
Hahn, Jinyong

Article

Properties of least squares estimator in estimation of
average treatment effects

SERIEs - Journal of the Spanish Economic Association

Provided in Cooperation with:
Spanish Economic Association

Suggested Citation: Hahn, Jinyong (2023) : Properties of least squares estimator in estimation of
average treatment effects, SERIEs - Journal of the Spanish Economic Association, ISSN 1869-4195,
Springer, Heidelberg, Vol. 14, Iss. 3/4, pp. 301-313,
https://doi.org/10.1007/s13209-023-00279-x

This Version is available at:
https://hdl.handle.net/10419/286580

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s13209-023-00279-x%0A
https://hdl.handle.net/10419/286580
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


SERIEs (2023) 14:301–313
https://doi.org/10.1007/s13209-023-00279-x

ORIG INAL ART ICLE

Properties of least squares estimator in estimation of
average treatment effects

Jinyong Hahn1

Received: 27 October 2022 / Accepted: 31 March 2023 / Published online: 29 April 2023
© The Author(s) 2023

Abstract
Treatment effects are often estimated by the least squares estimator controlling for
some covariates. This paper investigates its properties. When the propensity score is
constant, it is a consistent estimator of the average treatment effects if it is viewed as
a semiparametric partially linear regression estimator, but it is not necessarily more
efficient than the simple difference-of-means estimator. If it is literally viewed as a
least squares estimator with a finite number of controls, it is equal to the weighted
average of conditional average treatment effects with potentially negative weights,
although the negative weight issue does not exist under semiparametric interpretation.
It is shown that the negative weight issue can be avoided by use of logit specification.

Keywords OLS · Negative weight · Efficiency

JEL Classification C14

1 Introduction

The semiparametric efficiency bound for the average treatment effects for the standard
case (where the treatment is randomly assigned conditional on some covariates) is well
understood. The efficient estimator there takes various forms,1 but none takes the
form of the least squares regression of the dependent variable on the binary treatment
controlling for some linear function of covariates. Even then, the latter specification
is commonly employed in the literature. It would therefore make sense to investigate
the properties of the least squares estimator that controls for the covariates.

This paper makes contributions in this regard by examining the semiparametric
efficiency properties of the least squares estimator. For this purpose, the least squares

1 See, e.g., Hahn (1998), or Hirano et al. (2003).
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specification is given a semiparametric interpretation, where the researcher is assumed
to have made a “ nonparametric promise” to control for the covariates more and more
flexibly as the sample size increases to infinity. Under such a promise, it can be shown
that the least squares estimator can be interpreted to be an estimator of some weighted
average of the treatment effects.When the propensity score is constant, it can be shown
that the least squares consistently estimates the average treatment effects (ATE), as long
as the nonparametric promise is kept. It is shown that even with such a nonparametric
promise, the least squares estimator does not necessarily have an obvious advantage
over the naive difference-of-means estimator from an efficiency perspective. Variants
of this results in parametric frameworks have been known in the literature, but the
current paper makes a contribution by deriving the results by explicitly adopting a
nonparametric framework. The paper also discusses the interpretation of the least
squares estimator when the nonparametric promise is not kept. It is well known that
the least squares can be interpreted to be the weighted average of the treatment effects,
and the literature has recently begun to pay attention to the fact that the weights can be
negative. The negative weight is due to the implicit linear probability specification of
the treatment indicator on the covariates. It is shown that the problem can be eliminated
by using a logit specification. The interpretation is related to a recent discussion by
Blandhol et al. (2022, Proposition 1).2

Throughout the paper, we adopt the assumption that the treatments are independent
of potential outcomes given covariates. To be more specific, we consider the model
where (Y (0) ,Y (1)) is independent of the binary treatment indicator D given the
covariates X . We do not impose the constant treatment effects assumption where
Y (1) − Y (0) is a fixed constant. In this model, it is convenient to write

Y (0) = μ0 (X) + σ0 (X) u0,

Y (1) = μ1 (X) + σ1 (X) u1,

where the us have mean equal to 0 and variance equal to 1 conditional on X . We can
then write the observed outcome Y = (1 − D) Y (0) + DY (1) as

Y = Dβ (X) + α (X) + ((1 − D) σ0 (X) u0 + Dσ1 (X) u1) , (1)

where α (X) ≡ μ0 (X) and β (X) ≡ μ1 (X)−μ0 (X). We assume that the propensity
score π (X) ≡ E [D| X ] as well as α (X) , β (X) , σ0 (X) , σ1 (X) are nonparamet-
rically specified. We will also assume that (Yi (0) ,Yi (1) , Xi , Di ) i = 1, 2, . . .
are independent and identically distributed (IID), and that the researcher observes
Yi = (1 − Di ) Yi (0) + DiYi (1) as well as (Xi , Di ).

2 Interpretation of partially linear regression specification

We will consider the interpretation of the partially linear regression of Y on D using
X as the control variable. To be more precise, we consider computing the estimate of

2 See (Goldsmith-Pinkham et al. 2022) for related discussion for the case involving multiple treatments.
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βLS by fitting a semiparametric model

Y = DβLS + g (X) + ε, (2)

where g (X) is nonparametrically specified. Let β̂LS denote the estimated coefficient
of D in such a regression.3 We first examine the pseudo-parameter βLS that β̂LS

estimates, i.e., its probability limit. It is straightforward to recognize that the pseudo-
parameter is the population regression estimate of Y on D − π (X), where π (X) is
the propensity score. We present an interpretation of βLS as a weighted average of
the β (X), i.e., the average treatment effects (ATE) conditional on X .4 Angrist (1998)
derived such a representation for the case where X has a multinomial distribution, and
the representation below is a nonparametric generalization when X has an arbitrary
distribution:

Proposition 1

βLS = E [π (X) (1 − π (X)) β (X)]

E [π (X) (1 − π (X))]
. (3)

The interpretation (3) is from the semiparametric perspective, based on the
“nonparametric promise” that the covariates will be controlled by richer and richer
specification as a function of the sample size.Note that it is aweighted average ofβ (X)

weighted by π (X) (1 − π (X)) /E [π (X) (1 − π (X))]. Because the π (X) denotes
the true conditional probability of D given X , theweight is always nonnegative. There-
fore, the negative weight problem discussed in Blandhol et al. (2022, Section 4) does
not exist under the nonparametric specification/interpretation of g in (2).

Suppose that a practitioner does not make or keep such a “ nonparametric promise,”
and that he/she adopts a literally parametric approach where g (X) is linear in X . We
can show that the probability limit of β̂LS is now equal to

E
[(
D − X ′γ

)
Y

]

E
[
(D − X ′γ )2

] = E
[
π (X)

(
1 − X ′γ

)
β (X)

]

E
[
(D − X ′γ )2

] + E
[(

π (X) − X ′γ
)
α (X)

]

E
[
(D − X ′γ )2

] ,

(4)

where X ′γ is the linear projection of D on X . If the true α (X) is linear in X , we can
show that the estimand (4) simplifies to

E
[(
D − X ′γ

)
Y

]

E
[
(D − X ′γ )2

] = E
[
π (X)

(
1 − X ′γ

)
β (X)

]

E
[
(D − X ′γ )2

] , (5)

which implies that it is a weighted average of the conditional expectation β (X) of the
treatment effects given X . Because X ′γ can lie outside of the (0, 1) range, it raises

3 The parameter βLS and the error term ε in equation (2) are defined by the partially linear regression
applied to the true model (1). It can be shown that the ε does not satisfy E [ ε| D, X ] = 0, so (2) is not
a partially linear regression “ model,” and the β̂LS is a special case of the partially linear “ projection”
considered by Newey and Robins (2018).
4 All proofs are collected in the appendix.
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the possibility of negative weights. See, e.g., Blandhol et al. (2022, Section 4). This
results from the partitioned regression interpretation of multiple regression, and the
implicit linear probability specification there; the estimate of the coefficient of D in
the regression of Y on D and X is equivalent to the estimate when Y is regressed on
the residual when D is regressed on X , and because the regression of D on X uses
the linear specification, the fitted value can exceed the (0,1) interval, thereby leading
to the possibility that the residual can be negative.

Oneway to avoid this problem is to use logit specification instead of the linear prob-
ability specification. Suppose that we adopt a logit specification where Pr [D = 1| X ]
is specified as �

(
X ′δ

)
, where �(t) = et/

(
1 + et

)
. If we use �

(
X ′δ̂

)
as the fitted

value (instead of X ′γ which would be used if the linear probability model is adopted)

and regress Y on D − �
(
X ′δ̂

)
, we would get the estimator

∑n
i=1

(
D − �

(
X ′δ̂

))
Y

∑n
i=1

(
D − �

(
X ′δ̂

))2 ,

which converges in probability to

E
[(
D − �

(
X ′δ

))
Y

]

E
[
(D − �(X ′δ))2

] ,

where δ denotes the probability limit of δ̂. Lee (2018) also consider using the nonlin-
ear parametric specification for the propensity score, although he proposes a different
estimator. Lee (2018) shows that his estimand can be interpreted to be the weighted
average of Y −E [Y | p (X)], where p (X) denotes the probability limit of the paramet-
ric specification of E [Y | X ], but the current paper makes a contribution by providing
an interpretation of the estimand as a weighted average of the conditional treatment
effects β (X).5

For this purpose, write

E
[(
D − �

(
X ′δ

))
Y

] = E
[(
D − �

(
X ′δ

))
Dβ (X)

] + E
[(
D − �

(
X ′δ

))
α (X)

]

+ E
[(
D − �

(
X ′δ

))
(1 − D) σ0 (X) u0

]

+ E
[(
D − �

(
X ′δ

))
Dσ1 (X) u1

]
.

Because

E
[ (

D − �
(
X ′δ

))
(1 − D) σ0 (X) u0

∣
∣ X

] = E

[ (
D − �

(
X ′δ

))
(1 − D) σ0 (X) | X

]
E [u0| X ]

by conditional independence, we conclude that the third term above is equal to zero.
The last term is also equal to zero by the same reasoning. We recall that the logit MLE

5 Belloni et al. (2014) also propose to use nonlinear parametric specification of the propensity score, but
they use the estimated propensity score as part of the efficient influence function of Hahn (1998), so the
nonlinearity is not employed to overcome the negative weight problem.
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implies the first-order condition (FOC) such that6

n∑

i=1

(
D − �

(
X ′δ̂

))
X = 0. (6)

It follows that
∑n

i=1

(
D − �

(
X ′δ̂

))
g (X) = 0 for any linear function g (X) of X .

In particular, it will be satisfied for α (X) if it were indeed linear, which implies that
E

[(
D − �

(
X ′δ

))
α (X)

] = 0 as long as α (X) is linear in X . We would also have
E

[(
D − �

(
X ′δ

))
α (X)

] = 0 if �
(
X ′δ

)
is a correct specification of the true propen-

sity score. Therefore, we can see that the pseudo-parameter that the new estimator
estimates is

E
[(
D − �

(
X ′δ

))
Y

]

E
[
(D − �(X ′δ))2

] = E
[(
D − �

(
X ′δ

))
Dβ (X)

]

E
[
(D − �(X ′δ))2

]

= E
[
π (X)

(
1 − �

(
X ′δ

))
β (X)

]

E
[
(D − �(X ′δ))2

] , (7)

which will retain the “ positive weight” feature, as long as α (X) is literally linear (or
the propensity score indeed has a logit specification).7

Because E
[(
D − �

(
X ′δ

))2] = E
[
π (X) − 2π (X) �

(
X ′δ

) + �
(
X ′δ

)2], the
“weight” in (7) does not necessarily add up to 1. This problem can be eliminated by
considering instead an IV estimator

∑n
i=1

(
D − �

(
X ′δ̂

))
Y

∑n
i=1

(
D − �

(
X ′δ̂

))
D

,

which converges in probability to

E
[(
D − �

(
X ′δ

))
Y

]

E [(D − �(X ′δ)) D]
= E

[
π (X)

(
1 − �

(
X ′δ

))
β (X)

]

E [π (X) (1 − �(X ′δ))]
,

where the weights are nonnegative and add up to 1.
On a related note, (Blandhol et al. 2022, Proposition 1) discussed the interpretation

of 2SLSwithout any “ nonparametric promise” under the assumption that E [Y (0)| X ]
and E [Y (1)| X ] are linear in X . It was shown that the pseudo-parameter estimated
by 2SLS can be decomposed into two terms. The first term is a weighted average of
the conditional treatment effects among compliers, and the weight ω (CP, X) can be
negative. The second term is a weighted average of the conditional treatment effects

6 The counterpart of (6) is not satisfied in probit specification.
7 Belloni et al. (2014) advocated the use of double machine learning in the partially linear regression
context. In their framework, the counterpart of D was not restricted to be a binary variable, so the concern
about the negative weight was not an issue. The preceding discussion suggests that one may consider double
machine learning, where some least squares type machine learning is adopted for the Y on X submodel,
but some logit type machine learning is adopted for the D on X submodel.
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among always takers, and theweightω (AT, X)maynot be equal to zero. Their analysis
is based on the equivalence that the 2SLS is equal to the IV estimator using the residual
Z̃ from the regression of binary instrument Z on X , which implicitly adopts a linear
probability model specification. If the nonparametric promise is made and kept, this
is not an issue, but without such a promise, it would lead to the phenomenon that the
fitted value from the regression of Z on X can exceed 1, which leads to the possibility
of negative weight ω (CP, X). This issue can be resolved by using a logit specification
of Z on X , and replacing Z̃ in their equation (1) by Z − �

(
X ′δ

)
.8 As for the nonzero

ω (AT, X), it can be attributed to two reasons (1) the nonparametric promise is not
kept; or (2) the implicit linear probability specification is incorrect.

3 Efficiency of semiparametric regression adjustments in randomized
experiments

In this section,we examine the semiparametric efficiency properties of β̂LS in the semi-
parametric specification (2). In particular, we consider the case where the propensity
score π (·) is constant, and try to understand the efficiency properties of the regres-
sion adjustments from a semiparametric perspective. Freedman (2008a, b) considered
comparison of parametric version of β̂LS with the difference-in-means estimator.More
precisely, he considered the case where g (X) in (2) is specified as a linear function of
X , and concluded that efficiency ranking is impossible adopting an asymptotic frame-
work where the finite population with size n changes as a function of n.9 Lin (2013)
adopted an identical framework, and investigated how efficiency improvement is pos-
sible,10 which is confirmed by Negi and Wooldridge (2021) under an IID framework.
Negi and Wooldridge (2021) also use the linear parametric specification of g (X), so
the result in this section can be understood to be a fully semiparametric generalization
of the earlier results in a familiar IID asymptotic framework.

In order to understand the efficiency properties of β̂LS , it is useful to derive its
asymptotic variance. Below is a characterization of the asymptotic properties of β̂LS ,
obtained under the nonparametric specification of α (X) , β (X) , σ0 (X) , σ1 (X), and
π (X).

Proposition 2 The asymptotic variance of β̂LS is

E
[
π (X)2 (1 − π (X)) σ 2

0 (X)
]

(E [π (X) (1 − π (X))])2

+ E
[
(1 − π (X))2 π (X) σ 2

1 (X)
]

(E [π (X) (1 − π (X))])2
+ E

[
(D − π (X))4 (β (X) − βLS)

2]

(E [π (X) (1 − π (X))])2
.

8 Because X and Z − �
(
X ′δ

)
are orthogonal due to the first order condition of the logit MLE as in (6),

their proof of Proposition 2 goes through without any modification. The only change is that the negative
ω (CP, X) phenomenon disappears.
9 Therefore, in his framework, the n is the size of population.
10 He does so by using a parametric variant of the semiparametric efficient estimator developed in Hahn
(1998).
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So far, we allowed for the possibility that π (X) is not a constant, which meant that
βLS may not be the ATE. Now, let us assume that π (X) = π . If so, we have βLS =
E [β (X)] = βAT E by (3). Specializing asymptotic variance formula in Proposition 2
for this situation, we find that the asymptotic variance of βLS now simplifies to

E

[
σ 2
0 (X)

1 − π
+ σ 2

1 (X)

π
+ E

[
(D − π)4

]

(π (1 − π))2
(β (X) − βAT E )2

]

. (8)

Relative to the efficiency bound for the ATE in Hahn (1998)

E

[
σ 2
0 (X)

1 − π
+ σ 2

1 (X)

π
+ (β (X) − βAT E )2

]

(9)

specialized for the case where π (X) is constant, it can be shown that (8) is greater than
or equal to (9) in general. In other words, the β̂LS is not semiparametrically efficient,
even under the special assumption of constant propensity score.11

We now consider the difference-in-means estimator for the same case where π (X)

is constant and equal to π . It is trivial to show that its asymptotic variance12 is equal
to

Var [Y (0)]

1 − π
+ Var [Y (1)]

π
= σ 2

0 (X)

1 − π
+ σ 2

1 (X)

π
+ Var [μ0 (X)]

1 − π
+ Var [μ1 (X)]

π
.

(10)

Again making the same comparison with the efficiency bound (9), we can show that
(10) is greater than or equal to (9) in general, so the difference-in-means estimator is
not semiparametrically efficient either.13

Efficiency ranking between the partially linear projection estimator and the
difference-in-means estimator boils down to the comparison of (8) and (10). Because
both estimators do not achieve the semiparametric efficiency bound even under the
case where the propensity score is constant, we can make an educated guess that effi-
ciency ranking between these two estimators is impossible in general. In the appendix,
we present two numerical examples to confirm this educated guess, confirming the
Freedman (2008a, b) critique in the nonparametric framework.

On the other hand, we can find a reasonably interesting situation where the partially
linear regression specification does lead to efficiency:

Proposition 3 Suppose that π (X) = π = 1/2. Then, (8) is equal to (9)

We can see that the asymptotic variance of the partially linear regression achieves
the efficiency bound when π = 1/2. Therefore, if the treatment is assigned by flip-
ping a fair coin, it would be sensible to adopt the partially linear regression model
specification. The special role of π = 1/2 was discussed by Freedman (2008b) and
Lin (2013), as well as Negi and Wooldridge (2021) for the case where g (X) is given

11 See the proof of Proposition 4 in the appendix for more detailed derivation.
12 A proper subset of calculations here can be found in Hahn (1998).
13 See the proof of Proposition 5 in the appendix for more detailed derivation.
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a linear parametric specification. As noted above, Freedman (2008b) and Lin (2013)
adopt an asymptotic framework characterized by a sequence of finite populations,
which makes it different from Negi and Wooldridge (2021). Therefore, Proposition 3
can also be understood to be a fully semiparametric generalization of the earlier results
in an IID asymptotic framework.
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Appendix

A Proofs

Proof of Proposition 1 Using

(D − π (X)) Y = (D − π (X)) Dβ (X) + (D − π (X)) α (X)

+ (D − π (X)) ((1 − D) σ0 (X) u0 + Dσ1 (X) u1)

and the facts that14

E [ (D − π (X)) Dβ (X)| X ] = E [ (D − π (X)) D| X ]β (X)

= π (X) (1 − π (X)) β (X) ,

E [ (D − π (X)) α (X)| X ] = α (X) E [D − π (X)| X ] = 0,

E [ (D − π (X)) σ0 (X) u0| X ] = σ0 (X) E [ (D − π (X)) u0| X ]
= σ0 (X) E [D − π (X)| X ] E [u0| X ] = 0,

E [ (D − π (X)) Dσ0 (X) u0| X ] = σ0 (X) E [ (D − π (X)) Du0| X ]
= σ0 (X) E [ (D − π (X)) D| X ] E [u0| X ] = 0,

E [ (D − π (X)) Dσ1 (X) u1| X ] = σ1 (X) E [ (D − π (X)) Du1| X ]
= σ1 (X) E [ (D − π (X)) D| X ] E [u1| X ] = 0,

14 I used conditional independence when I wrote E [ (D − π (X)) u0| X ] = E [ D − π (X)| X ] E [ u0| X ]
below.
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along with the law of iterated expectations, we can see that the estimand is

βLS = E [(D − π (X)) Y ]

E
[
(D − π (X))2

] = E [π (X) (1 − π (X)) β (X)]

E [π (X) (1 − π (X))]
.

��
Proof of (4) and (5) We have

E
[(
D − X ′γ

)
Y

] = E
[(
D − X ′γ

)
Dβ (X)

] + E
[(
D − X ′γ

)
α (X)

]

+ E
[(
D − X ′γ

)
(1 − D) σ0 (X) u0

]

+ E
[(
D − X ′γ

)
Dσ1 (X) u1

]
.

If α (X) is linear in X , we have

E
[(
D − X ′γ

)
α (X)

] = 0.

Furthermore, we have

E
[ (

D − X ′γ
)
(1 − D) σ0 (X) u0

∣
∣ X

] = E
[ (

D − X ′γ
)
(1 − D) σ0 (X)

∣
∣ X

]
E [u0| X ] = 0,

E
[ (

D − X ′γ
)
Dσ1 (X) u1

∣
∣ X

] = E
[ (

D − X ′γ
)
Dσ1 (X)

∣
∣ X

]
E [u1| X ] = 0

by conditional independence. Therefore, we have

E
[(
D − X ′γ

)
Y

] = E
[(
D − X ′γ

)
Dβ (X)

] = E
[
π (X)

(
1 − X ′γ

)
β (X)

]
,

from which (5) follows.
If α (X) is not linear in X , we have

E
[(
D − X ′γ

)
α (X)

] = E [(D − π (X)) α (X)] + E
[(

π (X) − X ′γ
)
α (X)

]

= E
[(

π (X) − X ′γ
)
α (X)

]
,

which is not equal to zero in general. Therefore, the interpretation in (5) is incorrect
in general without the linearity of α (X), and we have

E
[(
D − X ′γ

)
Y

]

E
[
(D − X ′γ )2

] = E
[
π (X)

(
1 − X ′γ

)
β (X)

]

E
[
(D − X ′γ )2

] + E
[(

π (X) − X ′γ
)
α (X)

]

E
[
(D − X ′γ )2

]

in general. ��
Proof of Proposition 2 Using a result in Newey and Robins (2018), we find that the

influence function for β̂LS is equal to
(
E

[
(D − π (X))2

])−1
times (D − π (X)) ε,

where15

15 We note that the ε in (11) does not satisfy E [ ε| D, X ] = 0, so it does not satisfy the basic assumption of
(Robinson (1988), equation (1)), and therefore, the β̂LS is not an estimator for a partially linear regression
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ε ≡ Y − DβLS − E [Y − DβLS| X ]
= (D − π (X)) (β (X) − βLS) + ((1 − D) σ0 (X) u0 + Dσ1 (X) u1) . (11)

We have

(D − π (X)) ε = (D − π (X))2 (β (X) − βLS) + (D − π (X)) (1 − D) σ0 (X) u0
+ (D − π (X)) Dσ1 (X) u1.

The three terms on the right have mean zero, and their cross products have also mean
zero. Moreover, we have

E
[
(D − π (X))2

∣∣∣ X
]

= π (X) (1 − π (X)) ,

E
[
(D − π (X))2 (1 − D)2 σ 2

0 (X)

∣∣∣ X
]

= π (X)2 (1 − π (X)) σ 2
0 (X) ,

E
[
(D − π (X))2 Dσ 2

1 (X)

∣∣
∣ X

]
= (1 − π (X))2 π (X) σ 2

1 (X) ,

which means that the asymptotic variance is equal to from which the conclusion
follows. ��
Proposition 4 Suppose that the propensity score is constant. The β̂LS is not semipara-
metrically efficient

Proof We show that (8) is greater than or equal to (9). We have that

(8) − (9) = E

[
E

[
(D − π)4

]

(π (1 − π))2
(β (X) − βAT E )2

]

− E
[
(β (X) − βAT E )2

]
,

but because E
[
(D − π (X))2

] = π (1 − π), we see that

E
[
(D − π)4

]

(π (1 − π))2
≥ 1

byCauchy-Schwartz, so the asymptotic variance (8) from the partially linear regression
is larger than the asymptotic variance bound (9) in general. ��
Proposition 5 Suppose that the propensity score is constant. The difference-in-means
estimator is not semiparametrically efficient

Footnote 15 continued
“ model.” It is a special case of the partially linear “ projection” considered by Newey and Robins (2018).
Because the resultant estimators are identical, we continue to call β̂LS an estimator for the partially linear
regression model, reflecting the familiarity of the terminology. In other words, we may adopt a practical
point of view, and interpret that the underlying “ model” is Y = DβLS + g (X) + ε, where ε is defined in
(11) and g (X) = π (X) (β (X) − βLS) + α (X).
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Proof We show that (10) is greater than or equal to (9). When π (X) is constant and
equal to π , we have

(10) − (9)

= Var [μ0 (X)]

1 − π
+ Var [μ1 (X)]

π
− E

[
(β (X) − βAT E )2

]

= Var [μ0 (X)]

1 − π
+ Var [μ1 (X)]

π
− Var [μ1 (X) − μ0 (X)]

= Var [μ0 (X)]

1 − π
+ Var [μ1 (X)]

π
− Var [μ0 (X)] − Var [μ1 (X)] + 2Cov (μ0 (X) , μ1 (X))

= p

1 − p
Var [μ0 (X)] + 1 − p

p
Var [μ1 (X)] + 2Cov (μ0 (X) , μ1 (X))

= Var

[√
p

1 − p
μ0 (X) +

√
1 − p

p
μ1 (X)

]

≥ 0.

��

Proof of Proposition 3 If π = 1/2, we see that

E
[
(D − π)4

]

(π (1 − π))2
=

(
1 − 1

2

)4 1
2 + (

0 − 1
2

)4 (
1 − 1

2

)

( 1
2

(
1 − 1

2

))2 = 1

so (8) becomes equal to

E

[
σ 2
0 (X)

1 − π
+ σ 2

1 (X)

π
+ (β (X) − βAT E )2

]

,

i.e., the efficiency bound (9). ��

B Numerical comparison for Sect. 3

From (8) and (10), we can see that efficiency ranking between the two estimators boils
down to comparison between

E
[
(D − π)4

]

(π (1 − π))2
E

[
(β (X) − βAT E )2

]
= E

[
(D − π)4

]

(π (1 − π))2
Var [μ0 (X) − μ1 (X)]

and

Var [μ0 (X)]

1 − p
+ Var [μ1 (X)]

p
.
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First, we consider the case where p = 1/3 with μ0 (X) and μ1 (X) independent of
each other. In this case,

E
[
(D − π)4

]

(π (1 − π))2
=

(
1 − 1

3

)4 1
3 + (

0 − 1
3

)4 (
1 − 1

3

)

( 1
3

(
1 − 1

3

))2 = 3

2
.

If μ0 (X) and μ1 (X) are independent, we have Var [μ0 (X) − μ1 (X)] =
Var [μ0 (X)] + Var [μ1 (X)], so

(8) = E

[
σ 2
0 (X)

1 − π
+ σ 2

1 (X)

π

]

+ E

[
3

2
Var [μ0 (X)] + 3

2
Var [μ1 (X)]

]
,

(10) = E

[
σ 2
0 (X)

1 − π
+ σ 2

1 (X)

π

]

+ E

[
3Var [μ0 (X)] + 3

2
Var [μ1 (X)]

]
.

It follows that the asymptotic variance of the partially linear regression is smaller in
this case.

Second, we consider the case where p = 0.1. In this case,

E
[
(D − π)4

]

(π (1 − π))2
= (1 − 0.1)4 (0.1) + (0 − 0.1)4 (1 − 0.1)

((0.1) (1 − 0.1))2
= 8. 111 1

so the comparison boils down to

(8) = E

[
σ 2
0 (X)

1 − π
+ σ 2

1 (X)

π

]

+ E [8. 111 1Var [μ0 (X) − μ1 (X)]] ,

(10) = E

[
σ 2
0 (X)

1 − π
+ σ 2

1 (X)

π

]

+ E

[
10

9
Var [μ0 (X)] + 10Var [μ1 (X)]

]
.

If μ1 (X) = −μ0 (X), we can see that

8. 111 1Var [μ0 (X) − μ1 (X)] = 8. 111 1Var [2μ0 (X)] = 32. 444Var [μ0 (X)] ,
(
10

9
+ 10

)
Var [μ0 (X)] = 11. 111Var [μ0 (X)] ,

so the asymptotic variance of the partially linear regression is larger in this case.
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