the loss by controlling β,
while the other player tries to maximize the deviation by controlling the noise that
is added to X̃. However, many regression methods are formulated using the squared
norm or a mix of squared and non-squared norms. For instance, the LASSO is posed
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as the optimization problem

min
β∈Rp

‖y − X̃β‖22 + λ‖β‖1. (4)

Here, the deviation is squared while the regularization term is not. On the other hand,
Ridge regression is posed as the optimization problem

min
β∈Rp

‖y − X̃β‖22 + λ‖β‖22, (5)

with both, the deviation and regularization, being squared. Both optimization problems
do not fit naturally into the framework of Proposition 1 since a squared (semi-)norm
‖·‖2 is not a (semi-)norm.We provide a generalization of Proposition 1 that (i) displays
a more fundamental connection between regularization and robustification, and (ii)
enables us to regard more sophisticated regularizations in light of robustification.

Theorem 1 Let λ1, . . . , λd be positive real numbers, g : R
n → R+ be a semi-

norm which is not identically zero, let h1, h2, . . . hd : R
p → R+ be norms and

f , f1, f2, . . . , fd : R+ → R+ be increasing, convex functions, then there exist
ϕ1 > 0, . . . , ϕd > 0 such that

argmin
β∈Rp

max
�∈U g(y − (X̃ + �)β) = argmin

β∈Rp
f (g(y − X̃β)) +

d∑
l=1

λl fl(hl(β)),

where

U =
{

� ∈ R
n×p : g(�γ ) ≤

d∑
l=1

ϕl hl(γ ) for all γ ∈ R
p

}
.

The proof can be found in Appendix 1 of the supplemental material. Observe the
difference between Theorem 1 and Proposition 1. In the original statement, regular-
ization and robustification are equivalent when the loss function is a semi-norm and
the regularization is a norm. In the generalization, the equivalence also holds when
loss function and regularization are increasing convex functions of semi-norms and
norms. This covers a broader range of settings, which we demonstrate hereafter. For
Ridge regression, we have g(z) = ‖z‖2, h1(z) = ‖z‖2, f (z) = z2, f1(z) = z2 and
d = 1 with λ > 0. Applying Theorem 1 yields

β̂
�2 = argmin

β∈Rp
max

�∈U�2

∥∥∥y −
(
X̃ + �

)
β

∥∥∥
2

= argmin
β∈Rp

∥∥∥y − X̃β

∥∥∥2
2
+ λ ‖β‖22 , (6)

with
U�2 = {� ∈ R

n×p : ‖�γ ‖2 ≤ ϕ ‖γ ‖2 ∀ γ ∈ R
p}, (7)
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for some ϕ > 0. For the LASSO, we have g(z) = ‖z‖2, h1(z) = ‖z‖1, f (z) = z2,
f1(z) = z and d = 1 with λ > 0. Applying Theorem 1 obtains

β̂
�1 = argmin

β∈Rp
max

�∈U�1

∥∥∥y −
(
X̃ + �

)
β

∥∥∥
2

= argmin
β∈Rp

∥∥∥y − X̃β

∥∥∥2
2
+ λ‖β‖1, (8)

with
U�1 = {� ∈ R

n×p : ‖�γ ‖2 ≤ ϕ ‖γ ‖1 ∀ γ ∈ R
p} . (9)

And finally, for the Elastic Net, we have g(z) = ‖z‖2, h1(z) = ‖z‖1, h2(z) = ‖z‖2,
f (z) = z2, f1(z) = z, f2(z) = z2 and d = 2 with λ1, λ2 > 0. Applying Theorem 1
yields

β̂
EN = argmin

β∈Rp
max

�∈UEN

∥∥∥y −
(
X̃ + �

)
β

∥∥∥
2

= argmin
β∈Rp

∥∥∥y − X̃β

∥∥∥2
2
+ λ1 ‖β‖1 + λ2 ‖β‖22 ,

(10)
with

UEN = {� ∈ R
n×p : ‖�γ ‖2 ≤ ϕ1 ‖γ ‖1 + ϕ2 ‖γ ‖2 ∀ γ ∈ R

p}. (11)

We see that the theorem can be broadly applied and establishes the robustification
effect for a variety of regularized regression methods. However, the manner in which
robustification is achieved depends on the regularization. By looking at the definition
ofU in Theorem1,we see that the effects ofmeasurement errorswith respect to the loss
function are bounded by a generic term

∑d
l=1 ϕl hl(·) for some ϕ1 > 0, . . . , ϕd > 0.

The exact form of this term depends on the regularization the researcher wishes to
apply. Accordingly, in the light of the three regularized regression approaches consid-
ered before, the robustification effect manifests itself differently given the penalty. On
that note, Bertsimas and Copenhaver (2018) provided another result that allows for
an interpretation of the robustification effects. It is summarized within the subsequent
proposition.

Proposition 2 (Bertsimas and Copenhaver 2018) Let t ∈ [1,∞], ‖β‖0 be the number
of non-zero entries of β and �i be the i-th column of � for i = 1, . . . , p. If

U
′ = {� ∈ R

n×p : ‖�β‖2 ≤ ϕ ‖β‖0 for all ‖β‖t ≤ 1},

and
U

′′ = {� ∈ R
n×p : ‖�i‖2 ≤ ϕ, i = 1, . . . , p},

then U�1 = U
′ = U

′′.

Applying this result to our generalization, we see that for U�2 (Ridge regression),
the maximum singular value of � is bounded by ϕ. With respect to U�1 (LASSO),
the columnwise �2-norm of � is bounded by ϕ. Thus, while Ridge regression induces
an upper bound on the entire noise matrix, the LASSO provides a componentwise
bound. With respect to the Elastic Net, the error bound is a linear combination of the
componentwise LASSO bound and the general Ridge bound. Unfortunately, it is less
apparent how to interpret the corresponding robustification effect.
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2.2 Model and robust empirical best prediction

Based on these insights, we now use min-max robustification to construct a robust
version of the basic LMM in a finite population setting. Let U denote a population
of |U | = N individuals indexed by i = 1, . . . , N . Assume that U is segmented into
m domains U j of size |U j | = N j indexed by j = 1, . . . ,m with U j and Uk pairwise
disjoint for all j 
= k. Let S ⊂ U be a random sample of size |S| = n < N that is
drawn from U . Assume that the sample design is such that there are domain-specific
subsamples S j ⊂ U j of size |S j | = n j > 1 for all j = 1, . . . ,m. Let Y be a real-
valued response variable of interest. Denote yi j ∈ R as the realization of Y for a given
individual i ∈ U j . For convenience, assume that the objective is to estimate the mean
of Y for all population domains, that is

Ȳ j = 1

N j

∑
i∈U j

yi j , j = 1, . . . ,m. (12)

Let X be a p-dimensional real-valued vector of covariates statistically related to Y .
Let xi j ∈ R

1×p denote the realization of X for i ∈ U j and let zi j ∈ R
1×q be the

known incidence vector. In the light of Sect. 1, we assume that the observations of X
are impaired by measurement errors. That is, we only observe x̃i j = xi j + di j , where
di j ∈ R

1×p. The robust LMM is formulated as

y j = (X j + D j
)
β + Z jb j + e j , j = 1, . . . ,m, (13)

where y j = (y1 j , . . . , yn j j )
′ is the vector of sample responses in S j . Further, we have

X j = (x′
1 j , . . . , x

′
n j j

)′,D j = (d′
1 j , . . . ,d

′
n j j

)′, Z j = (z′
1 j , . . . , z

′
n j j

)′, and β ∈ R
p×1

as vector of fixed effect coefficients. The term Z j ∈ R
n j×q denotes the random effect

design matrix and b j ∈ R
q×1 with b j ∼ N(0q ,�) is the vector of random effects.

The latter follows a normal distribution with a positive-definite covariance matrix
� ∈ R

q×q that is parametrized by some vector ψ ∈ R
q∗×1. The vector e j ∈ R

n j×1

contains random model errors with e j ∼ N(0n j , σ
2In j ) and a variance parameter

σ 2. We assume that b1, . . . ,bm, e1, . . . , em are independent. Under model (13), the
response vectors follow independent normals

y j ∼ N
(
(X j + D j )β,V j (σ

2,ψ)
)

, j = 1, . . . ,m, (14)

where V j (σ
2,ψ) = Z j�Z′

j + σ 2In j . The conditional distribution y j |b j is

y j |b j ∼ N
(
(X j + D j )β + Z jb j , σ

2In j

)
, j = 1, . . . ,m. (15)

Formulating (13) over all domains yields

y = (X + D) β + Zb + e, (16)
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where y = (y′
1, . . . , y

′
m)′, b = (b′

1, . . . ,b
′
m)′, e = (e′

1, . . . , e
′
m)′ are stacked

vectors and X = (X′
1, . . . ,X

′
m)′ ∈ R

n×p, D = (D′
1, . . . ,D

′
m)′ ∈ R

n×p, Z =
diag(Z1, . . . ,Zm) ∈ R

n×mq are stacked matrices. Finally, the model parameters are
θ := (β ′, η′)′ with η = (σ 2,ψ ′)′. Please note that in accordance with a likelihood-
based estimation setting, the random effects b are not model parameters, but random
variables. Thus, in order to obtain robust estimates of (12), random effect and response
realizations have to be predicted. For this, we first state the best predictors of b j and
Ȳ j under the robust LMM with the preliminary assumption that θ is known. They are
obtained from the respective conditional expectations given the response observations
under (16). We refer to them as robust best predictors (RBPs). Afterwards, the model
parameters are substituted by empirical estimates to obtain the robust empirical best
predictors (REBPs). The RBPs are stated in the subsequent Proposition.

Proposition 3 Under model (16), the RBPs of b j and Ȳ j are given by

b̂RBP
j (θ) = E(b j |y) =

(
Z′

jZ j + σ 2�−1
)−1

Z′
j

[
y j − (X j + D j

)
β
]
,

̂̄Y RBP

j (θ) = E(Ȳ j |y) = 1

N j

[∑
i∈S j

yi j +
∑

i∈U j\S j

(
(xi j + di j )β + zi j b̂RBP

j (θ)
) ]

.

The proof can be found in Appendix 2 of the supplemental material. Note that the
RBP of Ȳ j requires covariate observations for all i ∈ U j . Such knowledge may be
unrealistic in practice, depending on the application. Therefore, we use an alternative
expression that is less demanding in terms of data. Battese et al. (1988) suggested the
approximation Ȳ j ≈ μ j = X̄ jβ + Z̄ jb j for cases when n j/N j ≈ 0. Here, X̄ j and
Z̄ j are the domain means of X j and Z j in domain U j . Observe that the unknown μ j

is generated without measurement errors. The RBP of μ j is

μ̂RBP (θ) = (X̄ j + D̄ j
)′

β + Z̄ j b̂RBP
j (θ),

where D̄ j is the hypothetical domain mean of the measurement errors. Based on this
approximation and Proposition 3, we can state the REBP of μ j by substituting the

unknown model parameter θ by an estimator θ̂ = (β̂
′
, η̂

′
)′ under the min-max setting.

This is done by solving the two optimization problems iteratively. For fixed effect
estimation, we solve the regularized weighted least squares problem

β̂(η̌) = argmin
β∈Rp

max
�∈U

∥∥∥V−1/2(η̌)
[
y −

(
X̃ + �

)
β
]∥∥∥

2

= argmin
β∈Rp

∥∥∥V−1/2(η̌)
(
y − X̃β

)∥∥∥2
2
+

d∑
l=1

λl fl(hl(β)), (17)
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givenvarianceparameter candidates η̌ and apredefined regularization
∑d

l=1 λl fl(hl(β)).
For variance parameter estimation, we solve the maximum likelihood (ML) problem

η̂(β̂) = argmin
η∈R1+q∗

1

2

[
n log(2π) + log (|V(η)|) +

(
y − X̃β̂

)′
V−1(η)

(
y − X̃β̂

)]

(18)
given the robust solution β̂, where |V(η)| is the determinant of V(η). Both estimation
steps are performed conditionally on each other until convergence. For an iteration
index r = 1, 2, . . ., the complete procedure is summarized in the subsequent algorithm.

Algorithm 1Model parameter estimation

1: Center the response observations y and standardize the covariate observations X̃.

2: Find initial model parameter estimates θ̂
[0]

.

3: while not converged do

4: Solve (17) to obtain β̂
[r ]

(η̂[r−1]).

5: Solve (18) to find η̂[r ](β̂[r ]
).

6: end

In the upper descriptions, centering means transforming y such that it has zero
mean. Further, standardization implies transforming X̃ such that each of its columns
has zeromean and unit length. At this point, we omit a detailed presentation of suitable
methods to solve the individual problems. This already been addressed exhaustively in
the literature. For the solution of (17), coordinate descent methods are often applied.
See for instance Tseng and Yun (2009), Friedman et al. (2010), as well as Bottou
et al. (2018). Regarding the solution of (18), a Newton–Raphson algorithm can be

used (Lindstrom and Bates 1988; Searle et al. 1992). For an estimate θ̂ = (β̂
′
, η̂

′
)′,

the REBP of μ j is

μ̂REBP
j = μ̂RBP

j (θ̂) = (X̄ j + D̄ j
)′

β̂ + Z̄ j b̂REBP
j , (19)

where

b̂REBP
j = b̂RBP

j (θ̂) =
(
Z′

jZ j + σ̂ 2�−1(ψ̂)
)−1

Z′
j

[
y j − (X j + D j

)
β̂
]
.

3 Conservative MSE estimation under measurement errors

Hereafter, we demonstrate how to obtain conservative estimates for the MSE of the
REBP, which is given by MSE(μ̂REBP

j ) = E[(μ̂REBP
j − μ j )

2]. This is done in
two steps. We first derive upper bounds for the MSE of the RBP under known model
parameters in the presence ofmeasurement errors, that is,MSE(μ̂RBP

j ) = E[(μ̂RBP
j −
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μ j )
2]. Then,we state a Jackknife procedure that accounts for the additional uncertainty

resulting from model parameter estimation. Combining both steps ultimately allows
for conservative MSE estimates.

3.1 MSE bound for the RBP

For the sake of a compact presentation, we assume that the random effect structure is
limited to a random intercept, thus, b j = b j with b j ∼ N(0, ψ2). Note that there is
a related MSE derivation for a general random effect structure in Appendix 8 of the
supplemental material. Under the random intercept setting, the MSE of the RBP is
given by

MSE
(
μ̂RBP

j

)
= E

[(
μ̂RBP

j (θ) − μ j

)2]

= E

[((
X̄ j + D̄ j

)′
β + γ j

(
ȳ j − (x̄ j + d̄ j )

′β
)− X̄′

jβ − b j

)2]

= E

[(
D̄′

jβ + γ j
(
ȳ j − (x̄ j + d̄ j )

′β − b j
)− (1 − γ j )b j

)2]

= E

[(
D̄′

jβ + γ j ē j − (1 − γ j )b j

)2]
, (20)

where

ē j = 1

n j

∑
i∈S j

ei j , x̄ j = 1

n j

∑
i∈S j

xi j , d̄ j = 1

n j

∑
i∈S j

di j , γ j = ψ2

ψ2 + σ 2/n j
,

(21)

with ei j
i id∼ N(0, σ 2). Recall that b j and e j are independent. Since D̄ j is a fixed

unknown quantity under the min-max setting, it follows that

MSE
(
μ̂RBP

j

)
= E

[(
D̄′

jβ
)2]+ γ 2

j E
(
ē2j

)
+ (1 − γ j )

2E
(
b2j

)

=
(
D̄′

jβ
)2 + γ 2

j
σ 2

n j
+ (1 − γ j )

2ψ2 =
(
D̄′

jβ
)2 + γ j

σ 2

n j
. (22)

We see that MSE contains the term (D̄′
jβ)2, which is unknown due to the measure-

ment errors being unobservable. Thus, even with all the model parameters known, we
cannot calculate the exact value of (22) because D̄ j is an unknown quantity under
the considered setting. Yet, recall that for min-max robustification, we introduce per-
turbations � to account for the uncertainty resulting from covariate contamination.
Therefore, we can replace the term (D̄′

jβ)2 by a corresponding expression (�′
jβ)2,

provided that λ1, . . . , λd are chosen sufficiently high. Here, �′
j is the j-th row of

�. As described in Sect. 2.1, the perturbations are element of an underlying uncer-
tainty set U, which depends on the regularization

∑d
l=1 λl fl(hl(β)). If � ∈ U, the
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uncertainty set induces an upper bound
∑d

l=1 ϕl hl(β) on the total impact of the per-
turbations on model parameter estimation in accordance with Theorem 1. Provided
that the loss function g is the squared �2-norm, the total impact is measured by ‖�β‖2
in accordance with Theorem 1. From this argumentation, we can state the error bound

(
�′

jβ
)2 ≤ ‖�β‖22 ≤

(
d∑

l=1

ϕl hl(β)

)2

. (23)

Substituting (D̄′
jβ)2 by (

∑d
l=1 ϕl hl(β))2 in (22) subsequently yields an upper limit

for the MSE. However, by Theorem 1, the error bound (23) depends on the chosen
regularization. Naturally, it has to be determined for each uncertainty set individu-
ally. Here, we encounter the problem that the uncertainty set parameters ϕ1, . . . , ϕd

are unknown. The one-to-one relation between the regularization parameters and the
uncertainty set parameters in Proposition 1 is lost in Theorem 1. Hence, the values of
the uncertainty set parameters have to be recovered first before corresponding error
bounds can be used. In order to recover the uncertainty set parameters, we apply the
following basic procedure. Assume that we have computed an optimal solution β̂ of
a regularized regression problem

min
β∈Rp

f
(
g
(
y − X̃β

))
+

d∑
l=1

λl fl(hl(β)), (24)

in accordance with Theorem 1. By Theorem 1, β̂ is also an optimal solution of

min
β∈Rp

max
�∈U g

(
y − (X̃ + �)β

)
(25)

for appropriate ϕ1 > 0, . . . , ϕd > 0 forming the uncertainty set U. Thus, by Proposi-
tion 1, we know that β̂ is an optimal solution of

min
β∈Rp

g(y − X̃β) +
d∑

l=1

ϕl hl(β). (26)

Following this argumentation, we recover the relation by choosing ϕ1, . . . , ϕd in such
a way that β̂ is an optimal solution of (26). For this, we need to derive the optimality
conditions of (26) for a given specification of g and h.We then solve the arising system
of equations for the uncertainty set parameters in dependence of the regularization
parameters. This yields us the relation between ϕ1, . . . , ϕd and λ1, . . . , λd . In what
follows, we demonstrate the procedure for Ridge regression, the LASSO, and the
Elastic Net. The obtained results are subsequently used to find upper bounds for the
MSE stated in (22). LetW := V−1/2X̃ and denote the columns ofW byW1, . . . ,Wp.
Further, define v := V−1/2y.
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Error bound for Ridge regression
We have a single uncertainty set parameter ϕ and the optimization problem

β̂
�2 = argmin

β∈Rp

∥∥∥V−1/2
(
y − X̃β

)∥∥∥2
2
+ λ‖β‖22. (27)

In this setting, ϕ can be recovered according to the subsequent proposition.

Proposition 4 Let β̂
�2 
= 0p be an optimal solution to the optimization problem (27).

Then, the related uncertainty set, as described in Theorem 1, is given by

U�2 = {� ∈ R
n×p : ‖�γ ‖2 ≤ ϕ ‖γ ‖2 for all γ ∈ R

p}

with

ϕ =
∥∥∥β̂�2

∥∥∥
2∥∥∥Wβ̂

�2 − v

∥∥∥
2

λ.

The proof can be found in Appendix 3 of the supplemental material. Observe that
the uncertainty set parameter ϕ has a closed-form solution when � ∈ U�2 . We use the
expression to substituteϕ in the error bound (23). This allows us to state an upper bound
for the MSE (22) when min–max robustification is achieved via Ridge regression. We
obtain

MSE
(
μ̂RBP

j (�2)
)

≤
⎡
⎢⎣
⎛
⎜⎝

∥∥∥β̂�2
∥∥∥
2∥∥∥Wβ̂

�2 − v

∥∥∥
2

λ

⎞
⎟⎠ ‖β̂�2‖2

⎤
⎥⎦
2

+ γ j
σ 2

n j
. (28)

Error bound for the LASSO
We have a single uncertainty set parameter ϕ and the optimization problem

β̂
�1 = argmin

β∈Rp

∥∥∥V−1/2
(
y − X̃β

)∥∥∥2
2
+ λ‖β‖1. (29)

Under this premise, ϕ can be recovered as follows.

Proposition 5 Let β̂
�1 
= 0p be an optimal solution to the optimization problem (29).

Then, the related uncertainty set, as described in Theorem 1, is given by

U�1 = {� ∈ R
n×p : ‖�γ ‖2 ≤ ϕ ‖γ ‖1 for all γ ∈ R

p}

with

ϕ = λ∥∥∥Wβ̂
�1 − v

∥∥∥
2

.

The proof can be found in Appendix 4 of the supplemental material. We see that
the uncertainty set parameter has a closed-form solution when � ∈ U�1 . We use the
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expression to substitute ϕ in the error bound (23). This allows us to state an upper
bound for the MSE (22) when min-max robustification is achieved via the LASSO.
We obtain

MSE
(
μ̂RBP

j (�1)
)

≤
⎡
⎢⎣
⎛
⎜⎝ λ∥∥∥Wβ̂

�1 − v

∥∥∥
2

⎞
⎟⎠ ‖β̂�1‖1

⎤
⎥⎦
2

+ γ j
σ 2

n j
. (30)

Error bound for the Elastic Net
We have two uncertainty set parameters ϕ1, ϕ2 and the optimization problem

β̂
EN = argmin

β∈Rp

∥∥∥V−1/2
(
y − X̃β

)∥∥∥2
2
+ λ1‖β‖1+λ2‖β‖22. (31)

They are recovered as demonstrated hereafter.

Proposition 6 Let β̂
EN 
= 0p be an optimal solution to the optimization problem (31).

Then, the related uncertainty set, as described in Theorem 1, is given by

UEN = {� ∈ R
n×p : ‖�γ ‖2 ≤ ϕ1 ‖γ ‖1 + ϕ2 ‖γ ‖2 for all γ ∈ R

p}

with ϕ1, ϕ2 being a solution of the system

∥∥∥Wβ̂
EN − v

∥∥∥−1

2

(
λ11p + λ2β̂

EN) = ϕ11p + ϕ2

∥∥∥β̂EN
∥∥∥−1

2
β̂
EN

.

The proof can be found in Appendix 5 of the supplemental material. Note that the
term 1p marks a column vector of p ones. We see that the uncertainty set parame-
ters ϕ1, ϕ2 do not have a closed-form solution. They can be quantified numerically,
for instance by applying the Moore–Penrose inverse. For a given robust estimation

problem with optimal solution β̂
EN

, let ϕ∗
1 , ϕ

∗
2 be the solutions for the uncertainty set

parameters. Plugging them into the MSE equation (22), we obtain the following result
when min–max robustification is achieved via the Elastic Net:

MSE
(
μ̂RBP

j (EN )
)

≤
(
ϕ∗
1

∥∥∥β̂EN
∥∥∥
1

)2 + 2ϕ∗
1ϕ

∗
2

∥∥∥β̂EN
∥∥∥
1

∥∥∥β̂EN
∥∥∥
2

+
(
ϕ∗
2

∥∥∥β̂EN
∥∥∥
2

)2 + γ j
σ 2

n j
. (32)

3.2 Conservative Jacknife estimator

We now use the MSE bounds (28), (30), and (32) for the RBP to construct a conser-
vative Jackknife estimator for the MSE of the REBP. For this, we rely on theoretical
developments presented by Jiang et al. (2002). The term ”conservative” stems from
the fact that we do not use the actual MSE, but their upper bounds in accordance with
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Theorem 1. With this, we do not obtain estimates of MSE(μ̂REBP
j ) in the classical

sense. Instead, an upper bound for the measure is estimated under a given level of
uncertainty resulting from unobservable measurement errors. We refer to this as pes-
simistic MSE (PMSE) estimation. A delete-1-Jackknife procedure is applied. In every
iteration of the algorithm, a domain-specific subsample S j is deleted from the data
base. The remaining observations are used to perform model parameter estimation.
Based on the obtained estimates, predictions for μ j in all domains U1, . . . ,Um are
produced. The principle is repeated until all domain-specific subsamples have been
deleted once. With this resampling scheme, we obtain an approximation to the predic-
tion uncertainty resulting frommodel parameter estimation (Jiang et al. 2002; Burgard
et al. 2020a). The deviation of the produced predictions from the original predictions
based on all sample observations are quantified. Finally, in combination with the MSE
bounds, this yields an estimate of the PMSE.

Let B(ϕ1, . . . , ϕd , h1, . . . , hd , θ̂) denote a general MSE bound in the sense of Sect.
3.1, where the known model parameter estimates θ have been replaced by empirical
estimates θ̂ . Let θ̂−k be the estimate of θ without the observations from Sk , where
Sk ⊂ S. Likewise, denote μ̂REBP

j (θ̂−k) as the REBP of μ j based on θ̂−k , where
j, k ∈ {1, . . . ,m}. The delete-1-Jackknife procedure is performed as follows.

Algorithm 2 Delete-1-Jackknife
1: Obtain model parameter estimates θ̂ based on S.

2: Generate predictions μ̂REBP
1 (θ̂), . . . , μ̂REBP

m (θ̂) according to (19).

3: Calculate B(ϕ1, . . . , ϕd , h1, . . . , hd , θ̂).

4: for k = 1, . . . ,m do

5: Obtain model parameter estimates θ̂−k based on S \ S−k .

6: Generate predictions μ̂REBP
1 (θ̂−k ), . . . , μ̂

REBP
m (θ̂−k ) according to (19).

7: Calculate B(ϕ1, . . . , ϕd , h1, . . . , hd , θ̂−k ).

8: end

After the algorithm is completed, the conservative Jackknife estimator for theREBP
of μ j is calculated according to

P̂MSE(μ̂REBP
j ) = B(ϕ1, . . . , ϕd , h1, . . . , hd , θ̂) + m − 1

m

m∑
k=1

(
μ̂REBP

j (θ̂−k) − μ̂REBP
j (θ̂)

)2

− m − 1

m

m∑
k=1

(
B(ϕ1, . . . , ϕd , h1, . . . , hd , θ̂) − B(ϕ1, . . . , ϕd , h1, . . . , hd , θ̂−k)

)
.

(33)
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4 Consistency

Hereafter, we study conditions under which min-max robustification as described in
Sect. 2.1 allows for consistency in model parameter estimation. We adapt the theoreti-
cal framework developed by Fan and Li (2001) as well as Ghosh and Thoresen (2018)
for the asymptotic behavior of regularized regression with non-concave penalties.
Based on the insights of Sect. 2, we introduce min–max robustification to their devel-
opments. For this purpose, let us state the optimization problem for model parameter
estimation as follows:

θ̂ = argmin
θ∈	

−L(β, η) + n
d∑

l=1

λln

p∑
k=1

hlk(βk)

︸ ︷︷ ︸
Qθ

, (34)

with 	 ⊆ R
p × (0,∞)1+q∗

as parameter space, Qθ : 	 → R as objective function,
and

L(β, η) = −1

2

[
n log(2π) + log (|V|) +

(
y − X̃β

)′
V−1

(
y − X̃β

)]
(35)

denoting the negative log-likelihood function of (16). The superscript l = 1, . . . , d
marks the index of regularization terms and k = 1, . . . , p is the index of fixed effect
coefficients. Thus, the term n

∑d
l=1 λln

∑p
k=1 h

l
k(βk) is a componentwise non-concave

regularization with parameters λ1n, . . . , λ
d
n depending on the sample size. For each

parameter λln , we have a family of increasing, convex and non-concave functions
hl1, . . . , h

l
p with h

l
k(βk) : R → R+. This componentwise notation is required to estab-

lish consistency for a robust estimator β̂ that is potentially sparse. Further, following
Fan and Li (2001) as well as Ghosh and Thoresen (2018), we let the regularization
directly depend on n via multiplication. Note that this does not affect min–max robus-
tification presented in Theorem 1. For a given regularized regression problem, we can
substitute a predefined parameter value λl with an equivalent term nλ̃l by choosing
λ̃l = λl/n.

4.1 Asymptotic perturbation behavior

Anecessary condition for consistency is thatλln → 0 as n → ∞ for all l = 1, . . . , d. In
the classical context of regularized regression, this is a reasonable assumption. Increas-
ing the sample size solves typical issues for which regularization is applied, such as
the model being not identifiable or rank deficiency of the design matrix. However, in
the light of robustification, it also implies that the impact of the measurement errors
on model parameter estimation has to approach zero. Let us restate the uncertainty set
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from Theorem 1 in the asymptotic setting for g = �2 according to

Un =
{

� ∈ R
n×p : 1

n
‖�γ ‖2 ≤ 1

n

d∑
l=1

ϕl
p∑

k=1

hlk(γk) for all γ ∈ R
p

}
.

With this formulation, themean impact of themeasurement errors onmodel parameter
estimation is constrained by the regularization. Yet, if we draw new observations,
it is not guaranteed that the mean impact will approach zero for n → ∞. This is
demonstrated hereafter. Without loss of generality, assume that the sample size in the
asymptotic setting is increased in terms of sequential draws denoted by r = 1, 2, . . ..
We start with a set of ninitr > 0 initial sample observations in the r -th draw with
r = 1. The perturbations resembling the uncertainty in the corresponding covariate
observations are represented by the perturbation matrix �ini t

r ∈ R
nini tr ×p. Next, we

draw nnewr > 0 new observations and pool them with the initial sample observations.
The perturbation matrix for these new observations is �new

r ∈ R
nnewr ×p. In the next

draw r + 1 = 2, the previously pooled observations represent the initial ones, such
that ninitr+1 = ninitr + nnewr . This is repeated for r → ∞, implying that ninitr+1 → ∞.
Note that the limit

lim
r→∞

1

ninitr + nnewr

∥∥∥∥
(
�ini t

r
′
,�new

r
′)′

γ

∥∥∥∥
2

(36)

is not necessarily zero, provided that γ 
= 0p. This, however, is imperative if λln → 0
for all l = 1, . . . , d while simultaneously ensuring a robust solution in the sense
of Theorem 1. At this point, we can conclude that min–max robust model parame-
ter estimation within the robust LMM is not consistent for arbitrary design matrix
perturbations, since the impact of the measurement error does not vanish. In order
to guarantee that the mean impact of the measurement errors approaches zero, we
have to introduce further assumptions on the asymptotic perturbation behavior. These
assumptions are with respect to the magnitude of the perturbations. We explicitely
avoid assumptions regarding their distribution, as the main feature of min–max robus-
tification is the absence of distribution assumptions. The required behavior in terms
of sequential draws is characterized by the subsequent lemma.

Lemma 1 Let �ini t
r ∈ R

nini tr ×p be an initial perturbation matrix in the r-th draw.
Assume that a new set of observations is drawn with perturbation matrix �new

r ∈
R
nnewr ×p. If for repeated draws r = 1, 2, . . . and a given γ ∈ R

p every new perturba-
tion matrix satisfies

‖�new
r γ ‖2<

√
nnewr (2ninitr + nnewr )

ninitr
‖�ini t

r γ ‖2,

then

lim
r→∞

1

ninitr + nnewr

∥∥∥∥
(
�ini t

r
′
,�new

r
′)′

γ

∥∥∥∥
2

= 0.
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The proof can be found in Appendix 6 of the supplemental material. In practice,
the behavior stated in Lemma 1 may be viewed as the measurement process becoming
more accurate over time, or the number of contaminated observations rising at a smaller
rate than the number of correct observations.

4.2 Asymptotic results

For illustrative purposes, let θ∗ denote the true value of the model parameter vec-
tor. Consistency is studied by investigating the asymptotic behavior of ‖θ̂ − θ∗‖2 as
n → ∞. We consider a deterministic design matrix setting with a fixed number of
covariates (p + 1 + q∗) < n. With this, we assume that model parameter estimation
is a low-dimensional problem. The asymptotics of regularized regression are usually
studied in high-dimensional settings. However, the focus of our contribution is on
robust estimation rather than on high-dimensional inference. Therefore, we restrict
the analysis to the simpler case of low-dimensional problems. See Schelldorfer et al.
(2011), Shao and Deng (2012), as well as Loh and Wainwright (2012) for theoretical
results on high-dimensional inference.

In what follows, we draw from the theoretical framework presented by Fan and Li
(2001) as well as Ghosh and Thoresen (2018). Several assumptions are introduced
that are required in order to establish consistency. For simplicity, and by the centering
of the response observations as well as the standardization of the covariate values as
displayed in Algorithm 1, we assume that the domain response vectors y j ∈ y are iid.
Thus, we can state the negative log-likelihood

− L(β, η) = Ln(β, η) =
m∑
j=1

log
[
f (y j ;β, η)

]
. (37)

See that Ln(β, η) is convex in β and non-convex in η. Let λ1, . . . , λd → 0 as n → ∞.
Define

An := max
k=1,...,p

{
d∑

l=1

λln
∂hlk(|β∗

k |)
∂βk

: β∗
k 
= 0

}
,

Bn := max
k=1,...,p

{
d∑

l=1

λln
∂2hlk(|β∗

k |)
∂β2

k

: β∗
k 
= 0

}
(38)

as the maximum values of the first- and second-order derivatives with respect to all
non-zero elements of the regression coefficient vector at the true point β∗.

Assumption 1
Themodel is identifiable and the support of f (y;β, η) is independent of the param-

eter θ = (β ′, η′)′. The density f (y;β, η) has first- and second-order derivatives with

E

(
∂ log( f )

∂(β, η)

)
= 0p+q∗+1 (39)
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and

I(β, η) = E

[(
∂ log( f )

∂(β, η)

)′ (
∂ log( f )

∂(β, η)

)]
= E

[(
∂2 log( f )

∂(β, η)2

)]
. (40)

Assumption 2
The Fisher information matrix I(β, η) is finite and positive definite at (β∗, η∗).
Assumption 3
There exists an open subset of 	 containing (β∗, η∗), on which f (y;β, η) admits

all its third-order partial derivatives for almost all y that are uniformly bounded by
some function with finite expectation under the true value of the full parameter vector.

Assumption 4
Regarding the regularization term, Bn → 0 as n → ∞.
Assumption 5
With respect to the perturbations, n−1‖�β‖≤ n−1∑d

l=1 ϕl∑p
k=1 h

l
k(βk) for any

θ ∈ 	 with θ = (β ′, η′)′, and limn→∞‖�β‖2= 0.
Assumptions 1 to 3 are basic regularity conditions on ML estimation problems and

satisfied by the majority of common statistical models. Assumption 4 is a requirement
for non-concave regularizations to ensure that the objective value difference between
a local minimizer and the true parameter value approaches zero asymptotically. Since
we have assumed that λ → 0 as n → ∞, this holds for all considered regularizations.
Assumption 5 is a technical requirement that can be viewed as the number of contam-
inated observations rising at a slower rate than the correctly measured observations.
Based on the presented system of assumptions, the following theorem can be stated.

Theorem 2 Consider themodel parameter estimation problem (34) under the Assump-
tions 1–3. If λln → 0 for n → ∞ and l = 1, . . . , d,

∑d
l=1 λln

∑p
k=1 h

l
k(βk) satisfies

Assumption 4, and the perturbations obey Assumption 5, then there exists a local

minimizer θ̂ = (β̂
′
, η̂

′
)′ of Qθ , for which

∥∥∥β̂ − β∗
∥∥∥
2

= Op(n
−1/2 + An), ‖η̂ − η∗‖2= Op(n

−1/2)

holds.

The proof can be found in Appendix 7 of the supplemental material.

5 Simulation

5.1 Set up

A Monte Carlo simulation with R = 500 iterations indexed by r = 1, . . . , R is con-
ducted. We use a deterministic design matrix setting and create a synthetic population
U of N = 50 000 individuals inm = 100 equally sized domainswith N j = 500.A ran-
dom subset S ⊂ U of size n = 500 is drawn once such that n j = 5 for j = 1, . . . ,m.
The response variable realizations are generated in each iteration individually. The
overall specifications are
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yi j = xi jβ + z j + ei j , xi j
i id∼ N (μX , σ 2

X I3), z j
iid∼ N (0, ψ2), ei j

i id∼ N (0, σ 2),

where μX = (2, 2, 2)′, σ 2
X = 1, β = (2, 2, 2)′, and ψ2 = σ 2 = 1. Since we

consider a deterministic design matrix setting, xi j is generated once for each i ∈ U ,
and then held fixed over all Monte Carlo iterations. The random components z j and
ei j are drawn from their respective distributions in each iteration individually. The
objective is to estimate the domain mean of Y as given in (12) based on S. For the
sample observations, we simulate erroneous covariate observations in the sense that
only x̃i j = xi j + di j is observed for all i ∈ S rather than xi j . Regarding the covariate
measurement error vector di j = (d1i j , d

2
i j , d

3
i j ), we once again follow the deterministic

design matrix setting. Thus, we generate di j once for each i ∈ U , and then held fixed
over all Monte Carlo iterations. However, we implement four different scenarios with
respect to di j to evaluate the benefits of min-max robustification under different data
constellations. For j = 1, . . . ,m, i = 1, . . . , N j , the scenarios are

• Scenario 1: no measurement errors di j = 01×3.

• Scenario 2: weakly correlated symmetric measurement errors di j
i id∼ N (03,


[2]
D ).

• Scenario3: strongly correlated symmetricmeasurement errorsdi j
i id∼ N (03,


[3]
D ).

• Scenario 4: weakly correlated asymmetric measurement errors di j
i id∼ F(03).

Here, 
[2]
D and 


[3]
D are scenario-specific covariance matrices that are given by



[2]
D =

⎛
⎝0.500 0.051 0.091
0.051 0.500 0.059
0.091 0.059 0.500

⎞
⎠ , 


[3]
D =

⎛
⎝0.500 0.267 0.234
0.267 0.500 0.290
0.234 0.290 0.500

⎞
⎠

Further, F(03) represents some distribution with expectation zero. For scenario 4, a
given measurement error realization dki j ∈ di j follows a transformed χ2-distribution
by setting

dki j = 0.5zki j − z̄, zki j
i id∼ χ2(1.2), z̄ = 1

3n

m∑
j=1

∑
i∈S j

3∑
k=1

0.5zki j , k = 1, 2, 3.

Under each setting, we consider the following prediction and estimation methods:

• EBLUP/ML: empirical best linear unbiased predictor under the basic LMM, ML
estimation (Pinheiro and Bates 2000).

• L1.REBP/L1.ML: REBP under the robust LMM, �1-regularized ML estimation.
• L2.REBP/L2.ML: REBP under the robust LMM, �22-regularized ML estimation.
• EN.REBP/EN.ML: REBP under the robust LMM, Elastic Net-regularized ML
estimation.
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We use several performance measures for the evaluation of domain mean prediction:

Bias(μ̂) = 1

mR

∑m
j=1

∑R
r=1

(
μ̂

(r)
j − Ȳ (r)

j

)
, MSE(μ̂) = 1

mR

∑m
j=1

∑R
r=1

(
μ̂

(r)
j − Ȳ (r)

j

)2
,

RBias(μ̂) = 1

mR

∑m
j=1

∑R
r=1

μ̂
(r)
j − Ȳ (r)

j

R−1∑R
r=1 Ȳ

(r)
j

, RRMSE(μ̂) = 1

mR

∑m
j=1

∑R
r=1

√(
μ̂

(r)
j − Ȳ (r)

j

)2

R−1∑R
r=1 Ȳ

(r)
j

.

For model parameter estimation, let k = 1, . . . , p + q∗ + 1 be the index of all
model parameters. For each θ̂k ∈ θ̂ , we consider the following performance measures:

Bias(θ̂k) = 1

R

R∑
r=1

(
θ̂

(r)
k − θk

)
, MSE(θ̂k) = 1

R

R∑
r=1

(
θ̂

(r)
k − θk

)2
.

Regarding MSE estimation, define Mean(P̂MSE(μ̂)) = (mR)−1∑m
j=1
∑R

r=1 P̂MSE

(μ̂
(r)
j ). We look at the relative bias as well as the coefficient of variation (CV):

RBias
(
P̂MSE(μ̂)

)
= 1

mR

m∑
j=1

R∑
r=1

P̂MSE(μ̂
(r)
j ) − MSE

(
μ̂
)

MSE
(
μ̂
) ,

CV
(
P̂MSE(μ̂)

)
=

√
(mR)−1

∑m
j=1
∑R

r=1

(
P̂MSE(μ̂

(r)
j ) − Mean(P̂MSE(μ̂))

)2
Mean(P̂MSE(μ̂))

We use the R package glmnet for the optimization problem (17) to obtain fixed effect
estimates. The tuning of the regularization parameters required for the optimization
problem (17) is performed via standard cross validation using a parameter grid of 1000
candidate values. Further, we use the R package nloptr for the maximum likelihood
problem (18) to obtain variance parameter estimates.

5.2 Results

We start with the results for domain mean prediction. They are summarized in Table
1 and further visualized in Fig. 1. In the latter, the densities of (μ̂

(r)
j − Ȳ (r)

j )/Ȳ (r)
j are

plotted for the EBLUP and the L2.REBP. From Table 1, it can be seen that in Scenario
1 (absence of measurement errors) the unregularized EBLUP and the regularized
predictors have very similar performance. This is due to the fact that the optimal
regularization parameter found by cross validation is very close to zero in the absence
of measurement errors. A different picture arises in the presence of measurement
errors, thus in Scenario 2 to Scenario 4. Here, the regularized predictors are much
more efficient than the unreguarized EBLUP.

The efficiency advantage in terms of the MSE ranges from 37% to 47%. Observe
that the advantage through min–max robustification is even evident for asymmetric
errors. Thus underlines the theoretical result that we do not require any distribution
assumptions on the error. Another interesting aspect is that min-max robustification
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Table 1 Simulation results of domain mean prediction

Predictor Scenario MSE RRMSE Bias RBias

EBLUP 1 0.16902 0.03428 0.00334 0.00028

L1.REBP 1 0.16857 0.03423 − 0.01145 − 0.00095

L2.REBP 1 0.16856 0.03423 − 0.01084 − 0.00090

EN.REBP 1 0.16857 0.03423 − 0.01119 − 0.00093

EBLUP 2 1.74700 0.11020 0.06182 0.00515

L1.REBP 2 0.94744 0.08115 − 0.53693 − 0.04477

L2.REBP 2 0.94211 0.08092 − 0.53179 − 0.04434

EN.REBP 2 0.94477 0.08104 − 0.53436 − 0.04455

EBLUP 3 2.03764 0.11901 − 0.18649 − 0.01555

L1.REBP 3 1.29266 0.09479 − 0.75264 − 0.06275

L2.REBP 3 1.28384 0.09447 − 0.74665 − 0.06225

EN.REBP 3 1.28824 0.09463 − 0.74964 − 0.06250

EBLUP 4 1.64817 0.10704 0.09823 0.00819

L1.REBP 4 0.87170 0.07784 − 0.47170 − 0.03933

L2.REBP 4 0.86729 0.07764 − 0.46687 − 0.03892

EN.REBP 4 0.86949 0.07774 − 0.46928 − 0.03913

leads to a bias in domain mean prediction. In general, this was expected, since it is
well-known that regularization introduces bias to model parameter estimation (Hoerl
and Kennard 1970). However, by looking at Fig. 1, we see that the bias increases in the
presence of measurement errors. This is due to the fact that the optimal regularization
parameter found by cross validation is larger in Scenario 2 to 4 compared to Scenario 1.
This is an important aspect, as it implies that cross validation is sensible with respect
to measurement errors. The robustness argument provided in Theorem 1 relies on
the assumption that λ1, . . . , λd is chosen sufficiently high. Although in practice, we
never have a guarantee that the assumption is satisfied, this observation suggests that
cross validation is capable of finding λ1, . . . , λd that at least approximate the level of
uncertainty in X̃.

We continue with the results for model parameter estimation. They are summarized
in Table 2 and further visualized in Fig. 2. For Table 2, note that since β1 = β2 = β3 =
2, we pool the estimates β̂1, β̂2, β̂3 for the calculation of the performance measures
and summarize the results into the columns MSE(β) and Bias(β). For the variance
parameters, we proceed accordingly. Since σ 2 = ψ2 = 1, we pool the estimates and
summarize the results into the columns MSE(η) and Bias(η). Likewise, in Fig. 2, the
variance parameter deviation η̂

(r)
k − ηk is plotted for all considered methods and both

parameters simultaneously. With respect to β-estimation, the unregularized approach
is slightly more efficient that the regularized methods for Scenario 1. This is because
regularization introduces bias to the estimates, as pointed out by Hoerl and Kennard
(1970). In the presence of measurement errors, min-max robustification obtains much
more efficient results. The advantage ranges from 36 to 72%. We further see that the
additional noise in the covariate data affects the unregularized approach considerably,
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Fig. 1 Relative deviation of domain mean prediction for EBLUP and L2.REBLUP

which leads to a negative bias. Regularization, on the other hand, manages to reduce
the bias in this setting as the estimates are less influenced by the contamination. For
η-estimation, the benefits of min–max robustification are also visible. We see that
the variance parameter estimates based on the unregularized β-estimates are severly
biased upwards. This suggests that the additional noise in the design matrix is falsely
interpreted as increased error term variance σ 2. The results based on the robust β-
estimates are less biased. By looking at Fig. 2, it further becomes evident thatmin–max
robustification allows for stable variance parameter estimates. The overall spread of
the estimates is muchmore narrow than for the unregularized approach. In terms of the
MSE, the advantage of regularized estimation over unregularized estimation ranges
from 15 to 31%.

We finally look at the results for (pessimistic) MSE estimation. They are presented
in Table 3. For the absence of measurement errors, the resulting estimates are approx-
imately unbiased. This makes sense given the fact that the optimal regularization
parameter found by cross validation on correctly observed data is close to zero. In
this setting, the modified Jackknife procedure summarized in Algorithm 2 basically
reduces to a standard Jackknife, which is known to be suitable for MSE estimation in
mixed models (Jiang et al. 2002). In Scenario 2 to 4, the proposed method leads to
biased estimates of the true MSE. The relative overestimation ranges from 68 to 90%.
However, this was expected in light of the theoretical results from Chapter 3. The
obtained estimates are based on the MSE bounds (28), (30), and (32). These bounds
were used in order to find upper limits of the true MSE given the fact that covari-
ate observations are contaminated by unknown errors. If the bounds are plugged into
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Table 2 Simulation results for model parameter estimation

Estimator Scenario MSE(β) Bias(β) MSE(η) Bias(η)

EBLUP 1 0.0019 0.0001 0.0166 − 0.0086

L1.REBP 1 0.0022 − 0.0133 0.0216 − 0.0046

L2.REBP 1 0.0021 − 0.0126 0.0216 − 0.0047

EN.REBP 1 0.0022 − 0.0130 0.0216 − 0.0046

EBLUP 2 0.0454 − 0.1852 22.1121 3.8628

L1.REBP 2 0.0240 − 0.1213 18.8294 2.8012

L2.REBP 2 0.0236 − 0.1201 18.8518 2.8030

EN.REBP 2 0.0238 − 0.1207 18.8406 2.8021

EBLUP 3 0.1364 − 0.3291 49.3853 6.1500

L1.REBP 3 0.0391 − 0.1594 34.0506 3.8542

L2.REBP 3 0.0385 − 0.1581 34.0981 3.8571

EN.REBP 3 0.0388 − 0.1587 34.0743 3.8557

EBLUP 4 0.0412 − 0.1615 19.2715 3.5224

L1.REBP 4 0.0266 − 0.1099 16.3922 2.5893

L2.REBP 4 0.0263 − 0.1088 16.4106 2.5909

EN.REBP 4 0.0264 − 0.1093 16.4013 2.5901
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Fig. 2 Deviation of variance parameter estimation

Algorithm 2, the resulting estimator (33) will always overestimate the true MSE for
λ1, . . . , λd chosen appropriately large. This is due to the nature of min-max robusti-
fication characterized in Proposition 1. It introduces design matrix perturbations that
are maximal with respect to the underlying uncertainty set. Thus, the obtained MSE
estimates are based on the premise that the measurement error associated with a given
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Table 3 Simulation results for
MSE estimation

Predictor Scenario Mean RBias CV

L1.REBP 1 0.16891 0.00202 0.05216

L2.REBP 1 0.16908 0.00309 0.05454

EN.REBP 1 0.16591 0.01577 0.07066

L1.REBP 2 1.75497 0.85233 1.09438

L2.REBP 2 1.75705 0.86500 1.09444

EN.REBP 2 1.75255 0.85501 1.09657

L1.REBP 3 2.17723 0.68429 1.13312

L2.REBP 3 2.18005 0.69807 1.13322

EN.REBP 3 2.17545 0.68869 1.13483

L1.REBP 4 1.64999 0.89284 1.06127

L2.REBP 4 1.65184 0.90460 1.06130

EN.REBP 4 1.64736 0.89464 1.06357

prediction is potentially maximal with respect to U. If the distribution of the covariate
measurement errors would be known, then it would be possible to find more accu-
rate MSE bounds. See Loh and Wainwright (2012) for a corresponding theoretical
analysis. However, we do not consider this case here, as our main focus is to achieve
robustness without knowledge of the measurement error.

6 Conclusion

The presented paper addressed the connection between regularization and min-max
robustification for linear mixed models in the presence of unobserved covariate
measurement errors. It was demonstrated that min-max robustification represents a
powerful tool to obtain reliable model parameter estimates and predictions when the
data basis is contaminated by unknown errors. We showed that this approach to robust
estimation is equivalent to regularized model parameter estimation for a broad range
of penalties. These insights were subsequently used to construct a robust version of
the basic LMM to perform regression analysis on contaminated data sets. We derived
robust best predictors under the model and presented a novel Jackknife algorithm
for conservative mean squared error estimation with respect to response predictions.
The methodology allows for reliable uncertainty measurement and does not require
any distribution assumptions regarding the error. In addition to that, we conducted an
asymptotic analysis and proved that min-max robustification allows for consistency
in model parameter estimation.

The theoretical findings of our study shed a new light on regularized regression in
future research. The proposed min-max robustification marks a very attractive addi-
tion to big data analysis, where measurement errors tend to be uncontrollable. Indeed,
regularized regression is already well-established tools for corresponding applica-
tions. However, standard applications are (i) high-dimensional inference, (ii) variable
selection, and (iii) dealing with multicollinearity. With the presented equivalence, reg-
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ularized regression has novel legitimacy in these contexts. Nevertheless, our results
further suggest that it is also beneficial for standard applications. The methodology
introduces an alternative concept of robustness that is relatively new to statistics.
Accounting for general data uncertainty of a givenmagnitude (min–max robust) rather
than measurement errors of a given distribution (min–min robust) marks a different
paradigm that can enhance robust statistics in future applications. By the virtue of these
properties, regularized regression can obtain reliable results for instance in survey anal-
ysis when sampled individuals provide inaccurate information, or in official statistics
when indicators are based on estimates. Another big advantage of our method is its
simplicity. In Theorem 1, we establish that regularized regression and min-max robus-
tification are equivalent under the considered setting. This implies that we can obtain
min–max robust estimation results by using well-known standard software packages,
such as glmnet. Accordingly, min–max robustification can be broadly applied and is
computationally efficient even for large data sets.

Nevertheless, there is still demand for future research. In Sect. 2.1, it was stated
that the nature of the robustification effect is determined by the underlying uncertainty
set, which is again determined by the regularization the researcher chooses. It is likely
that in practice, there are situations where one regularization works better than the
other, depending on the underlying data contamination. As of now, it remains an open
question how an optimal regularization could be determined when the measurement
errors are completely unknown.
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