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Abstract
We consider point estimation and inference based on modifications of the profile
likelihood in models for dyadic interactions between n agents featuring agent-specific
parameters. The maximum-likelihood estimator of such models has bias and standard
deviation of order n−1 and so is asymptotically biased. Estimation based on modified
likelihoods leads to estimators that are asymptotically unbiased and likelihood ratio
tests that exhibit correct size.

Keywords Asymptotic bias · Dyadic data · Fixed effects · Undirected random graph

JEL Classification C23

1 Introduction

A growing literature has uncovered the importance of interactions between agents
through networks as drivers for economic and social outcomes. A leading approach
to statistical modeling of dyadic interaction is through the inclusion of agent-specific
parameters (see, e.g., Snijders 2011 for many references). A specific example that
has received substantial attention in the recent literature is the β-model for network
formation. There, agent fixed effects serve to capture degree heterogeneity in link
formation and the inclusion of dyad-level covariates reflects homophily; see, e.g.,
Graham (2017), Jochmans (2018), and Dzemski (2019).
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Estimation of fixed-effect models for dyadic data is non-standard as the num-
ber of parameters grows with the sample size in a similar manner as in the classic
incidental-parameter problem for one-way panel data discussed in Neyman and Scott
(1948). Under so-called dense-network asymptotics, common parameters in regular
models can be consistently estimated, but inference is plagued by asymptotic bias; see
(Fernández-Val and Weidner 2016, 2018) and Graham (2017), for examples, discus-
sion, and approaches to bias-correct the point estimator.

In this paper we look at generic estimation problems for undirected dyadic data and
consider inference based on modifying the likelihood function in the spirit of Pace
and Salvan (2006) and Arellano and Hahn (2006, 2007). In its most general form, the
modified likelihood is a bias-corrected version of the profile likelihood, that is, of the
likelihood after having profiled-out the nuisance parameters. The adjustment is both
general and simple in form, involving only the score andHessian of the likelihoodwith
respect to the nuisance parameters. The adjustment term removes the leading bias from
the profile likelihood and leads to asymptotically unbiased inference and likelihood
ratio statistics that are χ2-distributed under the null. The form of the adjustment can
be specialized by using the likelihood structure, as in DiCiccio et al. (1996).

We work out the modifications to the profile likelihood in a linear version of the
β-model and (in appendix) in a linear version of the (Bradley and Terry 1952) model
for paired comparisons. These simple illustrations give insight in how the adjustments
work.We next apply them to the β-model in the simulation designs of Graham (2017).
We find that bothmodifications dramatically improve onmaximum likelihood in terms
of bias and mean squared error as well as reliability of statistical inference, and that
they are considerably more reliable than ex post bias-correction of the maximum-
likelihood estimator.

2 Fixed-effect models for dyadic data

We consider data on dyadic interactions between n agents. For each of n(n−1)/2 distinct
agent pairs (i, j) with i < j we observe the random variable zi j , which may be
a vector. The density of zi j (relative to some dominating measure) takes the form
f (zi j ;ϑ, βi , β j ), where ϑ and β1, . . . , βn are unknown Euclidean parameters. We
may observe an outcome yi j generated by pair (i, j) together with a vector of dyad
characteristics xi j , in which case we have zi j = (yi j , x ′

i j )
′, and we could consider the

distribution of the outcome conditional on the covariates. In what follows, we take the
zi j to be (conditionally) independent. Models of this form are relevant in many areas.
Examples include the analysis of network formation as mentioned before, but also the
study of strategic behavior among agents (Bajari et al. 2010), and the construction of
rankings (Bradley and Terry 1952). Our goal is to perform inference on ϑ treating the
βi as fixed effects.

The log-likelihood is

�(ϑ, β) =
n∑

i=1

∑

i< j

log f (zi j ;ϑ, βi , β j ),
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where we let β = (β1, . . . , βn)
′. For simplicity of exposition we ignore any normal-

ization that may be needed on β to achieve identification.When a normalization of the
form c(β) = 0 is needed, everything to follow goes through on replacing �(ϑ, β) by
the constrained likelihood �(ϑ, β)−λ c(β), where λ denotes the Lagrange multiplier.
We give a detailed example in appendix.

It is useful to recall that the maximum-likelihood estimator of ϑ can be expressed
as

ϑ̂ = argmax
ϑ

�̂(ϑ),

where �̂(ϑ) = �(ϑ, β̂(ϑ)), with

β̂(ϑ) = argmax
β

�(ϑ, β),

is the profile likelihood.
Inference based on the profile likelihood performs poorly because the estimation

noise in β̂(ϑ) introduces non-negligible bias. Moreover, in regular settings,

E(ϑ̂ − ϑ) = O(n−1), E((ϑ̂ − E(ϑ̂))2) = O(n−2),

so that bias and standard deviation are of the same order of magnitude. Consequently,
the maximum-likelihood estimator is asymptotically biased.

2.1 Modified profile likelihood

In its simplest form, modified likelihoods can be understood as yielding a superior
approximation to the target likelihood

�(ϑ) = �(ϑ, β(ϑ)), β(ϑ) = argmax
β

E(�(ϑ, β)).

Moreover, the profile likelihood is the sample counterpart to this infeasible likelihood.
Replacing β(ϑ) with β̂(ϑ) introduces bias that leads to invalid inference. To see this
suppose that

β̂(ϑ) − β(ϑ) = �(ϑ)−1V (ϑ) + Op(n
−1), (2.1)

where we introduce

V (ϑ) = ∂�(ϑ, β)

∂β

∣∣∣∣
β=β(ϑ)

, �(ϑ) = − E

(
∂2�(ϑ, β)

∂β∂β ′

)∣∣∣∣
β=β(ϑ)

.

An expansion of the profile likelihood around β(ϑ) yields

�̂(ϑ) − �(ϑ) = (β̂(ϑ) − β(ϑ))′V (ϑ)
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−1

2
(β̂(ϑ) − β(ϑ))′�(ϑ)(β̂(ϑ) − β(ϑ)) + Op(n

−1/2).

Combining the two expansions and taking expectations then shows that the bias of the
profile likelihood is of the form

E(�̂(ϑ) − �(ϑ)) = 1

2
trace(�(ϑ)−1	(ϑ)) + O(n−1/2) (2.2)

for

	(ϑ) = E[V (ϑ) V (ϑ)′],

the variance of V (ϑ).
Equation (2.1) is a conventional asymptotically linear representation of the esti-

mator of the fixed effects; see, e.g., Rilstone et al. (1996). Low-level conditions for it
to go through in specific models are provided in (Fernández-Val and Weidner 2016,
2018). The difficulty in the current case, as opposed to say the one-way panel data
model (as dealt with in Hahn and Newey 2004), is to handle the non-sparse nature of
the Hessian matrix.

With (2.2) in hand, a modified likelihood is

�̇(ϑ) = �̂(ϑ) − 1

2
trace(�̂(ϑ)−1	̂(ϑ)),

where we define the plug-in estimators

�̂(ϑ) = �̂(ϑ, β̂(ϑ)), 	̂(ϑ) = 	̂(ϑ, β̂(ϑ)),

for matrices

−(�̂(ϑ, β))i, j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
k>i

∂2 log f (zik ;ϑ,βi ,βk )

∂β2
i

+ ∑
k<i

∂2 log f (zki ;ϑ,βk ,βi )

∂β2
i

if i = j

∂2 log f (zi j ;ϑ,βi ,β j )

∂βi ∂β j
if i < j

∂2 log f (z ji ;ϑ,β j ,βi )

∂βi ∂β j
if i > j

and

(	̂(ϑ, β))i, j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
k>i

(
∂ log f (zik ;ϑ,βi ,βk )

∂βi

)2+∑
k<i

(
∂ log f (zki ;ϑ,βk ,βi )

∂βi

)2
if i = j

∂ log f (zi j ;ϑ,βi ,β j )

∂βi

∂ log f (zi j ;ϑ,βi ,β j )

∂β j
if i < j

∂ log f (z ji ;ϑ,β j ,βi )

∂βi

∂ log f (z ji ;ϑ,β j ,βi )

∂β j
if i > j
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In large samples, thismodification removes the leading bias from the profile likelihood.
Consequently, in large samples, the likelihood ratio statistic has correct size and

ϑ̇ = argmax
ϑ

�̇(ϑ),

will have bias o(n−1). Furthermore, under usual regularity conditions, we have the
limit result

(ϑ̇ − ϑ)
a∼ N

(
0,

I (ϑ)−1

n(n − 1)/2

)

as n → ∞, where we let

I (ϑ) = lim
n→∞ E

(
−∂2�(ϑ)

∂ϑ∂ϑ ′

)/ (
n(n − 1)

2

)

be the Fisher information for ϑ .
The only point at which the likelihood setting has been used so far is in the

statement of the limit distribution of ϑ̇ − ϑ , where the expression for the asymp-
totic variance exploits the information equality. Bias-corrected estimation—using the
same formula for the bias as before—thus carries over to more general extremum-
type estimation problems; the only change being that, now, the asymptotic variance is
I (ϑ)−1	(ϑ) I (ϑ)−1.

Alternatively, following the arguments in Arellano and Hahn (2007) we can exploit
the likelihood structure to get

1

2
trace(�̂(ϑ)−1	̂(ϑ)) = −1

2
log(det �̂(ϑ)) + 1

2
log(det 	̂(ϑ)) + O(n−1),

which validates the alternative modified likelihood

�̈(ϑ) = �̂(ϑ) + 1

2
log(det �̂(ϑ)) − 1

2
log(det 	̂(ϑ));

see DiCiccio et al. (1996). Its maximizer, say ϑ̈ , satisfies the same asymptotic prop-
erties as ϑ̇ .

2.2 Illustration: a linearˇ-model

Consider the following extension of the classic many normal means problem of Ney-
man and Scott (1948). Data are generated as

zi j ∼ N (βi + β j , ϑ),
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and are independent across dyads. The likelihood function for all parameters (ignoring
additive constants) is

�(ϑ, β) = −1

2

n(n − 1)

2
logϑ − 1

2

n∑

i=1

∑

i< j

(zi j − βi − β j )
2

ϑ
.

Its first two derivatives with respect to the βi are

∂�(ϑ, β)

∂βi
=

∑

j>i

zi j − βi − β j

ϑ
+

∑

j<i

z ji − β j − βi

ϑ

and

∂2�(ϑ, β)

∂βi∂β j
=

{
− (n−1)

ϑ
if i = j

− 1
ϑ

if i �= j
.

Let z̃i = (n − 2)−1 ∑
j>i zi j + (n − 2)−1 ∑

j<i z ji and z = (2(n − 1)−1 ∑n
i=1 z̃i .

Solving for the maximum-likelihood estimator of βi gives β̂i = z̃i − z for any ϑ . The
profile likelihood is therefore

�̂(ϑ) = −1

2

n(n − 1)

2
logϑ − 1

2

n∑

i=1

∑

i< j

(zi j − (z̃i − z) − (z̃ j − z))2

ϑ
,

and its maximizer is

ϑ̂ = 2

n(n − 1)

n∑

i=1

∑

i< j

(zi j − (z̃i − z) − (z̃ j − z))2.

Some tedious but straightforward calculations yield

E(ϑ̂ − ϑ) = − 2

n − 1
ϑ, var(ϑ̂) = n − 3

n − 1

2ϑ2

n(n − 1)/2
,

which confirms that the maximum-likelihood estimator of ϑ suffers from asymptotic
bias. Moreover,

√
n(n − 1)

2
(ϑ̂ − ϑ)

d→ N
( − √

2ϑ, (
√
2ϑ)2

)
,

as n → ∞.
To set up the modified likelihood, first note that

(�̂(ϑ))i, j =
{

n−1
ϑ

if i = j
1
ϑ

if i �= j
, (�̂(ϑ)−1)i, j =

{
ϑ
2

2n−3
(n−1)(n−2) if i = j

−ϑ
2

1
(n−1)(n−2) if i �= j

,
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and that

(	̂(ϑ))i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
i<k

(zik−(z̃i−z)−(z̃k−z))2

ϑ2 + ∑
i>k

(zki−(z̃k−z)−(z̃i−z))2

ϑ2 if i = j
(zi j−(z̃i−z)−(z̃ j−z))2

ϑ2 if i < j
(z ji−(z̃ j−z)−(z̃i−z))2

ϑ2 if i > j

.

It is then easily seen that

1

2
trace(�̂(ϑ)−1	̂(ϑ)) = 1

2

2

n − 1

n∑

i=1

∑

i< j

(zi j − (z̃i − z) − (z̃ j − z))2

ϑ
.

From this we obtain

�̇(ϑ) = −1

2

n(n − 1)

2
logϑ −

(
1 + 2

n − 1

)
1

2

n∑

i=1

∑

i< j

(zi j − (z̃i − z) − (z̃ j − z))2

ϑ
,

and its maximizer

ϑ̇ = n + 1

n − 1
ϑ̂ = ϑ̂ + 2

n − 1
ϑ̂ .

Clearly, this estimator removes the leading bias from the maximum-likelihood esti-
mator. Moreover,

E(ϑ̇ − ϑ) = −
(

2

n − 1

)2

ϑ, var(ϑ̇) = n(n(n − 1) − 5)

(n − 1)3
2ϑ2

n(n − 1)/2
,

which shows that the remaining bias in the point estimator is small relative to its
standard deviation.

As an alternative correction, we may exploit the likelihood structure to adjust the
profile likelihood by the term

−1

2
log(det �̂(ϑ)) + 1

2
log(det 	̂(ϑ)) = n

2
log ϑ + c,

where c is a constant that does not depend on ϑ . This yields the modification

�̈(ϑ) = −1

2

n(n − 3)

2
logϑ − 1

2

n∑

i=1

∑

i< j

(zi j − (z̃i − z) − (z̃ j − z))2

ϑ
,

whose maximizer satisfies

E(ϑ̈ − ϑ) = 0, var(ϑ̈) = 2ϑ2

n(n − 3)/2
.
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Table 1 Many normal means

n ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈

Bias Standard deviation

5 −0.5000 −0.2500 0.0000 0.3162 0.4743 0.6325

10 −0.2222 −0.0494 0.0000 0.1859 0.2272 0.2390

15 −0.1429 −0.0204 0.0000 0.1278 0.1460 0.1491

20 −0.1053 −0.0111 0.0000 0.0970 0.1073 0.1085

25 −0.0833 −0.0069 0.0000 0.0782 0.0847 0.0853

50 −0.0408 −0.0017 0.0000 0.0396 0.0412 0.0413

75 −0.0270 −0.0007 0.0000 0.0265 0.0272 0.0272

100 −0.0202 −0.0004 0.0000 0.0199 0.0203 0.0203

Simulation results for the maximum-likelihood estimator (ϑ̂), the modified profile-likelihood estimator (ϑ̇),
and the modified profile-likelihood estimator exploiting the likelihood structure (ϑ̈)

This estimator is exactly unbiased.
To give an idea of the magnitude of the bias in this problem, Table 1 contains the

bias and standard deviation of the estimators ϑ̂ , ϑ̇ , and ϑ̈ for various sample sizes n
and variance parameter fixed to ϑ = 1. These results are invariant to the value of the
βi and can be interpreted as relative bias for general values of ϑ .

3 Application to theˇ-model

The β-model of network formation models Bernoulli outcome variables as having
success probability

P(yi j = 1|xi j ;ϑ, βi , β j ) = F(βi + β j + x ′
i jϑ),

where F(a) = (1+e−a)−1 is the logit link function.We now present the results from a
Monte Carlo experiment. The designs are borrowed from Graham (2017). All designs
are of the following form. Let ui ∈ {−1, 1} so that P(ui = 1) = 1

2 . We generate the
dyad covariate as

xi j = ui u j ,

and the fixed effects as

βi = μ + γ1
1 + ui

2
+ γ2

1 − ui
2

+ vi ,

where vi ∼ Beta(λ1, λ2). We set μ = −λ1(λ1 + λ2)
−1, so that μ + vi has mean

zero and will consider several choices for the parameters (γ1, γ2) and (λ1, λ2). The
parameter choices are summarized in Table 2. In the first four designs (A1–A4), the
βi are drawn independently of xi j from symmetric Beta distributions. In the next four
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Table 2 Simulation designs for
the β-model

Design γ1 γ2 λ1 λ2 Degree (%)
Mean Min Max

A1 0 0 1 1 50 32 67

A2 −0.25 −0.25 1 1 40 24 57

A3 −0.75 −0.75 1 1 23 10 38

A4 −1.25 −1.25 1 1 12 3 22

B1 0 0.50 0.25 0.75 60 40 78

B2 −0.50 0 0.25 0.75 40 21 62

B3 −1.00 −0.50 0.25 0.75 24 8 44

B4 −1.50 −1.00 0.25 0.75 12 2 28

designs (B1–B4) the βi are generated from skewed distributions that depend on ui
(and thus correlate with the regressor xi j ). For both the designs labeled A and B, the
average number of observed links per agent goes down as we move from the first
design (A1 and B1) to the fourth design (A4 and B4). The average number of links
decreases from about 50% to 12%. This is clear from the second block of Table 2,
which contains the average, minimum, and maximum number of links per agent (in
percentages).

We simulate 10, 000 data sets for each design for n ∈ {25, 50, 75, 100} and ϑ = 1.
Because the results across designs are qualitatively very similar, we present the full
set of results only for Design A1 (Table 3). Tables 4 and 5 provide the results for
n ∈ {50, 100} for all designs. Each table contains the mean and median bias of ϑ , ϑ̇ ,
and ϑ̈ , along with their standard deviation and their interquartile range (both across the
Monte Carlo replications). The tables also provide the empirical size of the likelihood
ratio test for the null that ϑ = 1 for theoretical size α ∈ {.05, .10}. Inference results
based on the Wald statistic, using a plug-in estimator of I (ϑ), are very similar and not
reported for brevity.

Because the results for n = 100 can be compared (up to Monte Carlo error) to
the numerical results collected in Graham (2017, Table 2), Table 5 contains two addi-
tional columns in which we reproduce the results for his analytically bias-corrected
maximum-likelihood estimator (ϑ̂BC) and his ‘tetrad logit’ estimator (ϑ̂TETRAD). The
latter is based on moment conditions that are free of βi using a sufficiency argument.
Bias-correcting ϑ̂ does not salvage the likelihood ratio statistic, and the conditional
likelihood function of the ‘tetrad logit’ estimator is a quasi-likelihood and, therefore,
does not satisfy the information equality. Hence, the results on size for these two
estimators are based on the Wald statistic.

Table 3 clearly shows that both the bias and standard deviation of ϑ̂ are of order
n−1. Consequently, the likelihood ratio test is size distorted even in large samples.
Point estimation through the modified likelihoods gives estimators with small bias
relative to their standard error. Even for n = 25, the bias is only about 20% of the
bias in maximum likelihood estimator. In larger samples, the estimators are essentially
unbiased. Both ϑ̇ and ϑ̈ are also less volatile than is ϑ̂ . This phenomenon has been
observed elsewhere; we refer to Schumann et al. (2022). Thus, here, bias-correction
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Table 3 β-model. Design A1 for all n

n ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈

Mean bias Standard deviation

25 0.1098 0.0204 0.0304 0.1897 0.1560 0.1572

50 0.0492 0.0045 0.0071 0.0717 0.0679 0.0681

75 0.0320 0.0020 0.0032 0.0467 0.0450 0.0451

100 0.0237 0.0011 0.0017 0.0341 0.0332 0.0332

Median bias Interquartile range

25 0.1029 0.0154 0.0253 0.2069 0.1873 0.1889

50 0.0487 0.0042 0.0067 0.0961 0.0913 0.0914

75 0.0316 0.0017 0.0028 0.0630 0.0607 0.0608

100 0.0236 0.0010 0.0017 0.0464 0.0450 0.0451

Empirical size (α = .10) Empirical size (α = .05)

25 0.1937 0.1134 0.1147 0.1142 0.0627 0.0637

50 0.1896 0.1128 0.1125 0.1178 0.0558 0.0555

75 0.1866 0.1092 0.1081 0.1142 0.0575 0.0569

100 0.1890 0.1042 0.1025 0.1103 0.0520 0.0513

Simulation results for the maximum-likelihood estimator (ϑ̂), the modified profile-likelihood estimator (ϑ̇),
and the modified profile-likelihood estimator exploiting the likelihood structure (ϑ̈)

does not come at the cost of an increase in dispersion. Together with the substantial
decrease in mean squared error, inference, too, improves dramatically. The likelihood
ratio statistics for �̇(ϑ) and �̈(ϑ) have near-theoretical size for all n.

To give a more complete picture on inference via modifying the profile likelihood
Fig. 1 presents power curves for the likelihood ratio statistic that go along with Table 3.
The curves for �̂(ϑ) (solid lines) are symmetric but not correctly centered, reflecting the
fact that they are size distorted. This is so for all sample sizes and significance levels
considered. Modifying the likelihood shifts the power curve so that the likelihood
ratio test is (approximately) size correct. This is done without significantly altering
the shape of the power curves. For the smallest sample size considered (n = 25; upper
two plots) there is a small difference in power between the likelihood ratio test for
�̇(ϑ) (dashed lines) and �̈(ϑ) (dashed-dotted lines); the former has slightly higher
power than the latter for alternatives ϑ > 1 and slightly less power for ϑ < 1. This
difference vanished rapidly as n increases, however, which is in line with the similar
performance of both corrections observed in Table 3.

Tables 4 and 5 show that all conclusions from Design A1 carry over to the other
designs. Moreover, the introduction of correlation between regressors and heteroge-
neous coefficients or skewing the distribution fromwhich the latter are drawn does not
prevent the modified likelihood to improve on maximum likelihood both in terms of
point estimation and inference. A comparison of the two tables clearly shows that both
the bias and standard deviation of ϑ̂ shrink by a factor of one half as n doubles, again
illustrating that both are of order n−1. The subsequent reduction in bias by considering
ϑ̇ and ϑ̈ and improvement in size are manifested for all designs.
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Fig. 1 Power curves. Design A1 for all n. Power curves for the likelihood ratio statistic based on the
profile likelihood �̂(ϑ) (solid lines), the modified profile likelihood �̇(ϑ) (dashed lines), and the modified
profile likelihood that exploits the likelihood structure �̈(ϑ) (dashed-dotted lines) for different sample sizes
(vertically; n ∈ {25, 50, 75, 100}) and size (horizontally; left: α = .10, right: α = .05)

Table 5 further shows that the modified-likelihood approach outperforms bias-
correction of the maximum-likelihood estimator in Designs A3 and B3 and, in
particular, in Designs A4 and B4. There, bias-correction of maximum likelihood intro-
duces rather substantial additional bias relative to ϑ̂ . The additional bias also leads to
a large deterioration of the empirical size of the Wald statistic associated with ϑ̂BC,
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Table 4 β-model. All designs for n = 50

Design ϑ̂ ϑ̇ ϑ̈ ϑ̂ ϑ̇ ϑ̈

Mean bias Standard deviation

A1 0.0492 0.0045 0.0071 0.0717 0.0679 0.0681

A2 0.0499 0.0054 0.0079 0.0742 0.0704 0.0705

A3 0.0467 0.0033 0.0047 0.0933 0.0890 0.0891

A4 0.0497 0.0049 0.0024 0.1391 0.1335 0.1335

B1 0.0526 0.0073 0.0096 0.0768 0.0728 0.0729

B2 0.0490 0.0035 0.0059 0.0747 0.0707 0.0708

B3 0.0493 0.0046 0.0060 0.0936 0.0891 0.0891

B4 0.0500 0.0043 0.0005 0.1380 0.1320 0.1316

Median bias Interquartile range

A1 0.0487 0.0042 0.0067 0.0961 0.0913 0.0914

A2 0.0482 0.0040 0.0064 0.0995 0.0943 0.0945

A3 0.0441 0.0008 0.0022 0.1247 0.1191 0.1191

A4 0.0412 −0.0032 −0.0059 0.1827 0.1748 0.1748

B1 0.0513 0.0061 0.0084 0.1034 0.0981 0.0982

B2 0.0479 0.0024 0.0049 0.0999 0.0948 0.0949

B3 0.0470 0.0024 0.0039 0.1252 0.1195 0.1196

B4 0.0438 −0.0018 −0.0052 0.1827 0.1740 0.1743

Empirical size (α = .10) Empirical size (α = .05)

A1 0.1896 0.1128 0.1125 0.1178 0.0558 0.0555

A2 0.1857 0.1135 0.1118 0.1139 0.0602 0.0603

A3 0.1565 0.1098 0.1082 0.0878 0.0581 0.0563

A4 0.1287 0.1095 0.1083 0.0664 0.0594 0.0592

B1 0.1902 0.1141 0.1112 0.1146 0.0582 0.0579

B2 0.1801 0.1081 0.1049 0.1040 0.0574 0.0564

B3 0.1498 0.1052 0.1030 0.0830 0.0554 0.0538

B4 0.1236 0.1064 0.1067 0.0634 0.0543 0.0551

Simulation results for the maximum-likelihood estimator (ϑ̂), the modified profile-likelihood estimator (ϑ̇),
and the modified profile-likelihood estimator exploiting the likelihood structure (ϑ̈)

with actual sizes ranging up to seven times the nominal size. This type of sensitivity
of analytical bias-correction has equally been observed in panel data applications; see
(Dhaene and Jochmans 2015) and Higgins and Jochmans (2023). The performance of
the modified likelihood is comparable to Graham’s ‘tetrad logit’ estimator ϑ̂TETRAD
in terms of bias, and it tends to be somewhat more accurate in terms of the empirical
size of the associated hypothesis tests. Moreover, inference based on the ‘tetrad logit’
estimator is conservative in all designs even though, with n = 100 and therefore 4, 950
dyadic observations, the sample size is large. In addition, the ‘tetrad logit’ estimator
is computationally prohibitive in large networks.
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Appendix: A linear Bradley–Terry model

As an alternative to the specification of the Neyman and Scott (1948) model with
complementarities, now suppose that

zi j ∼ N (βi − β j , ϑ)

independently across dyads. This model is overparameterized as, clearly, the mean of
the βi is not identified. A common normalization in this type of model is

∑n
i=1 βi = 0

(Simons and Yao 1999), and we will maintain it here. The constrained likelihood is

−1

2

n(n − 1)

2
logϑ − 1

2

n∑

i=1

∑

i< j

(zi j − βi + β j )
2

ϑ
+ λ

n∑

i=1

βi ,

where λ is the Lagrange multiplier for our normalization constraint. The first-order
condition for the constrained problem for βi for a given ϑ equals

∑
j>i zi j − ∑

j<i z ji

ϑ
− n

ϑ
βi = 0.

This gives

β̂i =
∑

j>i zi j − ∑
j<i z ji

n
= z̃i (say)

for all i and any ϑ . Observe that the sign of β̂i is driven by the comparison of the
magnitudes of

∑
i< j zi j and

∑
i> j z ji . Also note that

∑n
i=1 β̂i = 0 holds.We therefore

have

�̂(ϑ) = −1

2

n(n − 1)

2
logϑ − 1

2

n∑

i=1

∑

i< j

(zi j − z̃i + z̃ j )2

ϑ
,

and with it, the maximum-likelihood estimator

ϑ̂ = 2

n(n − 1)

n∑

i=1

∑

i< j

(zi j − z̃i + z̃ j )
2.
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A calculation shows that E(ϑ̂ − ϑ) = −2n−1ϑ .
It is immediate that

�̂(ϑ) = diag
( n

ϑ

)
, �̂(ϑ)−1 = diag

(
ϑ

n

)
,

and that

(	̂(ϑ))i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
k>i

(zik−z̃i+z̃k )2

ϑ2 + ∑
k<i

(zki−z̃k+z̃i )2

ϑ2 if i = j
(zi j−z̃i+z̃ j )2

ϑ2 if i < j
(z ji−z̃ j+z̃i )2

ϑ2 if i > j

.

Therefore,

�̇(ϑ) = −1

2

n(n − 1)

2
logϑ − 1

2

(
1 + 2

n

) n∑

i=1

∑

i< j

(zi j − z̃i + z̃ j )2

ϑ
,

�̈(ϑ) = −1

2

n(n − 3)

2
logϑ − 1

2

n∑

i=1

∑

i< j

(zi j − z̃i + z̃ j )2

ϑ
.

The corresponding estimators are

ϑ̇ =
(
1 + 2

n

)
ϑ̂, ϑ̈ = n − 1

n − 3
ϑ̂ =

(
1 + 2

n − 3

)
ϑ̂ .

Both remove the leading bias from the maximum-likelihood estimator, as

E(ϑ̇ − ϑ) = − 4

n2
ϑ = O(n−2), E(ϑ̈ − ϑ) = 2

n(n − 3)
ϑ = O(n−2),

but, in this case, neither is exactly unbiased. The first estimator has bias that is strictly
negative (for any finite n). The second estimator overcorrects and has strictly positive
bias. The second-order bias is monotone in n. We have

4

n2
ϑ >

2

n(n − 3)
ϑ

for all n > 7. As n → ∞,

√
n(n − 1)

2
(ϑ̇ − ϑ)

d→ N (0, 2ϑ2),

and ‖ϑ̈ − ϑ̇‖ = op(n−1); that is, the two modifications to the likelihood yield asymp-
totically equivalent estimators.
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