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Abstract
The information dynamics in finance and insurance applications is usually modelled
by a filtration. This paper looks at situations where information restrictions apply
so that the information dynamics may become non-monotone. A fundamental tool
for calculating and managing risks in finance and insurance are martingale repre-
sentations. We present a general theory that extends classical martingale representa-
tions to non-monotone information generated by marked point processes. The central
idea is to focus only on those properties that martingales and compensators show
on infinitesimally short intervals. While classical martingale representations describe
innovations only, our representations have an additional symmetric counterpart that
quantifies the effect of information loss. We exemplify the results with examples from
life insurance and credit risk.

Keywords Credit risk modelling · Life insurance modelling · Information
restrictions · Optional projections · Infinitesimal martingale representations

Mathematics Subject Classification (2010) 60G48 · 91G05 · 91G40

JEL Classification C02 · G12 · G24

1 Introduction

The value at time t ∈ [0, T ] of a financial claim ξ ∈ L1(�,A,P ) at time T ∈ (0,∞)

is commonly calculated by

B(t)EQ

[
ξ

B(T )

∣∣∣∣Ft

]
, (1.1)

where B is the value process of a risk-free asset, (Ft )t≥0 is a filtration that describes
the available information at each time t ≥ 0, and Q is some equivalent measure.
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For studying the time dynamics of the value process, we can exploit the fact that
t �→ EQ[ξ/B(T )|Ft ] is always a martingale.

In this paper, we suppose that information restrictions apply and replace the filtra-
tion (Ft )t≥0 by a family of sub-sigma-algebras (Gt )t≥0 that may be non-monotone,
i.e., we do not assume that (Gt )t≥0 is a filtration. We focus on modelling frameworks
where (Gt )t≥0 is generated by a marked point process, because this allows us to cal-
culate martingale representations explicitly. Our approach seems to work also in more
general settings, but a general theory is left to future research.

Information restrictions can be motivated by legal restrictions, data privacy efforts,
information summarisation or model simplifications. An example for a legal informa-
tion restriction is the General Data Protection Regulation 2016/679 of the European
Union, which includes in Article 17 a so-called ‘right to erasure’, causing possible
information loss.

Example 1.1 Consider life insurance contracts that are evaluated by using big data.
Data from activity trackers, social media, etc., can improve individual forecasts of
the mortality and morbidity of insured persons. By exercising the ‘right to erasure’
according to the General Data Protection Regulation of the European Union, the pol-
icyholder may ask the insurer to delete parts of the health-related data at discretion.
Moreover, data providers might implement self-imposed information restrictions for
data privacy reasons. For example, users of Google products can opt for an auto-
delete of location history and activity data after a fixed time limit. As a result, the
evaluation of an insurance liability ξ according to (1.1) will be restricted to sub-
sigma-algebras (Gt )t≥0 that are non-monotone in t due to data deletions.

Examples of information summarisation can be found in Norberg [22], where sum-
marised life insurance values (retrospective and prospective reserves) are defined that
encompass non-monotone information. A popular model simplification is Markovian
modelling even when the empirical data does not fully support the Markov assump-
tion.

Example 1.2 We consider a credit rating process. In the Jarrow–Lando–Turnbull
model, the filtration (Ft )t≥0 is generated by a finite-state-space Markov chain (Rt )t≥0
that represents credit ratings; cf. Jarrow et al. [15]. The Markov property makes it
possible to equivalently replace Ft in (1.1) by the sub-sigma-algebra Gt := σ(Rt ).
The Markov assumption can be motivated by the theoretical idea that a credit rating
should fully describe the current risk profile of a prospective debtor so that historical
ratings can be ignored. However, empirical data does not always support the Markov
property, so that EQ[ξ/B(T )|Gt ] may in fact differ from EQ[ξ/B(T )|Ft ]; cf. Lando
and Skodeberg [17]. The information dynamics of Gt = σ(Rt ) is non-monotone in t .

Non-monotone information structures can also be found in Pardoux and Peng [24]
and Tang and Wu [27], but in these papers, specific independence assumptions make
it possible to go back to filtrations and work with classical martingale representations.

From now on, we skip the subscript Q in (1.1) and all related expectations. De-
pending on the application, we interpret P either as the real-world measure or as a
risk-neutral measure.
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When we replace the filtration (Ft )t≥0 in (1.1) by some non-monotone informa-
tion (Gt )t≥0, all the powerful tools from martingale theory for studying the time dy-
namics of (1.1) are not available any more. In order to fill that gap, this paper derives
general representations of the form

E[ξ |Gt ] − E[ξ |G0] =
∑
I∈N

∫
(0,t]×EI

GI (u−, u, e) (μI − νI )
(
d(u, e)

)

+
∑
I∈N

∫
(0,t]×EI

GI (u,u, e) (ρI − μI )
(
d(u, e)

)
, t ≥ 0,

(1.2)

where ξ is any integrable random variable, (Gt )t≥0 is a non-monotone family of
sigma-algebras generated by an extended marked point process that involves infor-
mation deletions, (μI )I∈N is a set of counting measures that uniquely corresponds
to the extended marked point process, (νI )I∈N and (ρI )I∈N are infinitesimal for-
ward and backward compensators of (μI )I∈N , and the integrands GI(u−, u, e) and
GI (u,u, e) are adapted to the information at time u− and time u, respectively. In
case that (Gt )t≥0 is increasing, i.e., it is a filtration, the second line in (1.2) is zero
and the first line conforms with classical martingale representations. The central idea
in this paper is to focus on those properties only that martingales and compensators
show on infinitesimally small intervals. We call this the ‘infinitesimal approach’. In
principle, the infinitesimal approach is not restricted to point process frameworks,
but a fully general theory is beyond the scope of this paper. We further extend our
representation results to processes of the form

t �→ E[Xt |Gt ], t ≥ 0, (1.3)

where (Xt )t≥0 is a suitably integrable càdlàg process. In this case, an additional drift
term appears on the right-hand side of (1.2).

Martingale representations have various applications in finance and insurance, and
this is in particular true for marked point process frameworks:

– If a financial or insurance claim is hedgeable, then explicit hedges can be derived
from martingale representations; see e.g. Norberg [23] and Last and Penrose [18].

– Martingale representations are a central tool for constructing and solving back-
ward stochastic differential equations (BSDEs); see e.g. Cohen and Elliott [6], Ban-
dini [1] and Confortola [8]. Many optimal control problems in finance and insur-
ance correspond to a BSDE problem, see e.g. Cohen and Elliott [7] and Delong [11,
Chap. 1].

– Martingale representations can serve as additive risk factor decompositions; see
Schilling et al. [26]. An insurer needs to additively decompose the surplus from a
policy or an insurance portfolio for regulatory reasons; see e.g. Møller and Stef-
fensen [20, Sect. 6]. Additive risk factor decompositions are also used in finance;
see e.g. Rosen and Saunders [25].

In all three applications, infinitesimal martingale representations according to (1.2)
allow us to include information restrictions into the modelling. We study later a hedg-
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ing application for the model in Example 1.2. We shall see that estimation and cal-
culation of hedging strategies under inappropriate Markov assumptions may uninten-
tionally replace classical martingales by infinitesimal forward martingales (the first
line on the right-hand side of (1.2)), and then the implied hedging error is just the
corresponding infinitesimal backward martingale part (the second line in (1.2)). The
application of infinitesimal martingale representations in BSDE theory is exemplarily
discussed for Example 1.1. We shall see that the integrands in (1.2) correspond to the
so-called sum at risk, which is a central quantity in life insurance risk management.
In Example 1.1, we also briefly discuss risk factor decompositions. Information dele-
tions upon request for data privacy reasons can provoke arbitrage opportunities, and
these can be split off as infinitesimal backward martingales, which is important for
dealing with them.

The representation (1.2) implies that t �→ E[ξ |Gt ] has a (unique) semimartingale
modification. More generally, we show that t �→ E[Xt |Gt ] has a (unique) semimartin-
gale modification whenever X is a semimartingale with integrable variation on com-
pacts. The uniqueness and the semimartingale property are crucial in applications
where the time dynamics need to be studied. For example, in life insurance, the dif-
ferential dE[Xt |Gt ] might describe the insurer’s current surplus or loss at time t ;
cf. Norberg [21, 22].

The study of jump process martingales and their representations largely dates back
to the 1970s; see e.g. Jacod [14], Boel et al. [2], Chou and Meyer [3], Davis [10] and
Elliott [13]. Since then, extensions have been developed in different directions; see
e.g. Last and Penrose [18] and Cohen [5]. All these papers stay within the framework
of filtrations, i.e., the information dynamics is monotone. The infinitesimal approach
we introduce here allows us to go beyond the framework of filtrations. An elegant
way to derive the classical martingale representation is a bare-hands approach that
starts with the Chou and Meyer construction of the martingale representation for a
single jump process, followed by Elliott’s extension to the case of ordered jumps. In
this paper, we also use a bare-hands approach, but the classical stopping time concept
is not applicable in our non-monotone information setting, so that we need to leave
the common paths.

The paper is organised as follows. In Sect. 2, we explain the basic concepts of
the infinitesimal approach but avoid technicalities. In Sect. 3, we add technical as-
sumptions and narrow the modelling framework down to pure jump process drivers.
Section 4 verifies that (1.2) is indeed a well-defined process. In Sect. 5, we identify
infinitesimal compensators for a large class of jump processes. The central result (1.2)
is proved in Sect. 6 and extended to processes of the form (1.3) in Sect. 7. In Sect. 8,
we take a closer look at Examples 1.1 and 1.2.

2 The infinitesimal approach

The central idea of the infinitesimal approach is to focus only on those properties that
martingales and compensators show on infinitesimally short intervals. This section
explains the basic ideas under the general assumption that all limits in this sec-
tion actually exist. Only from the next section on, we narrow the framework down
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to pure jump process drivers, which is sufficient but not necessary to guarantee the
existence of the limits. So in general, the infinitesimal approach is not restricted to
jump process frameworks, but it is beyond the scope of this paper to find general
conditions for the existence of the limits here.

Let (�,A,P ) be a complete probability space and let Z ⊆ A be the family of
its nullsets. Let F = (Ft )t≥0 be a complete and right-continuous filtration on this
probability space. We interpret Ft as the observable information on the time interval
[0, t]. Suppose that certain pieces of information expire after a finite holding time. By
subtracting from Ft all pieces of information that have expired until time t , we obtain
the admissible information at time t . We assume that this admissible information is
represented by a family G = (Gt )t≥0 of complete sigma-algebras

Gt ⊆ Ft , t ≥ 0,

which may be non-monotone in t .
A process X is adapted to the filtration F if Xt is Ft -measurable for each t ≥ 0.

Likewise we say that a process X is adapted to the possibly non-monotone informa-
tion G if Xt is Gt -measurable for each t ≥ 0. In addition to this classical concept, we
also take an incremental perspective.

Definition 2.1 We call a process X incrementally adapted to G if the increment
Xt − Xs is σ(Gu,u ∈ (s, t])-measurable for any interval (s, t] ⊆ [0,∞).

In finance and insurance applications, we think of X as an aggregated cash flow
where the aggregated payments Xt − Xs on the interval (s, t] should depend only
on the admissible information on (s, t]. If G is a filtration, incremental adaptedness
is equivalent to classical adaptedness, but the two concepts differ for non-monotone
information.

An integrable process X is a martingale with respect to F if it is F-adapted and

E[Xt − Xs |Fs] = 0

almost surely for each 0 ≤ s ≤ t . Focusing on infinitesimally short intervals, in par-
ticular we have

lim
n→∞

∑
T t

n

E[Xtk+1 − Xtk |Ftk ] = 0 (2.1)

a.s. for each t ≥ 0, where (T t
n )n∈N is any increasing sequence (i.e., T t

n ⊆ T t
n+1 for all

n) of partitions 0 = t0 < t1 < · · · < tn = t of the interval [0, t] such that the mesh size
|T t

n | := max{tk − tk−1 : k = 1,2, . . .} tends to 0 for n → ∞. In the literature, we can
find for (2.1) the intuitive notation E[dXt |Ft−] = 0.

Definition 2.2 Let X be incrementally adapted to G. We say that X is an infinitesimal
forward/backward martingale (IF/IB-martingale) with respect to G if for each t ≥ 0
and any increasing sequence (T t

n )n∈N of partitions of [0, t] with limn→∞ |T t
n | = 0,
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we have

lim
n→∞

∑
T t

n

E[Xtk+1 − Xtk |Gtk ] = 0

or

lim
n→∞

∑
T t

n

E[Xtk+1 − Xtk |Gtk+1 ] = 0,

respectively, assuming that the expectations and limits exist.

Suppose now that X is an F-adapted and integrable counting process. The so-
called compensator C of X is the unique F-predictable finite-variation process start-
ing from C0 = 0 such that X − C is an F-martingale. In particular, C satisfies the
equation

Ct = lim
n→∞

∑
T t

n

E[Xtk+1 − Xtk |Ftk ] (2.2)

almost surely for each t ≥ 0; see Karr [16, Theorem 2.17]. The intuitive notation for
(2.2) is E[dXt |Ft−] = dCt . Furthermore, one can show that the F-predictability of C

implies that

lim
n→∞

∑
T t

n

E[Ctk+1 − Ctk |Ftk ] = Ct − C0 (2.3)

almost surely for each t ≥ 0, intuitively written as E[dCt |Ft−] = dCt . The latter fact
motivates the following definition.

Definition 2.3 We call X infinitesimally forward/backward predictable (IF/IB-pre-
dictable) with respect to G if for each t ≥ 0 and any increasing sequence (T t

n )n∈N of
partitions of [0, t] with limn→∞ |T t

n | = 0, we almost surely have

lim
n→∞

∑
T t

n

E[Xtk+1 − Xtk |Gtk ] = Xt − X0

or

lim
n→∞

∑
T t

n

E[Xtk+1 − Xtk |Gtk+1 ] = Xt − X0,

respectively, assuming that the expectations and limits exist.

By combining (2.2) and (2.3), we obtain

lim
n→∞

∑
T t

n

E[(Xtk+1 − Ctk+1) − (Xtk − Ctk )|Ftk ] = 0

almost surely for each t ≥ 0, which means that the process X −C is an IF-martingale
with respect to F according to Definition 2.2.
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Definition 2.4 Let X be incrementally adapted to G. We say that a process C is
an infinitesimal forward/backward compensator of X (IF/IB-compensator) with re-
spect to G if C is incrementally adapted to G and IF/IB-predictable and X − C is an
IF/IB-martingale with respect to G, respectively.

Let G[tk,tk+1] := σ(Gu,u ∈ [tk, tk+1]) for any tk+1 ≥ tk ≥ 0 and ξ ∈ L1(�,A,P ).
Then the construction

E[ξ |Gt ] − E[ξ |G0] = lim
n→∞

∑
T t

n

(E[ξ |Gtk+1 ] − E[ξ |Gtk ])

= lim
n→∞

∑
T t

n

(E[ξ |G[tk,tk+1]] − E[ξ |Gtk ])

− lim
n→∞

∑
T t

n

(E[ξ |G[tk,tk+1]] − E[ξ |Gtk+1 ])

may yield a decomposition of the process t �→ E[ξ |Gt ] into the difference of an
IF-martingale and an IB-martingale, since

E
[
E[ξ |G[tk,tk+1]] − E[ξ |Gtk ]

∣∣Gtk

] = 0,

E
[
E[ξ |G[tk,tk+1]] − E[ξ |Gtk+1]

∣∣Gtk+1

] = 0.

Definition 2.5 We say that E[ξ |Gt ] − E[ξ |G0] = Ft − Bt , t ≥ 0, is an infinitesimal
martingale representation if F is an IF-martingale and B is an IB-martingale with
respect to G.

Suppose now that X describes a discounted claim process in a finance or insurance
application. Then we are typically interested in the process t �→ E[Xt |Ft ], which is
not necessarily well defined. If X is a càdlàg process whose suprema on compacts
have finite expectations, then there exists a unique càdlàg process XF, the so-called
optional projection of X with respect to F, such that

XF

t = E[Xt |Ft ]
almost surely for each t ≥ 0. We say here that a process is unique if it is unique up
to evanescence. We now expand the concept of optional projections to non-monotone
information.

Definition 2.6 Let X be an integrable càdlàg process. If there exists a unique càdlàg
process XG such that

XG

t = E[Xt |Gt ]

almost surely for each t ≥ 0, we call XG the optional projection of X with re-
spect to G.
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The optional projection XG can be decomposed to

E[Xt |Gt ] − E[X0|G0] = lim
n→∞

∑
T t

n

(E[Xtk+1 |Gtk+1 ] − E[Xtk |Gtk ])

= lim
n→∞

∑
T t

n

(E[Xtk |G[tk,tk+1]] − E[Xtk |Gtk ])

− lim
n→∞

∑
T t

n

(E[Xtk |G[tk ,tk+1]] − E[Xtk |Gtk+1 ])

+ lim
n→∞

∑
T t

n

E[Xtk+1 − Xtk |Gtk+1 ],

which may represent a sum of an IF-martingale, an IB-martingale and an IB-compen-
sator with respect to G. By switching the roles of tk and tk+1, we can obtain a similar
decomposition where the IB-compensator is replaced by an IF-compensator.

Definition 2.7 We call E[Xt |Gt ] − E[ξ |G0] = Ft − Bt + Ct , t ≥ 0, an infinitesimal
representation if F is an IF-martingale, B is an IB-martingale and C is either an
IB-compensator or an IF-compensator with respect to G.

As mentioned at the beginning of this section, we simply assumed so far that all
the limits discussed here indeed exist. In the next section, we focus on a marked point
process framework since this guarantees not only the existence of the limits, but also
allows us to calculate the limits explicitly.

3 Jump process framework

In the literature, we can find different approaches for defining a jump process frame-
work. One way is to start with a marked point process (τi, ζi)i∈N on (�,A,P ) with
some measurable mark space (E,E), i.e.,

– the mappings τi : (�,A) → ([0,∞],B([0,∞])), i ∈ N, are random times,
– the mappings ζi : (�,A) → (E,E), i ∈ N, are random marks.

Differently from the point process literature, we do not assume here that the random
times (τi)i∈N are increasing or ordered in any specific way. This gives us useful mod-
elling flexibility; see also the comments at the end of this section. Let E be a Polish
space and E := B(E) its Borel sigma-algebra. For the sake of a simple notation, we
moreover assume that � is a Polish space and A its Borel sigma-algebra. The lat-
ter assumption can actually be dropped by observing that all random activity in our
model comes from a marked point process that can be embedded into a Polish space.
We interpret each ζi as a piece of information that can be observed from time τi on.
As motivated in the introduction, we additionally assume that the information pieces
ζi are possibly deleted after a finite holding time. Therefore, we expand the marked
point process (τi, ζi)i∈N to (τi, ζi, σi)i∈N, where
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– the mappings σi : (�,A) → ([0,∞],B([0,∞])), i ∈ N, are random times such
that τi ≤ σi .

We interpret σi as the deletion time of information piece ζi . Note that the random
times (σi)i∈N are in general not ordered. For the sake of a more compact notation, we
work in the following with the equivalent sequence (Ti,Zi)i∈N defined as

T2i−1 := τi, T2i := σi, Z2i−1 := ζi, Z2i := ζi, i ∈N,

i.e., the random times T2i−1 with odd indices refer to innovations and the consec-
utive random times T2i with even indices are the corresponding deletion times. We
generally assume that

E

[ ∞∑
i=1

1{Ti≤t}
]

< ∞, t ≥ 0, (3.1)

which will ensure the existence of (infinitesimal) compensators. Condition (3.1) im-
plies that almost surely, there are at most finitely many random times on bounded
intervals. Moreover, we assume that

T2i−1(ω) < T2i (ω) for ω ∈ {T2i < ∞}, i ∈ N,

i.e., a new piece of information is not instantaneously deleted but is available for at
least a short amount of time. Based on the sequence (Ti,Zi)i∈N, we generate random
counting measures μI via

μI ([0, t] × B) := 1{t≥Ti=Tj : i,j∈I }∩{Ti 
=Tj : i∈I,j 
∈I }1{ZI ∈B}

for t ≥ 0, B ∈ EI and finite subsets I ⊆ N, where

EI := B(EI ), EI := E|I |, ZI := (Zi)i∈I .

If the different random times Ti never coincide, then we just need to consider
the counting measures μ{i}, i ∈ N, which describe separate arrivals of the ran-
dom times Ti and their marks Zi . But if random times can occur simultane-
ously, then we need the full scale of counting measures μI , I ⊆ N, |I | < ∞,
which cover all kinds of separate and joint events. For each I , the measures
{μI (·)(ω) : ω ∈ �} generated by their values on [0, t] × B form a random counting
measure on ([0,∞) × EI ,B([0,∞) × EI )), i.e.,

– for any fixed A ∈ B([0,∞) × EI ), the mapping ω �→ μI (A)(ω) is measurable
from (�,A) to (N0,B(N0)) with N0 := N0 ∪ {∞},

– for almost each ω ∈ �, the mapping A �→ μI (A)(ω) is a locally finite measure
on ([0,∞) × EI ,B([0,∞) × EI )).

The observable information at time t ≥ 0 is given by the complete filtration

Ft := σ({T2i−1 ≤ s < T2i} ∩ {Z2i ∈ B} : s ∈ [0, t],B ∈ E, i ∈N) ∨Z,
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which lets the random times Ti , i ∈ N, be stopping times. Here the symbol ∨ denotes
the sigma-algebra that is generated by the union of the involved sets. The admissible
information at time t ≥ 0 is given by the family of sub-sigma-algebras

Gt = σ({T2i−1 ≤ t < T2i} ∩ {Z2i ∈ B} : B ∈ E, i ∈ N) ∨Z.

The admissible information immediately before time t > 0 is given by the family of
sub-sigma-algebras

G−
t = σ({T2i−1 < t ≤ T2i} ∩ {Z2i ∈ B} : B ∈ E, i ∈ N) ∨Z.

Analogously to filtrations, we write G = (Gt )t≥0 and G
− = (G−

t )t≥0.

Remark 3.1 Recall that T2i−1 ≤ T2i , i ∈ N, is the only kind of order that we as-
sume to hold between the random times Ti , resulting from the natural assumption
τi ≤ σi , i ∈N. This fact is relevant when an ordering unintentionally reveals addi-
tional information. For example, if we have a model where the innovation times τi

are ordered, i.e., T1 < T3 < T5 < · · · , then Gt reveals among other things the exact
number of deletions that have happened until t . This can be an unwanted feature if
the number of past deletions is itself a non-admissible piece of information. In many
situations, we can avoid such an implied information effect by ordering the pairs
(T2i−1, T2i ) in a non-informative way.

Remark 3.2 Without loss of generality, suppose here that 0 
∈ E. We define an infinite-
dimensional process (
t )t≥0 by


t := (Z2i1{T2i−1≤t<T2i })i∈N.

Then, using the fact that the paths of (
t )t≥0 are componentwise càdlàg, the infor-
mation Gt and G−

t can be alternatively represented as

Gt = σ(
t ) ∨Z, t ≥ 0,

G−
t = σ(
t−) ∨Z, t > 0,

where the left limit 
t− is defined componentwise. However, G−
t is usually differ-

ent from the left set-limit Gt−, and the latter set-limit might not even exist. For
example, consider a model with only two jumps T1, T2 in finite time and a trivial
mark Z2 = const. It is not difficult to choose T1, T2 in such a way that the events
{T1 ≤ s < T2} and {T1 ≤ u < T2} are different for each s < u ≤ t . In this case,
lim infs↑t Gs = ∨

s<t

⋂
s<u<t Gu equals the completed trivial sigma-algebra, whereas

lim sups↑t Gs = ⋂
s<t

∨
s<u<t Gu equals G−

t .

4 Optional projections

In this section, we study existence and path properties of optional projections. Note
that this and all following sections generally assume that we are in the marked
point process framework of Sect. 3. Recall also our specific definition of G−

t .
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Theorem 4.1 Suppose that X = (Xt )t≥0 is a càdlàg process that satisfies

E

[
sup

0≤s≤t

|Xs |
]

< ∞, t ≥ 0. (4.1)

Then the optional projection XG according to Definition 2.6 exists, and we have
XG

t− = E[Xt−|G−
t ] almost surely for each t > 0. If X has integrable variation on

compacts, then XG has paths of finite variation on compacts.

It might be surprising here that XG is always a càdlàg process, but note that con-
dition (3.1) rules out clusters of jump times in our marked point process framework.
Before we turn to the proof of Theorem 4.1, we develop several auxiliary results. Let

N := {M ⊆ N : |M| < ∞},
M := {M ⊆ {1,3,5, . . .} : |M| < ∞}

be all finite subsets of the natural or the odd natural numbers, and define

RI := (
QI , (Zi)i∈I

)
, I ∈N ,

where QI := sup{t ≥ 0 : μI ([0, t] × EI ) = 0}.
Since � is a Polish space and A its Borel sigma-algebra, there exist regular con-

ditional probabilities P [ · |ZM ] and P [ · |ZM,RI ] on (�,A) for each M ∈ M and
I ∈ N . As the sets M and N are countable, all these conditional probabilities are
simultaneously unique up to a joint exception nullset. In this paper, the notation

PM,RI
[ · ] = P [ · |ZM,RI ]

refers to an arbitrary but fixed regular version of the conditional probability on the
right-hand side, and for any integrable random variable Z, we set

EM,RI
[Z] :=

∫
Z dPM,RI

,

i.e., EM,RI
[Z] is the specific version of the conditional expectation E[Z|ZM,RI ]

that we obtain by integrating Z with respect to the specific regular versions that we
picked for P [ · |ZM,RI ]. In case of I = ∅, we also use the short forms PM = PM,R∅
and EM = EM,R∅ since PM,R∅ is a version of P [ · |ZM ].

Moreover, with defining I − 1 := {i − 1 : i ∈ I }, the mappings

PM,RI =r [ · ] := P [ · |ZMI
= z,RI = r]∣∣

z=ZMI

,

MI := M \ (
I ∪ (I − 1)

)
, (4.2)

refer to arbitrary but fixed regular versions of the factorised conditional expectations
on the right-hand side, and for any integrable random variable Z, we define

EM,RI =r [Z] :=
∫

Z dPM,RI =r .



574 M.C. Christiansen

By reducing M down to MI , we leave out exactly those random variables in ZM that
are already covered by RI . Note that the mapping PM,RI =r [ · ]|r=RI

equals PM,RI
[ · ].

For M ∈M and t ≥ 0, we define the Gt -measurable sets

AM
t :=

⋂
i∈M

{Ti ≤ t < Ti+1} ∩
⋂
i 
∈M

(� \ {Ti ≤ t < Ti+1})

and corresponding G-adapted stochastic processes IM = (IMt )t≥0 via

I
M
t := 1AM

t
, t ≥ 0.

Because of the assumption (3.1), the paths of IM have finitely many jumps on com-
pacts only, so that they have left and right limits. Moreover, they are right-continuous
by construction, so that the processes IM are càdlàg. The left limits can be represented
as IMt− = 1AM

t− , where

AM
t− :=

⋂
i∈M

{Ti < t ≤ Ti+1} ∩
⋂
i 
∈M

(� \ {Ti < t ≤ Ti+1}).

Proposition 4.2 For any integrable random variable ξ and any sets M ∈ M and
I ∈N , we almost surely have

I
M
t E[ξ |Gt ∨ σ(RI )] = I

M
t

EM,RI
[ξIMt ]

EM,RI
[IMt ] ,

I
M
t−E[ξ |G−

t ∨ σ(RI )] = I
M
t−

EM,RI
[ξIMt−]

EM,RI
[IMt−] , (4.3)

with the convention that 0/0 := 0.

Note here that σ(RI ) equals the trivial sigma-algebra if I = ∅. Whenever we
have EM,RI

[IMt ] = 0 and EM,RI
[IMt−] = 0, we necessarily have EM,RI

[ξIMt ] = 0 and
EM,RI

[ξIMt−] = 0, respectively, so that the right-hand sides of (4.3) are well defined.

Proof of Proposition 4.2 The left-hand sides of (4.3) almost surely equal the condi-
tional expectations that one obtains when the families G and G

− of sigma-algebras
are replaced by their non-completed versions. Therefore, in the remaining proof, we
ignore the extension by Z in the definitions of G and G

−.
For each H ∈ σ(ZM), there exists a G ∈ Gt such that H ∩ AM

t = G∩ AM
t , and for

each G ∈ Gt , there exists an H ∈ σ(ZM) such that G ∩ AM
t = H ∩ AM

t . Thus

(
σ(ZM) ∨ σ(RI )

) ∩ AM
t = (

Gt ∨ σ(RI )
) ∩ AM

t ⊆ Gt ∨ σ(RI ), t ≥ 0. (4.4)

This implies that the random variable IMt
EM,RI

[ξIMt ]
EM,RI

[IMt ] is (Gt ∨ σ(RI ))-measurable, and

for each G ∈ Gt ∨ σ(RI ), we obtain
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E

[
1GI

M
t

EM,RI
[ξIMt ]

EM,RI
[IMt ]

]
= E

[
EM,RI

[
1H I

M
t

EM,RI
[ξIMt ]

EM,RI
[IMt ]

]]

= E
[
1H EM,RI

[ξIMt ]]
= E[1GI

M
t ξ ]

= E
[
1GI

M
t E[ξ |Gt ∨ σ(RI )]

]
,

i.e., the first equation in (4.3) holds. By replacing (4.4) by
(
σ(ZM) ∨ σ(RI )

) ∩ AM
t− = (

G−
t ∨ σ(RI )

) ∩ AM
t− ⊆ G−

t ∨ σ(RI ), t ≥ 0, (4.5)

we can analogously show that the second equation in (4.3) holds. �

Lemma 4.3 For each M ∈ M, I ∈ N , r ∈ [0,∞) × EI and each càdlàg process X

that satisfies condition (4.1), the stochastic processes

t �→ EM,RI
[Xt I

M
t ],

t �→ EM,RI =r [Xt I
M
t ]

have càdlàg paths. Moreover, their left limits can be obtained by replacing Xt I
M
t by

Xt−IMt−.

Proof Apply the dominated convergence theorem. �

Proposition 4.4 With the conventions 0/0 := 0 and 1/0 := ∞, we have for each
M ∈ M almost surely that

sup
t∈[0,∞)

I
M
t

EM [IMt ] < ∞.

Proof Let τ and σ be any two nonnegative random times such that τ ≤ σ . At first we
are going to show that

Z := sup
t∈[0,∞)

1{τ≤t<σ }
E[1{τ≤t<σ }] < ∞ (4.6)

almost surely. For each (t, s) ∈ [0,∞)2, we define the unbounded rectangles

A(t,s) := {(t ′, s′) : t ′ ≤ t, s < s′}
and the countably generated set

B :=
⋃

(t,s)∈β

A(t,s), β := {(t, s) ∈ Q
2+ : t < s,P [(τ, σ ) ∈ A(t,s)] = 0}.

Let ∂B and B◦ be the boundary and the interior of B . Any line of the form

Lx := {(x, x) + λ (1,−1) : λ ∈ R}
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intersects ∂B at most at one point, since for any two points y, y′ ∈ Lx with y 
= y′,
we either have y ∈ A◦

y′ or y′ ∈ A◦
y . Therefore the set

γ :=
( ⋃

x∈Q+
Lx

)
∩ ∂B ∩ {(t, s) ∈ [0,∞)2 : P [(τ, σ ) ∈ A(t,s)] = 0}

is countable, and

C :=
⋃

(t,s)∈γ

A(t,s)

is countably generated. The sets NB = {(τ, σ ) ∈ B} and NC = {(τ, σ ) ∈ C} are both
nullsets since they equal countable unions of nullsets.

Suppose now that Z(ω) = ∞ for an arbitrary but fixed ω ∈ �. We necessarily
have τ(ω) < σ(ω). Since t �→ E[1{τ≤t<σ }] is a càdlàg function, at least one of the
following statements is true:

(1) E[1{τ≤u<σ }] = 0 for some u ∈ (τ (ω), σ (ω)).
(2) E[1{τ<u≤σ }] = 0 for some u ∈ (τ (ω), σ (ω)).
(3) E[1{τ≤u<σ }] = 0 for u = τ(ω).
(4) E[1{τ<u≤σ }] = 0 for u = σ(ω).

In case (1), we have P [(τ, σ ) ∈ A(u,u)] = E[1{τ≤u<σ }] = 0 and (τ (ω), σ (ω)) is in
A◦

(u,u)
, so that we can conclude that ω ∈ NB .

In case (2), we can argue analogously to case (1), but need to replace the definition
of A(t,s) by {(t ′, s′) : t ′ < t, s ≤ s′} and define a corresponding nullset N ′

B . We obtain
that ω ∈ N ′

B .
In case (3), we have P [(τ, σ ) ∈ A(τ(ω),τ (ω))] = E[1{τ≤τ(ω)<σ }] = 0 as well

as (τ (ω), σ (ω)) ∈ A(τ(ω),τ (ω)) ⊆ B ∪ ∂B . If (τ (ω), σ (ω)) ∈ B , then ω ∈ NB . If
(τ (ω), σ (ω)) ∈ ∂B , then the whole line segment

{
θ
(
τ(ω), τ (ω)

) + (1 − θ)
(
τ(ω), σ (ω)

) : θ ∈ (0,1)
}

is in ∂B because of (τ (ω), τ (ω)) ∈ ∂B and the rectangular shape of the sets A(t,s).
On this line, there is at least one intersection with C, so that we can conclude that
ω ∈ NC .

In case (4), we can argue similarly to case (3), but need to replace the definition of
A(t,s) by {(t ′, s′) : t ′ < t, s ≤ s′} and define corresponding nullsets N ′

B and N ′
C .

All in all, we have P [Y = ∞] ≤ P [NB ∪ NC ∪ N ′
B ∪ N ′

C] = 0, i.e., (4.6) holds.
Now let M ∈ M be arbitrary but fixed and choose τ and σ as the random times

where I
M
t jumps from zero to one and jumps back to zero, respectively. Suppose

that PZM=z is a regular version of P [ · |ZM = z] with corresponding expectation
EZM=z[ · ]. Then from (4.6), we can conclude that

PZM=z

[
sup

t∈[0,∞)

I
M
t

EZM=z[IMt ] = ∞
]

= 0
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for each choice of z. Replacing both z by ZM , where we use the insertion rule for
conditional expectations for the inner z, and taking the unconditional expectation on
both sides of the equation, we end up with

P

[
sup

t∈[0,∞)

I
M
t

EZM
[IMt ] = ∞

]
= 0.

�

Proof of Theorem 4.1 Motivated by Proposition 4.2, we set

Yt :=
∑

M∈M
I
M
t

EM [Xt I
M
t ]

EM [IMt ] , t ≥ 0,

since this process almost surely equals XG
t for each t ≥ 0. Note that there are at most a

countable number of conditional expectations involved; so the corresponding regular
versions are simultaneously unique up to evanescence. For each compact interval
[0, t] and almost each ω ∈ �, the set

Mt (ω) := {M ∈ M : IMu (ω) = 1 for at least one u ∈ [0, t]} (4.7)

is finite due to the assumption (3.1). If EM [IMt ](ω) 
= 0, Lemma 4.3 yields that

lim
ε↓0

Yt+ε(ω) =
∑

M∈Mt+1(ω)

lim
ε↓0

I
M
t+ε(ω)

EM [Xt+εI
M
t+ε](ω)

EM [IMt+ε](ω)

=
∑

M∈Mt+1(ω)

I
M
t (ω)

EM [Xt I
M
t ](ω)

EM [IMt ](ω)

= Yt (ω). (4.8)

If EM [IMt ](ω) = 0, Proposition 4.4 implies that IMt = 0 for almost all ω ∈ �, where
the exception nullset does not depend on the choice of t . So (4.8) is almost surely true
on [0,∞), since I

M
t (ω) = 0 implies that there is a whole interval [t, t + εω) where

the right-continuous jump path s �→ I
M
s (ω) is constantly zero. Similarly, we can show

that the process Y almost surely has left limits, which are of the form

Yt− =
∑

M∈M
I
M
t−

EM [Xt−IMt−]
EM [IMt−] , t > 0.

According to Proposition 4.2, Yt− almost surely equals E[Xt−|G−
t ]. As càdlàg

processes are uniquely defined by their values on countable dense subsets of the
time line, our choice for XG is almost surely the only possible modification of
(E[Xt |Gt ])t≥0.
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The variation of Y on [0, t] is bounded by

∑
M∈Mt

sup
T t

∑
T t

∣∣∣∣IMtk+1

EM [Xtk+1I
M
tk+1

]
EM [IMtk+1

] − I
M
tk

EM [Xtk I
M
tk

]
EM [IMtk ]

∣∣∣∣

≤
∑

M∈Mt

sup
T t

∑
T t

(∣∣∣∣
I
M
tk+1

EM [IMtk+1
] − I

M
tk

EM [IMtk ]
∣∣∣∣EM [|Xtk+1 |IMtk+1

]

+ I
M
tk

EM [IMtk ]EM [|Xtk+1I
M
tk+1

− Xtk I
M
tk

|]
)

,

where T t is any partition of [0, t]. As CM(ω) := supt I
M
t (ω)/EM [IMt ](ω) is finite for

almost each ω ∈ � (see Proposition 4.4) and the variation of LM(s) := EM [IMs ] is
bounded by 2, the latter bound is dominated by

∑
M∈Mt

((
2CM +

∫
[0,t]

I
M
s

1

LM(s)LM(s−)
d|LM |(s)

)
EM

[
sup

0≤s≤t

|Xs |
]

+ CMEM

[
2 sup

0≤s≤t

|Xs | +
∫

[0,t]
I
M
s d|X|s

])

≤
∑

M∈Mt

(
(2CM + 2 t C2

M)EM

[∫
[0,t]

d|X|s
]

+ 3CMEM

[∫
[0,t]

d|X|s
])

,

which is finite for almost each ω ∈ � since X has integrable variation on compacts
and Mt (ω) is finite. �

5 Infinitesimal compensators

In this section, we derive infinitesimal compensators for a large class of incrementally
adapted jump processes, in particular for the counting processes t �→ μI ([0, t] × B)

for any I ∈ N and B ∈ EI . Under the conventions 0/0 := 0 and (4.2), let

νI ([0, t] × B) :=
∑

M∈M

∫
(0,t]×B

I
M
u−

PM,RI =(u,e)[AM
u−]

PM [AM
u−] P

RI

M

(
d(u, e)

)
,

ρI ([0, t] × B) :=
∑

M∈M

∫
(0,t]×B

I
M
u

PM,RI =(u,e)[AM
u ]

PM [AM
u ] P

RI

M

(
d(u, e)

)

for t ≥ 0, B ∈ EI , I ∈ N .

Proposition 5.1 For each I ∈ N, the mappings νI and ρI can be uniquely extended
to random measures on ([0,∞) × EI ,B([0,∞) × EI )).
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The proof of the proposition is given below. In the following, we use the notation

F • κ
(
(0, t] × B

) :=
∫

(0,t]×B

F(u, e) κ
(
d(u, e)

)

for random measures κ and integrable random functions F .

Theorem 5.2 Suppose that the mappings (t, e,ω) �→ FI (t, e)(ω), I ∈ N , are jointly
measurable and satisfy

E

[∫
(0,t]×EI

|FI (u, e)|μI

(
d(u, e)

)]
< ∞. (5.1)

If FI (t, e) is G−
t -measurable for each (t, e), then for each B ∈ EI , the jump process

t �→ FI • μI

(
(0, t] × B

)

has the IF-compensator

t �→ FI • νI

(
(0, t] × B

)
.

If FI (t, e) is Gt -measurable for each (t, e), then for each B ∈ EI , the jump process

t �→ FI • μI

(
(0, t] × B

)

has the IB-compensator

t �→ FI • ρI

(
(0, t] × B

)
.

By choosing FI ≡ 1, Theorem 5.2 yields in particular that νI is the IF-compensator
and ρI is the IB-compensator of the counting process μI . In intuitive notation, we
write this fact as

E[μI (dt × B)|G−
t ] = νI (dt × B), B ∈ EI ,

E[μI (dt × B)|Gt ] = ρI (dt × B), B ∈ EI .

The proofs of Proposition 5.1 and Theorem 5.2 follow now in several steps.

Lemma 5.3 For each M ∈ M and t ≥ 0, we almost surely have

∑
I∈N

∫
[0,t]×EI

P
RI

M

(
d(u, e)

)
< ∞. (5.2)

Proof For each t ≥ 0 and M ∈M, (3.1) implies that

EM

[ ∞∑
j=1

1{Tj ≤t}
]

< ∞
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almost surely. Therefore, applying the monotone convergence theorem yields

∞ > EM

[ ∞∑
i=1

1{Ti≤t}
]

≥ EM

[ ∑
I∈N

μI ([0, t] × EI )

]

=
∑
I∈N

EM

[
μI ([0, t] × EI )

]

=
∑
I∈N

∫
[0,t]×EI

P
RI

M

(
d(u, e)

)

almost surely for each M ∈M and t ≥ 0. �

Proof of Proposition 5.1 The processes (IMu−) and (PM [AM
u−]) are jointly measur-

able with respect to (u,ω) since they are left-continuous in u; see Lemma 4.3.
The mapping (u, e,ω) �→ PM,RI =(u,e)[AM

u−] is jointly measurable with respect to
(u, e,ω) since PM,RI =(u,e)[AM

s−] is left-continuous in s and jointly measurable with
respect to (u, e,ω) ∈ [0,∞)|I | × EI × �; see Lemma 4.3. Thus for any fixed
A ∈ B([0,∞) × EI ), the mapping ω �→ νI (A)(ω) is measurable. Moreover, for
almost each ω ∈ �, the mapping A �→ νI (A)(ω) is a locally finite measure on
([0,∞) × EI ,B([0,∞) × EI )). This can be seen by combining Proposition 4.4 and
(5.2) and using the fact that PM,RI =(u,e)[AM

u−] is bounded by 1. Hence νI has a unique
extension to a random measure on ([0,∞) × EI ,B([0,∞) × EI )). Similar conclu-
sions hold for the mappings ρI . �

Proposition 5.4 Suppose that the mappings (t, e,ω) �→ FI (t, e)(ω), I ∈ N , are
jointly measurable and satisfy (5.1). For each t > 0 and B ∈ EI , we almost surely
have

lim
n→∞

∑
T t

n

E
[
FI • μI

(
(tk, tk+1] × B

)∣∣Gtk

] = GI • νI

(
(0, t] × B

)
,

lim
n→∞

∑
T t

n

E
[
FI • μI

(
(tk, tk+1] × B

)∣∣Gtk+1

] = HI • ρI

(
(0, t] × B

)

for any increasing sequence (T t
n )n∈N of partitions of [0, t] with limn→∞ |T t

n | = 0 and
for GI and HI defined by

GI(u, e) :=
∑

M∈M
I
M
u−

EM,RI =(u,e)[IMu−FI (u, e)]
EM,RI =(u,e)[IMu−] ,

HI (u, e) :=
∑

M∈M
I
M
u

EM,RI =(u,e)[IMu FI (u, e)]
EM,RI =(u,e)[IMu ] .

Proof By decomposing F into a positive part F+ and a negative part F−, it suffices
to prove the first equation for the nonnegative mappings F+ and F− only. Therefore,
without loss of generality, we suppose from now on that F is nonnegative.
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Let Mt = Mt (ω) be defined as in (4.7). In the following, we use the notation
Jk := (tk, tk+1]. Since

∑
M∈Mt

I
M
tk

= 1 for any tk , applying (4.3), the monotone con-
vergence theorem and the law of total probability gives

E[FI • μI (Jk × B)|Gtk ]

=
∑

M∈Mt

I
M
tk

EM [IMtk FI • μI (Jk × B)]
EM [IMtk ]

=
∑

M∈Mt

∫
Jk×EI

I
M
tk

EM,RI =(u,e)[IMtk FI • μI (Jk × B)]
PM [AM

tk
] P

RI

M

(
d(u, e)

)

for almost each ω ∈ �. For u ∈ (0, t], let Ju be the unique interval (tk, tk+1] from T t
n

such that tk < u ≤ tk+1, and let t (u) be the left end point of Ju. Then we can write

∑
T t

n

E[FI • μI (Jk × B)|Gtk ]

=
∑

M∈Mt

∫
(0,t]×EI

I
M
t(u)

EM,RI =(u,e)[IMt(u)F • μI (J
u × B)]

PM [AM
t(u)]

P
RI

M

(
d(u, e)

)
.

Taking the limit for n → ∞, we obtain for almost each ω ∈ � that

lim
n→∞

∑
T t

n

E[FI • μI (Jk × B)|Gtk ]

=
∑

M∈Mt

∫
(0,t]×EI

lim
n→∞ I

M
t(u)

EM,RI =(u,e)[IMt(u)
FI • μI (J

u × B)]
PM [AM

t(u)
] P

RI

M

(
d(u, e)

)
,

(5.3)

using that Mt is finite for almost each ω and applying the monotone convergence
and the dominated convergence theorem. Note that Proposition 4.4, the assumption
(5.1) and 0 ≤ I

M
t(u)

FI • μI (J
u × B) ≤ FI • μI ((0, t] × B) ensure the existence of an

integrable majorant. For n → ∞, we have t (u) ↑ u and Ju ↓ {u}; so the dominated
convergence theorem implies that

lim
n→∞EM,RI =(u,e)[IMt(u)FI • μI (J

u × B)]

= EM,RI =(u,e)[IMu−1B(e)FI (u, e)μI ({u} × {e})]
= 1B(e)EM,RI =(u,e)[IMu−FI (u, e)].

In summary, the right-hand side of (5.3) equals the integral GI • νI ((0, t] × B), and
we can conclude that the first equation in Proposition 5.4 holds. The proof of the
second is similar. �
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Proposition 5.5 Under the assumptions of Proposition 5.4, for each t ≥ 0 and B ∈ EI ,
we almost surely have

lim
n→∞

∑
T t

n

E
[
GI • νI

(
(tk, tk+1] × B

)∣∣Gtk

] = GI • νI

(
(0, t] × B

)
,

lim
n→∞

∑
T t

n

E
[
HI • ρI

(
(tk, tk+1] × B

)∣∣Gtk+1

] = HI • ρI

(
(0, t] × B

)

for any increasing sequence (T t
n )n∈N of partitions of [0, t] with limn→∞ |T t

n | = 0.

Proof By decomposing G into a positive part G+ and a negative part G−, it suffices
to prove the first equation for the nonnegative mappings G+ and G− only. Therefore,
without loss of generality, we suppose from now on that G is nonnegative.

From the definition of νI and the monotone convergence theorem, we get

E
[
GI • νI

(
(0, t] × EI

)]

=
∑

M∈M
E

[
EM

[∫
(0,t]×EI

GI (u, e)IMu−
PM,RI =(u,e)[AM

u−]
PM [AM

u−] P
RI

M

(
d(u, e)

)]]
.

From Proposition 4.2, we know that GI(u, e) is G−
u -measurable for each (u, e). This

fact and (4.5) imply that

GI (u, e)IMu−PM,RI =(u,e)[AM
u−] = I

M
u−EM,RI =(u,e)[IMu−GI (u, e)].

Applying the Fubini–Tonelli theorem and the monotone convergence theorem gives

E[GI • νI ((0, t] × EI )]

=
∑

M∈M
E

[∫
(0,t]×EI

EM [IMu−]EM,RI =(u,e)[IMQI −GI (QI ,ZI )]
PM [AM

u−] P
RI

M

(
d(u, e)

)]

=
∑

M∈M
E

[
EM

[
I
M
QI −GI (QI ,ZI )μI

(
(0, t] × EI

)]]

= E

[
GI • μI

(
(0, t] × EI

)]
.

The latter expectation is finite according to (5.1). Hence for each M ∈ M, we almost
surely have

EM

[
GI • νI

(
(0, t] × EI

)]
< ∞,

GI • νI

(
(0, t] × EI

)
< ∞. (5.4)

Let Jk := (tk, tk+1]. From the dominated convergence theorem, we obtain

lim
n→∞

∑
T t

n

I
M
tk

GI • νI (Jk × B) = (IM·−GI) • νI

(
(0, t] × B

)
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since I
M is bounded by 1 and because of the second line in (5.4). By using the first

line in (5.4), the dominated convergence theorem moreover yields

lim
n→∞

∑
T t

n

EM [IMtk GI • νI (Jk × B)] = EM

[
(IM·−GI) • ν

(
(0, t] × B

)]
.

By applying the Fubini–Tonelli theorem, we can show that the last term equals

∫
(0,t]×B

EM [IMu−GI (u, e)]PM,RI =(u,e)[AM
u−]

PM [AM
u−] P

RI

M

(
d(u, e)

)
.

Using Proposition 4.4 and the dominated convergence theorem, we therefore obtain

lim
n→∞

∑
T t

n

I
M
tk

EM [IMtk GI • νI (Jk × B)]
EM [IMtk ]

=
∫

(0,t]×B

I
M
u−

E[IMu−]EM [IMu−GI (u, e)]PM,RI =(u,e)[AM
u−]

PM [AM
u−] P

RI

M

(
d(u, e)

)

=
∫

(0,t]×B

I
M
u−GI(u, e)

PM,RI =(u,e)[AM
u−]

PM [AM
u−] P

RI

M

(
d(u, e)

)
,

where the second equality uses that (4.5) and the G−
u -measurability of GI (u, e) allows

us to pull GI (u, e) out of the conditional expectation EM [IMu−GI(u, e)]. Summing
the latter equation over M ∈ Mt for Mt as in (4.7) and applying Proposition 4.2, we
obtain

lim
n→∞

∑
T t

n

E
[
GI • νI

(
(tk, tk+1] × B

)∣∣Gtk

] = GI • νI

(
(0, t] × B

)

almost surely. Thus we can conclude that the first equation in Proposition 5.5 holds.
The proof of the second is similar. �

Proof of Theorem 5.2 Let GI and HI be defined as in Proposition 5.4. If FI (t, e) is
G−

t -measurable for each (t, e), then Proposition 4.2 implies that GI (t, e) = FI (t, e)

almost surely. Similarly, if FI (t, e) is Gt -measurable for each (t, e), we have almost
surely that HI (t, e) = FI (t, e). With this fact and by subtracting the limit equations
in Propositions 5.4 and 5.5, we obtain that

GI • μI ([0, t] × B) − GI • νI ([0, t] × B),

HI • μI ([0, t] × B) − HI • ρI ([0, t] × B)

satisfy the defining limit equations for IF/IB-martingales. IF/IB-predictability of the
compensators follows from Proposition 5.5. Note that all involved processes are in-
crementally adapted to G because of (4.4) and (4.5). �
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6 Infinitesimal martingale representations

Suppose that λI is the compensator of μI with respect to F. For each integrable
random variable ξ , the classical martingale representation theorem yields that the
martingale Xt = E[ξ |Ft ], t ≥ 0, can be represented as

Xt = X0 +
∑
I∈N

∫
(0,t]×EI

FI (u, e)
(
μI

(
d(u, e)

) − λI

(
d(u, e)

))
, (6.1)

where the mapping (u, e,ω) �→ F(u, e)(ω) is jointly measurable and the mapping
ω �→ F(u, e)(ω) is Fu−-measurable for each (u, e); see e.g. Karr [16, Theorem 2.34].
We now extend this result to the non-monotone information G.

Theorem 6.1 Let ξ be an integrable random variable. Then for each t ≥ 0, (1.2) holds
almost surely for

GI (s,u, e) :=
∑

M∈M
I
M
s

(
EM,RI =(u,e)[IMs ξ ]
EM,RI =(u,e)[IMs ] − EM [IMu−IMu ξ ]

EM [IMu−IMu ]
)

. (6.2)

For each I ∈ N and e ∈ EI , the process u �→ GI (u−, u, e) is G
−-adapted and the

process u �→ GI (u,u, e) is G-adapted.

If the mappings FI (u, e) = GI (u−, u,E) and FI (u, e) = GI (u,u, e) both satisfy
the integrability condition in Theorem 5.2, then the representation (1.2) is a sum of
IF-martingales and IB-martingales with respect to G. In the case of F = G, we have
νI = λI ,ρI = μI and (1.2) equals (6.1); so (1.2) is a generalisation of (6.1).

The proof of Theorem 6.1 is given below. Recall that our notation uses the con-
vention (4.2).

Lemma 6.2 Let ξ be an integrable random variable. Then for each t ≥ 0, we have

EM [IMt ξ ] − EM [IM0 ξ ]

=
∑
I∈N

∫
(0,t]×EI

EM,RI =(u,e)[(IMu − I
M
u−)ξ ]P RI

M

(
d(u, e)

)
. (6.3)

Proof As (6.3) is additive in ξ , it suffices to show the equation for nonnegative and
bounded random variables ξ only. The general case then follows from monotone
convergence applied to both parts of the sequence ξn := (ξn ∧ n)+ − (−ξn ∧ n)+,
n ∈ N. Therefore, in the remaining proof, we suppose that 0 ≤ ξ ≤ C for a finite real
number C.

Let Utk (ω) := sup{s ∈ (tk,∞) : Tj (ω) 
∈ (tk, s), j ∈ N}, i.e., Utk is the time of the
first occurrence of a random time strictly after tk . Since 1 = ∑

I∈N 1{Utk
=QI }, we can

conclude that
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EM [IMt ξ ] − EM [IM0 ξ ]
= lim

n→∞
∑
T t

n

∑
I∈N

EM

[
1{Utk

=QI }(IMtk+1
− I

M
tk

) ξ
]

= lim
n→∞

∑
I∈N

∑
T t

n

∫
BI,k

EM,RI =(u,e)

[
1{Utk

=QI }(IMtk+1
− I

M
tk

) ξ
]
P

RI

M

(
d(u, e)

)
, (6.4)

for BI,k = (tk, tk+1] × EI , where we use the fact that

1{Utk
=QI }(IMtk+1

− I
M
tk

) = 0

unless tk < QI ≤ tk+1. Because of (5.2) and∣∣EM,RI =(u,e)

[
1{Utk

=QI }(IMtk+1
− I

M
tk

) ξ
]∣∣ ≤ 2C,

we can apply the dominated convergence theorem on the last line in (6.4), which
leads to (6.3). Note here that

1{Utk
=QI =u}(IMtk+1

− I
M
tk

) −→ 1{QI =u}(IMu − I
M
u−)

for tk+1 ↓ u and tk ↑ u implies that

EM,RI =(u,e)

[
1{Utk

=QI }(IMtk+1
− I

M
tk

) ξ
] −→ EM,RI =(u,e)[(IMu − I

M
u−) ξ ].

�

Proof of Theorem 6.1 Fix M ∈ M and define M + 1 := {i + 1 : i ∈ M}. If I
M
u− = 1,

then only random times from the index set

M ′ := ({1,3, . . .} \ M) ∪ (M + 1)

can occur at time u. If IMu = 1, then only random times from the index set

M ′′ := M ∪ ({2,4, . . .} \ (M + 1)
)

can occur at time u. Therefore (6.3) can be represented as

EM [IMt ξ ] = Kt + Lt , t ≥ 0,

where

Kt :=
∑

I⊆M ′

∫
(0,t]×EI

EM,RI =(u,e)[(IMu − I
M
u−)ξ ]P RI

M

(
d(u, e)

) + EM [IM0 ξ ]

= −
∑

I⊆M ′

∫
(0,t]×EI

EM,RI =(u,e)[IMu−ξ ]P RI

M

(
d(u, e)

) + EM [IM0 ξ ],

Lt :=
∑

I⊆M ′′

∫
(0,t]×EI

EM,RI =(u,e)[(IMu − I
M
u−)ξ ]P RI

M

(
d(u, e)

)

=
∑

I⊆M ′′

∫
(0,t]×EI

EM,RI =(u,e)[IMu ξ ]P RI

M

(
d(u, e)

)
.
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Furthermore, using M ′ ∩ M ′′ = ∅, we can show that

EM [IMt ξ ] − EM [IMt−IMt ξ ] =
∑

I⊆M ′′
EM [IMt 1{QI =t}ξ ]

=
∑

I⊆M ′′

∫
{t}×EI

EM,RI =(u,e)[IMu ξ ]P RI

M

(
d(u, e)

)

= �Lt

for t > 0, which implies that EM [IMt−IMt ξ ] = Kt + Lt−. Analogously we obtain

EM [IMt−ξ ] − EM [IMt−IMt ξ ] = −�Kt .

In the specific case ξ = 1, we write kt and �t instead of Kt and Lt . By applying
integration by parts pathwise for each ω ∈ �, we get that

(Kt + Lt−)dIMt + I
M
t−dKt + I

M
t dLt

= d(IMt EM [IMt ξ ])

= d

(
I
M
t EM [IMt ξ ]
EM [IMt ] EM [IMt ]

)

= (kt + �t−)d

(
I
M
t EM [IMt ξ ]
EM [IMt ]

)
+ I

M
t−EM [IMt−ξ ]
EM [IMt−] dkt + I

M
t EM [IMt ξ ]
EM [IMt ] d�t

= (kt + �t−)d

(
I
M
t EM [IMt ξ ]
EM [IMt ]

)
+ I

M
t−

Kt− + Lt−
kt− + �t−

dkt + I
M
t

Kt + Lt

kt + �t

d�t .

The equation formed by the first and last line can be rewritten as

(Kt + Lt−)dIMt + kt + �t−
kt− + �t−

I
M
t−dKt + kt + �t−

kt + �t

I
M
t dLt

= (kt + �t−)d

(
I
M
t EM [IMt ξ ]
EM [IMt ]

)
+ I

M
t−

Kt + Lt−
kt− + �t−

dkt + I
M
t

Kt + Lt−
kt + �t

d�t ,

because of

(
kt + �t−
kt− + �t−

− 1

)
I
M
t−�Kt +

(
kt + �t−
kt + �t

− 1

)
I
M
t �Lt

= I
M
t−

(
Kt + Lt−
kt− + �t−

− Kt− + Lt−
kt− + �t−

)
�kt + I

M
t

(
Kt + Lt−
kt + �t

− Kt + Lt−
kt + �t

)
�kt .

With the convention 0/0 := 0 and by using the Radon–Nikodým theorem, we may
multiply by (kt + �t−)−1 on both sides, which leads to
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EM [IMt−IMt ξ ]
EM [IMt−IMt ] dIMt + I

M
t−

EM [IMt−]dKt + I
M
t

EM [IMt ]dLt

= d

(
I
M
t EM [IMt ξ ]
EM [IMt ]

)
+ EM [IMt−IMt ξ ]

EM [IMt−IMt ]
(

I
M
t−

EM [IMt−]dkt + I
M
t

EM [IMt ]d�t

)
.

Because of (6.3) and dIMt = ∑
I∈N (IMt − I

M
t−)μI (dt × EI ), the last equation can be

rewritten to

∑
I∈N

EM [IMt−IMt ξ ]
EM [IMt−IMt ] (IMt − I

M
t−)μI (dt × EI )

−
∑
I∈N

∫
EI

I
M
t−

EM,RI =(t,e)[IMt−ξ ]
EM,RI =(t,e)[IMt−] νI (dt × de)

+
∑
I∈N

∫
EI

I
M
t

EM,RI =(t,e)[IMt ξ ]
EM,RI =(t,e)[IMt ] ρI (dt × de)

= d

(
I
M
t EM [IMt ξ ]
EM [IMt ]

)

+
∑
I∈N

EM [IMt−IMt ξ ]
EM [IMt−IMt ]

( − I
M
t−νI (dt × EI ) + I

M
t ρI (dt × EI )

)
. (6.5)

Let I ∈N be arbitrary but fixed. Then for each M ∈ M, there exists an M̃ ∈M, and
for each M̃ ∈ M, there exists an M ∈ M such that

I
M
t−μI (dt × de) = I

M̃
t μI (dt × de).

As a consequence, for almost each ω ∈ �, we have

0 =
∑

M∈M

∑
I∈N

∫
EI

(
I
M
t

EM,RI =(t,e)[IMt ξ ]
EM,RI =(t,e)[IMt ] − I

M
t−

EM,RI =(t,e)[IMt−ξ ]
EM,Rj =(t,e)[IMt−]

)
μI (dt × de).

(6.6)

Because of

dE[ξ |Gt ] =
∑

M∈M
d

(
I
M
t EM [IMt ξ ]
EM [IMt ]

)
,

summing (6.5) over M ∈ M and adding (6.6) yields for almost each ω ∈ � that we
have (1.2) and (6.2) after rearranging the addends. By applying Proposition 4.2, we
can see that GI (u−, u, e) is Gu−-measurable and GI (u,u, e) is Gu-measurable for
each (I, e). �
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7 Infinitesimal representations for optional projections

Suppose that X is a càdlàg process that satisfies (4.1) and such that Xt − X0 is
Ft -measurable for each t ≥ 0. Then the optional projection of X with respect to
F can be represented as

dE[Xt |Ft ] = dXt +
∑
I∈N

∫
EI

FI (t, e)
(
μI (dt × de) − λI (dt × de)

)
(7.1)

for random mappings FI (t, e) that are Ft−-measurable for each (t, I, e). In order to
see this, apply the classical martingale representation theorem on the F-martingale

E[X0|Ft ] − E[X0|F0] = E[Xt |Ft ] − E[X0|F0] − (Xt − X0), t ≥ 0,

and rearrange the addends. The following theorem extends (7.1) to non-monotone
information settings.

Theorem 7.1 Let X be a càdlàg process that satisfies (4.1) and has an IB-compen-
sator with respect to G, denoted as XIB . Then

E[Xt |Gt ] − E[X0|G0] = XIB
t +

∑
I∈N

∫
(0,t]×EI

GI (u−, u, e) (μI − νI )
(
d(u, e)

)

+
∑
I∈N

∫
(0,t]×EI

GI (u,u, e) (ρI − μI )
(
d(u, e)

)
(7.2)

almost surely with

GI (s,u, e) :=
∑

M∈M
I
M
s

(
EM,RI =(u,e)[IMs Xu−]

EM,RI =(u,e)[IMs ] − EM [IMu−IMu Xu−]
EM [IMu−IMu ]

)
. (7.3)

If X has an IF-compensator with respect to G, denoted as XIF , then (7.2) still holds
but with XIB

t replaced by XIF
t and Xu− replaced by Xu in (7.3).

By applying Proposition 4.2, we can see that GI (u−, u, e) is G−
u -measurable and

GI (u,u, e) is Gu-measurable. Hence the integrals in the first and second line of
(7.2) describe IF-martingales and IB-martingales with respect to G if the mappings
FI (u, e) = GI (u−, u, e) and FI = GI(u,u, e) both satisfy the integrability condition
(5.1); see the comments below Theorem 5.2.

In the special case G= F, we have νI = λI , ρI = μI , X = XIB and the represen-
tations (7.2) and (7.1) are equivalent, i.e., (7.2) is a generalisation of (7.1).

Even if G 
= F, we can still have X = XIB or X = XIB . The following ex-
ample presents non-trivial processes X that equal their IB-compensators or their
IF-compensators.

Example 7.2 Let h(M, t)(ω) : M × [0,∞) × � → R be measurable and suppose
that |h(M, t)| ≤ Z for an integrable majorant Z. Let γ be the sum of the Lebesgue
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measure and a countable number of Dirac measures,

γ (B) = λ(B) +
∞∑
i=1

δti (B), B ∈ B
([0,∞)

)
,

for deterministic time points 0 ≤ t1 < t2 < · · · that increase to infinity. Then the
càdlàg process X defined by

Xt :=
∑

M∈M

∫
[0,t]

I
M
s h(M, s) γ (ds)

has the IB-compensator

XIB
t =

∫
(0,t]

∑
M∈M

I
M
s E[h(M, s)|Gs ]γ (ds).

In order to see this, apply Proposition 4.2, the dominated convergence theorem,
Proposition 4.4 and Lemma 4.3 in order to obtain that

lim
n→∞

∑
T t

n

E[Xtk+1 − Xtk |Gtk+1 ]

= lim
n→∞

∑
T t

n

∫
(tk,tk+1]

∑
M∈Mt

I
M
tk+1

E

[ ∑
M̃∈M

h(M̃, s)IM̃s

∣∣∣∣Gtk+1

]
γ (ds)

=
∑

M∈Mt

lim
n→∞

∑
T t

n

∫
(tk,tk+1]

I
M
tk+1

EM [∑
M̃∈M I

M
tk+1

h(M̃, s)IM̃s ]
EM [IMtk+1

] γ (ds)

=
∑

M∈Mt

∫
(0,t]

I
M
s

EM [h(M, s)IMs ]
EM [IMs ] γ (ds)

=
∑

M∈M

∫
(0,t]

I
M
s E[h(M, s)|Gs]γ (ds)

almost surely, where Mt is defined as in (4.7). If s �→ h(M, s) is G-adapted for each
M , we have X = XIB . Likewise we can show that the càdlàg process

Yt :=
∑

M∈M

∫
[0,t]

I
M
s−h(M, s) γ (ds)

has the IF-compensator

Y IF
t =

∫
(0,t]

∑
M∈M

I
M
s−E[h(M, s)|Gs−]γ (ds).

If s �→ h(M, s) is G−-adapted for each M , we have Y = Y IF .
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Proof of Theorem 7.1 The theorem follows from the additive decomposition

E[Xt |Gt ] − E[X0|G0] = lim
n→∞

∑
T t

n

(E[Xtk+1 |Gtk+1 ] − E[Xtk |Gtk ])

= lim
n→∞

∑
T t

n

E[Xtk+1 − Xtk |Gtk+1 ]

+ lim
n→∞

∑
T t

n

(E[Xtk |Gtk+1 ] − E[Xtk |Gtk ])

and from applying Theorem 6.1 for each summand E[Xtk |Gtk+1 ] − E[Xtk |Gtk ]. The
sum

∑
T t

n
(E[Xtk |Gtk+1 ] − E[Xtk |Gtk ]) has a representation of the form (1.2) in case

of tk < s ≤ tk+1 for GI (s,u, e) defined by (7.3). Because of the càdlàg property of X,
by applying the dominated convergence theorem pathwise for almost each ω ∈ �, we
end up with (7.2) and (7.3). The alternative decomposition

E[Xt |Gt ] − E[X0|G0] = lim
n→∞

∑
T t

n

E[Xtk+1 − Xtk |Gtk ]

+ lim
n→∞

∑
T t

n

(E[Xtk+1 |Gtk+1 ] − E[Xtk+1 |Gtk ])

leads to the second variant with XIB replaced by XIF and Xu− by Xu in (7.3). �

Remark 7.3 Without loss of generality, suppose here that 0 
∈ E. Motivated by Re-
mark 3.2, for any t > 0 and any integrable random variable ξ , define for e ∈ EI ,

E[ξ |Gt ,RI = (t, e)] := E[ξ |(
t ,RI ) = · ](
t , (t, e)
)
,

E[ξ |Gt−,RI = (t, e)] := E[ξ |(
t−,RI ) = · ](
t−, (t, e)
)
,

E[ξ |Gt , Jt = 0] := E[ξ |(
t , Jt ) = · ](
t ,0),

E[ξ |Gt−, Jt = 0] := E[ξ |(
t−, Jt ) = · ](
t−,0),

where Jt := ∑
I∈N μI ({t}×EI ) indicates whether there is a stopping event at time t .

One can then show that the integrands in (7.2) are almost surely equal to

GI (t−, t, e) = E[Xt−|Gt−,RI = (t, e)] − E[Xt−|Gt−, Jt = 0],
GI (t, t, e) = E[Xt−|Gt ,RI = (t, e)] − E[Xt−|Gt , Jt = 0]

for each t > 0, I ∈ N and e ∈ EI . The differences on the right-hand side have intu-
itive interpretations. The first line describes the difference in expectation between a
change scenario and a remain scenario if we are currently at time t− and are look-
ing forward in time. Similarly, the second line describes the difference in expectation
between a change scenario and a remain scenario if we are currently at time t and
are looking backward in time. In (7.2), these differences in expectation are integrated
with respect to the compensated forward and backward scenario dynamics.
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8 Examples

Here we come back to Examples 1.1 and 1.2 and show how our infinitesimal martin-
gale representations can be applied in life insurance and credit risk modelling.

Example 8.1 Consider a life insurance contract where the insurer collects health-
related information about the insured with the aim to improve forecasts of the in-
dividual future insurance liabilities. For example, this can involve data from activity
trackers or social media. Here, the marked point process includes the time of death
τ1, which is recorded as ζ1 := τ1, and further health-related information (τi, ζi)i≥2.
Upon request of the policyholder with reference to the ‘right to erasure’ according to
the General Data Protection Regulation of the European Union, or as a self-imposed
data privacy effort of the data provider, the insurer deletes parts of the health-related
data at certain time points, i.e., we expand (τi, ζi)i≥2 by deletion times (σi)i≥2. For
completeness, we define σ1 := ∞.

In the classical insurance modelling without data deletion, the time dynamics of
the expected future insurance payments is commonly described by Thiele’s equation;
see e.g. Møller [19] and Djehiche and Löfdahl [12]. Suppose that At gives the ag-
gregated benefit cash flow of the life insurance contract on [0, t], including survival
benefits with rate a(t) and a death benefit of α(t) upon death at time t , i.e.,

At =
∫ t

0
1{τ1>s}a(s)ds +

∫
[0,t]×E

α(s)μ{1}
(
d(s, e)

)
, t ≥ 0.

We assume here that a : [0,∞) → R and α : [0,∞) → R are bounded. For a given
interest intensity φ : [0,∞) → [0,∞) and a finite contract horizon T , the process

Xt :=
∫

(t,T ]
e− ∫ s

t φ(u)dudAs

describes the discounted future liabilities of the insurer seen from time t . As the
càdlàg process X = (Xt )t≥0 is neither adapted to F nor to G, an insurer has to work
with the optional projection instead (the so-called prospective reserve), i.e., the in-
surer aims to calculate

XF

t = E[Xt |Ft ], t ≥ 0,

in case that there is no data deletion and

XG

t = E[Xt |Gt ], t ≥ 0,

in case that information deletions may occur. The process XG is a well-defined càdlàg
process according to Theorem 4.1.

By applying (7.1) and Itô’s lemma, we can derive the so-called stochastic Thiele
equation

dXF

t = −dAt + φ(t)XF

t−dt +
∑
I

∫
EI

FI (t, e) (μI − λI )(dt × de) (8.1)
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with terminal condition XF

T = 0; cf. Møller [19, Eq. (2.17)]. The integrand FI (t, e),
which almost surely equals

FI (t, e) = E[Xt−|Ft−,RI = (t, e)] − E[Xt−|Ft−, Jt = 0]
according to Remark 7.3, is a key quantity in life insurance risk management and
is known as sum at risk. Equation (8.1) can be interpreted as a backward stochastic
differential equation (BSDE) with solution (XF, (FI )I ); see Djehiche and Löfdahl
[12] for Markovian and Christiansen and Djehiche [4] for non-Markovian models.
The BSDE (8.1) is in particular relevant if the life insurance payments a and α depend
on the current policy value so that the insurance cash flow A is only implicitly defined.

By applying Theorem 7.1 and Itô’s lemma and using the fact that the process A

equals its own IB-compensator (since σ1 = ∞), we are able to derive an analogous
equation for XG, namely

dXG

t = −dAt + φ(t)XG

t−dt +
∑
I

∫
EI

GI (t−, t, e) (μI − νI )(dt × de)

+
∑
I

∫
EI

GI (t, t, e) (ρI − μI )(dt × de) (8.2)

with terminal condition XG

T = 0. This equation can be interpreted as a new type of
BSDE with solution (XG, (GI )I ), featuring an IF-martingale and an IB-martingale
instead of a classical martingale. The IF-martingale in the first line describes the im-
pact of new information on the optional projection XG. The IB-martingale in the
second line quantifies the effect on XG of information deletions. The integrands
GI (t−, t, e) and GI (t, t, e), which are almost surely equal to

GI (t−, t, e) = E[Xt−|Gt−,RI = (t, e)] − E[Xt−|Gt−, Jt = 0],
GI (t, t, e) = E[Xt−|Gt ,RI = (t, e)] − E[Xt−|Gt , Jt = 0]

according to Remark 7.3, generalise the classical definition of the sum at risk. They
are needed in life insurance risk management for sensitivity analyses, safe-side cal-
culations, contract modifications and surplus decompositions.

If the policyholder may decide about data deletions at discretion, then the result-
ing value changes of the insurance contract can be systematically exploited by the
policyholder, leading to a kind of data privacy arbitrage. Since it is the IB-martingale
in (8.2) that measures the value changes due to data deletions at times (σi)i≥2, it
represents the potential data privacy arbitrage. A simple solution for avoiding data
privacy arbitrage could be to charge the IB-martingale as a fee upon a data deletion
request. The fee can also be negative and represents then a bonus payment. How-
ever, more complex risk sharing schemes will be needed in insurance practice that
moreover distinguish between different causes for data deletions. By following the
concept of Schilling et al. [26] to interpret martingale representations as risk factor
decompositions, we may interpret the infinitesimal martingale parts in (8.2) as an ad-
ditive surplus decomposition that can distinguish between numerous kinds of jump
events μI , I ⊆ N, |I | < ∞. Such an additive decomposition of the insurer’s surplus
is an important step for aligning insurance risk management to the digital age.
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Example 8.2 A popular approximation concept in credit rating modelling is to pretend
that the credit rating process is Markovian even if the empirical data does not fully
support this assumption. Suppose that credit ratings are updated at integer times only.
By setting τi := i − 1 and σi := i for i ∈N and defining ζi as the credit rating at time
τi , the rating process R = (Rt )t≥0 has the representation

Rt =
∞∑
i=1

ζi1{τi≤t<σi }, t ≥ 0,

and satisfies

Gt = σ(Rt ) ∨Z, t ≥ 0.

The jumps of the process R correspond to the random counting measures μI . In the
Jarrow–Lando–Turnbull model, the rating space E is finite, (Ri)i∈N0 is assumed to
be a Markov chain, and

Q[Ri+1 = ri+1|Ri = ri] = π(i, ri)P [Ri+1 = ri+1|Ri = ri]
for ri , ri+1 ∈ E and i ∈N0, where Q is the risk-neutral measure and π is a determin-
istic function on N0 ×E. The latter formula allows us to estimate Q from market data
by a two step method. First, the transition probabilities P [Ri+1 = ri+1|Ri = ri] are
estimated from observed credit rating time series. Then the function π is calibrated
such that the risk-neutral values of credit rating derivatives conform with observed
market prices. Once we have Q, we can use the (classical) martingale representation
(6.1) in order to explicitly construct hedges for financial claims ξ ; see e.g. Last and
Penrose [18]. For example, by arguing analogously to (8.1), the claim ξ = h(RT ) has
the martingale representation

h(RT ) − B(0)EQ

[
h(RT )

B(T )

∣∣∣∣F0

]
=

∫
(0,T ]

B(t−)EQ

[
h(RT )

B(T )

∣∣∣∣Ft−
]

B(dt)

B(t−)

+
∑
I∈N

∫
(0,T ]×EI

FI (t, e)(μI − λI )(dt × de).

(8.3)

The integral in the first line describes the investments in the risk-free asset B . The
second line corresponds to risky investments. It can be rewritten in terms of the trad-
able assets in a complete financial market; cf. Last and Penrose [18, Sect. 5], which
yields a trading strategy that can be used to replicate the claim ξ .

A standard estimator for the state occupation probabilities of the Markov chain
R with respect to P is the Aalen–Johansen estimator, which directly corresponds to
the Nelson–Aalen estimator for the compensators λI of the random counting mea-
sures μI . Under the assumption that R is Markovian, the Nelson–Aalen estimator
consistently estimates λI = νI . If R is not Markovian, then the Nelson–Aalen esti-
mator still consistently estimates νI , see Datta and Satten [9], but now νI 
= λI . In
other words, if we ignore the information beyond G in the estimation of λI due to
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an incorrect Markov assumption, then we actually estimate the infinitesimal forward
compensator νI instead of the classical compensator λI . Similarly, ignoring the in-
formation beyond G upon estimating FI and (1.1) from market data means that we
unintentionally end up with the integrands

GI (t−, t, e) = B(t)

B(T )

(
EQ[h(RT )|Gt−,RI = (t, e)] − EQ[h(RT )|Gt−, Jt = 0])

and B(t−)EQ[h(RT )/B(T )|Gt ] rather than the integrands

FI (t, e) = B(t)

B(T )

(
EQ[h(RT )|Ft−,RI = (t, e)] − EQ[h(RT )|Ft−, Jt = 0])

and B(t−)EQ[h(RT )/B(T )|Ft ]. For the correct interpretation of the latter condi-
tional expectations with mixed conditions, see Remark 7.3. All in all, by ignoring the
information beyond G in the estimation and calculation of (8.3) due to an incorrect
Markov assumption, we unintentionally end up with

∫
(0,T ]

B(t−)EQ

[
h(RT )

B(T )

∣∣∣∣Gt−
]

B(dt)

B(t−)

+
∑
I∈N

∫
(0,T ]×EI

GI (t−, t, e)(μI − νI )(dt × de) (8.4)

instead of the right-hand side of (8.3). This unintentional modification distorts the
replicating trading strategy for the claim h(RT ) which was included in (8.3). Do we
still correctly replicate h(RT )? By applying Theorem 6.1 instead of (6.1) and using
that F0 = G0 and GT = σ(RT ) ∨Z , we get analogously to (8.3) that

h(RT ) − B(0)EQ

[
h(RT )

B(T )

∣∣∣∣F0

]
=

∫
(0,T ]

B(t−)EQ

[
h(RT )

B(T )

∣∣∣∣Gt−
]

B(dt)

B(t−)

+
∑
I∈N

∫
(0,T ]×EI

GI (t−, t, e)(μI − νI )(dt × de)

+
∑
I∈N

∫
(0,T ]×EI

GI (t, t, e)(ρI − μI )(dt × de).

(8.5)

Equation (8.5) implies that the distorted trading strategy we might derive from (8.4)
is actually not a hedge for ξ = h(RT ). The hedging error is given by the third line
in (8.5). To sum up, by estimating and calculating (8.3) under an incorrect Markov
assumption for R, we unintentionally replace the (classical) F-martingale in (8.3)
by the G-IF-martingale in (8.4) (the risk-free investment is also affected), and the
corresponding G-IB-martingale is just the hedging error.

Schilling et al. [26] interpret martingale representations as additive risk factor de-
compositions. Likewise we can read the (infinitesimal) martingale parts in (8.3) and
(8.5) as linear risk factor decompositions. The relevance of such decompositions in
credit risk modelling is explained in Rosen and Saunders [25].
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