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Abstract
We study the minimization of a spectral risk measure of the total discounted cost gen-
erated by a Markov Decision Process (MDP) over a finite or infinite planning horizon.
The MDP is assumed to have Borel state and action spaces and the cost function may
be unbounded above. The optimization problem is split into two minimization prob-
lems using an infimum representation for spectral risk measures. We show that the
inner minimization problem can be solved as an ordinary MDP on an extended state
space and give sufficient conditions under which an optimal policy exists. Regard-
ing the infinite dimensional outer minimization problem, we prove the existence of a
solution and derive an algorithm for its numerical approximation. Our results include
the findings in Bäuerle and Ott (Math Methods Oper Res 74(3):361–379, 2011) in the
special case that the risk measure is Expected Shortfall. As an application, we present
a dynamic extension of the classical static optimal reinsurance problem, where an
insurance company minimizes its cost of capital.

Keywords Risk-sensitive Markov decision process · Spectral risk measure ·
Dynamic reinsurance

Mathematics Subject Classification 90C40 · 91G70 · 91G05

1 Introduction

In the last decade, there have been various proposals to replace the expectation in
the optimization of Markov Decision Processes (MDPs) by risk measures. The idea
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36 N. Bäuerle, A. Glauner

behind it is to take the risk-sensitivity of the decisionmaker into account. Using simply
the expectation models a risk-neutral decision maker whose optimal policy sometimes
can be very risky, for an example see e.g. Bäuerle and Ott (2011).

The literature can here be divided into two streams: Those papers which apply
risk measures recursively and those which apply the risk measure to the total cost.
The recursive approach for general MDP can for example be found in Ruszczyński
(2010); Chu and Zhang (2014); Bäuerle and Glauner (2021). The theory for these
kind of models is rather different to the ones where the risk measures is applied to the
total cost, since in the recursive approach we still get a recursive solution procedure
directly. In this paper, we contribute to the second model class, i.e. we assume that
a cost process is generated over discrete time by a decision maker and she aims at
minimizing the risk measure applied to either the cost over a finite time horizon or
over an infinite time horizon. The class of risk measures we consider here are so-called
spectral risk measures which form a class of coherent risk measures including the
Expected ShortfallorConditional Value-at-Risk.More precisely spectral riskmeasures
are mixtures of Expected Shortfall at different levels.

For Expected Shortfall, the problem has already been treated e.g. in Bäuerle and
Ott (2011), Chow et al. (2015), and Uğurlu (2017). Whereas in Chow et al. (2015) the
authors use a decomposition result of the Expected Shortfall shown in Pflug and Pich-
ler (2016), the authors of Bäuerle and Ott (2011) use the representation of Expected
Shortfall as the solution of a global optimization problem over a real valued parame-
ter, see Rockafellar and Uryasev (2000). Interchanging the resulting two infima from
the optimization problems yields a two-step method to solve the decision problem.
Using the recent representation of spectral risk measures as an optimization problem
over functions involving the convex conjugate in Pichler (2015), we follow a similar
approach here. The problem can again be decomposed into an inner and outer opti-
mization problem. The inner problem is to minimize the expected convex function of
the total cost. It can be solved with MDP techniques after a suitable extension of the
original state space. Note that already here we get some difference to the Expected
Shortfall problem. In contrast to the findings in Bäuerle and Ott (2011) who assume
bounded cost or Uğurlu (2017) who assumes L1 cost, we only require the cost to be
bounded from below. No further integrability assumption is necessary here. Moreover,
we allow for general Borel state and action spaces and give continuity and compact-
ness conditions under which an optimal policy exists. The major challenge is now the
outer optimization problem, since we have to minimize over a function space and the
dependence of the value function of the MDP on the functions is involved. However,
we are again able to prove the existence of an optimal policy and an optimal function
in the representation of the spectral risk measure. Moreover, by approximating the
function space in the right way, we are able to reduce the outer optimization problem
to a finite dimensional problemwith a predetermined error bound. This yields an algo-
rithm for the solution of the original optimization problem. Using an example from
optimal reinsurance we show how our results can by applied.

Note that for Expected Shortfall the authors in Chow and Ghavamzadeh (2014)
and Tamar et al. (2015) have developed gradient-based methods for the numerical
computation of the optimal value and policy. For finite state and action spaces (Li
et al. 2017) provide an algorithm for quantile minimization of MDPs which is a
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Minimizing spectral risk measures applied to Markov decision processes 37

similar problem. However, the outer optimization problem for spectral risk measures
is much more demanding, since it is infinite dimensional.

The paper is organized as follows: In the next section, we summarize definitions
and properties of risk measures and introduce in particular the class of spectral risk
measureswhichwe consider here. In Sect. 3, we introduce theMarkovDecisionModel
and give continuity and compactness assumptions which will later guarantee the exis-
tence of optimal policies. At the end of this section, we formulate the spectral risk
minimization problem of the total cost. We also give some interpretations and show
relations to other problems. In Sect. 4, we summarize our findings in a nutshell. The
necessary state space extension is explained as well as the recursive solution algo-
rithm for the inner optimization problem. Moreover, the existence of optimal policies
is stated. Then, we treat the outer optimization problem and state the existence of
an optimal function in the representation of the spectral risk measure. Afterwards,
we deal with the numerical treatment of this problem. We show here that the infinite
dimensional optimization problem can be approximated by a finite dimensional one.
In Sect. 5, we extend our results to decision models with infinite planning horizon.
Besides, if the state space is the real line we show that the restrictive assumption of
the continuity of the transition function which we need in the general model, can be
replaced by semicontinuity if some further monotonicity assumptions are satisfied. In
the final Sect. 6, we apply our findings to an optimal dynamic reinsurance problem.
Problems of this type have been treated in a static setting before, see e.g. Chi and Tan
(2013), Cui et al. (2013), Lo (2017) and Bäuerle and Glauner (2018), but we consider
them in a dynamic framework for the first time. The aim is to minimize the solvency
capital calculated with a spectral risk measure by actively choosing reinsurance con-
tracts for the next period. When the premium for the reinsurance contract is calculated
by the expected premium principle, we show that the optimal reinsurance contracts
are of stop loss type. All proofs and detailed derivations of our results are deferred to
the appendix.

2 Spectral risk measures

Let (�,A,P) be a probability space and L0 = L0(�,A,P) the vector space of real-
valued random variables thereon. By L1 we denote the subspace of integrable random
variables and by L0≥0 the subspace which consists of non-negative random variables.
We follow the convention of the actuarial literature that positive realizations of random
variables represent losses and negative ones gains. Let X ⊆ L0 be a convex cone. A
risk measure is a functional ρ : X → R ∪ {∞}. The following properties are relevant
in this paper.

Definition 2.1 A risk measure ρ : X → R ∪ {∞} is called
a) law-invariant if ρ(X) = ρ(Y ) for X ,Y having the same distribution.
b) monotone if X ≤ Y implies ρ(X) ≤ ρ(Y ).
c) translation invariant if ρ(X + m) = ρ(X) + m for all m ∈ R ∩ X.
d) positive homogeneous if ρ(λX) = λρ(X) for all λ ∈ R+.
e) comonotonic additive if ρ(X + Y ) = ρ(X) + ρ(Y ) for all comonotonic X ,Y .
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38 N. Bäuerle, A. Glauner

f) subadditive if ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X ,Y .

A risk measure is referred to asmonetary if it is monotone and translation invariant.
It appears to be consensus in the literature that these two properties are a nec-
essary minimal requirement for any risk measure. Monetary risk measures which
are additionally positive homogeneous and subadditive are called coherent. Here,
FX (x) = P(X ≤ x), x ∈ R, denotes the distribution function and F−1

X (u) = inf{x ∈
R : FX (x) ≥ u}, u ∈ [0, 1], the quantile function of a random variable X . We will
focus on the following class of risk measures.

Definition 2.2 An increasing function φ : [0, 1] → R+ with
∫ 1
0 φ(u)du = 1 is called

spectrum and the functional ρφ : L0≥0 → R ∪ {∞} with

ρφ(X) =
∫ 1

0
F−1
X (u)φ(u)du

is referred to as spectral risk measure.

Spectral risk measures were introduced by Acerbi (2002). They have all the proper-
ties listed in Definition 2.1. Properties a)–e) follow directly from respective properties
of the quantile function. Verifying subadditivity is more involved, see Dhaene et al.
(2000). As part of the proof they showed that spectral risk measures preserve the
increasing convex oder. Spectral risk measures belong to the larger class of distortion
risk measures.

Definition 2.3 An increasing right-continuous function ϕ : [0, 1] → [0, 1] with
ϕ(0) = 0 and ϕ(1) = 1 is called distortion function and the functional ρϕ : L0≥0 →
R ∪ {∞} with

ρϕ(X) =
∫ 1

0
F−1
X (u)dϕ(u)

is referred to as distortion risk measure.

In the special case of a spectral risk measure, the distortion function is given by

ϕ(u) =
∫ u

0
φ(s)ds, u ∈ [0, 1] (2.1)

and is convex. This also shows that it is no restriction to assume φ being right contin-
uous (as the right derivative of a convex function). Conversely, for a convex distortion
function without a jump in 1, which implies continuity on [0, 1], one can always
find a representation as in (2.1) with φ being a spectrum. Consequently, all distor-
tion risk measures with convex and continuous distortion function are spectral. It has
been proven by Dhaene et al. (2000) that the convexity of ϕ is equivalent to ρϕ being
subadditive.

Note that ρφ is finite on L1≥0 if the spectrum φ is bounded. On L0≥0 the value +∞
is possible. Shapiro (2013) has shown that a finite risk measure on L1≥0 with all the
properties in Definition 2.1 is already spectral with bounded spectrum.
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Minimizing spectral risk measures applied to Markov decision processes 39

Example 2.4 The most widely used spectral risk measure is Expected Shortfall

ESα(X) = 1

1 − α

∫ 1

α

F−1
X (u)du, α ∈ [0, 1).

Its spectrum φ(u) = 1
1−α

1[α,1](u) is bounded. Especially in optimization, an infimum
representation of Expected Shortfall going back to Rockafellar and Uryasev (2000) is
very useful:

ESα(X) = inf
q∈R

{

q + 1

1 − α
E[(X − q)+]

}

, X ∈ L0≥0. (2.2)

The infimum is attained at q = F−1
X (α).

Henceforth, we assume w.l.o.g. that φ is right-continuous. Then ν([0, t]) := φ(t)
defines a Borel measure on [0, 1]. Let us define a further measure μ by dμ

dν
(α) :=

(1 − α). Every spectral risk measure can be expressed as a mixture of Expected
Shortfall over different confidence levels, see e.g. Proposition 8.18 in McNeil et al.
(2015).

Proposition 2.5 Let ρφ be a spectral risk measure. Then μ is a probability measure
on [0, 1] and ρφ has the representation

ρφ(X) =
∫ 1

0
ESα(X)μ(dα), X ∈ L0≥0.

When we allow to take the supremum on the r.h.s. over all probability measures μ

we would get the superclass of coherent risk measures, see Kusuoka (2001).
Using Proposition 2.5, the infimum representation (2.2) of Expected Shortfall can

be generalized to spectral risk measures.

Proposition 2.6 Let ρφ be a spectral risk measure with bounded spectrum. We denote
by G the set of increasing convex functions g : R → R. Then it holds for X ∈ L0≥0

ρφ(X) = inf
g∈G

{

E[g(X)] +
∫ 1

0
g∗(φ(u))du

}

,

where g∗ is the convex conjugate of g ∈ G.

Proof For X ∈ L1≥0 the assertion has been proven by Pichler (2015). For non-
integrable X ∈ L0≥0 it follows from Proposition 2.5

ρφ(X) =
∫ 1

0
ESα(X)μ(dα) ≥ ES0(X) = E[X ] = ∞.
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40 N. Bäuerle, A. Glauner

Now let g ∈ G and UX ∼ U(0, 1) be the generalized distributional transform of X ,
i.e. F−1

X (UX ) = X a.s. By the definition of the convex conjugate it holds g(X) +
g∗(φ(UX )) ≥ Xφ(UX ). Hence, we have

E[g(X)] + E[g∗(φ(UX ))] ≥ E[X φ(UX )] = E[F−1
X (UX ) φ(UX )] = ρφ(X) = ∞.

Since g ∈ G was arbitrary, the assertion follows. �

Remark 2.7 The proof by Pichler (2015) shows that for X ∈ L1≥0 the infimum is

attained in gφ,X : R → R, gφ,X (x) = ∫ 1
0 F−1

X (α)+ 1
1−α

(
x − F−1

X (α)
)+

μ(dα)with

μ from Proposition 2.5 and that the derivative of this function is g′
φ,X (x) = φ(FX (x))

a.e.

3 Markov decisionmodel

We consider the following standardMarkov Decision Process with general Borel state
and action space. By Borel space we mean a Borel subset of a Polish space. The state
space E is a Borel space with Borel σ -algebra B(E) and the action space A is a Borel
space with Borel σ -Algebra B(A). The possible state-action combinations at time n
form ameasurable subset Dn of E×A such that Dn contains the graph of ameasurable
mapping E → A. The x-section of Dn ,

Dn(x) := {a ∈ A : (x, a) ∈ Dn},

is the set of admissible actions in state x ∈ E at time n. Note that the sets Dn(x)
are non-empty. We assume that the dynamics of the MDP are given by measurable
transition functions Tn : Dn × Z → E and depend on disturbances Z1, Z2, . . .

which are independent random elements on a common probability space (�,A,P)

with values in a measurable space (Z,Z). When the current state is xn , the controller
chooses action an ∈ Dn(xn) and zn+1 is the realization of Zn+1, then the next state is
given by

xn+1 := Tn(xn, an, zn+1). (3.1)

The one-stage cost function cn : Dn×E → R+ gives the cost cn(x, a, x ′) for choosing
action a if the system is in state x at time n and the next state is x ′. The terminal cost
function cN : E → R+ gives the cost cN (x) if the system terminates in state x . Note
that instead of non-negative cost we can equivalently consider cost which are bounded
from below.

The model data is supposed to have the following continuity and compactness
properties.

Assumption 3.1 (i) The sets Dn(x) are compact and E � x �→ Dn(x) are upper
semicontinuous, i.e. if xk → x and ak ∈ Dn(xk), k ∈ N, then (ak) has an
accumulation point in Dn(x).

(ii) The transition functions Tn are continuous in (x, a).
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Minimizing spectral risk measures applied to Markov decision processes 41

(iii) The one-stage cost functions cn and the terminal cost function cN are lower semi-
continuous.

Under a finite planning horizon N ∈ N, we consider the model data for n =
0, . . . , N − 1. The decision model is called stationary if D, T , c do not depend on
n and the disturbances are identically distributed. If the model is stationary and the
terminal cost is zero, we allow for an infinite time horizon N = ∞.

For n ∈ N0 we denote byHn the set of feasible histories hn of the decision process
up to time n where

hn :=
{
x0, if n = 0,

(x0, a0, x1, . . . , xn), if n ≥ 1,

with ak ∈ Dk(xk) for k ∈ N0. In order for the controller’s decisions to be imple-
mentable, they must be based on the information available at the time of decision
making, i.e. be functions of the history of the decision process.

Definition 3.2 a) A measurable mapping fn : Hn → A with fn(hn) ∈ Dn(xn)
for every hn ∈ Hn is called decision rule at time n. A finite sequence σ =
( f0, . . . , fN−1) is called N-stage policy and a sequence σ = ( f0, f1, . . . ) is
called policy.

b) A decision rule at time n is calledMarkov if it depends on the current state only, i.e.
fn(hn) = fn(xn) for all hn ∈ Hn . If all decision rules are Markov, the (N -stage)
policy is called Markov.

c) An (N -stage) policy σ is called stationary if σ = ( f , . . . , f ) or σ = ( f , f , . . . ),
respectively, for some Markov decision rule f .

With 
 and 
M we denote the sets of all policies and Markov policies, respectively.
It will be clear from the context if N -stage or infinite stage policies are meant. An
admissible policy always exists as Dn contains the graph of a measurable mapping.

Since risk measures are defined as real-valued mappings of random variables, we
will work with a functional representation of the decision process. The law of motion
does not need to be specified explicitly. We define for an initial state x0 ∈ E and a
policy σ ∈ 


Xσ
0 = x0, Xσ

n+1 = Tn(X
σ
n , fn(H

σ
n ), Zn+1).

Here, the process (Hσ
n )n∈N0 denotes the history of the decision process viewed as a

random element, i.e.

Hσ
0 = x0, Hσ

1 = (
Xσ
0 , f0(X

σ
0 ), Xσ

1

)
, . . . , Hσ

n = (Hσ
n−1, fn−1(H

σ
n−1), X

σ
n ).

Under a Markov policy the recourse on the random history of the decision process is
not needed.

Even though the model is non-stationary we will explicitly introduce discounting
by a factor β > 0 since for the following state space extension it is relevant if there is
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42 N. Bäuerle, A. Glauner

discounting. Otherwise, stationary models with discounting would have to be treated
separately. For a finite planning horizon N ∈ N, the total discounted cost generated
by a policy σ ∈ 
 if the initial state is x ∈ E , is given by

Cσ x
N :=

N−1∑

k=0

βkck(X
σ
k , fk(H

σ
k ), Xσ

k+1) + βNcN (Xσ
N ).

If the model is stationary and the planning horizon infinite, the total discounted cost
is given by

Cσ x∞ :=
∞∑

k=0

βkc(Xσ
k , fk(H

σ
k ), Xσ

k+1).

For a generic total cost regardless of the planning horizon we write Cσ x . Our aim is
to find a policy σ ∈ 
 which attains

inf
σ∈


ρφ(Cσ x
N ) (3.2)

or

inf
σ∈


ρφ(Cσ x∞ ), (3.3)

respectively, for afixed spectral riskmeasureρφ : L0≥0 → R∪{∞}withφ(1) < ∞, i.e.
φ is bounded. We can apply Proposition 2.6 to reformulate the optimization problems
(3.2) and (3.3) to

inf
σ∈


ρφ

(
Cσ x) = inf

σ∈

inf
g∈G

{

E[g(Cσ x )] +
∫ 1

0
g∗(φ(u))du

}

= inf
g∈G inf

σ∈


{

E[g(Cσ x )] +
∫ 1

0
g∗(φ(u))du

}

= inf
g∈G

{

inf
σ∈


E[g(Cσ x )] +
∫ 1

0
g∗(φ(u))du

}

. (3.4)

For fixed g ∈ G we will refer to

inf
σ∈


E[g(Cσ x )] (3.5)

as inner optimization problem. In the following section we solve (3.5) as an ordinary
MDP on an extended state space. If Cσ x ∈ L0≥0 but not in L1, then ρφ(Cσ x ) = ∞.
These policies are not interesting and can be excluded from the optimization.

Since an increasing convex function g : R → R can be viewed as a disutility
function, optimality criterion (3.5) implies that the expected disutility of the total
discounted cost in minimized. If g is strictly increasing, the optimization problem is

123



Minimizing spectral risk measures applied to Markov decision processes 43

not changed by applying g−1, i.e. minimizing the corresponding certainty equivalent
g−1

(
E[g(Cσ x )]). For bounded one-stage cost functions such problems are solved in

Bäuerle and Rieder (2014). The special case of the exponential disutility function
g(x) = exp(γ x), γ > 0, has been studied first by Howard and Matheson (1972) in a
decision model with finite state and action space. The term risk-sensitive MDP goes
back to them. The certainty equivalent corresponding to an exponential disutility is
the entropic risk measure

ρ(X) = 1

γ
logE

[
eγ X

]
.

It has been shown by Müller (2007) that an exponential disutility is the only case
where the certainty equivalent defines a monetary risk measure apart from expectation
itself (linear disutility).

The concepts of spectral risk measures and expected disutilities (or corresponding
certainty equivalents) can be combined to so-called rank-dependent expected disutili-
ties of the form ρφ(u(X)), where u is a disutility function. The corresponding certainty
equivalent is u−1

(
ρφ(u(X))

)
. In fact, this concept works more generally for distor-

tion risk measures and incorporates both expected disutilities (identity as distortion
function) and distortion risk measures (identity as disutility function). The idea is that
the expected disutility is calculated w.r.t. a distorted probability instead of the origi-
nal probability measure. As long as the distorted probability is spectral, using a rank
dependent disutility instead of ρφ leads to structurally the same inner problem as (3.5),
only g is replaced by g(u(·)). Our results apply here, too. The certainty equivalent of a
rank-dependent expected disutility combining an exponential disutility with a spectral
risk measure is itself a convex (but not coherent) risk measure. It has been introduced
by Tsanakas and Desli (2003) as distortion-exponential risk measure.

4 Main results: finite planning horizon

4.1 Inner problem

Under a finite planning horizon N ∈ N, we consider the non-stationary version of the
decision model and our first aim is to solve

inf
σ∈


E[g(Cσ x
N )] (4.1)

for an arbitrary but fixed increasing convex function g ∈ G. We assume that for all
x ∈ E there is at least one policy σ s.t. Cσ x

N ∈ L1. Problem (4.1) is well-defined since
the target function is bounded from below by g(0). W.l.o.g. we assume g ≥ 0. Note
that the value +∞ is possible.

As the functions g ∈ G are in general non-linear, the optimization problem cannot
be solved directly with dynamic programming techniques. This can be overcome by
embedding the problem into an extended MDP following Bäuerle and Rieder (2014).
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44 N. Bäuerle, A. Glauner

The state space of this extended MDP is

E := E × R+ × (0,∞)

with corresponding Borel σ -algebra. A generic element of E is denoted by (x, s, t).
The idea is that s summarizes the cost accumulated to far and that t keeps track of
the discounting. The action space A and the admissible state-action combinations Dn ,
n = 0, . . . , N − 1, remain unchanged. Formally, one defines

Dn := {(x, s, t, a) ∈ E × A : a ∈ Dn(x)}, n = 0, . . . , N − 1

implying Dn(x, s, t) = Dn(x), (x, s, t) ∈ E. The transition function on the new state
space is given by Tn : Dn × Z → E,

Tn(x, s, t, a, z) :=
⎛

⎝
Tn(x, a, z)

s + tcn(x, a, Tn(x, a, z))
βt

⎞

⎠ , n = 0, . . . , N − 1.

Feasible histories of the decision model with extended state space up to time n have
the form

hn :=
{

(x0, s0, t0), n = 0,
(x0, s0, t0, a0, x1, s1, t1, a1, . . . , xn, sn, tn), n ≥ 1,

where ak ∈ Dk(xk), k = 0, . . . , N − 1, and the set of such histories is denoted by
Hn . In particular, we have the same recursion (3.1) for the state process and when we
start with s0 = 0, t0 = 1 we obtain:

sn =
n−1∑

k=0

βkck(xk, ak, xk+1) and tn = βn, n = 1, . . . , N . (4.2)

By � we denote the set of all history-dependent policies for the decision model
with extended state space. Policies are denoted by π = (d0, d1, . . . , dN−1) with
measurable decision rules dn : Hn → A satisfying dn(hn) ∈ Dn(xn). By �M we
denote the set of all Markov policies where decision rules are given by dn : E → A
with dn(xn, sn, tn) ∈ Dn(xn). For π = (d0, . . . , dN−1) ∈ � the process (Hπ

n ) denotes
the history of the extended MDP viewed as a random element, i.e.

Hπ
0 = (Xπ

0 , sπ0 , tπ0 ) = (x0, s0, t0), Hπ
n = (

Hπ
n−1, dn−1(Hπ

n−1), X
π
n , sπn , tπn

)
,

where
(Xπ

n , sπn , tπn ) = Tn−1
(
Xπ
n−1, s

π
n−1, t

π
n−1, dn−1(Hπ

n−1), Zn
)
.

Wewill writeEnhn for a conditional expectation givenH
π
n = hn, hn ∈ Hn . The value

of a policy π ∈ � with π = (d0, d1, . . . , dN−1) at time n = 0, . . . , N is defined as
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VNπ (hN ) := g(sN + tN cN (xN )),

Vnπ (hn) := Enhn

[

g

(

sn + tn

(
N−1∑

k=n

βk−nck(X
π
k , dk(Hπ

k ), Xπ
k+1) + βN−ncN (Xπ

N )

))]

,
(4.3)

where hn ∈ Hn . The corresponding value functions are

Vn(hn) := inf
π∈�

Vnπ (hn), hn ∈ Hn . (4.4)

Obviously, we have V0(x, 0, 1) = infσ∈
 E[g(Cσ x
N )]. This means in the end, the

quantity of interest is V0(x, 0, 1).

Remark 4.1 If there is no discounting or if the discounting is included in the non-
stationary one-stage cost functions, the second summary variable t is obviously not
needed. In the special case that ρφ is the Expected Shortfall, one only has to consider
the functions gq(x) = (x − q)+, q ∈ R, see (2.2). Due to their positive homogeneity
in (x, q), it suffices to extend the state space by only one real-valued summary variable
even if there is discounting, cf. Bäuerle and Ott (2011).

4.2 Solution of the extendedMDP

We show next how to solve (4.4). It turns out that optimal policies can be found
among Markov policies. Hence, let us now consider Markov policies π ∈ �M , i.e.
π = (d0, . . . , dN−1) with dn : E → A such that dn(x, s, t) ∈ Dn(x). The function
space

M := {
v : E → R+ | v is lower semicontinuous,

v(x, ·, ·) is increasing for all x ∈ E,

v(x, s, t) ≥ g(s) for (x, s, t) ∈ E
}

turns out to be the set of potential value functions under such policies. In order to
simplify the notation, we introduce the usual operators on M. All v ∈ M are non-
negative. Thus, integrals are well-defined with values in R+ ∪ {∞}.
Definition 4.2 For v ∈ M and a Markov decision rule d : E → A we define

Lnv(x, s, t, a) := E

[
v
(
Tn(x, s, t, a, Zn+1)

)]

= E

[
v
(
Tn(x, a, Zn+1), s + tcn(x, a, Tn(x, a, Zn+1)), βt

)]
, (x, s, t, a) ∈ Dn ,

Tndv(x, s, t) := Lnv(x, s, t, d(x, s, t)), (x, s, t) ∈ E,

Tnv(x, s, t) := inf
a∈Dn (x)

Lnv(x, s, t, a), (x, s, t) ∈ E.
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The next result shows that Vn(hn) depends only on (xn, sn, tn), that Vn satisfies
a Bellman equation and that an optimal policy exists and is Markov. All proofs are
deferred to the appendix.

Theorem 4.3 Let Assumption 3.1 be satisfied.

a) The value functions Vn only depend on (xn, sn, tn), i.e. Vn(hn) = Jn(xn, sn, tn)
for all hn ∈ Hn and Jn ∈ M, n = 0, . . . , N.

b) The Jn satisfy for n = 0, . . . , N the Bellman equation

JN (x, s, t) = g(s + tcN (x)),

Jn(x, s, t) = Tn Jn+1(x, s, t), (x, s, t) ∈ E.

c) There exist Markov decision rules d∗
n : E → A for n = 0, . . . , N − 1 with

Tnd∗
n
Jn+1 = Tn Jn+1 and every sequence of such minimizers constitutes an optimal

policy π∗ = (d∗
0 , . . . , d∗

N−1) ∈ �M for problem (4.4).
d) Given π∗ = (d∗

0 , . . . , d∗
N−1) ∈ �M as in part c), an optimal policy σ ∗ =

( f ∗
0 , . . . , f ∗

N−1) ∈ 
 for problem (4.1) is given by

f ∗
0 (x0) := d∗

0 (x0, 0, 1),

f ∗
n (hn) := d∗

n (xn, sn, tn), n = 1, . . . , N − 1,

with sn and tn as in (4.2).

Remark 4.4 From Theorem 4.3 it follows that the sequence {(xn, sn, tn)}N−1
n=0 with

(sn, tn) =
(
n−1∑

k=0

βkck(xk, ak, xk+1), βn

)

is a sufficient statistic of the decision model with the original state space in the sense
of Hinderer (1970).

4.3 Outer problem: existence and numerical approximation

In this subsection, we study the existence of a solution to the outer optimization
problem (3.4) under a finite planning horizon and its numerical approximation. We
have assumed that for all x ∈ E there exists a policy σ such that Cσ x

N ∈ L1 and thus
ρφ(Cσ x

N ) =: ρ̄ < ∞. Hence in what follows we can restrict to policies σ such that
ρφ(Cσ x

N ) ≤ ρ̄. In this case, we can further restrict the set G in the representation of
Proposition 2.6.

Lemma 4.5 It is sufficient to consider functions g ∈ G in the representation of Propo-
sition 2.6 which are φ(1)-Lipschitz and satisfy

0 ≤ g(x) ≤ ḡ(x) := φ(1)x+ + ρ̄, x ∈ R.

The space of such functions is denoted by G.
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In order to stress that the value function V0(x, 0, 1) = J0(x, 0, 1) in Theorem 4.3
depends on g we write J0(g) := J0(x, 0, 1) and suppress the dependence on the other
variables. For initial state x ∈ E and finite planning horizon N ∈ N the outer problem
is given by

inf
g∈G J0(g) +

∫ 1

0
g∗(φ(u))du (4.5)

We obtain now:

Theorem 4.6 Under Assumption 3.1 there exists a solution g ∈ G for the outer opti-
mization problem (4.5).

As we know now that a solution to the outer optimization problem (4.5) exists, we
aim to determine the solution numerically. The idea is to approximate the functions
g ∈ G by piecewise linear ones and thereby obtain a finite dimensional optimization
problem which can be solved with classical methods of global optimization. We are
going to show that the minimal values converge when the approximation is continu-
ously refined and give an error bound. Regarding the second summand of the objective
function (4.5) our method coincides with the Fast Legendre-Fenchel Transform (FLT)
algorithm studied for example by Corrias (1996).

For unbounded cost Cσ x
N the functions g ∈ G would have to be approximated on

the whole non-negative real line. This is numerically not feasible.

Assumption 4.7 We require additionally to Assumption 3.1 that c is bounded from
above by a constant c̄ ∈ R+.

Consequently, it holds 0 ≤ Cσ x
N ≤ ĉ := ∑N

k=0 βk c̄. The bounded cost allows for a
further reduction of the feasible set of the outer problem. On the reduced feasible set,
the second summand of the objective function is guaranteed to be finite and easier to
calculate. Recall that the convex conjugate of g ∈ G is an R ∪ {∞}-valued function
defined by g∗(y) := sups∈R{sy − g(s)}, y ∈ R.

Lemma 4.8 a) Under Assumption 4.7, a minimizer of the outer optimization problem
(4.5) lies in

Ĝ := {
g ∈ G : g(s) = g(0) for s < 0 and g(s) = g(ĉ) + φ(1)(s − ĉ) for s > ĉ

}
.

b) For g ∈ Ĝ and y ∈ [0, φ(1)] it holds g∗(y) = maxs∈[0,ĉ]{sy − g(s)} < ∞.

The fact that the supremum of the convex conjugate reduces to the maximum of a
continuous function over a compact set, opens the door for a numerical approximation
with the FLT algorithm. By definition of Ĝ, it is sufficient to approximate the functions
g ∈ Ĝ on the interval I := [0, ĉ]. For the piecewise linear approximation we consider
equidistant partitions 0 = s1 < s2 < · · · < sm = ĉ, i.e. sk = (k − 1) ĉ

m−1 , k =
1, . . . ,m, m ≥ 2. Let us define the mapping

pm(g)(s) := g(sk) + g(sk+1) − g(sk)

sk+1 − sk
(s − sk), s ∈ [sk, sk+1], k = 1, . . . ,m − 1,
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which projects a function g ∈ Ĝ to its piecewise linear approximation and its image
Ĝm := {pm(g) : g ∈ Ĝ}. For considering the restriction of the outer optimization
problem (4.5) to Ĝm it is convenient to define for g ∈ Ĝ

Km(g) := J0(pm(g)) +
∫ 1

0
pm(g)∗(φ(u))du

and K (g) := J0(g) +
∫ 1

0
g∗(φ(u))du.

Proposition 4.9 It holds

∣
∣
∣
∣
∣
inf
g∈Ĝ

Km(g) − inf
g∈Ĝ

K (g)

∣
∣
∣
∣
∣
≤ sup

g∈Ĝ
|Km(g) − K (g)| ≤ 2φ(1)

ĉ

m − 1
.

The proposition shows that the infimum of Km converges to the one of K . The error
of restricting the outer problem (4.5) to Ĝm is bounded by 2φ(1) ĉ

m−1 . The piecewise

linear functions g ∈ Ĝm are uniquely determinedby their values in the kinks s1, . . . , sm .
Hence, we can identify Ĝm with the compact set

�m :=
{

(y1, . . . , ym) ∈ R
m : y1 ∈ I , 0 ≤ y2 − y1

s2 − s1
≤ · · · ≤ ym − ym−1

sm − sm−1
≤ φ(1)

}

.

Note that due to translation invariance of ρφ it holds under Assumption 4.7 for g ∈ Ĝ
that g(0) ≤ ḡ(0) = ρ̄ ≤ ρ(ĉ) = ĉ. Thus, the outer problem (4.5) restricted to Ĝm
becomes finite dimensional:

inf
y∈�m

J0(gy) +
∫ 1

0
g∗
y(φ(u)), (4.6)

where gy ∈ Ĝm is the piecewise linear function induced by y ∈ �m , i.e.

gy(s) := yk + yk+1 − yk
sk+1 − sk

(s − sk), s ∈ [sk, sk+1], k = 1, . . . ,m − 1.

How to evaluate J0(·) in gy, y ∈ �m, has been discussed in Sect. 4.1. The next
Lemma simplifies the evaluation of the second summand of the objective function (4.6)

to calculating the integrals
∫ uk+1
uk

φ(u)du, where u0 := 0, uk := φ−1
(
yk+1−yk
sk+1−sk

)
, k =

1, . . . ,m − 1 and um := φ(1).

Lemma 4.10 The convex conjugate of g∗
y, y ∈ �m, in ξ ∈ [0, φ(1)] is given by

g∗
y(ξ) =

⎧
⎪⎨

⎪⎩

−y1, 0 ≤ ξ <
y2−y1
s2−s1

,

sk+1ξ − yk+1,
yk+1−yk
sk+1−sk

≤ ξ ≤ yk+2−yk+1
sk+2−sk+1

, k = 1, . . . ,m − 2

smξ − ym,
ym−ym−1
sm−sm−1

< ξ ≤ φ(1).
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The results of this section can be used to set up an algorithm for optimization

problem (3.2). First we have to set m :=
⌈
2φ(1)ĉ

ε

⌉
+ 1 when we want to solve the

problem with error estimate ε. Then choose y0 ∈ �m and solve the inner problem
with gy0 . Use a global optimization procedure to select the next y1, like, e.g. simulated
annealing, and eventually determine the optimal value of (4.6). Note that we do not
have convexity of (4.6) in y.

Algorithm 1: Outer problem

Data: Markov Decision Model

Output: Optimal policy σ ∗, minimal risk-sensitive cost ρφ(Cσ ∗x
N )

1. Select an approximation error ε > 0 and set m :=
⌈
2φ(1)ĉ

ε

⌉
+ 1.

2. Solve (4.6) with an algorithm for global optimization.
For each evaluation of J0(·) solve the inner problem (4.4) with Theorem 4.3.

It is worth noting that an optimal policy σ ∗ = ( f ∗
0 , . . . , f ∗

N−1) ∈ 
 obtained with
the algorithm is in general not time consistent. If one implements the policy σ ∗ and
considers optimization problem (3.2) again at a later point in time n ∈ {1, . . . , N −1},
one can disregard the cost

∑n−1
k=0 βkck(xk, ak, xk+1) which is already realized due to

the translation invariance of ρφ and faces the remaining optimization problem

inf
σ∈


ρφ

(
N−1∑

k=n

βkck(X
σ
k , fk(H

σ
k ), Xσ

k+1) + βNcN (Xσ
N )

)

. (4.7)

But for (4.7) the remaining policy ( f ∗
n , . . . , f ∗

N−1) will in general not be optimal.
The reason it that the optimal function g∗ of the outer optimization problem will
change due to Remark 2.7. However, for a fixed g ∈ G the optimal solution of inner
optimization problem is time consistent by the Bellman equation in Theorem 4.3. A
more detailed discussion of time consistent policies for risk-sensitive MDP can be
found in Shapiro (2009). Time consistency can alternatively be defined as a property
of the risk measure. How this is related to the more general policy-based viewpoint is
discussed in Shapiro and Uğurlu (2016).

5 Extensions and further results

5.1 Infinite planning horizon

In this subsection, we consider the risk-sensitive total cost minimization (3.3) under
an infinite planning horizon. This is reasonable if the terminal period is unknown or if
one wants to approximate a model with a large but finite planning horizon. Solving the
infinite horizon problem will turn out to be easier since it admits a stationary optimal
policy.

We study the stationary version of the decision model with no terminal cost, i.e.
D, T , c do not depend on n, cN ≡ 0 and the disturbances are identically distributed.
Let Z be a representative of the disturbance distribution. Our first aim is to solve again
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the inner problem

inf
σ∈


E[g(Cσ x∞ )] (5.1)

for an arbitrary but fixed increasing convex function g ∈ G. As in the previous section
we assume w.l.o.g. that g ≥ 0 and that for all x ∈ E there exists a policy σ such that
Cσ x∞ ∈ L1.

The remarks in Sect. 3 regarding connections to the minimization of (rank-
dependent) expected disutilities and corresponding certainty equivalents apply in the
infinite horizon case as well.

In order to obtain a solution by value iteration, the state space is extended to E :=
E × R+ × (0,∞) as in Sect. 4. The action space A and the admissible state-action
combinations D remain unchanged, i.e. D := {(x, s, t, a) ∈ E × A : a ∈ D(x)} and
D(x, s, t) := D(x), (x, s, t) ∈ E. The transition function on the new state space is
given by T : D × Z → E,

T(x, s, t, a, z) :=
⎛

⎝
T (x, a, z)

s + tc(x, a, T (x, a, z))
βt

⎞

⎠ .

Since the model with infinite planning horizon will be derived as a limit of the
one with finite horizon, the consideration can be restricted to Markov policies π =
(d1, d2, . . . ) ∈ �M due to Theorem 4.3.

The value of a policy π = (d1, d2, . . . ) ∈ �M under an infinite planning horizon
is defined as

J∞π (x, s, t) := E0x

[

g

(

s + t
∞∑

k=0

βkc(Xπ
k , dk(X

π
k , sπk , tπk ), Xπ

k+1)

)]

, (x, s, t) ∈ E.

Note that J∞π is well-defined since c ≥ 0. The infinite horizon value function is

J∞(x, s, t) := inf
π∈�M

J∞π (x, s, t), (x, s, t) ∈ E. (5.2)

We obviously get that infσ∈
 E[g(Cσ x∞ )] = J∞(x, 0, 1). The operators T and Td
which appear in the next theorem are defined as in Definition 4.2 for the stationary
model data.

Theorem 5.1 Let Assumption 3.1 be satisfied. Then it holds:

a) The infinite horizon value function J∞ is the smallest fixed point of the Bellman
operator T inM.

b) There exists a Markov decision rule d∗ such that Td∗ J∞ = TJ∞ and each station-
ary policy π∗ = (d∗, d∗, . . . ) ∈ �M induced by such a decision rule is optimal
for optimization problem (5.2).
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c) Given π∗ = (d∗, d∗, . . . ) ∈ �M as in part b), an optimal policy σ ∗ =
( f ∗

0 , f ∗
1 , . . .) ∈ 
 for problem (5.1) is given by

f ∗
0 (x0) := d∗(x0, 0, 1),
f ∗
n (hn) := d∗(xn, sn, tn), n ∈ N,

with sn and tn as in (4.2).

The solution of the outer optimization problem

inf
g∈G J∞(g) +

∫ 1

0
g∗(φ(u))du (5.3)

follows the same lines as in the case of a finite time horizon. Again we can restrict to
policies σ such that ρφ(Cσ x∞ ) ≤ ρ̄. Lemma 4.5 which reduces the outer optimization
problem to G holds also in the infinite horizon case as well as Theorem 4.6 which
states the existence of a solution to the outer problem.

The numerical approximation scheme for the infinite horizon works under the fol-
lowing assumption:

Assumption 5.2 In addition to Assumption 3.1 we require that c is bounded from
above by a constant c̄ ∈ R+ and that β ∈ (0, 1).

Hence, it holds that 0 ≤ Cσ x∞ ≤ ĉ with ĉ = c̄
1−β

and we obtain in the same way as
Lemma 4.8:

Lemma 5.3 a) Under Assumption 5.2, a minimizer of the outer optimization problem
(5.3) lies in

Ĝ = {
g ∈ G : g(s) = g(0) for s < 0 and g(s) = g(ĉ) + φ(1)(s − ĉ) for s > ĉ

}
.

b) For g ∈ Ĝ and y ∈ [0, φ(1)] it holds g∗(y) = maxs∈[0,ĉ]{sy − g(s)} < ∞.

The remaining part of the numerical algorithm works as in the case of finite time
horizon.

5.2 Relaxed assumptions for monotonemodels

The model has been introduced in Sect. 3 with a general Borel space as state space.
In order to solve the optimization problem with finite or infinite time horizon we
assumed a continuous transition function despite having a semicontinuous model.
This assumption on the transition function can be relaxed to semicontinuity if the
state space is the real line and the transition and one-stage cost function have some
form of monotonicity. For notational convenience, we consider the stationary model
with no terminal cost under both finite and infinite horizon in this section. We replace
Assumption 3.1 by
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Assumption 5.4 (i) The state space is the real line E = R.
(ii) The sets D(x) are compact and R � x �→ D(x) is upper semicontinuous and

decreasing, i.e. D(x) ⊇ D(y) for x ≤ y.
(iii) The transition function T is lower semicontinuous in (x, a) and increasing in x .
(iv) The one-stage cost c(x, a, T (x, a, z)) is lower semicontinuous in (x, a) and

increasing in x .

Requiring that the one-stage cost function c is lower semicontinuous in (x, a, x ′)
and increasing in (x, x ′) is sufficient for Assumption 5.4 (iv) to hold due to part (iii)
of the assumption.

How do the modified continuity assumptions affect the validity of the results in
Sects. 4.1 and 5.1? The only two results that were proven using the continuity of the
transition function T in (x, a) and not only its measurability are Theorems 4.3 and
5.1. All other statements are unaffected.

Proposition 5.5 The assertions of Theorems 4.3 and 5.1 hold under Assumption 5.4,
too. Moreover, the value functions Jn and J∞ are increasing. The set of potential value
functions can therefore be replaced by

M = {
v : E → R | v is lower semicontinuous and increasing,

v(x, s, t) ≥ g(s) for (x, s, t) ∈ E
}
.

The monotonicity properties of Assumption 5.4 can be used to construct a convex
model.

Lemma 5.6 Let Assumption 5.4 be satisfied, A be a subset of a real vector space, the
admissible state-action-combinations D be a convex set, the transition function T be
convex in (x, a) and the one-stage cost D � (x, a) �→ c(x, a, T (x, a, z)) be a convex
function for every z ∈ Z. Then, the value functions Jn(·, ·, t) and J∞(·, ·, t) are convex
for every t > 0.

If c is increasing in x ′, it is sufficient to require that c and T are convex in (x, a).
The monotonicity requirements in Assumption 5.4 are only one option. The following
alternative is relevant in particular for the dynamic reinsurance model in Sect. 6. For
a proof see Section 6.1.3 in Glauner (2020).

Corollary 5.7 Change Assumption 5.4 (ii)–(iv) to

(ii’) The sets D(x) are compact and R � x �→ D(x) is upper semicontinuous and
increasing.

(iii’) T is upper semicontinuous in (x, a) and increasing in x.
(iv’) c(x, a, T (x, a, z)) is lower semicontinuous in (x, a) and decreasing in x.

Then, the assertions of Theorems 4.3 and 5.1 still hold with the value functions Jn and
J∞ being decreasing in x and increasing in (s, t).

If furthermore A is a subset of a real vector space, D a convex set, T concave in
(x, a) and D � (x, a) �→ c(x, a, T (x, a, z)) convex for every z ∈ Z, then the value
functions Jn(·, ·, t) and J∞(·, ·, t) are convex for every t > 0.

123



Minimizing spectral risk measures applied to Markov decision processes 53

6 Dynamic optimal reinsurance

As an application, we present a dynamic extension in discrete time of the static optimal
reinsurance problem

min
�∈L rCoC · ρ

(
�(Y ) + πR(�)

)
. (6.1)

In this setting, the insurance company incurs an aggregate loss Y ∈ L1≥0 at the end of a
fixed period due to insurance claims. In order to reduce its risk, the insurer concludes a
reinsurance contract � to transfer a part of its potential loss to a reinsurance company.
The reinsurance contract � determines the loss �(Y (ω)) retained by the insurance
company in each scenarioω ∈ �. For the risk transfer, the insurer has to compensate the
reinsurer with a reinsurance premium πR(�) := πR(Y −�(Y )), where πR : L1≥0 → R

is a premium principle with properties similar to a risk measure. Most widely used is
the expected premium principle πR(X) = (1+ θ)E[X ] with safety loading θ > 0. In
order to preclude moral hazard, it is standard in the actuarial literature to assume that
both � and the ceded loss function idR+ −� are increasing. Hence, the set of admissible
retained loss functions is

L = {� : R+ → R+ | �(y) ≤ y ∀y ∈ R+, � increasing, idR+ − � increasing}.

The insurer’s target is to minimize its cost of solvency capital which is calculated as
the cost of capital rate rCoC ∈ (0, 1] times the solvency capital requirement determined
by applying the risk measure ρ to the insurer’s effective risk after reinsurance.

First research on the optimal reinsurance problem (6.1) dates back to the 1960s.
Borch (1960) proved that a stop loss reinsurance contract minimizes the variance of
the retained loss of the insurer given the premium is calculated with the expected
value principle. A similar result has been derived in Arrow (1963) where the expected
utility of terminal wealth of the insurer has been maximized. Since then a lot of
generalizations of this problem have been considered. For a comprehensive literature
overview, we refer to Albrecher et al. (2017). Since the 2000s, Expected Shortfall has
become of special interest. Chi and Tan (2013) identified layer reinsurance contracts as
optimal for Expected Shortfall under general premium principles. Their results were
extended to general distortion riskmeasures by Cui et al. (2013). Other generalizations
concerned additional constraints, see e.g. Lo (2017), or multidimensional settings
induced by a macroeconomic perspective, see Bäuerle and Glauner (2018). We are
not aware of any dynamic generalizations in the literature.

Reinsurance treaties are typically written for one year, cf. Albrecher et al. (2017).
Hence, it is appropriate to model such an extension in discrete time. The insurer’s
annual surplus has the dynamics

X0 = x, Xn+1 = Xn + Zn+1 − �n(Yn+1) − πR(�n),

where the bounded, non-negative randomvariable Zn+1 ∈ L∞≥0 represents the insurer’s
premium income from its customers in the n-th period. The premium principle πR :
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L p
≥0 → R of the reinsurer is assumed to be law-invariant, monotone, normalized

and to have the Fatou property. Normalization means that πR(0) = 0 and the Fatou
property is lower semicontinuity w.r.t. dominated convergence.

The Markov Decision Model is given by the state space E = R, the action space
A = L, either no constraint or a budget constraint D(x) = {� ∈ L : πR(�) ≤
x+}, the independent disturbances (Yn, Zn)n∈N with Yn ∈ L1≥0 and Zn ∈ L∞≥0, the
transition function T (x, �, y, z) = x − �(y) − πR(�) + z and the one-stage cost
function c(x, �, x ′) = x − x ′. A reinsurance policy is a sequence σ = ( f0, . . . , fN−1)

of measurable decision rules fn : Hn → L selecting the reinsurance contract at
each stage based on the available information. The insurance companies target is to
minimize its solvency cost of capital for the total discounted loss

inf
σ∈


rCoC · ρφ

(
N−1∑

k=0

βk
(
fk(H

σ
k )(Yk+1) + πR( fk(H

σ
k )) − Zk+1

)
)

, (6.2)

where ρφ is a spectral risk measure with bounded spectrum φ, β ∈ (0, 1] and N ∈ N.
As it is irrelevant for the minimization, we will in the sequel omit the cost of capital
rate rCoC and instead minimize the capital requirement. For β = 1 we have

N−1∑

k=0

fk(H
σ
k )(Yk+1) + πR( fk(H

σ
k )) − Zk+1 =

N−1∑

k=0

Xσ
k − Xσ

k+1 = x − Xσ
N ,

i.e. due to translation invariance of spectral risk measures the objective reduces to
minimizing the capital requirement for the loss (negative surplus) at the planing
horizon −Xσ

N . This is reminiscent of the static reinsurance problem (6.1), how-
ever here the loss distribution at the planing horizon can be controlled by interim
action. Throughout, we have required that the one-stage cost c(x, �, T (x, �,Y , Z)) =
�(Y ) + πR(�) − Z is non-negative. As �(Y ) and πR(�) are non-negative for all � ∈ L
and c(x, idR+ , T (x, idR+ ,Y , Z)) = Y − Z due to normalization of πR , the premium
income Z would have to be non-positive. Thismakes no sense froman actuarial point of
view, but sinceρφ is translation invariant and Z ∈ L∞ wecan add

∑N−1
k=0 βkess sup(Z)

without influencing the minimization. This means that the one-stage cost function is
changed to ĉ(x, �, x ′) = x − x ′ + ess sup(Z). The economic interpretation is that the
one-stage cost

ĉ(x, �, T (x, �,Y , Z)) = �(Y ) + πR(�) + ess sup(Z) − Z

now depends on the deviation from the maximal possible income instead of the actual
income. For brevity we write ẑ = ess sup(Z).

As in (3.4) we separate an inner and outer reinsurance problem. For a structural
analysis we can focus on the inner optimization problem

inf
σ∈


E

[

g

(
N−1∑

k=0

βk
(
fk(H

σ
k )(Yk+1) + πR( fk(H

σ
k )) + ẑ − Zk+1

)
)]

(6.3)
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with arbitrary g ∈ G, cf. Lemma 4.5. Note that for σ = ( f , . . . , f ) with the constant
decision rule f ≡ idR+ representing full retention at all stages we obtain ρφ(Cσ x

N ) <

∞. On the extended state space E = R × R+ × (0, 1], the value of a policy π =
(d0, . . . , dN−1) ∈ � is defined as

VNπ (hN ) = g(sN ),

Vnπ (hn) = Enhn

⎡

⎣g

⎛

⎝sn + tn

N−1∑

k=n

βk−n
(
dk(H

π
k )(Yk+1) + πR(dk(H

π
k )) + ẑ − Zk+1

)
⎞

⎠

⎤

⎦ ,

for n = 0, . . . , N and hn ∈ Hn . The corresponding value functions are

Vn(hn) = inf
π∈�

Vnπ (hn), hn ∈ Hn .

Due to the real state space we want to apply Corollary 5.7 for solving the optimization
problem. Note that the one-stage cost ĉ is non-negative and the spectrum φ bounded
by assumption. The following lemma shows that also the monotonicity, continuity and
compactness assumptions of Corollary 5.7 are satisfied by the dynamic reinsurance
model.

Lemma 6.1 a) The retained loss functions � ∈ L are Lipschitz continuous with con-
stant L ≤ 1. Moreover, L is a Borel space as a compact subset of the metric space
(C(R+),m) of continuous real-valued functions onR+ with the metric of compact
convergence.

b) The functional πR : L → R+, � �→ πR(�) is lower semicontinuous.
c) The transition function T is upper semicontinuous and increasing in x.
d) D(x) is a compact subset ofL for all x ∈ R and the set-valued mappingR � x �→

D(x) is upper semicontinuous and increasing.
e) The one-stage cost D � (x, �) �→ c(x, �, T (x, �, y, z)) is lower semicontinuous

and decreasing in x.

Now, Corollary 5.7 yields that it is sufficient to minimize over all Markov policies
and the value functions satisfy the Bellman equation

JN (x, s, t) = g(s),

Jn(x, s, t) = inf
�∈D(x)

E

[
Jn+1

(
x − �(Y ) − πR(�) + Z , s + t

(
�(Y ) + πR(�) + ẑ − Z

)
, βt

)]

(6.4)

for (x, s, t) ∈ E and n = 0, . . . , N − 1. Moreover, there exists a Markov Decision
rule d∗

n : E → L minimizing Jn+1 and every sequence π = (d∗
0 , . . . , d∗

N−1) ∈ �M

of such minimizers is a solution to (6.3).
All structural properties of the optimal policy which do not depend on g are inher-

ited by the optimal solution of the cost of capital minimization problem (6.2). The
structural properties we will focus on in the rest of this section are induced by convex-
ity. Therefore, we assume that the premium principle πR is convex and that there is no
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budget constraint. Note that D(x) is non-convex even for convex πR . Under these con-
ditions, we have indeed a convex model: D is trivially convex, the transition function
T (x, �, y, z) = x−�(y)−πR(�)+z is concave in (x, �) as a sum of concave functions
and the one-stage cost (x, �) �→ ĉ(x, �, T (x, �, y, z)) = �(y)+πR(�)+ ẑ − z is con-
vex as a sum of convex functions. Now, Corollary 5.7 yields that the value functions
Jn are convex. Under the widely-used expected premium principle, the optimization
problem can be reduced to finite dimension.

Example 6.2 Let πR(·) = (1 + θ)E[·] be the expected premium principle with safety
loading θ > 0 and assume there is no budget constraint. We will now show that the
optimal reinsurance contracts (i.e. retained loss functions) can be chosen from the
class of stop loss contracts

�(x) = min{x, a}, a ∈ [0,∞].

Due to the convexity of Jn+1, we can infer from the Bellman equation (6.4) that
reinsurance contract �1 is better than �2 if

�1(Y ) + πR(�1) ≤cx �2(Y ) + πR(�2),

where ≤cx denotes the convex order. Since Y1 ≤cx Y2 implies E[Y1] = E[Y2], it
suffices to find an a� ∈ [0,∞] such that

min{Y , a�} ≤cx �(Y ). (6.5)

The mapping [0,∞] � a �→ min{Y (ω), a} is continuous for all ω ∈ � and 0 ≤
min{Y , a} ≤ Y ∈ L1. Thus, it follows from dominated convergence that [0,∞] �
a �→ E[min{Y , a}] is continuous. Furthermore,

E[min{Y , 0}] ≤ E[�(Y )] ≤ E[min{Y , ess sup(Y )}].

Hence, by the intermediate value theorem there is an a� ∈ [0,∞] such thatE[�(Y )] =
E[min{Y , a�}]. Let us compare the survival functions:

Smin{Y ,a�}(y) = P(min{Y , a�} > y) = P(Y > y)1{a� > y},
S�(Y )(y) = P(�(Y ) > y) ≤ P(Y > y).

The inequality holds since � ≤ idR+ . Hence, we have Smin{Y ,a�}(y) ≥ S�(Y )(y) for
y < a� and Smin{Y ,a�}(y) ≤ S�(Y )(y) for y ≥ a�. The cut criterion 1.5.17 inMüller and
Stoyan (2002) implies min{Y , a�} ≤icx �(Y ) and (6.5) follows due to the equality in
expectation, cf. Theorem 1.5.3 inMüller and Stoyan (2002). So the inner optimization
problem (6.3) is reduced to finding an optimal nonnegative retention level of a stop
loss contract at every stage. With this reduction, the dynamic reinsurance problem
becomes numerically solvable without requiring a parametric approximation of the
retained loss functions.
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Table 1 Relative optimal
retention level of the stop loss
constract at time t = 0 for
different parameters of the claim
size distribution

λ = 1 λ = 0.5 λ = 0.25 λ = 0.125

a∗
0

ess sup(Y )
0.96 0.98 0.99 0.99

Fig. 1 Relative optimal retention level of the stop loss constract at time t = 1 as a function of the accumulated
cost s for different parameters of the claim size distribution

Let us apply the algorithmderived at the end of Sect. 4.3 and study the optimal reten-
tion levels in a two-stage setting without discounting and deteministic income Z ≡ z.
Due to the translation invariance of ρφ a deterministic income can be disregarded in
the optimization. The stage-wise insurance claims Y are assumed to be exponentially
distributed with parameter λ > 0, which is a classical choice in actuarial science. For
numerical feasibility we truncate the distribution at the 99.9%-quantile. The safety
loading of the expected premim principle is θ = 0.1. As a concrete risk measure we
consider Expected Shortfall ES0.99 with the typical paramter α = 0.99. Due to (2.2)
we have to consider G = {gq : q ∈ R}with gq(s) = (s−q)+ and

∫ 1
0 g∗(φ(u))du = q

for the outer optimization problem. We can infer recursively from the Bellman equa-
tion (6.4) that the value functions only depend on the accumulated cost s and not on
the current capital x since there is no budget constraint. The same therefore holds for
the optimal retention level.

Table 1 shows the optimal retention parameter at time t = 0 for different parameters
of the truncated exponential distribution. For better comparability the parameter is
shown relative to the maximal claim size ess sup(Z).

Figure 1 shows the optimal decision rule at time t = 1, i.e. the optimal retention
level as a function of the accumulated cost s for different parameters of the truncated
exponential distribution again relative to themaximal loss. Hence, the curves are given

by s �→ a∗
1 (s)

ess sup(Y )
. It is worth noting that the parameter λ of the truncated exponential
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distrubution has a structurally different influence than at time t = 0. At time t = 1,
a smaller λ (i.e. a higher expected insurance claim) leads to a more convervative
reinsurance contract in form of less risk retention, whereas at time t = 0 it increases
the optimal retention level. By comparison, the influence of the safety loading θ and the
level α of Expected Shortfall turned out to be negligible and is therefore not presented
here.
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Appendix

Proof for subsection 4.1

In order to prove Theorem 4.3 we need to show the value iteration for the value Vnπ

of a fixed policy π ∈ � first. This is done in the next proposition.

Proposition 7.1 The value of a policy π ∈ � can be calculated recursively for n =
0, . . . , N − 1 and hn ∈ Hn as

VNπ (hN ) = g(sN + tN cN (xN ))

Vnπ (hn) = E

[
Vn+1π

(
hn, dn(hn), Tn(xn, sn, tn, dn(hn), Zn+1)

)]

= E

[
Vn+1π

(
hn, dn(hn), Tn(xn, dn(hn), Zn+1),

sn + tncn(xn, dn(hn), Tn(xn, dn(hn), Zn+1)), βt
)]

.

Proof The proof is by backward induction. At time N there is nothing to show. Now
assume the assertion holds for n+1, then the tower property of conditional expectation
yields

Vnπ (hn) = Enhn

[

g

(

sn + tn

( N−1∑

k=n

βk−nck(X
π
k , dk(Hπ

k ), Xπ
k+1) + βN−ncN (Xπ

N )

))]

= Enhn

[

g

(

sn + tncn(xn, dn(hn), Tn(xn, dn(hn), Zn+1))

+ tnβ

( N−1∑

k=n+1

βk−(n+1)ck(X
π
k , dk(Hπ

k ), Xπ
k+1) + βN−(n+1)cN (Xπ

N )

))]
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= Enhn

[

En+1(hn ,dn(hn),Tn(xn ,sn ,tn ,dn(hn),Zn+1))

[

g

(

sn + tncn(xn, dn(hn), Tn(xn, dn(hn), Zn+1))

+ tnβ

( N−1∑

k=n+1

βk−(n+1)ck(X
π
k , dk(Hπ

k ), Xπ
k+1) + βN−(n+1)cN (Xπ

N )

))]]

= E

[

Vn+1π

(
hn, dn(hn), Tn(xn, sn, tn, dn(hn), Zn+1)

)]

. �


We are now in a position to prove Theorem 4.3. Note that the operators in Definition
4.2 are monotone in v. Under a Markov policy π = (d0, . . . , dN−1) ∈ �M the
value iteration in Proposition 7.1 can be expressed with the help of the operators. We
denote the Markov value functions with J . More precisely, we set JNπ (x, s, t) :=
g(s + tcN (x)), (x, s, t) ∈ E and we obtain according to Proposition 7.1 for n =
0, . . . , N − 1 and (x, s, t) ∈ E

Jnπ (x, s, t) = E

[
Jn+1π

(
Tn(x, dn(x), Zn+1), s + tcn(x, dn(x), Tn(x, dn(x), Zn+1)), βt

)]

= Tndn Jn+1π (x, s, t).

The corresponding Markov value functions are defined for n = 0, . . . , N as

Jn(x, s, t) := inf
π∈
M

Jnπ (x, s, t), (x, s, t) ∈ E.

Proof of Theorem 4.3 The proof of parts a)-c) is by backward induction. At time N we
have VN (hN ) = JN (xN , sN , tN ) = g(sN + tN cN (xN )), hN ∈ HN , which is

• lower semicontinuous since g is increasing and continuous (as a convex function
on R) and cN is lower semicontinuous,

• increasing in (sN , tN ) since g is increasing and cN is non-negative,
• bounded below by g(sN ) since g is increasing and tN cN (xN ) ≥ 0.

I.e. JN ∈ M. Assuming the assertion holds at time n+1we have at time n for hn ∈ Hn

Vn(hn) = inf
π∈�

Vnπ (hn)

= inf
π∈�

E

[
Vn+1π

(
hn, dn(hn), Tn(xn, sn, tn, dn(hn), Zn+1)

)]

≥ inf
π∈�

E

[
Vn+1

(
hn, dn(hn), Tn(xn, sn, tn, dn(hn), Zn+1)

)]

= inf
π∈�

E

[
Jn+1

(
Tn(xn, sn, tn, dn(hn), Zn+1)

)]
.

= inf
an∈Dn(xn)

E

[
Jn+1

(
Tn(xn, sn, tn, an, Zn+1)

)]
. (7.1)
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The last equality holds since the minimization does not depend on the entire policy
but only on an = dn(hn). Here, objective and constraint depend on the history of
the process only through (xn, sn, tn). Thus, given existence of a minimizing Markov
decision rule d∗

n , (7.1) equals Tnd∗
n
Jn+1(xn, sn, tn). Again by the induction hypothesis,

there exists an optimal Markov policy π∗ ∈ �M such that Jn+1 = Jn+1π∗ . Hence,
we have

Vn(hn) ≥ Tnd∗
n
Jn+1π∗(xn, sn, tn) = Jnπ∗(xn, sn, tn) ≥ Jn(xn, sn, tn) ≥ Vn(hn).

It remains to show the existence of a minimizing Markov decision rule d∗
n and that

Jn ∈ M. We want to apply Proposition 2.4.3 of Bäuerle and Rieder (2011). The set-
valuedmappingE � (x, s, t) �→ Dn(x) is compact-valued and upper semicontinuous.
Next, we show that Dn � (x, s, t, a) �→ Lnv(x, s, t, a) is lower semicontinuous for
every v ∈ M. Let {(xk, sk, tk, ak)}k∈N be a convergent sequence in Dn with limit
(x∗, s∗, t∗, a∗) ∈ Dn . The mapping

Dn � (x, s, t, a) �→ v
(
Tn(x, a, Zn+1(ω)), s + tcn(x, a, Tn(x, a, Zn+1(ω))), βt

)

is lower semicontinuous. Since v ≥ g ≥ 0, we can apply Fatou’s Lemma which yields

lim inf
k→∞ Lnv(xk, sk, tk, ak)

= lim inf
k→∞ E

[
v
(
Tn(xk, ak, Zn+1), sk + tkcn(xk, ak, Tn(xk, ak, Zn+1)), βtk

)]

≥ E

[
lim inf
k→∞ v

(
Tn(xk, ak, Zn+1), sk + tkcn(xk, ak, Tn(xk, ak, Zn+1)), βtk

)]

≥ E

[
v
(
Tn(x

∗, a∗, Zn+1), s
∗ + t∗cn(x∗, a∗, Tn(x∗, a∗, Zn+1)), βt∗

)]

= Lnv(x∗, s∗, t∗, a∗).

I.e. Lnv is lower semicontinuous. Proposition 2.4.3 in Bäuerle and Rieder (2011)
implies the existence of a minimizing decision rule d∗

n and the lower semicontinuity
of Tnv.

Now fix x ∈ E . The fact that (s, t) �→ Tnv(x, s, t) is increasing follows as
in Theorem 2.4.14 in Bäuerle and Rieder (2011). The inequality Tnv(x, s, t) ≥
g(s), (x, s, t) ∈ E, is obvious. Altogether, we have Tnv ∈ M.

Part d) follows from the construction of the policies and the proof is complete. �


Proofs for subsection 4.3

Lemma 4.5 states that the outer optimization problem (3.4) can be reduced to the space
G.
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Proof of Lemma 4.5 SetC = Cσ x
N to simplify the notation and assume that ρφ(C) ≤ ρ̄.

We know from Remark 2.7 that the optimal g ∈ G corresponding to C is

gφ,C (x) =
∫ 1

0
F−1
C (α) + 1

1 − α

(
x − F−1

C (α)
)

+ μ(dα), x ∈ R,

with μ from Proposition 2.5. Since C ≥ 0 it follows

gφ,C (x) ≥
∫ 1

0
F−1
C (α)μ(dα) ≥ 0.

Furthermore, we have

gφ,C (x) =
∫ 1

0
F−1
C (α)μ(dα) +

∫ 1

0

1

1 − α

(
x − F−1

C (α)
)+

μ(dα)

≤
∫ 1

0
ESα(C)μ(dα) + x+

∫ 1

0

1

1 − α
μ(dα)

= ρφ(C) + φ(1)x+ ≤ ρ̄ + φ(1)x+ = ḡ(x).

The first inequality uses F−1
C (α) = VaRα(C) ≤ ESα(C) and C ≥ 0. The identity

∫ 1

0

1

1 − α
μ(dα) = φ(1)

is by definition of μ. As a convex function, gφ,C is almost everywhere differentiable
with derivative g′

φ,C (x) = φ(FC (x)) ≤ φ(1), cf. Remark 2.7. This establishes the
Lipschitz continuity with constant L = φ(1). �


Next, we prove Theorem 4.6 which states the existence of a solution of the outer
problem. For this, we need some preliminary results. As a first step we study the
dependence of the value functions of the inner problem on g. In order to do so, we
need some structure on G.

Lemma 7.2 (G,m) is a compact metric space, where

m(g1, g2) =
∞∑

j=1

2− j max|s|≤ j |g1(s) − g2(s)|
1 + max|s|≤ j |g1(s) − g2(s)|

is the metric of compact convergence.

Proof Since G ⊆ C(R,R), it suffices to show that G is closed w.r.t. m and ver-
ify the assumptions of the Arzelà–Ascoli theorem. Note that convergence w.r.t. m
implies pointwise convergence. Convexity, monotonicity, the common Lipschitz con-
stantφ(1), non-negativity and the pointwise upper bound ḡ are all preserved evenunder
pointwise convergence. Hence, G is closed w.r.t.m. Moreover, G is pointwise bounded
and the common Lipschitz constant implies that it is uniformly equicontinuous. �
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For clarity we index the value functions with g. The value functions J g0 of the finite
horizon inner problem depend semicontinuously on g.

Lemma 7.3 LetAssumption3.1be satisfied. Then the functionalG×E � (g, x, s, t) �→
J gn (x, s, t) is lower semicontinuous for all n = 0, . . . , N.

Proof The proof is by backward induction. At time N we have to verify that
J gN (x, s, t) = g(s + tcN (x)) is lower semicontinuous in (g, x, s, t). First, note that
G × R+ � (g, s) �→ g(s) is continuous since if (gk, sk) → (g, s), then g converges
especially pointwise and

|gk(sk) − g(s)| = |gk(sk) − gk(s) + gk(s) − g(s)| ≤ |gk(sk) − gk(s)| + |gk(s) − g(s)|
≤ φ(1) |sk − s| + |gk(s) − g(s)| → 0 as k → ∞.

Now let (gk, xk, sk, tk) → (g, x, s, t) and define the increasing sequence {ck}k∈N
through ck = inf�≥k cN (x�).

Case 1: {ck}k∈N is bounded above and therefore convergent with limit ĉ. Then

ĉ = lim
k→∞ ck = lim

k→∞ inf
�≥k

cN (x�) = lim inf
k→∞ cN (xk) ≥ cN (x)

since cN is lower semicontinuous. As the functions {gk}k∈N and g are all increasing,
we get

lim inf
k→∞ gk(sk + tkcN (xk)) ≥ lim

k→∞ gk(sk + tkck) = g(s + t ĉ) ≥ g(s + tcN (x)).

Case 2: {ck}k∈N is unbounded above. Then there exists K ∈ N such that ck ≥ cN (x)
for all k ≥ K and

lim inf
k→∞ gk(sk+tkcN (xk)) ≥ lim inf

k→∞ gk(sk + tkck) ≥ lim
k→∞ gk(sk + tkcN (x))=g(s + tcN (x)).

Now assume the assertion holds for n + 1. By Theorem 4.3 we have at time n

J gn (x, s, t) = inf
a∈D(x)

E

[
J gn+1

(
Tn(x, a, Zn+1), s + tcn(x, a, Tn(x, a, Zn+1)), βt

)]
.

The integrand J gn+1

(
Tn(x, a, Zn+1(ω)), s + tcn(x, a, Tn(x, a, Zn+1(ω))), βt

)
is

lower semicontinuous in (g, x, s, t, a) for every ω ∈ � by the induction hypothe-
sis. Hence, if (gk, xk, sk, tk) → (g, x, s, t), Fatou’s lemma and the monotonicity of
expectation yield

lim inf
k→∞ E

[
J gkn+1

(
Tn(xk, ak, Zn+1), sk + tkcn(xk, ak, Tn(xk, ak, Zn+1)), βtk

)]

≥ E

[
lim inf
k→∞ J gkn+1

(
Tn(x, a, Zn+1), s + tcn(x, a, Tn(x, a, Zn+1)), βt

)]

≥ E

[
J gn+1

(
Tn(x, a, Zn+1), s + tcn(x, a, Tn(x, a, Zn+1)), βt

)]
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I.e. (g, x, s, t) �→ Ln J
g
n+1(x, s, t, a) is lower semicontinuous. As the set-valued map-

ping E � x �→ D(x) is compact valued and upper semicontinuous,

(g, x, s, t) �→ J gn (x, s, t, a) = inf
a∈D(x)

Ln J
g
n+1(x, s, t, a)

is lower semicontinuous by Proposition 2.4.3 in Bäuerle and Rieder (2011).

Now we are in a position to prove the existence result for the outer optimization
problem.

Proof of Theorem 4.6 Wewant to applyWeierstraß’ extreme value theorem. In view of
Lemmata 7.2 and 7.3 it suffices to show that the functional G � g �→ ∫ 1

0 g∗(φ(u))du
is lower semicontinuous. Let {gk}k∈N ⊆ G be a convergent sequence with limit g ∈ G.
It holds for all u ∈ [0, 1]

lim inf
k→∞ g∗

k (φ(u)) = lim
k→∞ inf

�≥k
g∗
� (φ(u)) = lim

k→∞ inf
�≥k

sup
s∈R

{
φ(u)s − g�(s)

}

≥ lim
k→∞ sup

s∈R
inf
�≥k

{
φ(u)s − g�(s)

} = sup
s∈R

lim
k→∞ inf

�≥k

{
φ(u)s − g�(s)

}

= sup
s∈R

{
φ(u)s − lim sup

k→∞
gk(s)

} = sup
s∈R

{
φ(u)s − g(s)

} = g∗(φ(u)).

(7.2)

The inequality holds generally for the interchange of infimum and supremum, the
equality thereafter by Lemma A.1.6 in Bäuerle and Rieder (2011) and the last but
one equality since the sequence {gk}k∈N is especially pointwise convergent. Moreover
note that for all k ∈ N and u ∈ [0, 1] it holds

g∗
k (φ(u)) = sup

s∈R
{
φ(u)s − gk(s)

} ≥ −gk(0) ≥ −ḡ(0) > −∞.

Now, Fatou’s lemma and (7.2) yield together with

lim inf
k→∞

∫
g∗
k (φ(u))du ≥

∫
lim inf
k→∞ g∗

k (φ(u))du ≥
∫

g∗(φ(u))du

the assertion. �

Next, we can turn to the numerical approximation scheme.

Proof of Lemma 4.8 a) Fix σ ∈ 
, x ∈ E and set C = Cσ x
N to simplify the notation.

We know from Remark 2.7 that the optimal g ∈ G corresponding to C is

gφ,C (s) =
∫ 1

0
F−1
C (α) + 1

1 − α

(
s − F−1

C (α)
)

+ μ(dα), s ∈ R,

with μ from Proposition 2.5. Clearly, it is sufficient to consider functions g ∈ G
which are optimal for at least one C = Cπx

N . Since 0 ≤ C ≤ ĉ we have 0 ≤
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F−1
C (α) ≤ ĉ. Consequently, it holds for s < 0

gφ,C (s) =
∫ 1

0
F−1
C (α)μ(dα) = g(0).

As a convex function, gφ,C is almost everywhere differentiable with derivative
g′
φ,C (s) = φ(FC (s)), cf. Remark 2.7, and for s > ĉ it holds FC (s) = 1.

b) Let g ∈ Ĝ and y ∈ [0, φ(1)]. For s ≥ ĉ the function

s �→ sy − g(s) = (y − φ(1))s − g(ĉ) + φ(1)ĉ

is decreasing and for s ≤ 0 the function

s �→ sy − g(s) = sy − g(0)

is increasing. Hence, it suffices to consider the supremum over [0, ĉ]. �

Proof of Proposition 4.9 The first inequality is obvious and it remains to prove the
second. We have for N ∈ N ∪ {∞}, x ∈ E and g ∈ Ĝ

|J0(pm(g)) − J0(g)| =
∣
∣
∣
∣ infσ∈


E[pm(g)(Cσ x
N )] − inf

σ∈

E[g(Cσ x

N )]
∣
∣
∣
∣

≤ sup
σ∈


E
∣
∣pm(g)(Cσ x

N ) − g(Cσ x
N )

∣
∣

≤ sup
s∈I

|pm(g)(s) − g(s)|.

Moreover, it holds for y ∈ [0, φ(1)]|pm(g)∗(y) − g∗(y)| =
∣
∣
∣
∣sup
s∈I

{sy − g(s)} − sup
s∈I

{sy − pm(g)(s)}
∣
∣
∣
∣ ≤ sup

s∈I
|pm(g)(s) − g(s)|.

Finally, the assertion follows with

|Km (g) − K (g)| ≤ |J0(pm (g)) − J0(g)| +
∫ ∣

∣pm (g)∗(φ(u)) − g∗(φ(u))
∣
∣ du ≤ 2 sup

s∈I
|pm (g)(s) − g(s)|

= 2 max
k=1,...,m−1

max
s∈[sk ,sk+1]

∣
∣
∣
∣g(s) − g(sk ) − g(sk+1) − g(sk )

sk+1 − sk
(s − sk )

∣
∣
∣
∣

≤ 2 max
k=1,...,m−1

|g(sk+1) − g(sk )| ≤ 2φ(1)
ĉ

m − 1
.

�

Proof of Lemma 4.10 By Lemma 4.8 b) we have g∗

y(ξ) = maxs∈I sξ − gy(s). Note

that the slopes ck = yk+1−yk
sk+1−sk

, k = 1, . . . ,m − 1, are increasing. It follows

g∗
y(ξ) = sup

s∈[0,ĉ]
sξ − gy(s) = max

k=1,...,m−1
max

s∈[sk ,sk+1]
s(ξ − ck) − yk + cksk .
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Let us distinguish three cases. Firstly, assume ξ ∈ [c�, c�+1] for some � ∈ {1, . . . ,m−
2}. Then

g∗
y(ξ) = max

{
max

k=1,...,�
sk+1(ξ − ck) − yk + cksk , max

k=�+1,...,m−1
sk(ξ − ck) − yk + cksk

}

= max
{

max
k=1,...,�

sk+1ξ − yk+1, max
k=�+1,...,m−1

skξ − yk
}

= s�+1ξ − y�+1.

The last equality holds, since c1 ≤ · · · ≤ cm−1 and c� ≤ ξ ≤ c�+1 is equivalent to
ξs� − y� ≤ ξs�+1 − y�+1 ≥ ξs�+2 − y�+2. Secondly, assume ξ < c1. Then

g∗
y(ξ) = max

k=1,...,m−1
sk(ξ − ck) − yk + cksk = max

k=1,...,m−1
skξ − yk = s1ξ − y1 = −y1.

Again, ξ < c1 is equivalent to ξs2 − y2 < ξs1 − y1. Since c1 ≤ · · · ≤ cm−1, this
implies the last equality. The third case cm−1 < ξ is analogous. �


Proofs for section 5

We start with the proof of the solution algorithm for the model with infinite planning
horizon. Since the model with infinite planning horizon is derived as a limit of the
one with finite horizon, the consideration can be restricted to Markov policies π =
(d1, d2, . . . ) ∈ �M due to Theorem 4.3.When calculating limits, it ismore convenient
to index the value functionswith the distance to the time horizon rather than the point in
time. This is also referred to as forward form of the value iteration and is only possible
under Markov policies in a stationary model. There, the two ways of indexing are
equivalent. The value of a policy π = (d0, d1 . . . ) ∈ �M up to a planning horizon
N ∈ N is

J0π (x, s, t) = g(s)

JNπ (x, s, t) = E0x

[

g

(

s + t
N−1∑

k=0

βkc(Xπ
k , dk(X

π
k , sπk , tπk ), Xπ

k+1)

)]

.

The change of indexing makes it necessary to write the value iteration in terms of the
shifted policy −→π = (d1, d2, . . . ) corresponding to π = (d0, d1, . . . ) ∈ �M :

JNπ (x, s, t) = E
[
JN−1−→π

(
T (x, d0(x, s, t), Z), s + tc(x, d0(x, s, t), T (x, d0(x, s, t), Z)), βt

)]

= Td0 JN−1−→π (x), (x, s, t) ∈ E. (7.3)

The value function for finite planning horizon N ∈ N is given by

JN (x, s, t) = inf
π∈�M

JNπ (x, s, t), (x, s, t) ∈ E,
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and satisfies due to Theorem 4.3 the Bellman equation

JN (x, s, t) = TJN−1(x, s, t) = TN g(x, s, t), (x, s, t) ∈ E.

The value of a policy π ∈ �M under an infinite planning horizon is then for (x, s, t) ∈
E

J∞π (x, s, t) := lim
N→∞ JNπ (x, s, t) = E0x

[

g

(

s + t
∞∑

k=0

βkc(Xπ
k , dk(X

π
k , sπk , tπk ), Xπ

k+1)

)]

.

The second equality holds by monotone convergence and the continuous mapping
theorem. The infinite horizon value function is

J∞(x, s, t) := inf
π∈
M

J∞π (x, s, t), (x, s, t) ∈ E, (7.4)

and the limit value function is

J (x, s, t) := lim
N→∞ JN (x, s, t), (x, s, t) ∈ E,

which again exists since JN is increasing. Note that M is closed under pointwise
convergence and hence J ∈ M. Having introduced these notions we can now turn to
the proof.

Proof of Theorem 5.1 a) First, we show that J∞ = J . For all N ∈ N we have JNπ ≥
JN . Taking the limit N → ∞ we obtain J∞π ≥ J for policies π ∈ �M . Thus
J∞ ≥ J .
For the reverse inequality we start with JNπ ≤ J∞π which is true for all policies
π ∈ �M due to the fact that c ≥ 0. Taking the infimum over all policies yields
JN ≤ J∞ and taking the limit N → ∞ we obtain J ≤ J∞. It total, we have
J = J∞.
That J is a fixed point of T follows from Theorem A.1.5 in (Bäuerle and Rieder
2011) in case J (x, s, t) < ∞. The case J (x, s, t) = ∞ follows directly.
Let now v ∈ M be another fixed point of T, i.e. v = Tv. Iterating this equality
yields v = Tnv for all n ∈ N. Since v ∈ M we have v ≥ g and because of the
monotonicity of the Bellman operator we get v = Tnv ≥ Tng. Letting n → ∞
finally implies v ≥ J = J∞, thus J∞ is the smallest fixed point of the Bellman
operator.

b) Since J∞ ∈ M, the existence of a minimizing Markov decision rule follows as in
the proof of Theorem 4.3. Furthermore, it holds J∞(x, s, t) ≥ g(s), (x, s, t) ∈ E,
since J∞ ∈ M. Consequently, we have

J∞ = lim
N→∞ TNd∗ J∞ ≥ lim

N→∞ TNd∗g = lim
N→∞ JNπ∗ = J∞π∗ ≥ J∞.
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i.e. π∗ is optimal. The first equality is by part a), the inequality thereafter by the
monotonicity of the operator Td∗ and the second equality by the value iteration
(7.3).

c) The last part follows from the construction of the policies.
�


For the proof of the existence of a solution to the outer optimization problem we
have to show the lower semicontinuity of the infinite horizon value functions:

Lemma 7.4 LetAssumption3.1be satisfied. Then the functionalG×E � (g, x, s, t) �→
J g∞(x, s, t) is lower semicontinuous for all (x, s, t) ∈ E.

Proof The value functions J gN are lower semicontinuous in (g, x, s, t) by Lemma 7.3.
Note that the induction basis holds especially for cN ≡ 0. Since J gN ↑ J g∞ as N → ∞,
the assertion follows from Lemma A.1.4 in Bäuerle and Rieder (2011).

The proof of Lemma 5.3 follows exactly the same lines as in the finite horizon case.
Finally we state the proofs of the remaining two results in Sect. 5.2.

Proof of Proposition 5.5 In Theorem 4.3, the continuity of T is used to show that D �
(x, s, t, a) �→ Lv(x, s, t, a) is lower semicontinuous for every v ∈ M. Due to the
monotonicity assumptions, the mapping

D � (x, s, t, a) �→ v
(
T (x, a, Z(ω)), s + tc(x, a, T (x, a, Z(ω))), βt

)

is lower semicontinuous for every ω ∈ � as a composition of an increasing lower
semicontinuous function with a lower semicontinuous one. Now, the lower semiconti-
nuity of D � (x, s, t, a) �→ Lv(x, s, t, a) and the existence of a minimizing decision
rule follow as in the proof of Theorem 4.3. The fact that Tv is increasing for every
v ∈ M follows as in Theorem 2.4.14 in Bäuerle and Rieder (2011). In Theorem 5.1,
the continuity of T is only used indirectly through Theorem 4.3. Note that J∞ ∈ M

since the pointwise limit of increasing functions remains increasing. �


Proof of Theorem 5.6 We prove by induction that Jn is convex in (x, s) for n ∈ N0.
Then J∞ is convex as a pointwise limit of convex functions. For n = 0 we know that
J0(x, s, t) = g(s) is convex in (x, s). Now assume that Jn is convex in (x, s). Recall
that Jn increasing by Proposition 5.5. Hence, for every ω ∈ � and t > 0 the function

(x, s, a) �→ Jn
(
T (x, a, Z(ω)), s + tc(x, a, T (x, a, Z(ω))), βt

)

is convex as a composition of an increasing convex with a convex function. By the
linearity of expectation (x, s, a) �→ L Jn(x, s, t, a) is convex, too, for every t > 0.
Now, the convexity of Jn+1 follows from Proposition 2.4.18 in Bäuerle and Rieder
(2011). �
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Proofs for section 6

Proof of Lemma 6.1 a) Let � ∈ L. Since idR+ −� is increasing, it holds for 0 ≤ x ≤ y
that x − �(x) ≤ y − �(y). Rearranging and using that � is increasing, too, yields
with |�(x)− �(y)| = �(y)− �(x) ≤ y− x = |x − y| the Lipschitz continuity with
common constant 1. Moreover, L is pointwise bounded by idR+ and closed under
pointwise convergence. Hence, (L,m) is a compact metric space by the Arzelà-
Ascoli theorem and as such also complete and separable, i.e. a Borel space.

b) Let {�k}k∈N be a sequence in L such that �k → � ∈ L for k → ∞. Especially,
it holds �k(y) → �(y) for all y ∈ R+ and Y − �k(Y ) → Y − �(Y ) P-a.s. Since
Y − �k(Y ) ≤ Y ∈ L1 for all k ∈ N, the Fatou property of πR implies

lim inf
k→∞ πR(�k) = lim inf

k→∞ πR
(
Y − �k(Y )

) ≥ πR
(
Y − �(Y )

) = πR(�).

c) We show that the mapping L × R+ � (�, y) �→ �(y) is continuous. Then, the
transition function T is upper semicontinuous as a sum of upper semicontinuous
functions due to part b). Let {(�k, yk)}k∈N be a convergent sequence inL×R+ with
limit (�, y). Since convergence w.r.t. the metric m implies pointwise convergence
and all �k have the Lipschitz constant L = 1, it follows

|�k(yk) − �(y)| ≤ |�k(yk) − �k(y)| + |�k(y) − �(y)| ≤ |yk − y| + |�k(y) − �(y)| → 0.

The fact that T is increasing in x is obvious.
d) Due to a),we only have to consider the budget-constrained case. SinceL is compact

it suffices to show that D(x) = {� ∈ L : πR(�) ≤ x+} is closed. This is the case
since D(x) is a sublevel set of the lower semicontinuous function πR : L → R+,
cf. Lemma A.1.3 in Bäuerle and Rieder (2011). Furthermore, we show that D
is closed to obtain the upper semicontinuity from Lemma A.2.2 in Bäuerle and
Rieder (2011). From the lower semicontinuity of πR it follows that the epigraph

epi(πR) = {(x, �) ∈ R+ × L : πR(�) ≤ x}

is closed. Thus, D = epi(πR) ∪ (R− × D(0)) is closed, too. That x �→ D(x) is
increasing is clear.

e) The one-stage cost c(x, �, T (x, �, y, z)) = x − T (x, �, y, z) = �(y) + πR(�) − z
is lower semicontinuous in (x, �) as a sum of lower semicontinuous functions and
decreasing in x since it does not depend on x .

�
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