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Abstract
We study combinatorial structures in large-scale mixed-integer (nonlinear) program-
ming problems arising in gas network optimization. We propose a preprocessing
strategy exploiting the observation that a large part of the combinatorial complex-
ity arises in certain subnetworks. Our approach analyzes these subnetworks and the
combinatorial structure of the flows within these subnetworks in order to provide
alternative models with a stronger combinatorial structure that can be exploited by
off-the-shelve solvers. In particular, we consider the modeling of operation modes for
complex compressor stations (i.e., ones with several in- or outlets) in gas networks.
We propose a refined model that allows to precompute tighter bounds for each opera-
tion mode and a number of model variants based on the refined model exploiting these
tighter bounds.We provide a procedure to obtain the refined model from the input data
for the original model. This procedure is based on a nontrivial reduction of the graph
representing the gas flow through the compressor station in an operation mode. We
evaluate our model variants on reference benchmark data, showing that they reduce
the average running time between 10% for easy instances and 46% for hard instances.
Moreover, for three of four considered networks, the average number of search tree
nodes is at least halved, showing the effectivity of our model variants to guide the
solver’s search.

Keywords Multi-way compressor station · Bound tightening · Model reformulation ·
Flow patterns
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1 Introduction

Gas transmission networks are a crucial part of the European energy supply infrastruc-
ture. The gas flow is driven by pressure potentials. To maintain the necessary pressure
levels and control the routing of the gas in the network, compressor stations are used.
In the German transmission network compressor stations usually interconnect two or
more pipeline systems. They often have a complex internal structure, allowing them
to realize different routing patterns and compression levels (Koch et al. 2015). An
example of such a complex compressor station is shown in Fig. 1. In particular, some
or all boundary nodes of the compressor station may serve as inlet or outlet, depending
on the requirements of the surrounding network.

In this paper, we propose improved variants of the compressor station modeling
introduced in Pfetsch et al. (2015); Koch et al. (2015). This model combines a network
containing so-called compressor groups, valves, control valves, and a set of switching
states for these elements to describe all feasible operation modes of a compressor
station.According toKoch et al. (2015), a compressor group is amodeling element that
represents a set of compressor units (i.e., the machines doing the gas compression) that
may be used in different configurations (e.g., in serial or parallel) as a single network
arc. Note that a compressor group may already be sufficient to model a (simple)
compressor station – one with exactly one inlet and one outlet. However, only the
more general structure of a complex compressor station consisting of a network with
several compressor groups allows to capture the complexity of real-world compressor
stations from the meshed transmission networks found e.g., in Germany.

The constraints describing the technical capability of a compressor unit may be
nonlinear and nonconvex. Combining this with the combinatorics for switching active
network elements yields hard-to-solve MINLP models for many gas network opti-
mization problems.

We illustrate the relevance of compressor stations for gas network optimization
problems with some details about the compressor station model shown in Fig. 1. The
corresponding network contains 4 compressor groups, 2 control valves, and 19 valves,
whereas the entire network contains 7 compressor groups, 26 control valves, and
33 valves. In otherwords: This subnetwork containsmore than a third of the switchable
network elements of the entire network and hence accounts for a large part of the
combinatorial complexity of the overall optimization problem.Thus proper handlingof
the feasible operation modes, i.e., joint switching states of all active network elements
within the compressor station subnetwork, is important to effectively solve gas network
optimization problems.

We proposemodel refinements that aim to help the solution process to detect unsuit-
able operation modes early. For instance, to improve the model a natural idea is to
precompute, for each operation mode, bounds on the minimum and maximum flow
and pressure that can be handled and to include this information in the model. How-
ever, the modeling of an operation mode fromKoch et al. (2015) and the data available
in the GasLib (Humpola et al. 2017) do not specify whether a compressor group is
actively compressing or bypassed, which are very distinct behaviors. Thus no non-
trivial flow bounds may be obtained for an operation mode as specified in the original
modeling. Moreover, the solver has no way to discard all the operation modes where
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(a) (b) (c) (d)

Fig. 1 Four operation modes of a large compressor station. Compressor groups are represented as , valves
are represented as . Arrows denote a flow direction. Elements colored dark are closed and do not admit
gas flow

a certain controllable element is e.g., in bypass although active operation is required
because it is implied by the remainingmodel. Hence the solver has to spend substantial
additional effort to enumerate the solution space.

We develop techniques for analyzing the original representation of operationmodes
to generate a more detailed representation where each operation mode prescribes for
each compressor group whether it is actively compressing or bypassed. In addition
to enable the branching possibilities mentioned above, this allows to compute tight
bounds for the pressure/flow combinations that can be handled by each such fully
specified operation mode. There may be many fully specified operation modes arising
from a single original operation mode. To keep the number of fully specified operation
modes to consider small, a crucial ingredient is a method to obtain a reduced repre-
sentation of a fully specified operation mode. This reduced representation is used to
identify a minimal set of fully specified operation modes that is equivalent to the set
of original operation modes. Examples of such reduced representations are shown in
Fig. 2. Moreover, these reduced representations facilitate the classification of opera-
tionmodes according to what we call flow patterns. A flow pattern characterizes which
boundary nodes of the compressor station act as sources or sinks for the gas flow in
the compressor station. Flow patterns group related fully specified operation modes,
which may also be useful for effective branching. This intuition is confirmed by the
observation from our computational results that models taking the flow patterns into
account usually improve over the variant without the flow pattern.

As the number of fully specified operation modes may still be rather large, model
size becomes a concern. To address this, we propose an alternative MILP formulation
of the respective constraints which is substantially sparser and where the number of
additional constraints is independent of the number of operation modes.

Related work We briefly mention some related papers and refer to Ríos-Mercado
and Borraz-Sánchez (2015) for a comprehensive overview. Most of the work on the
optimization of compressor stations has focused on simple compressor stations that
are compressing in a predetermined direction from a single inlet to a single outlet.
Neglecting the fact that a compressor station usually features several (often distinct)
compressor units the entire compressor station is often modeled in an aggregated way,
like a range for the power required by the compression process (Martin et al. 2006;
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(a) (b) (c) (d)

Fig. 2 Reduced representation of the four operation modes shown in Fig. 1. All compressor group symbols
correspond to active compressor groups, i.e., ones that are not bypassed

de Wolf and Bakhouya 2012), box constraints for flows and pressures (Carter 1996),
or a polyhedral model relating inlet pressure, outlet pressure, and gas flow (Wu et al.
2000; van der Hoeven 2004; Humpola et al. 2014).

Papers using a detailed model for the operation of a single compressor unit usually
assume that a compressor station consists of several identical compressor units that
are operated in parallel (Wu et al. 2000), the only discrete decision being the number
of compressor units switched on. A recent exception is the work of Rose et al. (2016)
which considers the selection of a configuration of compressor units that consists of
serial stages of compressor units used in parallel. Complex multi-way compressor
stations with multiple operation modes are only considered in Koch et al. (2015) and
related work, using the basic model that this paper improves upon as outlined above.

The remaining paper is structured as follows. Section 2 recalls the general model
for complex compressor stations introduced in Koch et al. (2015), the original MILP
model from Geißler et al. Geißler et al. (2015a) and presents our novel smaller and
sparser formulation. In Sect. 3, we propose a method that reduces the description of
a single operation mode to a kind of “normal form”. This is used in Sect. 4 to detect
redundancy and generate a set of redundancy-free operation modes that, as a set, are
equivalent to the original operation modes. Section 5 explains the classification of
operation modes according to flow patterns and how this can be incorporated in the
model. Finally, we report on some computational results in Sect. 6 and conclude in
Sect. 7.

2 Model for complex compressor stations

We use the following model for compressor stations that closely follows the modeling
proposed in Koch et al. (2015).

NetworkWe assume that a (complex) compressor station is represented as a network
where the arcs correspond to different types of network elements. Some of these
network elements are controllable (valves, compressor groups, control valves) and
some are not controllable or passive (pipes, resistors, short pipes). We assume that the
only passive network elements within compressor station networks are short pipes,
i.e., there are no pipes or resistors. In the following we briefly explain the different
types of network elements.
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A compressor group as introduced in Pfetsch et al. (2015); Koch et al. (2015)
consists of one or more compressor units which may be operated in one of a given
set of serial-parallel configurations. Compressor groups are treated by us as abstract
entities that facilitate pressure increase and that may operate in one of the states closed
(no gas flow), active (compressing), and bypass (gas flow without compression).

In contrast, control valves are used to facilitate the decrease of pressure, and they
may operate in the same set of three states as compressor groups with the difference
that an active control valve reduces the pressure of the gas flowing through it. Valves
are used to control the route of gas through the compressor station, and they can be
open or closed. Finally, short pipes are connection elements that allow gas flowwithout
pressure drop.

Using the set of valves Ava, the set of compressor groups Acg, the set of control
valves Acv, and the set of short pipes Asp, we represent a compressor station as a
directed graph (V , A) with A := Ava ∪ Acg ∪ Acv ∪ Asp. Moreover, we partition the
set of nodes V into boundary nodes V± and inner nodes V0.

For each node u ∈ V we introduce a variable for the pressure pu with non-negative
lower and upper bounds pu and pu , i.e.,

0 ≤ pu ≤ pu ≤ pu for all u ∈ V . (1)

For each arc a ∈ A there is a variable for the mass flow qa with lower and upper
bounds qa and qa , i.e.,

qa ≤ qa ≤ qa for all a ∈ A. (2)

Positive mass flow values indicate flow in the direction of the arc, whereas negative
values represent flow in the opposite direction. The precise values of the bounds depend
on the type and state of an element and are discussed below. For each node u ∈ V we
denote the sets of incoming and outgoing arcs by δ−(u) and δ+(u), respectively. We
define bu , the inflow at node u, whereby at inner nodes the mass flow is conserved,
i.e.,

bu :=
∑

a∈δ−(u)

qa −
∑

a∈δ+(u)

qa for all u ∈ V , (3)

bu = 0 for all u ∈ V0. (4)

Short pipes For short pipes the following holds:

qa = −∞, qa = ∞ for all a ∈ Asp, (5a)

pu = pv for all (u, v) ∈ Asp. (5b)
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Valves For each valve a ∈ Ava, a binary variable sa distinguishes between the states
open and closed where sa = 1 corresponds to open, sa = 0 corresponds to closed.

sa = 0 �⇒ qa = 0 for all a ∈ Ava, (6a)

sa = 1 �⇒
{
qa = −∞, qa = ∞,

pu = pv

for all a = (u, v) ∈ Ava. (6b)

Compressor groups and control valves For each compressor group a ∈ Acg or

control valve a ∈ Acv, binary variables sa, saca , sbpa distinguish between the states

active, bypass and closed where saca = 1 corresponds to active, sbpa = 1 corresponds
to bypass and sa = 0 corresponds to closed. We model the set of feasible operation
points of an active compressor group or control valve a by an abstract set Pa ⊆ R3≥0
of feasible inlet pressure, outlet pressure, andmass flow. Thus our methods apply to all
variants of compressor groups and control valve models. In total, compressor groups
and control valves are modeled by the constraints

sa = saca + sbpa for all a ∈ (Acg ∪ Acv), (7a)

sa = 0 �⇒ qa = 0 for all a ∈ (Acg ∪ Acv), (7b)

sbpa = 1 �⇒
{
qa = −∞, qa = ∞,

pu = pv

for all a = (u, v) ∈ (Acg ∪ Acv),

(7c)

saca = 1 �⇒ (pu, pv, qa) ∈ Pa ⊆ R3≥0 for all a = (u, v) ∈ (Acg ∪ Acv). (7d)

The constraints describing the capability set Pa of a compressor unit may be nonlinear
and nonconvex, leading to hard-to-solveMINLPs for large-scale networks (Koch et al.
2015; Rose et al. 2016).

In the remainder of the paper, compressor groups and control valves will be handled
exactly the same, unless mentioned otherwise. For simplicity, we will only talk about
compressor groups with the understanding that the techniques also work for control
valves.

Operation modes An operation mode specifies the switching state of each control-
lable element (valves, control valves, compressor groups) and thus the route of the gas
flow through the compressor station. Operation modes are modeled in Geißler et al.
(2015a, sect.6.1.8) by a triple (Actrl,M, d), where Actrl = Ava∪Acg∪Acv is the set of
controllable elements. The setM ⊆ {0, 1}Actrl describes each operation modem ∈ M
by stating whether a controllable element a is open (ma = 1) or closed (ma = 0).
In the case of an open compressor group it is not yet specified whether this compres-
sor group is active or in bypass. Finally, the function d : Actrl × M → {−1, 0, 1}
describes whether the flow direction for a controllable element a = (u, v) is restricted
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or not, using the convention

d (a, m) =

⎧
⎪⎨

⎪⎩

−1, if gas flows from v to u in operation mode m,

0, if the flow direction on a is unrestricted in operation mode m,

1, if gas flows from u to v in operation mode m.

Binary decision variables sm ∈ {0, 1} for all m ∈ M are used to formulate the
constraint that exactly one operation mode has to be chosen, i.e.,

∑

m∈M
sm = 1. (8a)

Further, an element a ∈ Actrl may only be used as specified by the elements ofM:

∑

m∈M
ma sm ≥ sa for all a ∈ Actrl, (8b)

∑

m∈M
(1 − ma) sm ≥ (1 − sa) for all a ∈ Actrl. (8c)

Finally, the flow directions specified by an operation mode (if any) need to be
enforced. This is achieved by adding the constraints

qasm + qa ≥ qa for all a ∈ Actrl,m ∈ M with d (a, m) = 1, (8d)

qasm + qa ≤ qa for all a ∈ Actrl,m ∈ M with d (a, m) = −1. (8e)

Observe that (8b) and (8c) imply that there are 2|Actrl| additional constraints with
(|M| + 2)|Actrl| nonzero elements to model the operation modes. For an active ele-
ment a ∈ Actrl, let mfwd (mbwd) denote the number of operation modes that specify a
forward (backward) flow direction. Then (8d) and (8e) yield mfwd +mbwd additional
constraints with in total 2(mfwd + mbwd) nonzero elements. Hence it is important to
control the number of the operation modes as their number has a severe impact on
overall model size.

In the following we describe our suggested improvements to the given model. As
mentioned in the introduction, the fact that the representation of operation modes does
not specify whether an open compressor group is active or running in bypass precludes
us from obtaining tight bounds for flows and pressures obtainable by an operation
mode. Moreover, the solver has no way to discard all the operation modes where a cer-
tain controllable element is e.g., in bypass although active operation is required because
it is implied by the remaining model. We thus propose a more detailed representation
where each operation mode prescribes for each compressor group whether it is active
or in bypass. To obtain this representation from the original one we enumerate all
active/bypass combinations for each operation mode. Since this leads to a large num-
ber of mostly redundant operation modes, we apply the methods described in Sect. 3
to obtain a smaller, yet complete set of fully specified operation modes. These are
described by a triple (Actrl,M′, d ′). The setM′ ⊆ {0, 1}Actrl ×{0, 1}Actrl specifies for
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each operationmode (mac,mbp) ∈ M′ whether a valve a is open (mac
a = 0, mbp

a = 1)

or closed (mac
a = 0,mbp

a = 0) and whether a compressor group b is in bypass

(mac
b = 0,mbp

b = 1), active (mac
b = 1,mbp

b = 0) or closed (mac
b = 0,mbp

b = 0). The
function d ′ : Actrl × M′ → {−1, 0, 1} describes restrictions on the flow direction
for controllable elements, using the same convention as the function d in the original
formulation. The new model can then be formulated analogously to (8a)–(8e) with
M := {mac + mbp | (mac,mbp) ∈ M′}, d := d ′ and two additional constraints
enforcing the full state for all compressor groups and control valves as specified by
the elements of M′:

sm ≤ saca for all a ∈ (Acg ∪ Acv),ma = (1, 0) ∈ M′, (9a)

saca + sm ≤ 1 for all a ∈ (Acg ∪ Acv),ma = (0, 1) ∈ M′. (9b)

Note that (9a) and (9b) yield one constraint per fully specified operation mode with
2 nonzero elements each.

The number of fully specified operationmodes is at worst exponential in the number
of controllable elements in the network representing the compressor station. Hence it
is crucial to control the size of the submodel for fully specified operation modes. With
the operation mode constraints (8b)–(9b), the model size increases drastically if there
are many fully specified operation modes. In particular, the constraint pairs (8d), (8e)
and (9a), (9b) each yield several rows per fully specified operation mode.

There are alternative sparser formulations, one of which we sketch in the following.
The constraint that an active element a has to be open (closed) if an operation mode
specifying it to be open (closed) is selected, can be expressed as

∑

m∈M′ : ma �=(0,0)

sm = sa or (10a)

∑

m∈M′ : ma=(0,0)

sm = 1 − sa (10b)

depending on which index set is smaller. In comparison to (8b) and (8c) this yields
only one instead of two constraints per active element and at least halves the number of
nonzero elements. The flow direction of an active element a can be enforced according
to the operation mode via

⎛

⎝1 −
∑

m∈M′ : d(a,m)=1

sm

⎞

⎠ qa ≤ qa, (10c)

⎛

⎝1 −
∑

m∈M′ : d(a,m)=−1

sm

⎞

⎠ qa ≥ qa (10d)

Recall that mfwd and mbwd denote the number of operation modes that specify a
forward or backward flow direction, respectively. This formulation yields (at most) 2
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constraints with mfwd + mbwd + 2 nonzero elements compared to the formulation
given by (8d) and (8e) which yields mfwd + mbwd constraints with 2(mfwd + mbwd)

nonzero elements. Finally, we can use the same trick as in (10a) and (10b) to enforce
that an active element is in state active or bypass according to the selected operation
mode by having a single constraint enforce this state, choosing the one which occurs
in fewer operation modes:

∑

m∈M′ : ma=(1,0)

sm = saca or (10e)

∑

m∈M′ : ma=(0,1)

sm = sbpa (10f)

In comparison to (9a) and (9b) this yields one constraint instead of two, again at least
halving the number of nonzero elements. All in all, in this formulation the number of
constraints does not depend on the number of operation modes anymore and there are
substantially fewer nonzero elements.

For each fully specified operation mode we can now compute tight pressure and
inflow bounds by solving the optimization problem given by

– the model (1)–(7) for the network elements,
– the decision variables fixed according to the operation mode, and
– suitable objective functions, i.e., minimizing/maximizing the inflow/pressure at
the boundary nodes.

Then, with pu(m), pu(m) and bu(m), bu(m) denoting the pressure bounds and inflow
bounds, respectively, for node u in operation mode m, the following inequalities are
valid:

∑

m∈M′
pu(m) sm ≤ pu ≤

∑

m∈M′
pu(m) sm for all u ∈ V±, (11a)

∑

m∈M′
bu(m) sm ≤ bu ≤

∑

m∈M′
bu(m) sm for all u ∈ V±. (11b)

Aiming again for sparse constraints, we can improve constraints (11a) and (11b)
by just enforcing bounds that are tighter than the variable bounds:

pu +
∑

m∈M′ :
pu(m)>pu

(
pu(m) − pu

)
sm ≤ pu ≤ pu +

∑

m∈M′ :
pu(m)>pu

(
pu(m) − pu

)
sm, (12a)

bu +
∑

m∈M′ :
bu(m)>bu

(
bu(m) − bu

)
sm ≤ bu ≤ bu +

∑

m∈M′ :
bu(m)>bu

(
bu(m) − bu

)
sm, (12b)

for all u ∈ V±.

If no bound is tighter, there is no additional row in the LP.
An active compressor group has much tighter flow bounds than one in bypass. We

can exploit the fully specified operation modes to benefit from this by tightening the
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flow bounds for the operation modes where a compressor group is active. Denoting
by qaca and qaca the lower and upper flow bounds if compressor group a ∈ Acg is active,
we can follow the above sparsification scheme and add the valid inequalities

qa +
∑

m∈M′ : ma=(1,0), qaca >qa

(
qaca − qa

)
sm

≤ qa ≤ qa +
∑

m∈M′ : ma=(1,0), qaca <qa

(
qaca − qa

)
sm for all a ∈ Acg. (12c)

From now on, we call the formulation using the original operation modes the com-
pact model and the one using the above sparse model (10a)–(10f) for fully specifi
operation modes the extended model. Moreover, the extended model enriched with
additional bounds for each operation mode, e.g., the above bounds (12a)–(12c), will
be called bounded extended model.

3 Topology simplification for a single operationmode

Our goal in this section is to simplify the topology of a single fully specified operation
mode of a compressor station to obtain a reduced representation suitable for comparing
operation modes via graph isomorphism detection.

We consider the network Nm corresponding to a fully specified operation mode m
derived from the compressor station network as follows.

1. We remove all closed elements. Note that this step may render the network dis-
connected.

2. We remove all weakly connected components that do not contain a boundary node
or an active compressor group. (Note that in a component without boundary nodes
and active compressor groups, there cannot be a positive flow. In case there are no
boundary nodes but active compressor groups, there may be a cycle flow.)

3. We replace all short pipes by two opposing short pipes with lower flow bound
equal to zero.

4. We replace all open valves and compressor groups that are in bypass. If they have
a fixed flow direction, they are equivalently replaced by a single short pipe with
lower flow bound equal to zero. Otherwise, they are replaced by two opposing
short pipes with lower flow bound equal to zero.

Note that our compressor station network is based on a simple, directed graph, and
these transformations do not introduce any loops or parallel edges.

However, in order to cope with subsequent reduction steps we model the network
Nm corresponding to operation mode m as a directed multigraph network Nm =
(Vm, Am, qm, qm, pm, pm, tm, hm) where

– Vm and Am are a node and a arc set, respectively,
– qm, qm : Am → R are maps providing lower and upper bounds for the flow along
each arc,

– pm, pm : Vm → R are maps providing lower and upper bounds for the pressure
at each node, and
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Fig. 3 All arcs a in this network are short pipes with qma = 0 and qma = ∞ according to (13d). If we
consider the network induced by {r , u, v, w} (all solid arcs), then all short pipes except ã can be contracted
since they do not contain information about constraints to the flow direction. The short pipe ã may not be
contracted as it carries the information that no flow is permitted fromw to r . However, ã could be contracted
if the network already contained some other directed path of short pipes from w to r , e.g., the dashed path

– tm, hm : Am → Vm are maps indicating the tail node and head node of each arc,
respectively.

We remark that the described transformations are not only validwith respect to network
topology and admissible flows, but also with respect to admissible pressures since the
constraints for open valves or bypassed compressor groups are equivalent to those of
short pipes. Hence, the arc set Am consists only of short pipes with non-negative flow
and active compressor groups. Thus, the model for a single operation mode is given
by

0 ≤ pmu ≤ pu ≤ pmu for all u ∈ Vm, (13a)

0 ≤ qma ≤ qa ≤ qma for all a ∈ Am, (13b)

bu = 0 for all u ∈ Vm
0 , (13c)

qma = 0, qma = ∞ for all a ∈ Am
sp, (13d)

ptma = phma for all a ∈ Am
sp, (13e)

(ptma , phma , qa) ∈ Pa ⊆ R3≥0 for all a ∈ (Am
cg ∪ Am

cv). (13f)

However, the resulting network may be unnecessarily complex, as short pipes are
often redundant (cf. Proposition 1 below). In order to obtain minimal networks that
are useful for detecting redundancies as described in Sect. 4 we can reduce the size
of the network by contracting a short pipe a ∈ Am

sp as follows. We remove a from
the graph, identify the incident nodes of a, only keeping hma , and update the pressure
bounds of the remaining node hma to be the intersection of the pressure intervals for the
original two nodes tma and hma . If there are any other arcs between the two nodes, we do
keep them as self-loops. If a itself is a self-loop, we simply remove it from the graph.
But we need to be careful when applying this contraction since the remaining short
pipes sometimes do carry important information on the topology of feasible flows. An
example of when contracting a short pipe would lead to a loss of information is shown
in Fig. 3.

We now devise a criterion for safely removing short pipes. For this, we assume the
operation mode m to be fixed in the following. We consider the short pipe subgraph
of Nm , Gsp, its set of sources V sp

+ , its set of sinks V sp
− and for all sources w ∈ V sp

+
the set RNm (w) ⊆ V sp

− of sinks reachable using only short pipes:

Gsp := (Vm, Am
sp), (14)

V sp
+ := V± ∪ {hma | ∀a ∈ (Am

cg ∪ Am
cv)}, (15)
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V sp
− := V± ∪ {tma | ∀a ∈ (Am

cg ∪ Am
cv)}, (16)

RNm (w) := {u | u ∈ V sp
− ∧ ∃w − u-path in Gsp} for all w ∈ V sp

+ . (17)

Proposition 1 Consider a short pipe ã from u := tma , u ∈ Vm \ {V sp
+ } to v := hma and

the network N ′ arising from Nm when contracting ã to v. If this contraction does not
affect the reachability from sources to sinks in the short pipe subgraph of the network,
i.e., if

RNm (w) = RN ′(w) for all w ∈ V sp
+ (18)

then for every admissible flow-pressure combination (p′, q ′) for N ′ there exists an
admissible flow-pressure combination (p, q) for Nm such that

q ′
a = qa for all a ∈ (Am

cg ∪ Am
cv), (19)

b′
w = bw for all w ∈ V±, (20)

p′
w = pw for all w ∈ V±, (21)

and vice versa.

Proof Weshow that given a flow-pressure combination (p′, q ′) for N ′ wecan construct
a flow-pressure combination (p, q) for Nm that fulfills (19), (20) and (21). This is
straight-forward with respect to the pressure p′ and, using a flow decomposition of q ′,
for all flow paths and cycles which do not contain v. For all flow paths and cycles that
do contain v, we show that there exist corresponding flow paths and cycles as part of
the flow decomposition of q such that the proposition holds.

Consider a flow-pressure combination (p′, q ′) for N ′. Define the pressure vector p
by

pw :=
{
p′
w w ∈ Vm \ {u},

p′
v w = u.

(22)

Then, p, p′ trivially satisfy (21). Also, p is admissible pressure: By definition, it
satisfies (13e) for ã. It satisfies (13a) for u and v since by our definition of contraction
the pressure bounds on v in N ′ are the intersection of the pressure intervals for u and
v in Nm and p′ is admissible. Also, it satisfies (13a), (13e) and (13f) (with respect to
pressure) for all other nodes and arcs, because p′ does.

We obtain q by constructing a flow decomposition of it based on a flow decom-
position of q ′. Consider a flow decomposition of q ′ into paths and cycles. Let P ′ =
v1, . . . , v, . . . , vk be a path with v1, vk ∈ V± and let κ be the flow value on P ′ in
the flow decomposition of q ′. We now construct a corresponding path P in Nm with
identical endpoints and flow value, but as part of the flow decomposition of q. If P ′
does not contain v, we simply set P := P ′. Otherwise, the idea is to partition P into
short pipe subpaths that go between compressor groups or boundary nodes. Exactly
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one of these subpaths contains v and is thus possibly not in Nm . But, by (18) we can
replace this short pipe subpath in N ′ with a short pipe subpath in Nm that has the same
endpoints.

Consider the partition of P ′ into short pipe subpaths P ′
1, . . . , P

′
n, . . . , P

′
r by removal

of all compressor groups and let P ′
n = vi , . . . , v, . . . , v j . By (15) and (16)wehave vi ∈

V sp
+ and v j ∈ V sp

− , and by (17) we have v j ∈ RN ′(vi ). Therefore, by (18) we have v j ∈
RNm (vi ). Let Pn = vi , . . . , v j be a short pipe path in Nm and define P to be P ′ with
P ′
n replaced by Pn .
Similarly, let C ′ be a cycle in N ′ with flow value κ ′ in the flow decomposition of

q ′. If C ′ contains a compressor group, we can employ the same reasoning as before
to obtain a cycle C in Nm with identical flow value κ ′, but as part of the flow decom-
position of q. Otherwise, if C consists of short pipes only, we let the flow value on it
as part of the flow decomposition of q be zero.

Altogether, this gives a flow decomposition of q. Since by construction from q ′
to q only the flow on short pipes may be affected, (19), (13b) and (13f) (with respect
to flow) hold. Also, for every path in the flow decomposition of q ′ there exists exactly
one corresponding path in the flow decomposition of q and that path has identical
endpoints and flow value. By this, (20) and (13c) hold. Therefore, q is both admissible
and satisfies the proposition.

Analogously, the same reasoning can be employed in the other direction to construct
a flow-pressure combination (p′, q ′) for N ′ from a flow-pressure combination (p, q)

for Nm . ��

We remark that the proposition can be stated and proved similarly without the
premise that u ∈ Vm\{V sp

+ }, but it requires some technical refinements in the statement
and the proof of our proposition in order to account for the case that u /∈ N ′.

4 Detection of redundant operationmodes

In the previous sectionwe have presented all that is needed for simplifying the network
topology for a single operation mode. We now briefly summarize how we use this in
order to obtain reduced network representations for all operation modes. Following
thiswe explain how these reduced network representations allowus to detect redundant
operation modes.

We reduce the network representation of a single operation mode by iteratively
contracting all short pipes which are incident to at most one boundary node and which
can be contracted in accordancewith Proposition 1. On the reduced networkwe tighten
all flow and pressure bounds by solving the optimization problem given by (13a)–(13f)
with suitable objective functions. All operation modes turning out to be infeasible are
discarded.

In a last step, and this is the contribution of this section, we detect redundancy
between the remaining feasible operation modes by an extended isomorphism test
between their reduced network representations. Intuitively, an operation mode m2 is
“at least as good as” another operation mode m1 if there is a mapping between the
operation modes’ networks such that every solution form1 is represented by a solution
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for m2. In particular, every feasible flow and pressure value for an element of N 1 needs
to be feasible for the elements’ image in N 2. We capture this formally in the following
definition.

Definition 1 For operation modes m1 and m2 with reduced network representations
N 1 = (V 1, A1, q1, q1, p1, p1, t1, h1) and N 2 = (V 2, A2, q2, q2, p2, p2, t2, h2),
respectively, we say that m1 is dominated by m2 if all of the following hold:

1. There exists a graph isomorphism defined by the bijections φ : V 1 → V 2 and
ψ : A1 → A2, i.e.,

t2ψ(a) = φ(t1a ), h2ψ(a) = φ(h1a) for all a = (t1a , h1a) ∈ A1. (23)

2. All boundary nodes are fixed points of φ:

φ(u) = u for all u ∈ V 1±. (24)

3. All compressor groups and control valves are fixed points of ψ :

ψ(a) = a for all a ∈ (A1
cg ∪ A1

cv). (25)

4. Short pipes are mapped to short pipes by ψ :

a ∈ A1
sp ⇐⇒ ψ(a) ∈ A2

sp for all a ∈ A1. (26)

5. The node pressure bounds in N 2 are not tighter than their pre-image ones in N 1:

p1u ≥ p2φ(u), p1u ≤ p2φ(u) for all u ∈ V 1. (27)

Observe that (25) trivially implies that feasible flow/pressure values for a compres-
sor group or control valve inm1 are feasible inm2, too. Hence the reduction technique
we propose is valid for every compressor group and control valve model (in particular,
for different models of compressor units represented by the compressor group).

Proposition 2 Let two operation modes m1 and m2 be given as in Definition 1, with
m1 being dominated by m2. Consider a gas network optimization problem such that

– the objective function does not depend on the flow over short pipes, and
– the flow over short pipes is only constrained by flow conservation.1

Then the gas network optimization problem arising by dropping operation mode m1

is equivalent to the original one.

Proof We first observe that a solution that is feasible for the reduced network N 1 is
also feasible for the reduced network N 2. N 1 and N 2 are topologically equivalent by
(23)–(26). Requirement (27) ensures that the pressure values of the solution for N 1

1 Observe that there are no flow bounds for short pipes in our model, see (5a).

123



Improved models for operation modes... 185

are also feasible for N 2. The analogous feasibility of flow values follows from the fact
that all element types are conserved by the arc map ψ according to (25) and (26).

The equivalence of the operation modes m1 and m1 w.r.t. feasibility follows from
the equivalence of the reduced networks and Proposition 1.

Finally, to establish the equivalence w.r.t. to the objective function, we observe that
in the construction in the proof of Proposition 1 only flow values of short pipes are
possibly changed. By assumption, this does not change the objective value.

Due to Proposition 2, we can iteratively discard dominated operation modes such
that for our new, redundancy-free set of operation modes M′ no operation mode
m1 ∈ M′ is dominated by another operation mode m2 ∈ M′.

We note that the extended isomorphism test from Definition 1 can be performed on
the basis of any general graph isomorphism test, which generates all isomorphisms
between N 1 and N 2 (with V 1± as fixed points), and by checking if any of these iso-
morphisms fulfills (24)–(27). In practice, we use an existing implementation (Hagberg
et al. 2008) of the VF2 graph isomorphism algorithm (Cordella et al. 2001, 2004) to
efficiently generate all isomorphisms between N 1 and N 2 that fulfill (24)–(26) and
then check whether (27) holds.

5 Classification of operationmodes by compressor station flow
patterns

Because arcs in our network model can admit flow in either direction, most boundary
nodes cannot generally be classified as either source or sink of the compressor station.
Instead, they may take on either role, depending on the general network situation
and the selected operation mode of the station. Thus, compressor stations often admit
multiple flow patternswhere a flow pattern describes a partition of the boundary nodes
into sinks and sources. This corresponds to an inflow bound of the form bu ≤ 0 (if u is
a sink) or bu ≥ 0 (if u is a source) for every boundary node u.We say that a compressor
station admits a flow pattern if it admits a flow which satisfies the flow pattern.

However,when its operationmode is fixed, a compressor station usually admits very
few or even just a single flow pattern, which is mostly due to the fixed flow direction
of active compressor groups. Therefore, we suggest as an additional modeling step
the classification of operation modes by the flow patterns they admit in conjunction
with introducing binary variables for the different flow patterns. The idea is that, when
solving a gas network optimization task, branching on the flow patterns should quickly
identify the viable flow patterns and thereby reduce the set of operation modes that
need to be considered.

We incorporate this into our model as follows. For every flow pattern Fi , i ∈ I , that
a compressor station admits, let Fi be the set of operation modes of the station that
admit this flow pattern. Then, every feasible operation mode is contained in at least
one of the sets Fi for some i ∈ I . For all i ∈ I let fi ∈ {0, 1} be a binary variable
that is 0 if flow pattern Fi is not chosen, i.e., if the selected operation mode does not

123



186 B. Hiller et al.

admit Fi . This is expressed by the constraints

fi =
∑

m∈Fi

sm for all i ∈ I . (28)

Note that due to the fact that a single operation mode can admit multiple flow patterns
fi = 1 does not generally imply that flow pattern Fi is chosen. It just means that the
selected operation mode also admits this flow pattern. This modeling choice was made
to avoid splitting the operation modes further to achieve a one-to-one correspondence
between operation modes and flow patterns, which would inflate the model. Hence,
the model only requires that at least one flow pattern is chosen:

∑

i∈I
fi ≥ 1. (29)

Finally, we couple the choice of the flow pattern with flow bounds for the boundary
nodes according to the flow pattern:

∑

i∈I
bu(Fi ) fi ≤ bu ≤

∑

i∈I
bu(Fi ) fi for all u ∈ V± (30)

with

bu(Fi ) :=
{
minm∈Fi bu(m) if u is a sink for Fi
0 otherwise

for all i ∈ I , u ∈ V±,

bu(Fi ) :=
{
maxm∈Fi bu(m) if u is a source for Fi
0 otherwise

for all i ∈ I , u ∈ V±.

6 Computational results

When applied to a single compressor station with a linear model for the compressor
groups, earlier computational results in Hiller et al. (2016) showed some benefit of
the proposed model extensions for detecting infeasibility early. However, presumably
due to the simplified nature of this setting, the overall impact was negligible.

We therefore evaluated the effectiveness of our approach on entire gas networkswith
several compressor stations. For this, we consider the openly available gas network
benchmark instances GasLib-582 (Humpola et al. 2017) and GasLib-4197 (Schmidt
et al. 2017), complemented by real network data from Open Grid Europe GmbH, Ger-
many’s biggest gas network operator. For the latter, we considered the two network
variants HN-SN and HN-AB studied in Hiller et al. (2015a, p.234). These two variants
differ slightly in their topology and more in the properties of the corresponding nom-
inations, i.e., particular gas flow situations, that are considered. The nominations for
HN-SNare generated based on amodel for network usage (Hiller et al. 2015b),whereas
the nominations of HN-AB represent expert scenarios. In both cases, the nominations
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Table 1 Overview of the sizes of the considered networks

Element type GasLib-582 HN-SN HN − AB GasLib-4197

Compressor group 5 6 7 12

Control valve 23 23 26 120

Valve 26 34 33 426

Pipe 278 452 498 3537

Short pipe 269 97 116 343

Resistor 8 9 9 28

# Compressor stations 2 (1) 2 (1) 2 (2) 6 (3)

# Nominations 418 57 43 207

The row “# compressor stations” gives the number of complex compressor stations consisting of at least
two compressor group arcs. The number of simple compressor stations consisting of a compressor group
only is given in parentheses

are designed to use the network at its limits. As there are very many nominations
for each GasLib instance, we selected every tenth nomination from GasLib-582 and
GasLib-4197 in order to limit the computational effort. The selection was done based
on the numbering of the nominations encoded in the filename; we just used the nom-
inations ending with a 0. Moreover, we ignored nominations for which infeasibility
was detected during the preprocessing of the model generation. An overview of the
size of the networks and the number of considered nominations is given in Table 1.

Unfortunately, the original network data does not provide the subnetworks that
model compressor stations. However, they do provide sets of operation modes for
groups of related active elements. We derive suitable subnetworks via the following
heuristic. First, we remove all pipes longer than 2.0 km. For each remaining component
with at least one compressor group arc,wedetermine the set of active elements involved
in the operation modes for the compressor arcs to form a set of unremovable arcs.
We then successively remove leaves from the component as long as no unremovable
arc is deleted. This step is intended to provide a “compact” subnetwork. Although
this heuristic provides reasonable subnetworks, we believe it is preferable to obtain
the subnetworks as part of the network data and the network modeling process. In
particular, one of the subnetworks determined for GasLib-4197 (“station 1” below)
is unusually large and has as many as 20 boundary nodes. This is not an artifact of
our heuristic, but a result of the original GasLib-4197 data which specifies operation
modes for groups of active elements that are unusually far apart from each other.

Note that the subnetworks for a compressor station may contain passive elements
like resistors or pipeswith small length. The reason is that the piping in real-world com-
pressor stations yields a certain pressure drop, so networkmodelers sometimes include
passive elements to account for this. To avoid model inconsistencies, we replace these
elements by short pipes in the original network which we use as the basis of our
preprocessing and to construct all MILP models.

Table 2 shows details on the number of operation modes after the different prepro-
cessing steps proposed in the preceding sections. For instance, for the first compressor
station of HN-SN the original data describes 53 operation modes which, as explained
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in Sect. 2, for all controllable elements specify one of the states open or closed and
possibly a flow direction. But they do not specify for open compressor groups (or con-
trol valves) whether these are active or in bypass. Enumerating all combinations of
active and bypass leads to 1249 fully specified operation modes, 194 of which remain
after filtering out those that are invalid with respect to computed flow and pressure
bounds on the elements or have been detected as redundant by the method presented
in Sect. 4. These 194 remaining operation modes are then used for the formulation
of our extended model and bounded extended models. The total duration of all pre-
processing steps combined is at most 3 minutes per network for all networks except
GasLib-4197, for which it took 6216 seconds. Note that this computation needs to be
performed only once for each network and not for each nomination, and in practice we
are interested in computing many nominations (which vary) for a gas network (which
does not vary). Therefore this preprocessing time is not included in the running times
reported hereafter.

For the first station of GasLib-4197, the very high number of 2304 fully specified
operationmodes arising fromonly 10 original operationmodes is striking, in particular
since the 53 original operation modes for HN-AB and HN-SN yield only 1249 fully
specified operation modes. A closer investigation reveals that several of the 10 original
operation modes have 9 active elements in state open, corresponding to 512 ways to
obtain a fully specified operationmode. In contrast, the number of open active elements
for an operation mode in HN-AB and HN-SN is at most 6.

For each nomination (consisting essentially of a gas demand vector) we use
the lamatto framework (LaMaTTO 2014) that has also been used in Geißler et al.
(2012),[7], Geißler et al. (2015b, 2018) to generate the compact MILP model. We
chose this model as it is a standard MILP model and thus suitable for experiments
with standard MIP solvers. The pressure bounds pu(m) and pu(m) for boundary
node u ∈ V± in operation mode m and lower and upper flow bounds qaca and qaca
for an active compressor group a ∈ Acg have been obtained as described in Walther
and Hiller (2017). We extended lamatto to generate the sparse constraints (10a)–(10f)
and (12a)–(12c) for our extended model. The file with the extended model is then the
basis for adding the bound constraints to obtain the bounded extended models.

In total, we compared 9 different model variants: the compact model (C), the
extended model (E) and the bounded extended models which consist of the extended
model enriched with flow bounds (F) as in (12b) and (12c), pressure bounds (P) as
in (12a), flow pattern constraints (M) as in (28)–(30) and all combinations of the for-
mer (FP, FM, PM, FPM). For Gaslib-4197, we did not consider the variants with the
pattern constraints as they blow up the model size due to the many boundary nodes.
All computations were performed with Gurobi 8.1.0 (Gurobi 2020) single-threaded
on an Intel i7-4790 CPU with 3.60GHz and with a time limit of four hours. We per-
formed all computations three times with the same three different random seeds and
averaged the performance over these three runs. The time limit was only exceeded
for GasLib-4197 (C: 57 times, E: 15, F: 21, P: 14, FP: 27). We remark that some
nominations are inherently numerically unstable, so we ignored them in the analysis.
More precisely, we consider a nomination to be numerically unstable if Gurobi found
conflicting solutions for the three runs of at least one model variant. In all cases where
instability was observed for one of our extended models the other seeds provided the
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Table 2 Overview on the compressor station subnetworks, in particular the number of operation modes
after the different processing steps

# of Boundary
nodes

# of operation modes

Original data After full
specification

After removal of
invalid ones

After removal of
redundant ones

Gaslib-582

Station 1 5 4 12 12 10

Station 2 3 19 225 81 52

HN-SN

Station 1 3 53 1249 409 194

Station 2 4 6 8 8 6

Station 3 2 3 5 5 5

HN-AB

Station 1 3 53 1249 405 198

Station 2 4 9 11 11 9

Station 3 2 3 5 5 5

Station 4 2 3 5 5 5

Gaslib-4197

Station 1 20 10 2304 2304 1824

Station 2 3 4 10 8 6

Station 3 7 4 6 6 6

Station 4 4 4 6 4 4

Station 5 5 2 3 3 3

Station 6 6 3 3 3 3

The operation modes in the left-most column are used in the compact model. The operation modes in the
right-most column are used in the extended model and the bounded extended models

same solution value as the compact model, indicating that the instability is not due to
the reformulated model per se. Overall, instability was detected for one nomination
in the original model and for 3 additional nominations in one of our extended models
(HN-AB: 1 nomination, GasLib-582: 1, GasLib-4197: 2).

Table 3 and Table 4 show the distribution of running times and number of nodes
(averaged over the three random seeds), respectively, for all models over all nomi-
nations. As we can see, all our models improve upon the original compact model C.
A significant part of the improvement comes from using (reduced) fully specified
operation modes obtained through our preprocessing method described in Sect. 4 as
evidenced by the performance of the extended model E. The addition of constraints in
the bounded extended models further improves performance, except for GasLib-4197,
with the best performing variant varying for the considered instance sets. While the
improvement on GasLib-582 is marginal, suggesting that the benchmark might be too
easy for our method as overall running times are also comparatively low, our models
show their true potential on the real gas networks HN-SN, HN-AB, and GasLib-4197.
For these instance sets, all our models reduce the average number of nodes by at
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Table 3 Distribution of running times over all nominations

Running time in seconds

Mean 0.5 quantile 0.75 quantile 0.9 quantile Max

Gaslib-582

C 61.6 59.3 77.8 96.6 463.5

E 56.4 56.3 74.7 87.4 237.2

F 56.7 55.1 72.1 88.8 257.0

M 55.5 55.1 71.8 87.3 291.7

P 57.7 58.1 74.3 89.3 364.6

FM 57.6 58.1 74.9 92.7 262.9

FP 57.3 57.7 74.5 91.8 238.0

PM 56.3 56.2 73.7 87.2 289.5

FPM 58.0 54.6 74.8 91.6 305.7

HN-SN

C 150.5 131.8 172.7 265.7 454.4

E 96.2 93.6 130.9 157.8 234.7

F 103.3 83.6 114.7 187.7 634.4

M 95.2 89.0 122.5 156.5 359.4

P 84.4 76.8 106.6 133.6 257.5

FM 87.8 77.3 109.7 148.4 313.4

FP 85.8 75.2 114.7 137.4 257.8

PM 81.7 73.9 97.5 127.1 397.6

FPM 81.6 71.6 103.4 125.5 257.2

HN-AB

C 118.0 72.4 161.9 322.3 487.7

E 89.2 45.0 136.3 217.8 316.5

F 86.7 60.7 125.0 210.2 249.2

M 84.9 42.6 143.0 203.8 320.8

P 87.0 46.4 140.7 207.2 281.8

FM 85.4 46.1 138.8 203.8 302.6

FP 79.4 42.7 129.6 174.7 254.6

PM 82.0 45.5 129.4 209.7 247.1

FPM 78.3 47.9 121.9 186.2 249.8

Gaslib-4197

C 2741.6 1098.2 3337.7 7775.1 14400.1

E 1477.4 697.0 1462.9 2840.0 14400.1

F 1637.4 711.9 1579.7 4150.1 13307.2

P 1556.5 698.8 1379.4 3670.7 14400.1

FP 1803.0 728.5 1726.0 5400.2 14400.1

The best value for each metric (quantile or maximum) is highlighted in bold
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Table 4 Distribution of number of search tree nodes over all nominations

Number of search tree nodes

Mean 0.5 quantile 0.75 quantile 0.9 quantile Max

Gaslib-582

C 703.3 623.0 887.3 1262.6 10274.0

E 631.8 569.0 824.3 1091.3 5783.7

F 611.2 550.0 725.0 1049.0 4046.3

M 602.7 554.3 763.7 975.8 4420.0

P 662.3 625.3 844.7 1100.0 8882.0

FM 624.9 557.0 769.3 1125.1 4299.3

FP 633.7 599.3 790.7 1049.3 4587.3

PM 635.1 605.3 808.7 1168.7 4170.0

FPM 625.6 584.7 781.3 1049.7 3796.3

HN-SN

C 2212.1 1948.7 2502.3 3334.2 10075.3

E 1072.6 1031.0 1432.7 1797.8 3140.7

F 1787.3 950.0 1403.7 2045.6 39850.3

M 1066.8 952.3 1525.0 1732.3 2853.3

P 992.5 942.7 1436.3 1786.9 2109.7

FM 969.9 924.3 1307.7 1712.7 3005.3

FP 1044.5 979.3 1389.7 1894.7 3019.7

PM 895.7 874.0 1158.0 1540.3 3425.7

FPM 901.9 811.3 1137.0 1627.5 4305.3

HN-AB

C 1706.5 1229.2 2127.1 4032.5 7448.7

E 863.5 935.7 1326.3 1990.3 2513.3

F 858.3 964.7 1357.4 1793.1 2166.0

M 740.4 850.3 1163.3 1542.1 1994.0

P 855.7 827.3 1528.3 1766.7 2140.7

FM 812.0 905.8 1319.0 1700.2 2387.7

FP 767.5 837.5 1233.6 1641.4 1994.3

PM 736.7 780.7 1195.9 1527.3 2045.0

FPM 708.6 765.7 1145.0 1436.2 1753.3

Gaslib-4197

C 20312.7 5389.3 21211.7 59587.5 295297.0

E 6354.4 2443.3 4849.3 14029.6 76750.7

F 9117.5 2401.0 5649.0 25748.3 177179.3

P 8123.2 2394.0 4917.3 14964.3 257718.7

FP 9999.1 2383.3 6447.7 35315.7 121797.3

The best value for each metric (quantile or maximum) is highlighted in bold
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(a) (b)

(c) (d)

Fig. 4 Performance profiles for the running time on the different networks

least half compared to the compact model C, and the average running time is reduced
by 46%, 31%, and 37%, respectively, for the best performing model variant. The
impact for the 0.9-quantile is even more pronounced (reduction by 53%, 46%, and
63%, respectively), indicating that the alternative models particularly help with the
hard instances. An interesting observation is that models taking the flow patterns into
account usually improve over the variant without the flow pattern. This suggests being
able to branch on the flow pattern is frequently useful.

Figure 4 presents the performance profiles (Dolan and Moré 2002) of the running
time for the extendedmodel Eand the compactmodelC in comparison, clearly showing
the superior performance of the former. The performance profile of amodel essentially
provides the probability that the running time to solve this model is within a factor
of τ of the running time for the better of the two models compared. As we can see, the
probability that the extended model E requires a shorter running time is always higher
than that probability for the compact model C.

In summary, we can conclude that for all networks the extended model E using fully
specified operation modes yields a substantial reduction both in running time and in
the number of solving nodes needed. Except for GasLib-4197, a stronger reduction
is offered by the bounded extended models, but the best variant varies between the
instance sets. We believe that the fact that the bounded extended models provide no
improvement but a poorer performance than the extended model is related to the
mentioned issues with the subnetwork having very many boundary nodes.
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7 Conclusion

We proposed models based on fully specified operation modes in order to address
the issues of the existing model for operation modes outlined in the introduction. The
evaluation of our model variants on reference benchmark data for gas networks shows
that the models reduce the average time required by the state-of-the-art solver Gurobi
by 10–46%, depending on the instance set. Our model variants help in particular to
reduce the running times for instances that are hard to solve for the original model.

Our methods may be extended in several ways, both to be more realistic and also
to detect further redundancies. For our computational experiments we modeled all
passive elements in compressor station subnetworks by short pipes,which of course is a
coarse approximation. This can be avoided by handling these elements like compressor
groups and control valves, at the possible expenseof havingmore irredundant operation
modes. If several elements in a subnetwork are actually (technically) identical (as is
likely the case for control valves), this symmetry yields redundancies that are currently
not detected. This can be resolved e.g., by relaxing the fixed point requirement (25) to
allow mapping to different but identical elements. Finally, it is possible to “expand”
compressor groups to incorporate their configurations into the operation modes and
apply the method to this expanded subnetwork. If distinct compressor groups contain
identical compressor units, this symmetry can be detected and turned into a reduction
of (irredundant) operation modes to consider. However, the number of irredundant
operations modes will also increase noticeably.
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