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Abstract
This paper revisits the panel autoregressive model, with a primary emphasis on the
unit-root case. We study a class of misspecified Random effects Maximum Likelihood
(mRML) estimators when T is either fixed or large, and N tends to infinity. We show
that in the unit-root case, for any fixed value of T , the log-likelihood function of the
mRML estimator has a single mode at unity as N → ∞. Furthermore, the Hessian
matrix of the corresponding log-likelihood function is non-singular, unless the scaled
variance of the initial condition is exactly zero. As a result, mRML is consistent and
asymptotically normally distributed as N tends to infinity. In the large-T setup, it is
shown that mRML is asymptotically equivalent to the bias-corrected FE estimator
of Hahn and Kuersteiner (Econometrica 70(4):1639–1657, 2002). Moreover, under
certain conditions, its Hessian matrix remains non-singular.
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1 Introduction

Dynamic panel data analysis is highly popular in econometrics for its ability to capture
the dynamics of microeconomic agents (such as households and firms) using a limited
number of time series observations. The prevalent approach in the literature has been
the autoregressive (AR) panel model with individual-specific intercepts.

Early research on the estimation of the panelARmodel utilized unconditionalmaxi-
mum likelihood estimators, treating individual-specific intercepts as randomvariables.
See e.g., Balestra and Nerlove (1966) and Maddala (1971).

During the 1980s, however, a growing awareness of the significance of accounting
for heterogeneity across entities led to the emergence of the fixed effects approach.
This approach treats individual-specific intercepts as parameters, requiring fewer dis-
tributional assumptions compared to the random effects approach. Notwithstanding,
a major challenge arises in that the number of parameters increases with the total
cross-sectional observations (N ).

An early popular way to address the “incidental parameters problem” involved
transforming the data by subtracting individual-specific means and then running least-
squares. The resulting Within Group (WG) estimator is a Maximum Likelihood (ML)
estimator conditional on individual fixed effects. Unfortunately, in dynamic panels the
within transformation induces a correlation between lagged dependent variables and
idiosyncratic errors, which is non-negligible when T is fixed (Nickell 1981). Thus,
the WG estimator is inconsistent as N → ∞.

More recently, several alternative ML approaches have been proposed in the lit-
erature to deal with the incidental parameters problem. Many of these methods treat
individual-specific effects as fixed but either rely on modifications of the profile like-
lihood, as in Lancaster (2002) and Dhaene and Jochmans (2016), or they start from
the likelihood function of the model transformed in first differences, as in Hsiao et al.
(2002) and Hayakawa and Pesaran (2015). Alternative likelihood-based estimators
treat individual-specific effects as random variables but make use of Chamberlain-
type projections to explicitly model the dependence between these effects and initial
conditions (Anderson and Hsiao 1982; Alvarez and Arellano 2003; and Moral-Benito
(2013)).

The present paper revisits the transformedmaximum likelihood approach (TML) as
in Hsiao et al. (2002), and the random effects maximum likelihood estimator (RML) as
in Alvarez and Arellano (2003). In addition, we study a class of RML-type estimators
that arises by misspecifying (i.e., imposing an incorrect value for) the correlation
strength between the initial conditions and the individual-specific intercepts. Thus, the
class of misspecified RML (mRML) estimators considered in this paper generalizes
(Hahn et al. 2004), whose setting corresponds to the misspecified likelihood that
imposes (potentially incorrectly) such correlation to be zero.

We mainly focus on the case where the data are highly persistent, that is, the
autoregressive parameter equals unity. This case is important from an empirical point
of view because many economic variables exhibit time series properties very close to
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random walks. Examples arise in the estimation of production functions, household
income and consumer spending, to mention a few.1

The contributions of the paper are as follows:

(i) Firstly, we show that in the unit root setting for any fixed value of T , the log-
likelihood function of the mRML estimator has a single mode at unity as N →
∞. It is also shown that the Hessian matrix of the corresponding log-likelihood
function is non-singular, unless the scaled variance of the initial condition is exactly
zero. As a result, the misspecified RML estimator for the autoregressive parameter
is consistent and asymptotically normally distributed, as N → ∞ for T fixed. This
implies that standard inference procedures are valid. To the best of our knowledge,
this is the first result in the literature that shows that a class of mRML estimators
has desirable asymptotic properties in the unit-root case for fixed-T .

(ii) Secondly, the paper also provides new insights on the properties of mRML and
TML in large N , T samples. In specific, in a stable autoregressive setting, we show
that the mRML estimator is asymptotically equivalent to the bias-corrected FE
estimator of Hahn andKuersteiner (2002). This result complements that in Alvarez
and Arellano (2003) and Hahn et al. (2004), who show asymptotic equivalence
between the RML estimator and the bias-corrected FE estimator.

In a Monte Carlo study, we investigate how informative our asymptotic results
are for the finite sample properties of all estimators considered. We find that this
asymptotic characterization is only informative about the finite sample behavior of the
estimators that have non-singular limiting Hessian matrices. This excludes the TML
and RML estimators, which have singular Hessian matrices in the limit.

The remainder of this paper is structured as follows. The next section sets out the
panel AR(1) model and specifies the underlying assumptions. Section3 introduces the
misspecified RML approach and links it to the TML and RML approaches. Section4
provides the asymptotic results of the paper. Section5 reports finite-sample results
from aMonte Carlo study, and a final section concludes. Proofs of all propositions are
provided in the Appendix.

2 The linear panel AR(1) model

We consider the following simple AR(1) specificationwithout exogenous regressors2:

yi,t = αyi,t−1 + ηi + εi,t , E[εi,t |yi,0, ηi ] = 0, (1)

for i = 1, . . . , N , t = 1, . . . , T where the true parameter is α = α0. For example,
simple linear models of this form played a prominent role in the early economet-
ric literature on the propagation of income shocks to consumption, by decomposing
the income shocks into a permanent component (a function of ηi ), and a transitory
component (a function of yi,t−1). Some recent contributions to this literature include

1 See the discussion in Blundell and Bond (2023).
2 Time-specific effects can be accommodated by taking the variables in deviations from the cross-sectional
mean.
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the papers of Botosaru and Sasaki (2018) and Botosaru (2022), while the paper of
Arellano et al. (2017) provides the most recent advances in the literature on nonlinear
models for incomes shocks.

In this paper, we limit our attention to the stylized setting in Eq. (1), where the
parameters of interest α0 and σ 2

0 = E[ε2i,t ] can be estimated using the Maximum
Likelihood principle. Our prime focus is the behavior of Maximum Likelihood esti-
mators when α0 → 1.

In this paper, we operate under the conditions of the following Random Effects ML
(RML) assumption.

Assumption RML: For ηi = (1 − α0)μi , the vector (yi,0, μi ) is i.i.d. across i , with
finite fourth moments. εi,t is i.i.d. (0, σ 2) across all i, t and E[ε4i,t ] is
finite.

Here we implicitly assume that initial conditions yi,0 are observed by the econometri-
cian and can be used in the formulation of the likelihood function. In particular, this
assumption imposes restrictions on the joint distribution of yi,0 and μi . Note that we
do not impose any form of stationarity restrictions (mean and/or covariance) on the
initial condition. This fact is essential in the derivations of the asymptotic results of
the two estimators for α0 = 1 in the remainder of this paper.

Next, consider theMundlak (1978)-Chamberlain (1982) type of projection for ηi 3:

ηi = π yi,0 + vi , E[vi yi,0] = 0, vi ∼ i .i .d.(0, σ 2
v ). (2)

Different likelihood-based estimators discussed in this paper will primarily differ in
the way they treat the π parameter or an associated function of π . For example, when
we set π = 1 − α the projection corresponds exactly to the TML (Transformed
Maximum Likelihood) framework of Hsiao et al. (2002). On the other hand, for the
RML approach as in Alvarez and Arellano (2003), the π is treated as an unrestricted
parameter to be estimated.

The conditional AR(1) model in Eq. (1) can be rewritten in the following stacked
form:

yi = α yi− + ıT ηi + εi , εi = (εi,1, . . . , εi,T )′. (3)

Alternatively, using the projection device, the model can also be described as fol-
lows4:

Ryi = (e1α + ıTπ)yi,0 + ui , (4)

3 We do not include a constant term in the projection as it would serve as a restricted time effect. In most
applications, data will be used in deviations from cross-sectional means, thus allowing for unrestricted time
effects.
4 Bai (2013b) considers a similar conditional maximum likelihood estimator with a possible factor structure
in the error term εi . See Juodis and Sarafidis (2018) for a review on the literature on dynamic panels with
common factor residuals, and Juodis and Sarafidis (2022) for an alternative treatment of this model based
on GMM.
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where R = IT − LTα, e1 is the first column of the IT matrix, and ui ≡ ıT vi + εi .5

This correlated random effects decomposition can then be directly used to formulate
the (quasi-) log-likelihood in the next section.

3 Maximum likelihood estimation approaches

3.1 The log-likelihood function

The derivations hereby mostly follow those in Bun et al. (2017) and have been adapted
appropriately for the purpose of this paper. Note that

E[ui ] = 0T , var[ui ] = Σ = σ 2
v ıT ı

′
T + σ 2 IT , (5)

where the variance–covariance structure of Σ is of the usual random effects (or Gen-
eralized Least Squares) form. The quasi-log-likelihood function for some individual
i is defined as:

�i (κ) = −1

2

(
(T − 1) log(σ 2) + log(θ2) + [

( yi − α yi−

−ıTπ yi,0)
′Σ−1( yi − α yi− − ıTπ yi,0)

])
, (6)

where κ = (α, π, σ 2, σ 2
v )′. This function is the true likelihood function if ui is a

multivariate Gaussian vector.
Given the specific structure of the Σ matrix, the above expression can be sub-

stantially simplified. For example, using the notation in Bun et al. (2017) (e.g.,
ỹi,t = yi,t − ȳi and ÿi = ȳi − yi,0, ÿi− = ȳi− − yi,0) and defining ρ = π −(1−α), we
obtain the following final expression for the log-likelihood function (after summing
over all individual log-likelihood functions):

�(κ) = −N

2

(
(T − 1) log(σ 2) + log(θ2) + 1

Nσ 2

N∑
i=1

T∑
t=1

(ỹi,t − α ỹi,t−1)
2

+ T

Nθ2

N∑
i=1

(ÿi − α ÿi− − ρyi,0)
2

)
, (7)

where κ = (α, π, σ 2, θ2)′ with θ2 = σ 2 + Tσ 2
v . As it is extensively discussed in Bun

et al. (2017), the parameters (σ 2, θ2, ρ) can be concentrated out as:

5 The lag-operator matrix LT is defined such that for any [T × 1] vector x = (x1, . . . , xT )′, LT x =
(0, x1, . . . , xT−1)

′.
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�c(α) = −N

2

(
(T − 1) log

(
1

N (T − 1)

N∑
i=1

T∑
t=1

(ỹi,t − α ỹi,t−1)
2

)

+ log

(
T

N

N∑
i=1

(ẏi − α ẏi−)2

))
. (8)

Here we define ẏi and ẏi− as follows:

ẏi = ÿi − yi,0

∑N
i=1 ÿi yi,0∑N
i=1 y

2
i,0

, ẏi− = ÿi− − yi,0

∑N
i=1 ÿi−yi,0∑N
i=1 y

2
i,0

, (9)

The above characterization of the log-likelihood function is highly appealing to
empirical researchers, as the numerical/computational burden decreases dramatically.
Moreover, a simple grid search-based procedures can be used to investigate the cur-
vature of the likelihood, see Sect. 3.3.

Remark 1 Note that the TML log-likelihood function of Hsiao et al. (2002) and Bun
et al. (2017) is obtained by setting ρ = 0 in Eq. (7), such that ẏi = ÿi and ẏ−i = ÿi−.

3.2 Themisspecified RML approach

The TML and the RML approaches can be viewed as two special cases in the way the
ρ parameter is being handled in estimation. In particular, TML sets ρ = 0, whereas
RML estimates ρ (or π for that mater) freely, without imposing any restrictions. An
alternative approach, that we label as the misspecified RML (mRML) approach, uses
a more general formulation for the π parameter. In particular, we consider π(φ) such
that

π(φ) = π = (1 − α)φ, (10)

where φ ∈ R denotes some arbitrary a priori chosen scalar. Note that since the popula-
tion value of the correlation between yi,0 and ηi corresponds to a specific “true” value
of φ, (say) φ0, setting φ �= φ0 implies a misspecification of the correlation between
the initial condition and the individual-specific effect. The term “misspecified ML
estimator” was first used by Hahn et al. (2004), who studied the properties of this
estimator for the special case where φ = 0.

The only exception for the appropriateness of this terminology is setting φ = 1
(corresponding to the TML approach), as in that case the TML estimator is known to
be fixed-T consistent for all |α0| ≤ 1. For all other values of φ, the mRML estimator
is not generally fixed-T consistent for α0 < 1, as we formally show in Sect. 4.

The concentrated log-likelihood function of the mRML estimator (for any φ) is
given by:

123



SERIEs (2023) 14:435–461 441

�cmRML(α) = −N

2

(
(T − 1) log

(
1

N (T − 1)

N∑
i=1

T∑
t=1

(ỹi,t − α ỹi,t−1)
2

))

− N

2

(
log

(
T

N

N∑
i=1

(ẏi (φ) − α ẏi−(φ))2

))
, (11)

wherewenowset ẏi (φ) = yi−φyi,0 and ẏi−(φ) = yi−−φyi,0. From this formulation,
the mRML approach with φ = 0 can be alternatively motivated as a special case of the
approach studied by Bai (2013a) if one erroneously assumes that yi,0 = 0 ∀i , while
in reality the initial conditions are non-zero.

3.3 The problem of multiple solutions

Consider the first derivative of the concentrated log-likelihood function for all estima-
tors considered above. Let

σ̂ 2 (φ) = 1

N (T − 1)

N∑
i=1

T∑
t=1

(
ỹi,t − α ỹi,t−1

)2
, (12)

θ̂2 (φ) = T

N

N∑
i=1

(ẏi (φ) − α ẏi−(φ))2 , (13)

then the first derivative of the concentrated log-likelihood function is given by:

d�c(α)

dα
= 1

σ̂ 2(α)

N∑
i=1

T∑
t=1

ỹi,t−1(ỹi,t − α ỹi,t−1)

+ T

θ̂2(α)

N∑
i=1

ẏi−(φ)(ẏi (φ) − α ẏi−(φ)). (14)

In particular, any solution of the corresponding first-order conditions (FOC) should
satisfy:

θ̂2(α)

N∑
i=1

T∑
t=1

ỹi,t−1(ỹi,t − α ỹi,t−1) + σ̂ 2(α)T
N∑
i=1

ẏi−(ẏi (φ) − α ẏi−(φ)) = 0.

(15)

Given that σ̂ 2(α) and θ̂2(α) are quadratic in α, it is not difficult to see that the FOC
are cubic in α. Thus, for any value of T and any realization of { yi }Ni=1 there will be at
least one and at most three solutions to Eq. (15).

As noted by Alvarez and Arellano (2004, 2022), the TML estimator might suffer
from issues related to non-identification for T = 2. Bun et al. (2017) and Juodis
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(2018a) built upon those results and obtained further insights on the properties of the
distribution of the TML and RML estimators for stationary data. Among other things,
they note that the TML approach is more susceptible to generating bimodal finite
sample distributions of the corresponding estimator.6

As themRMLestimator shares the same structure of the concentrated log-likelihood
function Eq. (15), the finite sample distribution of the estimator might be bimodal.
However, the choice of φ might play a non-trivial effect in determining the shape of
the corresponding log-likelihood function.

4 Asymptotic results

Section 4.1 analyzes asymptotic properties of the mRML estimator when T is fixed.
We shall focus on the unit-root case, α0 = 1. Before we embark on the asymptotic
analysis for this case, we present the following general (although negative) result for
|α0| < 1:

Proposition 1 Let ∇α� denote the score of the mRML log-likelihood function with
respect to α evaluated at true κ0. Then, for any T and |α0| < 1:

E[∇α�] = O(N ). (16)

Moreover, E[∇α�] = 0 if and only if E[yi,0(μi − φyi,0)](φ − 1) = 0.

Proposition 1 shows that for |α0| < 1, there exist only two values of φ that can guaran-
tee fixed-T consistency of the mRML estimator; either φ = 1, which corresponds to
the TML approach, or the value of φ corresponding to the infeasible (unknown) cor-
relation coefficient between the initial conditions and the individual-specific effects.

4.1 Fixed-T results for the unit-root case

Our main result of this section is formulated in Proposition 2.

Proposition 2 For any fixed-T as N → ∞, the log-likelihood function corresponding
to the mRML estimator is unimodal at the point α0 = 1, for any fixed value of φ.

This proposition extends the analytical and numerical results obtained by Bun et al.
(2017), which apply only to |α0| < 1 for the TML approach. Note that since the log-
likelihood function corresponding to TML can be deduced from mRML by setting
φ = 1, the result of Proposition 2 also applies to TML.

In order to grasp the intuition of the above proposition, Fig. 1 revisits some of
the results in Juodis (2018a), which correspond to TML. One can observe from this
figure that while for |α0| < 1 the asymptotic concentrated log-likelihood function is
bimodal, the second mode is always at α = 1, and the first mode naturally approaches

6 The apparent robustness of the RML approach can be motivated from the fact that it explicitly minimizes
the magnitude of the “between group” part of the log-likelihood function for any given value α.
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(c) α0 = 0.5, T = 6

Fig. 1 Concentrated asymptotic log-likelihood function for TML. In all figures, the first mode is at the
corresponding true value α0, while the second mode is located at α = 1. The initial observation is from the
covariance stationary distribution. The dashed line represents the Within Group part of the log-likelihood
function, while the dotted line the Between Group part. The solid line, which stands for the log-likelihood
function, is a sum of dashed and dotted lines

the second one as α0 → 1.7 Thus, for the true value of α0 = 1 the two modes collapse
into one and the log-likelihood function of mRML is unimodal.

When it comes to the actual shape of the log-likelihood function of mRML in the
unit-root case, it turns out that this is of standard form, unless φ = 1. To see this,
let σ̃ 2

y0(φ) ≡ T (1 − φ)2 E[y2i,0] be the scaled second moment of the initial condition.

Moreover, let the true value of θ2 be defined as θ20 = σ 2
0 + (1−α0)(μi −φyi,0), with

φ = 1 as the special case of the TML estimator. Obviously, for α0 = 1 the value of
θ20 is the same irrespective of φ.

Using this notation, the following result is obtained for the Hessian of the mRML
estimator.

Proposition 3 (Singularity mRML) The H�(φ) matrix is equal to:

H�(φ) = T − 1

2σ 2
0

⎛
⎜⎜⎝
Tσ 2

0 + 2
T−1 σ̃

2
y0(φ) −1 1

−1 1
σ 2
0

0

1 0 1/(T−1)
σ 2
0

⎞
⎟⎟⎠ . (17)

7 Bun et al. (2017) shows that bimodality and the location of the second mode in this case is primarily
determined by the properties of the initial observation yi,0.
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Moreover, this matrix is singular for fixed-T if and only if σ̃ 2
y0(φ) = 0.

The proof of this proposition largely follows the proof strategy of Theorem 1 in
Juodis (2018b), once appropriately modified for the setting at hand.8 To the best of our
knowledge, Proposition 3 is the first result in the literature that proves that the mRML
estimator has desirable asymptotic properties for fixed-T in the unit-root case α0 = 1.
In particular, as a corollary of the two results presented above, the mRML estimator is
consistent and asymptotically normal (subject to the usual other regularity conditions,
e.g., compactness of the parameter space).

Since setting φ = 1 implies σ̃ 2
y0(φ) = 0, it is straightforward to see that the Hessian

matrix for the TML estimator is singular. This result is well known in the literature,
see e.g., Ahn and Thomas (2006); Kruiniger (2013) or Juodis (2018b).9 Hence, the
corresponding asymptotic distribution of the TML estimator is non-standard and non-
normal. In particular, following the results in Roznitzky et al. (2000) and Dovonon
and Hall (2018), one can show that

4
√
N (̂α − 1) = OP (1), (18)

where the asymptotic distribution is determined by the higher-order expansion of the
likelihood function. As such, the limiting distribution of TML is asymmetric. Due to
such non-standard properties of TML, it appears to us that there are no approaches
suggested in the literature that can be used to construct uniformly valid confidence
intervals for α0 ∈ (−1; 1].
Remark 2 We note that the TML approach is not the only fixed-T consistent “bias-
corrected” FE-type approach that suffers from the singularity of the limiting Hessian
matrix for α0 = 1. It is well known in the literature that the standard bias-corrected
FE estimator, as studied by Lancaster (2002); Bun and Carree (2005); Dhaene and
Jochmans (2016), and Kruiniger (2018), shares this property at α0 = 1. For more
details, we refer to Kruiniger (2018). Thus, we are not aware of any estimator that
would satisfy all three requirements below: (i) it is consistent for all α0 ∈ (−1; 1]; (ii)
consistency does not depend on the stationarity of the initial condition; and (iii) it has
asymptotic normal distribution.

Remark 3 The result in Proposition 3 might seem at odds with the unit-root results in
Norkutė andWesterlund (2021), who use the factor analytic approach of Bai (2013a) to
construct their estimator. Themain difference between their approach and the approach
in this paper is that their explicit model is of the error-components structure:

yi,t = νi + ui,t , ui,t = α0ui,t−1 + εi,t . (19)

While the two coincide asymptoticallywhen |α0| < 1, this is not the casewhenα0 = 1.
In particular, their results build upon the assumption that E[ν2i ] > 0. As such, their

8 Hence, the corresponding result in Juodis (2018b) can be seen as a special case of Proposition 3.
9 An analogous result for the RML approach is also available in the literature and was derived by Kruiniger
(2013).
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results are not uniformly valid when the true individual heterogeneity is degenerate.
Hence, the desirable finite sample properties of the proposed procedure (as compared
to the standard FE-type methods, e.g., Moon et al. (2007) and Juodis and Westerlund
(2019)) are achieved at the expense of non-uniformity with respect to this nuisance
parameter.

4.2 Large-T results

4.2.1 Asymptotic equivalence in the stationary case

As shown by Alvarez and Arellano (2003), when N , T → ∞ and |α0| < 1, the RML
estimator is asymptotically equivalent to the bias-corrected FE estimator of Hahn and
Kuersteiner (2002) (provided that N 3/T → 0 is satisfied for the latter).

In what follows, we show that the same conclusion can be reached for the mRML
estimator for any φ (thus also the TML estimator). The intuition for this result is fairly
simple. Consider the likelihood function in Eq. (8). It is fairly easy to see that as
N , T → ∞ (irrespective of the relative magnitude):

�c(α) = − (T − 1)N

2
log

(
1

N (T − 1)

N∑
i=1

T∑
t=1

(ỹi,t − α ỹi,t−1)
2

)
+ OP (N log(T )),

(20)

uniformly for all α and φ. Hence, the large-T consistency of all estimators follows
from large-T consistency of the corresponding FE estimator. That is, both the RML
and the mRML estimators provide an in-built bias-correction term for the standard
fixed effects log-likelihood function. As both approaches handle bias-correction rather
differently for T fixed, the underlying asymptotic properties depend on the way ρ (or
π ) is handled, i.e., whether it is estimated or it is fixed. On the other hand, for large-T
this choice is mostly inconsequential, as it can be expected from the expansion in Eq.
(20). Our next result formalizes this conjecture.

Proposition 4 Under assumption RML, as N , T → ∞ such that N/T 3 → 0:

√
NT (̂α(φ) − α0) → N (0, 1 − α2

0), (21)

for all |α0| < 1 and any constant value of φ such that π = (1 − α)φ.

Hence, the class of RML estimators indexed by φ is asymptotically equivalent to
the bias-corrected FE estimator of Hahn and Kuersteiner (2002). This result is not
unexpected, as the mRML specification can be seen as a “bias reducing prior” for ηi
using the terminology of Arellano and Bonhomme (2009).

Proposition 4 extends the analogous result in Hahn et al. (2004), which was proven
for the special case φ = 0. In particular, their setting corresponds to the misspecified
likelihood where one incorrectly assumes that E[ηi yi,0] = 0,10 when in fact this is

10 As e.g., in Maddala (1971).
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not the case. Here we have shown that the specific choice of φ is inconsequential for
the asymptotic distribution of the estimator as long as N/T 3 → 0.

4.2.2 Singularity of the Hessian matrix of mRML in the unit-root case when T is large

The results in Proposition 3 have been derived for any fixed value of T . It is then natural
to wonder what happens when T → ∞. For the Hessian matrix to be non-singular
also as T → ∞, it is necessary that σ̃ 2

0 = O(T 1+β) or alternatively E[y2i,0] = O(T β),
where β ≥ 1. Observe that elements of H� are not of the same order of magnitude.
Thus, heuristically, it can be expected that the corresponding coefficients in κ will
exhibit different rates of convergence if we let T → ∞. This heuristic is formalized
in our next proposition based on sequential limit theory where N → ∞ first followed
by T → ∞.

Proposition 5 (Singularity mRML large-T ) Let (N , T )seq → ∞, then the scaled
mRML Hessian matrix is non-singular if and only if β ≥ 1.

We conjecture that equivalent result can be also proven rigorously using the joint
limit theory with N , T → ∞, but we leave this question for future research. Further-
more, we will not attempt to properly characterize the asymptotic distribution of the
misspecified RML estimator in this case, as it would involve a complete characteriza-
tion of all components in the Taylor’s expansion of the log-likelihood function.

We expect that our previous result in Proposition 3 is useful to characterize the
asymptotic distribution of mRML, provided that σ̃ 2

0 is not too small.

Remark 4 The non-vanishing effect of the initial condition yi,0 in this setting can
be compared with the similar result obtained by Juodis and Poldermans (2021) in
the unit-root non-stationary setting for the Backwards Orthogonal Deviations (BOD)
estimator of Everaert (2013). In that setting, the initial condition is not asymptotically
dominant, but it has a variance reduction effect. Note that the rate E[y2i,0] = O(T β)

can be achieved if the process yi,t has a distant or infinite past, see e.g., Westerlund
(2016).

5 Monte Carlo study

5.1 The setup

In this section, we investigate the finite sample performance of the various estimators
and corresponding test statistics using simulated data. In particular, we consider the
following panel AR(1) model:

yi,t = αyi,t−1 + (1 − α)μi + εi,t ; εi,t ∼ N (0, 1) ; t = 1, . . . , T . (22)

yi,0 = γμi + εi,0; εi,0 ∼ N
(
0, ζ 2

)
; μi ∼ N

(
0, σ 2

μ

)
. (23)

Mean-stationarity of yi,t is achieved for designs with γ = 1, while the process yi,t is
covariance stationary if and only if γ = 1 and ζ 2 = 1 − α2. The actual value of σ 2

μ
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is irrelevant for the TML estimator as long as γ = 1, but for the RML estimator this
parameter is always important.

As we are interested in setups with α0 ≈ 1, we will set ζ 2 = 1, so that the process
is never covariance stationary. Moreover, we restrict our attention to mean stationary
settings with γ = 1. Even for the simple AR(1) model, the parameter space is already
very large. We have tried to cover its most relevant part by considering the following
parameter settings:

N = {50, 200, 500}, T = {5, 10, 20}, α0 = {0.5, 0.9, 1.0}.

We consider three estimation approaches, namely TML, RML and mRML with φ =
0. For all three approaches, we report two types of estimators: (i) based on global
maximum of the objective function; (ii) based on local-maximum of the WG mode.
The second option is the suggest “left” rule-of-thumb by Bun et al. (2017). We report
the mean bias, the median bias and the RMSE for all estimators. Moreover, for all
estimators we report the fraction of replications the objective function is found to be
unimodal. For all estimators, we use root finder algorithms based on the eigenvalues of
the companion matrix to obtain the maximum likelihood estimates in all three cases.11

The number of Monte Carlo replications is set to 4000.

5.2 Results

The estimation results are summarized in Tables 1, 2, 3, while in Table 4we summarize
the unimodality properties of the three approaches considered.

To begin with, consider the results in Table 1. Initially we focus on α0 = 0.5.
One observes that the mRML estimator is the one with the largest bias. This is not
surprising given that the correlation between the initial condition and the individual-
specific effect is misspecified.12 However, this bias quickly disappears as T increases
to at least T = 10. This observation is consistent with the results of Sect. 4.2. The two
fixed-T consistent estimators for |α0| < 1, RML and TML, exhibit much smaller bias
than mRML, with most of the bias being present due to the bimodality of their finite
sample distributions. Such bias can be effectively mitigated using the “left” option.

Regarding α0 = 0.9 and α0 = 1.0, we note that the bias of the mRML estimator
becomes comparable to that of the RML/TML approaches and becomes nearly negli-
gible in the unit-root setting. Moreover, for α0 = 1.0 the mRML estimator has smaller
RMSE, as predicted by the potentially faster convergence rate of the estimator in this
case (provided that E[y2i,0] is sizeable).

Next, we consider the bimodality properties of the three estimators. From Table 4,
it is clear that the behavior of the RML and TML estimators differs dramatically
between the stable setting of |α0| < 1 and the unit-root setup α0 = 1. In the latter
case, even for large N , T , in almost 40%of the replications the likelihood functions are
bimodal. This is in sharp contrast with the theoretical predictions from Proposition 2.

11 This ensures that all our results can be obtained within 5min.
12 Of course, themagnitude of the bias depends on the extent ofmisspecification, i.e., the deviation between
the implied correlation with φ = 0 and the true correlation.
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Table 4 Unimodality analysis

N T Fraction of replications where the objective function is unimodal

α0 = 0.5 α0 = 0.9 α0 = 1.0

TML RML mRML TML RML mRML TML RML mRML

50 5 0.60 0.89 0.99 0.65 0.72 1.00 0.58 0.64 1.00

50 10 0.69 0.98 0.70 0.76 0.80 0.99 0.56 0.62 1.00

50 20 0.75 0.99 0.93 0.86 0.90 0.98 0.58 0.64 0.98

200 5 0.69 0.99 1.00 0.71 0.77 1.00 0.55 0.60 1.00

200 10 0.88 1.00 0.76 0.84 0.90 1.00 0.56 0.61 1.00

200 20 0.94 1.00 1.00 0.97 0.98 1.00 0.57 0.61 1.00

500 5 0.83 1.00 1.00 0.76 0.83 1.00 0.55 0.59 1.00

500 10 0.97 1.00 0.86 0.91 0.95 1.00 0.55 0.59 1.00

500 20 0.99 1.00 1.00 1.00 1.00 1.00 0.56 0.59 1.00

See Table 1

(a) The mRML estimator. (b) The RML estimator.

Fig. 2 The finite sample distributions of the mRML and RML estimators for N = 200, T = 20, α0 = 1

The misspecified likelihood function, on the other hand, is mostly unaffected by the
exact value of the α0 parameter.

Finally, one may wonder whether our results support the theoretical prediction in
Proposition 3 or not. In Fig. 2, we summarize the finite sample distributions of RML
and mRML estimators for a given choice of design parameters. The results are fairly
revealing on the differences between the finite sample distributions of the two esti-
mators. In particular, while the mRML estimator has a distinct unimodal distribution
(even if asymmetric), the finite sample distribution of the RML estimator is distinc-
tively non-standard and asymmetric. While not presented here, the results in Table 4
also indicate that in this setting the results of the mRML estimator are unchanged
when one considers the “left” option of the estimator. The same is not true, however,
for the RML estimator that is bimodal in 40% of the Monte Carlo replications.
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6 Conclusions

The present paper studied a class ofmisspecified Random effectMaximumLikelihood
estimators. The misspecification arises by imposing the wrong value for the correla-
tion strength between the initial condition and the individual-specific intercepts. As a
special case, we have analyzed the asymptotic behavior of the transformed maximum
likelihood approach as in Hsiao et al. (2002).

We have shown that for any fixed value of T , the log-likelihood function of the
mRML estimator has a single mode at the true value as N → ∞. In addition, the
Hessian matrix of the corresponding log-likelihood function is non-singular, unless
the scaled variance of the initial condition is exactly zero. As a result, mRML is
consistent and asymptotically normally distributed, as N → ∞ for T fixed. Thus,
standard inference procedures are valid. To the best of our knowledge, this is the
first result in the literature that shows that a class of mRML estimators has desirable
asymptotic properties in the unit-root case for fixed-T .

Secondly, the paper also provided new insights on the properties ofTMLandmRML
in large-T samples in a stable autoregressive setting. When N , T are both large, the
TMLestimator is asymptotically equivalent to the bias-corrected FE estimator ofHahn
and Kuersteiner (2002). Moreover, for α0 = 1, the Hessian matrix corresponding to
the likelihood function of mRML remains non-singular, so long as the scaled variance
of the initial conditions is of order O(T 1+β), β ≥ 1.

In a Monte Carlo study, we have explored how informative our asymptotic results
are for the finite sample properties of all estimators considered. We found that this
asymptotic characterization is informative about finite sample behavior only for those
estimators that have non-singular limiting Hessian matrices. This excludes the TML
and RML estimators, which have singular Hessian matrices in the limit.

In this paper, we have limited our attention to the stylized panel AR(1) model. This
may be too restrictive for many real-life applications. In our future research, we are
planning to extend the present analysis to panel vector autoregressivemodels, similarly
to Binder et al. (2005); Arellano (2016), and Juodis (2018a, b), in order to account
for feedback effects from other variables, as it is commonly the case in micro- and
macro-economic panels.
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Appendix A: Proofs

Notation

In what follows we introduce a few terms used in the next derivations.

θ20 = σ 2
0 + T (1 − α0)

2 E[(μi − φyi,0)
2], (A.1)

ξ =
T−2∑
l=0

(T − 1 − l)αl
0, (A.2)

σ̃ 2
y0(φ) = T (1 − φ)2 E[y2i,0], (A.3)

�α = α − α0, (A.4)

θ1 = (T − 1)(2T − 1)

6
σ 2
0 , (A.5)

σ1 = T + 1

6
σ 2
0 , (A.6)

θ1(φ) = σ̃ 2
y0(φ) + θ1. (A.7)

Here (unless specified otherwise) all terms are defined for all values of σ 2
0 , α, α0, φ.

Appendix A.1: Fixed T results

Proof Proposition 1 Let ∇α� denote the partial derivative of �(κ) with respect to α

once evaluated at κ0. Consider the element of the score that corresponds to α:

∇α� = 1

σ 2
0

N∑
i=1

T∑
t=1

ỹi,t−1(̃εi,t ) + T

θ20

N∑
i=1

ẏi−(ẏi (φ) − α0 ẏi−(φ)), (A.8)

where θ20 is defined as above.
Consider the “between group” part in isolation. Using analogous steps to those in

Appendix Lemma A.2 of Juodis (2018a), we expand:

ẏi (φ) − α0 ẏi−(φ) = εi + (1 − α0)(μi − φyi,0). (A.9)

Note that from E[T yi−εi ] = ξ/T , we have

T ẏi−(φ) = ξ(1 − α0)(μi − yi,0) − T (φ − 1)yi,0 +
T−1∑
t=1

t−1∑
s=0

αs
0εi,t−s

= ξ(1 − α0)(μi − φyi,0) + (φ − 1)yi,0(ξ(1 − α0) − T )

+
T−1∑
t=1

(
T−1−t∑
s=0

αs
0

)
εi,t

123



454 SERIEs (2023) 14:435–461

= ξ(1 − α0)(μi − φyi,0) − (φ − 1)yi,0

(
T−1∑
s=0

αs
0

)

+
T−1∑
t=1

(
T−1−t∑
s=0

αs
0

)
εi,t . (A.10)

Thus,

E[T ẏi−(φ)(ẏ(φ)i − α0 ẏi−(φ))] = θ20

T
ξ − E[yi,0(μi − φyi,0)]

(
T−1∑
s=0

αs
0

)
(1 − α0)(φ − 1)

= θ20

T
ξ − E[yi,0(μi − φyi,0)]

(
1 − αT

0

)
(φ − 1), (A.11)

where, as before, θ20 = σ 2
0 + T (1− α0)

2 E[(μi − φyi,0)2]. Using this insight, we can
expand the score as follows:

∇α� = 1

σ 2
0

N∑
i=1

(
T∑
t=1

ỹi,t−1̃εi,t − E[̃yi,t−1̃εi,t ]
)

+ T

θ20

N∑
i=1

(ẏi−(φ)(ẏi (φ) − α0 ẏi−(φ)) − E[ẏi−(ẏi (φ) − α0 ẏi−(φ))])

− N

θ20
E[yi,0(μi − φyi,0)]

(
1 − αT

0

)
(φ − 1). (A.12)

From here, it follows immediately that:

E[∇α�] = − N

θ20
E[yi,0(μi − φyi,0)]

(
1 − αT

0

)
(φ − 1). (A.13)

The conclusion of this proposition follows immediately. ��
Proof Proposition 2 In what follows, we consider the probability limit of Eq. (15).
Without loss of generality, we set σ 2 = 1.

The most critical component of this expression (that varies over φ) is θ̂2(α), and
the corresponding derivative with respect to α. In particular,
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θ̂2(α) = T

N

N∑
i=1

(ẏi (φ) − α ẏi−(φ))2

= (1 − α)2
T

N

N∑
i=1

(ẏi−(φ))2 + 2(1 − α)
T

N

N∑
i=1

(ẏi−(φ))εi + T

N

N∑
i=1

(εi )
2.

(A.14)

Upon inspection of the proof of Theorem 1 in Juodis (2018b), it is clear that the only
term affected by φ is

E

[
T

N

N∑
i=1

(yi− − φyi,0)
2

]
= E

[
T

N

N∑
i=1

(ÿi− − (φ − 1)yi,0)
2

]

= T (1 − φ)2 E[y2i,0] + (T − 1)(2T − 1)

6
σ 2
0

= σ̃ 2
y0 + θ1. (A.15)

The final line follows from the fact that, under our assumptions, in the unit-root setting
ẏi− and yi,0 are actually independent. This result can thenbeused to show thatE[θ̂2(α)]
equals

E[θ̂2(α)] = (1 − α)2
(

(T − 1)(2T − 1)

6

)
+ (1 − α)(T − 1) + 1

= �2
αθ1(φ) + �α(T − 1) + 1, (A.16)

where θ1(φ) is defined as above. Next, we consider the Within-Group transformed
components of the log-likelihood function. In particular, note that

σ̂ 2(α) = 1

N (T − 1)

N∑
i=1

T∑
t=1

(ỹi,t − α ỹi,t−1)
2

= (1 − α)2
1

N (T − 1)

N∑
i=1

T∑
t=1

(ỹi,t−1)
2

+ (1 − α)
2

N (T − 1)

N∑
i=1

T∑
t=1

(ỹi,t−1)̃εi,t

+ 1

N (T − 1)

N∑
i=1

T∑
t=1

(̃εi,t )
2. (A.17)
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By Theorem 1 in Juodis (2018b), it follows immediately that

E[̂σ 2(α)] = (1 − α)2
(
T + 1

6

)
− (1 − α) + 1

= �2
ασ1 − �α + 1. (A.18)

Next, we plug in these expressions into the corresponding limiting FOC. From here,
it is clear that all solutions �α satisfy

(T − 1)(2�ασ1 − 1)(�2
αθ1(φ) + �α(T − 1) + 1) + (2�αθ1(φ)

+ (T − 1))(�2
ασ1 − �α + 1) = 0. (A.19)

After a bit of re-arrangement, we obtain

�3
α(2Tσ1θ1(φ)) + �2

α((T − 1)(2σ1(T − 1) − θ1(φ) + σ1) − 2θ1)

+ 2�α((T − 1)(σ1 − 1) + θ1(φ)) = 0. (A.20)

After removing the root �α = 0, we are left with the following polynomial:

f (�α) = �2
α(2Tσ1θ1(φ)) + �α((T − 1)(2σ1(T − 1) − θ1(φ) + σ1) − 2θ1)

+ 2((T − 1)(σ1 − 1) + θ1(φ)). (A.21)

As the coefficient in front of�2
α is clearly positive,we shall first consider the coefficient

in front of �α . Noting that

(T − 1)(2σ1(T − 1) − θ1 + σ1) − 2θ1 = σ1(2T − 1)(T − 1) − θ1(T + 1)

= (2T − 1)(T + 1)

6
(T − 1 − (T − 1)) = 0,

(A.22)

the quadratic equation simplifies to

f (�α) = �2
α(2Tσ1θ1(φ)) + 2((T − 1)(σ1 − 1) + θ1(φ)) − �α(T + 1)(θ1(φ) − θ1)

= �2
α(2Tσ1θ1) + 2((T − 1)(σ1 − 1) + θ1)

+ σ̃ 2
y0(�

2
α(2Tσ1) − �α(T + 1) + 2). (A.23)

It is not difficult to see that

(T − 1)(σ1 − 1) + θ1 = (T − 1)

(
T + 1

6
− 1 + 2T − 1

6

)
= T − 1

6
(3T − 6) ≥ 0,

(A.24)
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for all T ≥ 2. From here, we conclude that

�2
α(2Tσ1θ1) + 2((T − 1)(σ1 − 1) + θ1) > 0, (A.25)

for all �α . Similarly, it is easy to see that for all �α:

�2
α2Tσ1 − �α(T + 1) + 2 > 0. (A.26)

Hence, we conclude that

f (�α) > 0, (A.27)

for all �α . As a result, the only real root of the initial cubic equation is �α = 0, or
α = 1. ��
Proof Proposition 3 The proof of this proposition (withminor changes) is largely based
on Theorem 1 in Juodis (2018b). The only element of the Hessian matrix that depends
on the actual value of φ is the one in the top left corner, i.e., the (1, 1) element, all
other elements are the same as θ20 = σ 2

0 is invariant to φ in the unit-root case.
In particular, this element can be expressed as:

H(1,1)
� (φ) = −

(
σ1(T − 1)

σ 2
0

+ θ1(φ)

θ20

)
. (A.28)

Note that σ1(T − 1) = σ 2
0 (T + 1)(T − 1)/6 where we use the σ1 notation as in the

proof of Proposition 2. Similarly,

θ1(φ) = T (1 − φ)2 E[y2i,0] + (T − 1)(2T − 1)

6
σ 2
0 . (A.29)

Combining the two expressions, the first result of this proposition follows immediately.
As for the second part of this proposition, this follows directly from the fact that it

is only the (1, 1) element that is affected by σ̃ 2
y0(φ). Thus, using direct calculations,

we conclude that

|H�(φ)| = |H�(1)| + σ̃ 2
y0(φ)

(T − 1)σ 4
0

. (A.30)

The desired result follows by noticing that |H�(1)| = |HT ML
� | = 0. ��

Appendix A.2: Large T results

Proof Proposition 4 In what follows, we sketch the main arguments behind the claim
of this proposition. First of all, we note that consistency of α̂ can be directly established
from Eq. (20). A similar result holds for σ̂ 2, as a direct implication. Next, in order to
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avoid any triangular array arguments, it is easier to analyze the log-likelihood function
after concentrating out θ2 and keeping the parameter vector at ψ = (α, σ 2)′. From
here:

�(ψ) = −N

2

(
(T − 1) log(σ 2) + log

(
T

Nθ2

N∑
i=1

(ẏi − α ẏi−)2

)

+ 1

Nσ 2

N∑
i=1

T∑
t=1

(ỹi,t − α ỹi,t−1)
2

)
, (A.31)

where, for simplicity, we drop the dependence on φ in the definition of ẏi and ẏi−,
as this dependence is inconsequential for the final result of this proposition. Using
analogous steps to those used in the proof of Proposition 1, we can show that

∇α� = 1

σ 2
0

N∑
i=1

(
T∑
t=1

ỹi,t−1̃εi,t − E[̃yi,t−1̃εi,t ]
)

+ T

θ̂2(α0)

N∑
i=1

(ẏi−(ẏi − α0 ẏi−) − E[ẏi−(ẏi − α0 ẏi−)])

− ξ
N

T

(
θ̂2(α0) − E[θ̂2(α0)]

θ̂2(α0)

)

− N

θ̂2(α0)
E[yi,0(μi − φyi,0)]

(
1 − αT

0

)
(φ − 1). (A.32)

Next, we show that

1√
NT

∇α� = 1

σ 2
0

1√
NT

N∑
i=1

(
T∑
t=1

ỹi,t−1̃εi,t − E[̃yi,t−1̃εi,t ]
)

+ OP (1/
√
T ) + OP (1/

√
T ) + OP (

√
N/T 3). (A.33)

As E[θ̂2(α0)] = σ 2
0 + T (1 − α0)

2 E[(μi − φyi,0)2] = O(T ), the above result holds
provided that

θ̂2(α0) − E[θ̂2(α0)] = OP (T /
√
N ), (A.34)

1

N

N∑
i=1

(ẏi−(ẏi − α0 ẏi−) − E[ẏi−(ẏi − α0 ẏi−)]) = OP (1/
√
N ). (A.35)
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In particular, let

θ̂2(α0) − E[θ̂2(α0)] = 1

N

∑
i

(T (εi )
2 − σ 2

0 ) + T

N

∑
i

(1 − α0)
2((μi − φyi,0)

2

− E[(μi − φyi,0)
2])

+ 2
(1 − α0)

2

N

∑
i

∑
t

(μi − φyi,0)εi,t

= 1

NT

∑
i

∑
t

(ε2i,t − σ 2
0 ) + 1

NT

∑
i

∑
t

∑
s �=t

εi,tεi,s

+ OP (T /
√
N ) + OP (

√
T /N )

= OP (1/
√
NT ) + OP (1/

√
N ) + OP (T /

√
N ) + OP (

√
T /N ).

(A.36)

Here the corresponding orders can be obtained by continuous application of Cheby-
shev’s inequality and the fact that all stochastic elements have a finite fourth moment,
while {εi,t } are independent over all (i, t). Finally, the following conclusion:

1

N

N∑
i=1

(ẏi−(ẏi − α0 ẏi−) − E[ẏi−(ẏi − α0 ẏi−)]) = OP (1/
√
N ),

can be established analogously upon noticing that ξ/T = O(1), and using the fact
that

1

T 2N

∑
i

T−1∑
l=1

T−1∑
t=1

(
T−1−t∑
s=0

αs
0

)
εi,tεi,l − ξσ 2

0

T

= 1

T 2N

∑
i

T−1∑
l=1

T−1∑
t=1

(
T−1−t∑
s=0

αs
0

)
(εi,tεi,l − E[εi,tεi,l ])

= OP (1/
√
NT 3) + OP (1/

√
NT 2), (A.37)

since this rate is the same as with 1
NT

∑
i (T (εi )

2 − σ 2
0 ). For this result, it is critical

that
(∑T−1−t

s=0 αs
0

)
= O(1) for |α0| < 1. Furthermore, using similar derivations we

can further simplify

1√
NT

∇α� = 1

σ 2
0

1√
NT

N∑
i=1

T∑
t=1

yi,t−1εi,t + OP (1/
√
T ) + OP (

√
N/T 3). (A.38)

From here, the main result follows directly using the results in Hahn and Kuersteiner
(2002). ��
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Proof Proposition 5 Define the following normalization matrix:

S =
⎛
⎝
T (1∨β) 0 0

0
√
T 0

0 0 1

⎞
⎠ . (A.39)

Then, it follows that

S−1H�S−1 → H∞
� =

⎛
⎝
h11 0 h13
0 1

2σ 4 0
h13 0 1

2σ 4

⎞
⎠ , (A.40)

where several cases are available:

h11 =

⎧
⎪⎨
⎪⎩

1/2, β < 1;
1/2 + limT→∞ σ̃ 2

0 /T 2, β = 1;
limT→∞ σ̃ 2

0 /T 1+β, β > 1.

(A.41)

h13 =
{
1/(2σ 2

0 ), β ≤ 1;
0, β > 1.

(A.42)

��
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