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Abstract
Arellano (J Econ 42:247–265, 1989a) showed that valid equality restrictions on covari-
ance matrices could result in efficiency losses for Gaussian PMLEs in simultaneous
equations models. We revisit his two-equation example using finite normal mixtures
PMLEs instead, which are also consistent formean and variance parameters regardless
of the true distribution of the shocks. Because such mixtures provide good approxima-
tions to many distributions, we relate the asymptotic variance of our estimators to the
relevant semiparametric efficiency bound. Our Monte Carlo results indicate that they
systematically dominate MD and that the version that imposes the valid covariance
restriction is more efficient than the unrestricted one.
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1 Introduction

Maximum likelihood and minimum chi-square methods have been competing for the
estimator throne for a long time. At the turn of the nineteenth century, Legendre (1805)
and Gauss (1809) put forward least squares estimation as a Gaussian-based alternative
to Laplace’s (1774) least absolute deviation method, which relied on his eponymous
distribution. Almost a century later, Pearson proposed not only themethod ofmoments
(see Pearson 1894), but also the chi-square criterion in the context of matching the-
oretical and empirical frequencies (see Pearson 1900). In turn, the development of
maximum likelihood estimation (MLE) by Fisher (1922, 1925) was one of the most
important achievements in twentieth-century statistics. Under standard regularity con-
ditions,MLEasymptotically achieves theCramér–Rao lower bound (seeCramér 1946;
Rao 1945), which makes it at least as good as any minimum χ2 estimator. In addition,
it achieves second-order efficiency after a bias correction (see Rao 1961). Moreover,
the imposition of valid equality restrictions on the parameters systematically leads to
efficiency gains (see Rothenberg 1973).

However, not everybody was convinced (see Neyman and Scott (1948) on the inci-
dental parameter problem, as well as the inconsistent MLE examples in Basu (1955),
Kraft and Le Cam (1956), Bahadur (1958)), and minimum χ2 methods remained
popular. In fact, Berkson (1980) argued that ML was often just a special case of min-
imum χ2, and not necessarily the best one. Soon afterwards, White (1982), building
on earlier work by Huber (1967), and Gouriéroux et al. (1984) studied the properties
of pseudo-MLEs, characterising their consistency and general inefficiency. Arellano
(1989a) put another nail on the ML coffin by showing that valid equality restrictions
could result in efficiency losses for Gaussian PMLEs. Arguably, the wooden stake to
the heart was driven by Newey and Steigerwald (1997), who described the inconsis-
tency of non-Gaussian PMLE procedures under distributional misspecification. Since
then, graduate students with non-Bayesian teachers learn the normal distribution only,
and Gaussian PMLE is just an example of Hansen (1982) Generalised Method of
Moments (GMM). In this paper, though, we argue that non-Gaussian PMLE, like a
B-movie vampire, deserves a second life (or death).

We do so by revisiting the two-equation textbook example in Arellano (1989a),1

except that instead of basing PMLE on the Gaussian distribution, as he did, we use
discrete mixtures of normals. The reason is twofold. First, Fiorentini and Sentana
(2023) show that, under standard regularity conditions, such estimators are consistent
for the conditional mean and variance parameters regardless of the true distribution of
the shocks to the model and the number of mixture components, thereby nesting the
results for Gaussian PMLE in Gouriéroux et al. (1984) while simultaneously avoiding
the concerns raised by Newey and Steigerwald (1997). Second, finite normal mixtures
with a sufficiently large number of components can provide good approximations to
many distributions (see Nguyen et al. 2020), so it is reasonable to conjecture that
PMLEs based on them may get close to achieving the semiparametric (SP) efficiency

1 Surprisingly, Arellano (1989a), which should be mentioned in all graduate econometric textbooks, has
received very few citations: Pollock (1988), Islam (1993),Monés andVentura (1996), Calzolari et al. (2004),
and Sentana (2005), plus a handful of self-citations, and two more which really meant to cite Arellano,
(1989b).
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bound, and therefore exploit the potential adaptivity of some of the parameters when
it exists, at least asymptotically.2

The rest of the paper is organised as follows. Section2 introduces the example in
Arellano (1989a) and summarises his main results. Then, in Sect. 3 we extend those
results to the entire parameter vector, derive the relevant semiparametric efficiency
bounds, and use them to benchmark the different estimators, including the PMLEs
based on finite Gaussian mixtures. Next, Sect. 4 contains the results of our extensive
Monte Carlo experiments, while Sect. 5 concludes. Proofs and auxiliary results are
relegated to the appendices.

2 The example

Consider the following textbook example:

y1 = γ + αy2 + βz1 + u1, (1)

y2 = μ0 + μ1z1 + μ2z2 + u2, (2)

with
(
u1
u2

)∣∣∣∣ z1, z2 ∼ D

[(
0
0

)
,

(
σ 2
1 σ12

σ12 σ 2
2

)]
.

As is well known, the unrestricted Gaussian PMLE of α and β coincides with the
IV estimator that uses a constant, z1 and z2 as instruments in the first equation. In turn,
the restricted Gaussian PMLE that imposes σ12 = 0 coincides with the OLS estimator
of the first equation.

When the joint conditional distribution of u1 and u2 is Gaussian, OLS is at least as
efficient as IV, which justifies the Durbin–Wu–Hausman test.3 But Arellano (1989a)
seemingly counterintuitive result says that when the true conditional distribution is
not Gaussian, IV may be more efficient than OLS for α and β even though σ12 = 0.
Specifically, he showed that IV will beat OLS if and only if

μ22 ≥ 1 + ρ−2
y2z2.z1 , (3)

where

μ22 = E

(
u21
σ 2
1

u22
σ 2
2

∣∣∣∣∣ z1, z2
)

is the co-kurtosis coefficient between the two structural shocks and ρy2z2.z1 is the cor-
relation coefficient between y2 and z2 after partialling out the effect of z1. Intuitively,

2 See Fiorentini and Sentana (2022) for a related discussion in the context of structural Vars.
3 Wu (1973) compared OLS with IV in linear single equation models to assess regressor exogeneity
unaware that Durbin (1954) had already suggested this. Hausman (1978) provided a procedure with far
wider applicability.

123



256 SERIEs (2023) 14:253–300

Fig. 1 Relative efficiency OLS/IV for α.
Notes: When the R2 of Eq. (2) coincides with ρ2y2z2.z1 , the relative efficiency of the OLS/IV estimators of

α is given by V (α̂LS )

V (α̂I V )
= [(1− ρ2y2z2.z1 )μ22 + ρ2y2z2.z1 ]ρ2y2z2.z1 . The solid line denotes the boundary line

μ22 = 1+ ρ−2
y2z2.z1 , while the dotted line denotes the locus of (ρy2z2.z1 , μ22) combinations for which the

IV estimator of α reaches its maximum asymptotic efficiency relative to the corresponding OLS estimator,
which is given by ρ2y2z2.z1 = 1

2μ22/(μ22 − 1)

μ22 affects the correct sandwich version of the asymptotic covariance matrix of the
OLS estimators of the slope parameters.

Appendix A contains detailed expressions for the asymptotic variances of the OLS
and IV estimators of α and β. We have used those expressions to create Fig. 1, which
displays in (ρy2z2.z1 , μ22) space (minus one plus) the ratio of the asymptotic variances
of the OLS and IV estimators of α for positive values of ρy2z2.z1 .

4 We do so for the
special case in which the R2 of Eq. (2) coincides with ρ2

y2z2.z1 , which allows this

parameter to vary freely from 0 to 1.5 As expected, OLS is more/less efficient than IV
to the left/right of the boundary line (3).

This figure also shows the locus of (ρy2z2.z1 , μ22) combinations for which the IV
estimator ofα reaches itsmaximumasymptotic efficiency relative to the corresponding
OLS estimator in this set-up, which is given by the curve

ρ2
y2z2.z1 = μ22

2 (μ22 − 1)
.

Further increases in ρy2z2.z1 for a given μ22 result in decreases in relative efficiency,
with OLS and IV becoming indistinguishable as ρy2z2.z1 → 1, in which case z2
becomes a perfect instrument for y2.

4 The plot would be the mirror image of Fig. 1 for negative values.
5 Aswe shall see in Proposition 1 below, though, this special case is such that, asymptotically, the difference
between the IV and OLS estimators affects α exclusively.
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Fig. 2 Relative efficiency MD/OLS-IV for α.
Notes: When the R2 of Eq. (2) coincides with ρ2y2z2.z1 , the relative efficiency of the MD/OLS and MD/IV
estimators of α are given by

V (α̂MD)

V (α̂LS )
= μ22

[1+(μ22−1)ρ2y2z2 .z1 ][(1−ρ2y2z2 .z1 )μ22+ρ2y2z2 .z1 ] and V (α̂MD)

V (α̂I V )
= μ22ρ

2
y2z2 .z1

1+(μ22−1)ρ2y2z2 .z1
, respec-

tively. The solid line denotes the boundary line μ22 = 1 + ρ−2
y2z2.z1

In this context, Arellano (1989a) proposed solution is to replace Gaussian PMLE by
Minimum Distance (MD) estimators, a special case of minimum chi-square methods
popularised in econometrics by Malinvaud (1970). The rationale is as follows. Let
θ = (γ, α, β, μ0, μ1, μ2, σ

2
1 , σ 2

2 )′ denote the vector of structural parameters. Given
that the reduced form of model (2) is

(
y1
y2

)∣∣∣∣ z1, z2 ∼ D [μ(z1, z2; θ),�(z1, z2; θ)] (4)

μ(z1, z2; θ) =
[

(γ + αμ0) + (β + αμ1)z1 + αμ2z2
μ0 + μ1z1 + μ2z2

]
(5)

�(z1, z2; θ) =
(

σ 2
1 + α2σ 2

2 + 2ασ12 ασ 2
2 + σ12

ασ 2
2 + σ12 σ 2

2

)
, (6)

which is exactly identified, the unrestricted MD estimator coincides with IV, which
is Indirect Least Squares. Then, Arellano (1989a) shows that imposing the restriction
σ12 = 0 leads to an overidentified optimal MD procedure (weakly) more efficient than
both IV and OLS for α and β.

This optimal MD estimator requires an asymptotic covariance of the reduced form
parameter estimators which recognises that the third- and fourth-order multivariate
cumulants of u1 and u2 are not usually 0 when they are jointly non-normally dis-
tributed.
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a

b

Fig. 3 Relative efficiency Student t ML/MD for α and β.
Notes: When the R2 of equation (2) coincides with ρ2y2z2.z1 , the relative efficiency

of the ML/MD estimators of α and β is, respectively, given by AVar(
√
nα̂ML )

AVar(
√
nα̂MD )

= 1+(μ22−1)ρ2y2z2 .z1
[(1−ρ2y2z2 .z1 )mss+ρ2y2z2 .z1mll ]μ22

and AVar(
√
nβ̂ML )

AVar(
√
nβ̂MD)

= ρ2y2z2 .z1
[(1−ρ2y2z2 .z1 ) mss+ρ2y2z2 .z1mll ]μ22

, where

mll = ν(2 + ν)/[(ν − 2)(ν + 4)] and mss = (ν + 2)/(ν + 4) with ν = 2(2μ22 − 1)/(μ22 − 1)
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Appendix A also contains detailed expressions for the asymptotic variances of the
optimal MD estimators of α and β. We have used those expressions to create Fig. 2,
which depicts in (ρy2z2.z1 , μ22) space (minus one plus) the ratio of the asymptotic
variance of the restricted optimal MD of α to the asymptotic variance of either the
OLS estimator (to the left of (3)) or the IV one (to its right) in the same set-up as Fig. 1.
As can be seen, the efficiency gains are relatively small over the displayed range, and
they vanish when either the partial correlation goes to 0 or 1 or the co-kurtosis term
goes to 0.6

The predictable reaction of a fervent ML believer to Figs. 1 and 2 would be to argue
that condition (3) requires the combination of a very good instrument (a high ρ2

y2z2.z1 )
with a substantial amount of non-normality (a large μ22), in which case the Gaussian
assumption would be very inappropriate. For example, a joint Student t distribution
for u1 and u2 cannot satisfy this condition when the number of degrees of freedom is
six or more, and the requirement becomes increasingly difficult for poor instruments.

A naïve ML solution would be to assume that u1 and u2 follow a bivariate Student
t distribution to estimate the model parameters, which should dominate MD. In this
respect, we have used the expressions in Appendix A to create Fig. 3a, b, which display
in (ρy2z2.z1 , μ22) space (minus one plus) the ratio of the asymptotic variances of the
t-based MLE of α and β that impose σ12 = 0 to the asymptotic variances of the
corresponding restricted optimal MD. As can be seen, these figures confirm that ML
does indeed dominate MD in this case.

The problem with this naïve approach is that if the assumed joint distribution is
incorrect, the resulting PMLEs may be inconsistent, as forcefully argued by Newey
and Steigerwald (1997).

However, this does not mean that all parameters will be inconsistently estimated.
Specifically, Proposition 3 in Fiorentini and Sentana (2019) implies that the unre-
stricted t-based PMLEs of α and β are always consistent irrespective of the true
distribution. Similarly, their Proposition 1 implies that the restricted t-based PMLEs
of α and β will remain consistent when the conditional distribution of σ−1

1 u1 and
σ−1
2 u2 is elliptical even though it does not coincide with the distribution assumed

for estimation purposes. Besides, it may be possible to obtain two-step consistent
estimators in closed-form along the lines of Fiorentini and Sentana (2019).

More importantly, Fiorentini and Sentana (2023) show that all parameters will
always be consistently estimated if one assumes for estimation purposes that u1 and
u2 follow a finite mixture of bivariate normals regardless of the true distribution of
those innovations and the number of components of the mixture, as long as the shape
parameters are simultaneously estimated with the mean and variance parameters.7

Thus, the consistency of the Gaussian PMLE is just a special case.
The ability of finite Gaussian mixtures to approximate many other distributions

mentioned in the introduction suggests thatwemaybe able to relate these finitemixture
PMLEs to SP estimators which simply exploit the independence of the shocks and the

6 Again, Proposition 1 below implies that the differences in asymptotic variances between the MD, IV and
OLS estimators affect α exclusively in the special case in which the (squared) partial correlation of y2 and
z2 given z1 coincides with the R2 in the regression of y2 on z1 and z2
7 On the other hand, if the shape parameters of the mixture are fixed, then Theorem 7 in Gourieroux (1984)
guarantees the inconsistency of the resulting estimators except in the Gaussian limiting case.
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conditioning variables without making any parametric assumptions. For that reason,
in the next section we take SP estimators as our benchmark to study:

1. The efficiency of the OLS, IV, MD and correct ML estimators relative to SP ones,
2. The relative efficiency of restricted and unrestricted versions of these SP estimators,

and
3. The relative efficiency of finite mixture-based PMLEs relative to SP estimators

in the context of model (2).

3 Theoretical analysis

3.1 Minimum distance revisited

Although the main focus of the analysis in Arellano (1989a) was α and β, it is of some
interest to study the asymptotic efficiency of the optimalMD estimators of the remain-
ing structural model parameters relative to their OLS and IV counterparts. Given that
the number of different bivariate cumulants of orders 3 and 4 is 4 and 5, respectively,
we focus on the special case in which the joint distribution of the (standardised) struc-
tural shocks conditional on the instruments is spherical, or s(0, I2, η) for short, where
η is the possibly infinite vector of shape parameters. More formally,

Assumption 1

u1
σ1

,
u2
σ2

∣∣∣∣ z1, z2; θ , η ∼ i .i .d.s(0, I2, η) (7)

To simplify the expressions further, we are going to follow Appendix B in Fioren-
tini and Sentana (2019) and re-parametrise the unrestricted covariance matrix of the
structural residuals as

(
σ 2
1 σ12

σ12 σ 2
2

)
= σ 2

(
1 0

ψ12 1

)(
eω 0
0 e−ω

)(
1 ψ12
0 1

)
, (8)

where ψ12 is the coefficient in the least squares projection of u2 on u1, and σ 2 and ω

the geometric mean of their variances and the natural log of the ratio of the standard
deviations of these shocks, respectively, under the maintained assumption that they are
uncorrelated.8 Let θ† = (γ, α, β, μ0, μ1, μ2, ω, σ 2)′ denote the vector of structural
parameters implied by (8) under the restriction ψ12 = 0. Using the expressions for
the Jacobian linking θ† and θ in (A17), we can then show under standard regularity
conditions that:

Proposition 1 Let (τ1, τ2) and (σ 2
z1, σ

2
z2 , σz1z2) denote the means, variances and

covariance of z1 and z2. If Assumption 1 holds, then:

8 More generally, σ 2 =
√

σ 2
1 σ 2

2 − σ 2
12 and ω = ln

(
σ1/

√
σ 2
2 − σ 2

12/σ
2
1

)
.
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(a) The difference between the asymptotic covariance matrices of the OLS and MD

estimators of θ†, θ̂
†
LS and θ̂

†
MD, respectively, is positive semidefinite of rank 1 at

most, with a basis for its image given by

{
−[μ0 + (τ2 − σz1z2σ

−2
z1 τ1)μ2], 1,−μ1 + σz1z2σ

−2
z1 μ2, 01×5

}
, (9)

and a basis for its kernel by

[
1, μ0 + (τ2 − σz1z2σ

−2
z1 τ1)μ2, 0, 01×5

]
, (10)[

μ1 + σz1z2σ
−2
z1 μ2, 0, μ0 + (τ2 − σz1z2σ

−2
z1 τ1)μ2, 01×5

]
(11)

and

(05×3, I5) . (12)

(b) The difference between the asymptotic covariance matrices of the IV and MD

estimators of θ†, θ̃
†
I V and θ̂

†
MD, respectively, is positive semidefinite of rank 1 at

most, with the same basis for image and kernel.
(c) The difference between the asymptotic covariance matrices of the OLS and IV

estimators of θ†, θ̂
†
LS and θ̃

†
I V , respectively, is positive/negative semidefinite of

rank 1 depending of condition (3), with exactly the same basis for image and
kernel.

This proposition considerably sharpens the results in Arellano (1989a) for the
special case of spherically symmetric disturbances by showing that the asymptotic
efficiency gains concentrate in a single linear combination of the parameters of the
first equation γ , α and β given by (9). In contrast, any other linear combination of the
parameters orthogonal to this one does not generate any efficiency gains. Specifically,
the parameters of the second equation and the residual variances are estimated just as
efficiently by the three procedures.

3.2 Semiparametric estimation and efficiency bounds

The optimal instruments theory of Chamberlain (1987) implies that Arellano (1989a)
MDestimator achieves the SP efficiency boundwhich exploits the correct specification
of the conditionalmean and variance functions for y1 and y2 in the reduced formmodel
(2) when the joint third- and fourth-order cumulants of u1 and u2 conditional on z1
and z2 are constant. However, if this last maintained assumption is true, then one can
in principle obtain an even more efficient MD estimator of the model parameters after
augmenting it with equations for the third- and fourth-order cumulants of the reduced-
form residuals under the assumption that the joint cumulants of u1 and u2 conditional
on z1 and z2 are constant up to the eighth-order.

In fact, the results in Bickel et al. (1993) allow us to obtain the SP efficiency
bound which exploits that the joint distribution of u1 and u2 is independent of z1 and
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z2. Moreover, we can also consider a restricted version of this SP bound under the
maintained assumption that (7) holds, as in Hodgson and Vorkink (2003), which will
be bigger in the usual positive semidefinite sense. Henceforth, we shall refer to this
bound and its associated estimator by the abbreviation SS, reserving SP for the one
which does not impose sphericity.

An interesting question in this context is the possibility that some but not all of the
parameters of model (2) can be partially adaptively estimated, in the sense that their
SP estimators are as asymptotically efficient as the infeasible ML estimators which
exploit the information of the true distribution of the shocks, including the values of
their shape parameters. The following proposition provides a precise answer to this
question under sphericity for the restricted estimators that impose σ12 = 0:

Proposition 2 If Assumption 1 holds, then:

(a) The difference between the asymptotic covariance matrices of the restricted SS

and infeasible ML estimators of θ†, θ̂
†
SS and θ̂

†
ML(η̄), respectively, is positive

semidefinite of rank 1 at most, with a basis for its image given by (01×7, 1), and a
basis for its kernel by (I7, 07×1).

(b) The difference between the asymptotic covariancematrices of the restricted SP and

infeasible ML estimators of θ†, θ̂
†
SP and θ̂

†
ML(η̄), respectively, is positive semidef-

inite of rank 5 at most, with a basis for its image given by (1, 01×7), (0,−1, μ1 +
σz1z2σ

−2
z1 μ2, 01×5), (01×3, 1, 01×4) and (02×6, I2), and a basis for its kernel by

(0, μ1 + σz1z2σ
−2
z1 μ2, 1, 01×5) and (02×4, I2, 02×2).

(c) The difference between the asymptotic covariance matrices of the MD and SP

estimators of θ†, θ̂
†
MD and θ̂

†
SP , respectively, is positive semidefinite of rank 4 at

most, with a basis for its image given by (02×1, I2, 02×5) and (02×4, I2, 02×2),
and a basis for its kernel by (02×6, I2), (1, μ0 + μ1τ1 + μ2τ2, τ1, 01×5) and
(01×3, 1, τ1, τ2, 01×2).

The first part of the proposition implies that all the structural model parameters
except the overall residual scale σ 2 can be (partially) adaptively estimated by the SS
estimator, as expected from Proposition 12 in Fiorentini and Sentana (2021).

More interestingly, the second part of the proposition implies that in addition to μ1
and μ2, the coefficient of the linear projection of y1 onto a constant and z1, which is
given by

β + (
μ1 + σz1z2σ

−2
z1 μ2

)
α,

will be adaptively estimated by the restricted SP estimator. In this respect, a very impor-
tant by-product of this proposition is that the model parameters that can be partially
adaptively estimated often continue to be consistently estimated under distributional
misspecification of the innovations, as shown by Fiorentini and Sentana (2019, 2021)
in the context of multivariate location-scale models such as (1)–(2). We will revisit
this issue in the Monte Carlo section.

Finally, the last part of the proposition says that the variances of the structural-form
residuals, as well as the intercepts in the reduced-form regressions of y1 and y2 on
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a constant and the demeaned values of z1 and z2, which are given by γ + τ1(β +
αμ1) + τ2(αμ2) and μ0 + τ1μ1 + τ2μ2, respectively, are asymptotically equally
efficiently estimated by the MD and SP estimators. More importantly, it also says that
the efficiency gains are concentrated in the four slope coefficients of the two structural
equations.

It would be tedious but otherwise straightforward to extend Propositions 1 and 2
to the case in which the distribution of the shocks conditional on z1 and z2 is not
spherical as a function of the four third-order and five fourth-order cumulants of u1
and u2. In fact, there is one important instance in which those higher-order cumulants
would be unnecessary for the comparisons. Specifically, we can use Proposition 13.2 in
Fiorentini and Sentana (2021) to prove that, subject to regularity, both the parameters
of the unrestricted covariance matrix of the reduced-form residuals and the intercepts
in the reduced-form regressions of y1 and y2 on a constant and the demeaned values
of z1 and z2 will be as efficiently estimated by the IV estimator and the unrestricted
SP estimator, while the slopes will always be adaptively estimated, just as in the
second part of Proposition 2. The reason is twofold. First, the information matrix, the
feasible parametric efficiency bound, the SP bound, and the usual Gaussian sandwich
formula become block-diagonal between those reduced-form parameters and the four
structural slope coefficients α, β, μ1 and μ2. In turn, this block diagonality leads to
a saddle-point characterisation of the asymptotic efficiency of the SP estimator of θ ,
with the slope coefficients being adaptive and the others only reaching the efficiency
of the Gaussian PMLE.

3.3 Efficiency gains from the equality constraint

It is also of interest to analyse the effects of imposing the covariance restriction σ12 = 0
on the different estimators we have considered:

Proposition 3 If Assumption 1 holds, then:

(a) The difference between the asymptotic covariance matrices of the unrestricted and

restricted infeasible ML estimators of θ†, θ̃
†
ML and θ̂

†
ML, respectively, is positive

semidefinite of rank 1 at most, with the basis for its image given by (9), and a basis
for its kernel by (10), (11) and (12).

(b) The difference between the asymptotic covariance matrices of the unrestricted and

restricted SS estimators of θ†, θ̃
†
SS and θ̂

†
SS, respectively, is positive semidefinite of

rank 1 at most, with the basis for its image given by (9), and a basis for its kernel
by (10), (11) and (12).

(c) The difference between the asymptotic covariance matrices of the unrestricted and

restricted SP estimators of θ†, θ̃
†
SP and θ̂

†
SP , respectively, is positive semidefinite

of rank 1 at most, with the basis for its image given by (9), and a basis for its kernel
by (10), (11) and (12).

Therefore, when one uses “efficient” estimators, the imposition of the valid equality
constraint σ12 = 0 always leads to (weak) efficiency gains for exactly the same linear
combination of the parameters of the first structural equation for which optimal MD
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leads to an efficiency gain relative to both OLS and IV. In fact, it is straightforward
to generalise (a) so that it applies to the feasible parametric ML estimators of θ†

which simultaneously estimate the finite vector of shape parameters η, as well as to
theML estimators of these parameters themselves. This is in contrast to the seemingly
counterintuitive result in Arellano (1989a), which simply reflects the fact that OLS
does not use the optimal MD weighting matrix in the non-normal case.

3.4 Finite mixtures as sieves

Finally, we study the extent to which PMLEs based on finite mixtures of normals
with an increasing number of components could constitute a proper sieves-type SP
procedure, as we argued in the introduction.

We do so first when the standardised shocks to model (2) conditional on z1 and z2
follow a bivariate Student t with 0 means, unit standard deviations, no correlation and
5 degrees of freedom but whose parameters are estimated by finite scale mixture-based
log-likelihood functions with K = 2, 3 and 4 components. For comparison purposes,
we consider four different benchmarks that impose the restriction σ12 = 0: (i) the
MLE based on the correctly specified log-likelihood function that fixes the number
of degrees of freedom to 5, (ii) the SS estimator, (ii) the OLS estimator, and (iv) the
optimal MD estimator.

We compute the expected value of the Hessian and outer product of the score of
the scale mixture-based PMLEs by means of large sample averages of the analytical
expressions in Fiorentini and Sentana (2021) evaluated at the true values of the mean
and variance parameters in θ and the pseudo-true values of the shape parameters,
which we numerically obtain from samples of millions of simulated observations.

The results, which we report in Table 1, show that the scale mixture-based PMLEs
of all the model parameters except the overall residual scale σ 2 quickly approach the
asymptotic efficiency of the infeasibleMLE despite the fact that no finite scale mixture
of normals can approximate the unbounded higher-order moments, tail behaviour or
nonlinear tail dependence of amultivariate Student t . In fact, althoughpanel (a) inFig. 3
of Gallant and Tauchen (1999) clearly illustrates that a more complex misspecified
model does not necessarily lead to more efficient estimators because one is not simply
adding new elements to the score, but also changing the pseudo-true values of the
shape parameters at which one evaluates the original components of the score, we
find that the efficiency improvements occur monotonically.9 As a result, it seems that
the covariance matrix of the errors in the least squares projection of the scores of the
true model onto the scores of the mixture-based log-likelihood becomes smaller and
smaller as K increases (see Proposition 7 in Calzolari et al. 2004).

In contrast, the asymptotic variances of the scale mixture-based PMLEs of σ 2 coin-
cides with the asymptotic variances of the OLS estimators irrespective of the number
of components, which reflects (i) the block diagonality of the different asymptotic
covariance matrices in Proposition 12.2 of Fiorentini and Sentana (2021) because the

9 In this respect, the efficiency gains of any K > 1 relative to K = 1 should be easy to prove formally
because theML estimators of the unconditional mean of themixture of gamma random variables underlying
the scale mixture model coincide regardless of K .
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Table 1 Asymptotic variances of alternative estimators

Parameter OLS PML–SMNK
K = 2 K = 3 K = 4 SS ML MD

Mean parameters of equation 1a

γ 1.268 0.931 0.905 0.902 0.901 0.901 1.201

α 1.500 0.782 0.731 0.725 0.723 0.723 1.125

β 1.000 0.656 0.631 0.627 0.627 0.627 0.875

Mean parameters of equation 1b

μ0 1.000 0.792 0.775 0.772 0.771 0.771 1.000

μ1 0.333 0.264 0.258 0.257 0.257 0.257 0.333

μ2 0.333 0.264 0.258 0.257 0.257 0.257 0.333

(Reparametrised) variance parameters of structural innovations

ω 3.000 1.493 1.313 1.290 1.286 1.286 3.000

σ 2 0.833 0.833 0.833 0.833 0.833 0.300 0.833

Notes: DGP for structural innovations: bivariate Student t with 0 means, unit standard deviations, no
correlation and 5 degrees of freedom. Parameter values: γ = 0.204, α = β = 0.398, μ0 = 0.155,
μ1 = μ2 = 0.577, σ 2

1 = 1/2, σ 2
2 = 1/3, μz1 = μz2 = 1, σ 2

z1 = σ 2
z2 = 1, and σz1z2 = 0. OLS denotes

the usual ordinary least squares estimator, PML–SMNK denotes Pseudo-ML based on a bivariate scale
mixture of K normals, SS denotes the spherically symmetric SP estimator, ML denotes MLE which exploit
the information of the true distribution of the shocks, including the degrees of freedom, andMD denotes the
optimum minimum distance estimator. We compute the expected value of the Hessian and variance of the
score of the finite mixture-based PMLEs by means of large sample averages of the analytical expressions
in Fiorentini and Sentana (2021) evaluated at the true values of the mean and variance parameters in θ and
the pseudo-true values of the shape parameters, which we numerically obtain from samples of millions of
simulated observations

determinant of (8) is precisely σ 4, and (ii) the fact that the ML estimators of the mean
in a scale mixture of K gammas is numerically the same regardless of K , as explained
in Fiorentini and Sentana (2023).

We then conduct a similar exercise when u1 and u2 conditional on z1 and z2 follow a
bivariate asymmetric Student t with 0 means, unit standard deviations, no correlation,
negative tail dependence and the same μ22 as in the symmetric case. We estimate
the unrestricted model parameters using general finite mixture-based log-likelihood
functions with K = 2, 3 and 4 components, and consider as benchmarks the following
three unrestricted estimators: infeasible MLE, SP, and IV. In this case, we compute
the expected value of the Hessian and outer product of the score of the mixture-
based PMLEs using large sample averages of the theoretical expressions in Amengual
et al. (2023) evaluated at the true values of the mean and variance parameters and
the pseudo-true values of the shape parameters obtained from very large samples of
simulated observations.

The results we report in Table 2 show that the mixture-based PMLEs of the slope
parameters approach the asymptotic efficiency of the infeasible MLE despite the
fact that no finite mixture of normals can approximate the unbounded higher-order
moments, tail behaviour or nonlinear tail dependence of a multivariate asymmetric
Student t . Again, we find that the efficiency improvements occur monotonically. In
contrast, the asymptotic variances of the mixture-based PMLEs of the intercepts and
covariance matrix of the reduced form in mean-deviation form coincide with the
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Table 2 Asymptotic variances of alternative estimators

Parameter IV PML MN K
K = 2 K = 3 K = 4 SP ML

Slope parameters of equation 1a

α 1.502 1.320 1.301 1.300 1.296 1.296

β 1.000 0.879 0.867 0.865 0.863 0.863

Slope parameters of equation 1b

μ1 0.333 0.259 0.252 0.251 0.251 0.251

μ2 0.333 0.259 0.252 0.251 0.251 0.251

(Reparametrised) reduced form intercepts

E(y1) 0.553 0.553 0.553 0.553 0.553 0.499

E(y2) 0.333 0.333 0.333 0.333 0.333 0.299

Reduced form variance parameters

ω11 1.803 1.803 1.803 1.803 1.803 0.796

ω22 0.950 0.950 0.950 0.950 0.950 0.308

ω12 0.815 0.815 0.815 0.815 0.815 0.229

Notes:DGP for structural innovations: bivariate asymmetric Student t with 0means, unit standard deviations,
no correlation and shape parameters ν = 9.65 and bi = −1. Parameter values: γ = 0.204, α = β = 0.398,
μ0 = 0.155, μ1 = μ2 = 0.577, σ 2

1 = 1/2, σ 2
2 = 1/3, μz1 = μz2 = 1, σ 2

z1 = σ 2
z2 = 1, and σz1z2 = 0. IV

denotes the usual instrumental variables estimator, PML–MNK denotes Pseudo-ML based on a bivariate
mixture of K normals, SP denotes the semiparametric estimator, ML denotes MLE which exploit the
information of the true distribution of the shocks, including the degrees of freedom. Moreover, E(y1) and
E(y2) are short-hand for γ + τ1(β + αμ1) + τ2(αμ2) and μ0 + τ1μ1 + τ2μ2, respectively. We compute
the expected value of the Hessian and variance of the score of the finite mixture-based PMLEs using large
sample averages of the theoretical expressions in Amengual et al. (2023) evaluated at the true values of the
mean and variance parameters and the pseudo-true values of the shape parameters obtained from very large
samples of simulated observations

asymptotic variances of the corresponding IV estimators irrespective of the number
of components, which reflects the fact that the ML estimators of the mean vector and
covariance matrix in mixtures of K normals are numerically the same for any K ≥ 1
(see also the discussion at the end of Sect. 3.2).

4 Monte Carlo analysis

In previous sections, we have derived several asymptotic results regarding the relative
efficiency of the LS, IV andMDestimators, aswell as the finitemixture-based PMLEs,
the SS estimators, and the feasible and infeasibleMLEs. In this section, in contrast, we
make use of an extensive Monte Carlo simulation exercise to asses their small sample
behaviour.

4.1 Design

We consider three different parameter configurations:
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a. μ22 = 3 and ρy2z2.z1 = (μ22 − 1)− 1
2 = 1/

√
2 � 0.71, which is such that the IV

and OLS estimators of α and β have the same asymptotic efficiency (see the solid
line in Fig. 1);

b. μ22 = 3 and ρy2z2.z1 = 2− 1
2
√

μ22/(μ22 − 1) = √
3/2 � 0.87, which corre-

sponds to the dotted line in Fig. 1; and

c. μ22 = 7/3 and ρy2z2.z1 = (μ22 − 1)− 1
2 = √

3/2 � 0.87, which is another case of
equal efficiency of IV and OLS, but with lower co-kurtosis.10

As for the distribution of the structural shocks, we consider four non-Gaussian
possibilities in which (u1, u2) follow a:

1. Student t distribution with ν = 5 or ν = 5.5 degrees of freedom corresponding to
μ22 = 3 and μ22 = 7/3, respectively;

2. Scale mixture of two normals in which the higher variance component has prob-
ability λ = .05 and the ratio of the variances is either κ = 0.094 or κ = 0.122
corresponding to μ22 = 3 and μ22 = 7/3, respectively;

3. Asymmetric Student t distribution with negative tail dependence b = ( − 1,−1)
′

but degrees of freedom ν = 9.65 or ν = 10.38, respectively;
4. Location-scale mixture of two normals in which the higher variance component

has probability λ = .05, μ22 is as in 1., and the marginal skewness of u1 and u2 is
as in 3., which is achieved with

δ =
(−1.01

−1.06

)
or δ =

(−1.16
−1.24

)
and ℵL =

(
0.32 0
0 0.32

)
or

(
0.38 0
0 0.38

)
,

respectively (see Appendix D for further details on this parametrisation).

For illustrative purposes, we display the joint densities and contours for standard-
ised versions of these distributions in comparisonwith the bivariate spherical Gaussian
distribution in Figs. 4 and 5 for the spherically symmetric and general cases, respec-
tively.

In all simulated samples, the exogenous variables z = (z1, z2)′ are generated
according to a bivariate Student t distribution with 8 degrees of freedom with mean
vector τ = (1, 1)′ and an identity variance covariance matrix.11

Next, for each choice of the partial correlation ρy2z2.z1 mentioned above, we choose

R2
2 = 2ρy2z2.z1

1 + ρy2z2.z1
and ρy2z1 = ρy2z2 =

√
R2
2 − ρ2

y2z2.z1

1 − ρy2z2.z1
,

which guarantees that (i) ρ2
y2z2.z1 ≤ R2

2 ≤ 1, and (ii) the two slope coefficients of the
second equation coincide. If we fix the variance of both y1 and y2 to 1 without loss

10 We do not consider the case in which μ22 = 7/3 and ρy2z2.z1 = .5
√

μ22/(μ22 − 1) because the
efficiency of IV relative to OLS for α is just 1.02 in that case.
11 Notice that the choice of σz1z2 = 0 considerably simplifies some of the eigenvectors in Propositions 1,
2 and 3. For example the linear combination that according to Proposition 2.b can be adaptively estimated
by the SP estimator and consistently estimated by a distributionally misspecified ML estimator becomes
β + μ1α.
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fe

c d

ba

Fig. 4 Monte Carlo spherical data generating processes versus Gaussian distribution.
Notes: In all panels, E(u∗

1i ) = E(u∗
2i ) = 0, V (u∗

1i ) = V (u∗
2i ) = 1, and cov(u∗

1i , u
∗
2i ) = 0. Panels c–d:

Student t distribution with ν = 5 degrees of freedom. Panels e–f : Scale mixture of two normals with scale
parameter κ = 0.09 and mixing probability λ = 0.05
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a
b

c d

e f

Fig. 5 Monte Carlo non-spherical data generating processes versus Gaussian distribution.
Notes: In all panels, E(u∗

1i ) = E(u∗
2i ) = 0, V (u∗

1i ) = V (u∗
2i ) = 1, and cov(u∗

1i , u
∗
2i ) = 0. Panels

c-d: Asymmetric Student t density with ν = 9.65 degrees of freedom, skewness parameters bi = −1.
Panels e-f: Location-scale mixture of two normals with mixing probability λ = 0.05, location vector
δ = −(1.01, 1.06)′ and scale parameter κ = 0.32 (see Appendix D for details)
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of generality, these restrictions implicitly determine the variance of the error term of
the second equation as σ 2

2 = 1− R2
2. We also impose the same balancing restriction

on the slopes of the first equation by choosing

α = β =
√

(1 + ρy2z1)R
2
1

2
.

Then, we fix R2
1 to 0.5, which implies σ 2

1 = 1/2, an arbitrary choice that simply
scales the asymptotic variances of all the different estimators of α and β by the same
amount (1 − R2

1).
12 Finally, we choose the values of the intercepts γ and μ0 so that

E(y1) = E(y2) = 1 (see Appendix C for further details).

4.2 Simulation results

We simulate 10,000 samples of length N = 250 and N = 1000 for each of the
above designs. For each simulated sample, we compute the IV, LS and optimal MD
estimators, together with unrestricted and restricted versions of PMLE estimators
that use either a discrete mixture of two normals–UPML(mn) and RPML(mn)–or
a Student t distribution–UPML(t) and RPML(t). In both cases, we simultaneously
estimate the shape parameters. Finally, we also compute a two-step SS estimator that
starting from the consistent OLS estimator, θ LS , carries out one BHHH iteration using
the efficient spherically symmetric semiparametric score estimated nonparametrically.
Specifically, we compute the standardised reduced form residuals

v̂
∗ = �̂

− 1
2
[
y − μ (z1, z2; θ LS)

]
,

where �̂
− 1

2 denotes the inverse of the Cholesky decomposition of the sample covari-
ance matrix of the reduced form residuals [ y−μ (z1, z2; θ LS)], define ς̂ = v̂

∗′
v̂

∗ and
estimate nonparametrically the density of ζ = ς1/3, g(ζ ), and its derivative, g′(ζ ),
using a Gaussian kernel with the usual Silverman (1986) “rule-of-thumb” bandwidth.
The change of variable formula then yields

δ(ς) = −2

3ζ 2

g′(ζ )

g(ζ )
+ 4

3ζ 3 ,

which we use to compute the semiparametric efficient score using expression (C30)
in the Supplemental Appendix C of Fiorentini and Sentana (2021) by subtracting

W s(θ LS)

[
δ(ς)

ς

2
− 1 − 2

4κ + 2

(ς

2
− 1

)]

12 In design a., we then have R2
2 = 2/3, σ 2

2 = 1/3, γ = 0.20, α = β = 0.40, μ0 = 0.16, and

μ1 = μ2 = 0.58. In turn, in designs b and c., R2
2 = 6/7, σ 2

2 = 1/7, γ = 0.22, α = β = 0.39,
μ0 = −0.31, and μ1 = μ2 = 0.66.
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Fig. 6 Monte Carlo results: T = 250, μ22 = 3 and ρy2z2.z1 = (μ22 − 1)−1.
Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimumminimumdistance estimator, UPML(mn) andRPML(mn) denote the restricted (σ12 =
0) and unrestricted PMLestimators based on amixture of twonormals,UPML(smn) andRPML(smn) denote
the restricted (σ12 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (σ12 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (σ12 = 0) and unrestricted feasible
PML estimators based on a Student t. DGPs: Panel a: Student t distribution with ν = 5 degrees of freedom;
Panel b: scale mixture of two normals with scale parameter κ = 0.09 and mixing probability λ = 0.05;
Panel c: asymmetric Student t density with ν = 9.65 degrees of freedom, skewness parameters bi = −1;
and Panel d: location-scale mixture of two normals with mixing probability λ = 0.05, location vector
δ = −(1.01, 1.06)′ and scale parameterκ = 0.32 (see Appendix D for details). In all DGPs, we set σ 2

1 = 1

so that R2
1 = 1/2. In order to have a tie between IV and LS, we set ρy2z2.z1 = 1/

√
2 so that σ 2

2 = 1/3
and, therefore, γ = 0.20, α = β = 0.40, μ0 = 0.15 and μ1 = μ2 = 0.58

from the nonparametric score, where κ denotes the coefficient of multivariate excess
kurtosis (see Mardia (1970) for details) and W s(θ) is defined in Appendix A.5.

We display the finite sample results by means of the box plots in Figs. 6, 7, 8, 9,
10 and 11, which concentrate on α and β, the two parameters of interest. Figures6,
7 and 8 show the Monte Carlo results for 250 observations for cases a., b. and c.,
respectively, while Figs. 9, 10 and 11 contain the results for 1000 observations in the
same order.

Our findings indicate that OLS is better in finite samples than what the asymptotic
theory suggests because the sample co-kurtosis coefficient is downward biased for
μ22. In fact, the asymptotic efficiency of the IV estimator of α relative to LS can
only be observed in panels b and d of Fig. 10 when the sample length is large and the
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Fig. 7 Monte Carlo results: T = 250, μ22 = 3 and ρy2z2.z1 = 1
2μ22(μ22 − 1)−1.

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimumminimumdistance estimator, UPML(mn) andRPML(mn) denote the restricted (σ12 =
0) and unrestricted PMLestimators based on amixture of twonormals,UPML(smn) andRPML(smn) denote
the restricted (σ12 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (σ12 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (σ12 = 0) and unrestricted feasible
PML estimators based on a Student t. DGPs: Panel a: Student t distribution with ν = 5 degrees of freedom;
Panel b: scale mixture of two normals with scale parameter κ = 0.09 and mixing probability λ = 0.05;
Panel c: asymmetric Student t density with ν = 9.65 degrees of freedom, skewness parameters bi = −1;
and Panel d: location-scale mixture of two normals with mixing probability λ = 0.05, location vector
δ = −(1.01, 1.06)′ and scale parameterκ = 0.32 (see Appendix D for details). In all DGPs, we set σ 2

1 = 1

so that R2
1 = 1/2. In order to have a maximum relative efficiency of IV versus LS, we set ρy2z2.z1 = √

3/2

so that σ 2
2 = 1/7 and, therefore, γ = 0.22, α = β = 0.39, μ0 = 0.31 and μ1 = μ2 = 0.65

distribution of the shocks is either a scale or a general finite mixture of normals, which
is when there seems to be a lower small sample bias for μ22.

They also confirm that optimal MD dominates both OLS and IV in finite samples,
but the need to estimate third- and fourth-order multivariate cumulants to compute
the optimal weighting matrix handicaps it somewhat (see Altonji and Segal (1996))
for analogous results in the context of optimal GMM estimators when the shocks are
fat-tailed).
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Fig. 8 Monte Carlo results: T = 250, μ22 = 7/3 and ρy2z2.z1 = (μ22 − 1)−1.
Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimumminimumdistance estimator, UPML(mn) andRPML(mn) denote the restricted (σ12 =
0) and unrestricted PMLestimators based on amixture of twonormals,UPML(smn) andRPML(smn) denote
the restricted (σ12 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (σ12 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (σ12 = 0) and unrestricted feasible
PML estimators based on a Student-t. DGPs: Panel a: Student t distribution with ν = 11/2 degrees of
freedom; Panel b: scale mixture of two normals with scale parameter κ = 0.12 and mixing probability
λ = 0.05; Panel c: asymmetric Student t density with ν = 10.38 degrees of freedom, skewness parameters
bi = −1; and Panel d: location-scale mixture of two normals with mixing probability λ = 0.05, location
vector δ = −(1.16, 1.24)′ and scale parameter κ = 0.38 (see Appendix D for details). In all DGPs, we
set σ 2

1 = 1 so that R2
1 = 1/2. In order to have a tie between IV and LS, we set ρy2z2.z1 = √

3/2 so that

σ 2
2 = 1/7 and, therefore, γ = 0.22, α = β = 0.39, μ0 = 0.31 and μ1 = μ2 = 0.65

Our results also indicate that non-Gaussian PML based on a restrictive parametric
distribution like the Student t or a discrete scale mixture of normals works well when
the true distribution is spherical, but it generates inconsistencies otherwise when we
impose the constraint σ12 = 0. Notice, though, that the unrestricted estimators are
always consistent for the slope parameters while the restricted estimators seem to be
consistent for β + μ1α despite being inconsistent for both α and β, which is in line
with our theoretical discussion following Proposition 2.
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Fig. 9 Monte Carlo results: T = 1000, μ22 = 3 and ρy2z2.z1 = (μ22 − 1)−1.
Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimumminimumdistance estimator, UPML(mn) andRPML(mn) denote the restricted (σ12 =
0) and unrestricted PMLestimators based on amixture of twonormals,UPML(smn) andRPML(smn) denote
the restricted (σ12 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (σ12 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (σ12 = 0) and unrestricted feasible
PML estimators based on a Student-t. DGPs: Panel a: Student t distribution with ν = 5 degrees of freedom;
Panel b: scale mixture of two normals with scale parameter κ = 0.09 and mixing probability λ = 0.05;
Panel c: asymmetric Student t density with ν = 9.65 degrees of freedom, skewness parameters bi = −1;
and Panel d: location-scale mixture of two normals with mixing probability λ = 0.05, location vector
δ = −(1.01, 1.06)′ and scale parameter κ = 0.32 (see Appendix D for details). In all DGPs, we set
σ 2
1 = 1 so that R2

1 = 1/2. In order to have a tie between IV and LS, we set ρy2z2.z1 = 1/
√
2 so that

σ 2
2 = 1/3 and, therefore, γ = 0.20, α = β = 0.40, μ0 = 0.15 and μ1 = μ2 = 0.58

In turn, the performance of the two-step SS estimators is very similar to the per-
formance of the corresponding parametric estimators, although their finite sample
variances are larger than what the asymptotic theory predicts. Specifically, the consis-
tency pattern of the restricted and unrestricted SS estimators is almost identical.

More importantly,wefind that non-GaussianPMLEsbased on aflexible distribution
like a general finite mixture of normals works well in practice regardless of the true
distribution, systematically dominating MD. In addition, the version that imposes the
valid covariance restriction σ12 = 0 is always more efficient than the unrestricted one.
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Fig. 10 Monte Carlo results: T = 1000, μ22 = 3 and ρy2z2.z1 = 1
2μ22(μ22 − 1)−1.

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimumminimumdistance estimator, UPML(mn) andRPML(mn) denote the restricted (σ12 =
0) and unrestricted PMLestimators based on amixture of twonormals,UPML(smn) andRPML(smn) denote
the restricted (σ12 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (σ12 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (σ12 = 0) and unrestricted feasible
PML estimators based on a Student t. DGPs: Panel a: Student t distribution with ν = 5 degrees of freedom;
Panel b: scale mixture of two normals with scale parameter κ = 0.09 and mixing probability λ = 0.05;
Panel c: asymmetric Student t density with ν = 9.65 degrees of freedom, skewness parameters bi = −1;
and Panel d: location-scale mixture of two normals with mixing probability λ = 0.05, location vector
δ = −(1.01, 1.06)′ and scale parameterκ = 0.32 (see Appendix D for details). In all DGPs, we set σ 2

1 = 1

so that R2
1 = 1/2. In order to have a maximum relative efficiency of IV versus LS, we set ρy2z2.z1 = √

3/2

so that σ 2
2 = 1/7 and, therefore, γ = 0.22, α = β = 0.39, μ0 = 0.31 and μ1 = μ2 = 0.65

5 Directions for further research

Aswementioned at the end of Sect. 3.2, it would be useful to generalise our theoretical
results dropping the assumption of spherical symmetry. Similarly, and although we
have seen that our proposed finite mixture-based PMLEs get close to achieving the
SP efficiency bound both under sphericity and in general, an obvious extension of
our Monte Carlo experiments would be to consider standard two-step SP estimators
that starting from a consistent estimator such as OLS carry out one BHHH iteration
using the efficient SP score estimated nonparametrically without imposing spherical
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Fig. 11 Monte Carlo results: T = 1000, μ22 = 7/3 and ρy2z2.z1 = (μ22 − 1)−1.
Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimumminimumdistance estimator, UPML(mn) andRPML(mn) denote the restricted (σ12 =
0) and unrestricted PMLestimators based on amixture of twonormals,UPML(smn) andRPML(smn) denote
the restricted (σ12 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (σ12 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (σ12 = 0) and unrestricted feasible
PML estimators based on a Student t. DGPs: Panel a: Student t distribution with ν = 11/2 degrees of
freedom; Panel b: scale mixture of two normals with scale parameter κ = 0.12 and mixing probability
λ = 0.05; Panel c: asymmetric Student t density with ν = 10.38 degrees of freedom, skewness parameters
bi = −1; and Panel d: location-scale mixture of two normals with mixing probability λ = 0.05, location
vector δ = −(1.16, 1.24)′ and scale parameter κ = 0.38 (see Appendix D for details). In all DGPs, we
set σ 2

1 = 1 so that R2
1 = 1/2. In order to have a tie between IV and LS, we set ρy2z2.z1 = √

3/2 so that

σ 2
2 = 1/7 and, therefore, γ = 0.22, α = β = 0.39, μ0 = 0.31 and μ1 = μ2 = 0.65

symmetry. The curse of dimensionality in estimating multivariate densities, though,
might further reduce the theoretical advantages of this method in finite samples.

Another worthwhile exercise would be to extend the analysis in this paper to the
general simultaneous equation model with an arbitrary numbers of endogenous vari-
ables and instrumental ones considered by Arellano (1989a). Aside from involving
more complex analytical expressions than in the bivariate example we have consid-
ered, the main practical complication would be that the number of free parameters of
a standardised multivariate mixture increases with the square of the cross-sectional
dimension, as we explain in Appendix D.

Last, but not least, deriving a formal result that shows that finite Gaussian-
mixture-based PMLEs may provide a proper sieve ML estimator when the number of
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components increases at a suitable rate constitutes a particularly interesting avenue
for further research.
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A Asymptotic covariancematrices

A.1 Instrumental variables (IV)

Let vi = (v1i , v2i )
′ denote the reduced form innovations

vi = yi − Czi = B−1ui ,

where yi = (y1i , y2i )′ and zi = (1, z1i , z2i )′, so that E(vi |zi ) = 0 and V (vi |zi ) =
B−1�B′−1 = �, with

B′−1 =
(
1 α

0 1

)
.

In this context, the unrestricted Gaussian PMLE of α and β coincides with the
IV estimator that uses a constant, z1 and z2 as instruments in the first equation. To
consider both equations at once, let ϑ = (θ ′, σ12)′ and

ZU
di (ϑ) = [ZU

li (ϑ), ZU
si (ϑ)], (A1)

where

ZU
li (ϑ) = ∂μ′

i (ϑ)

∂ϑ
�− 1

2 ′(ϑ),

ZU
si (ϑ) = 1

2

∂vec′[�(ϑ)]
∂ϑ

[
�− 1

2 ′(ϑ) ⊗ �− 1
2 ′(ϑ)

]
,
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∂μ′
i (ϑ)

∂ϑ
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
μ0 + μ1z1i + μ2z2i 0

z2i 0
α 1

αz1i z1i
αz2i z2i
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∂vec′[�(ϑ)]
∂ϑ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
2(ασ 2

2 + σ12) σ 2
2 σ 2

2 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
α2 α α 1
2α 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

�− 1
2 (ϑ) =

⎛
⎜⎜⎝

1√
σ 2
1 +α2σ 2

2 +2ασ12

0

− ασ 2
2 +σ12

σ 2
1 +α2σ 2

2 +2ασ12

/√
σ 2
1 σ 2

2 −σ 2
12

σ 2
1 +α2σ 2

2 +2ασ12

√
σ 2
1 +α2σ 2

2 +2ασ12

σ 2
1 σ 2

2 −σ 2
12

⎞
⎟⎟⎠

is the inverse of the (lower) Cholesky decomposition of �.
We can then exploit Proposition C2 in Supplementary Appendix C of Fiorentini

and Sentana (2021) to obtain

AVar(
√
nϑ̃ I V ) = [AU ,ϑϑ (ϑ)]−1BU ,ϑϑ (ϑ,	)[AU ,ϑϑ (ϑ)]−1, (A2)

where

AU ,ϑϑ (ϑ) = E
[
ZU
di (ϑ)K(0)ZU ′

di (ϑ)
]
and

BU ,ϑϑ (ϑ, 	) = E
[
ZU
di (ϑ)Kv(ϑ, 	)ZU ′

di (ϑ)
]
,

with

Kv(ϑ, 	) = V [edi (ϑ, 0)] =
[

I2 
v(ϑ, 	)


v′(ϑ, 	) ϒv(ϑ, 	)

]
, (A3)


v(ϑ0, 	0) = E[v∗
i vec

′(v∗
i v

∗′
i )],ϒv(ϑ0, 	0) = E[vec(v∗

i v
∗′
i − I2)vec′(v∗

i v
∗′
i − I2)]

and v∗
i = �−1/2vi , so that 
v(0) = 0 and ϒv(0) = (I4 + K 22) if we use 	 = 0 to
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denote normality and Kmn for the commutation matrix of orders m and n (see, e.g.
Magnus and Neudecker (2019)).

Given that the assumption of constant conditional higher-order cumulants applies
to the structural model, though, we need to relate the higher-order moments of the
reduced form residuals to those of the structural ones. Defining

F(θ) = L2[B−1(θ) ⊗ B−1(θ)]D2 =
⎡
⎣ 1 2α α2

0 1 α

0 0 1

⎤
⎦ ,

where L2 and D2 are the elimination and duplication matrices of order 2, respectively
(see Magnus and Neudecker (2019)), we will have that

E[vivec′(viv′
i )] = −B−1(θ)�(θ)

1
2 
u(	)[�(θ)

1
2 ′ ⊗ �(θ)

1
2 ′]F′(θ)

and

E[vec(viv′
i − I2)vec

′(viv′
i − I2)] = F(θ)[�(θ)

1
2 ⊗ �(θ)

1
2 ]ϒu(	)[�(θ)

1
2 ′ ⊗ �(θ)

1
2 ′]F′(θ),

where 
u(	0) = E[u∗
i vec

′(u∗
i u

∗′
i )], ϒu(	0) = E[vec(u∗

i u
∗′
i − I2)vec′(u∗

i u
∗′
i − I2)]

and u∗
i = �−1/2ui .

After some tedious calculations, it is straightforward to prove that

AVar
(√

nα̃I V
) = σ 2

1 σ 2
z1

μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)

and

AVar
(√

nβ̃I V

)
= σ 2

1

(
μ2
1σ

2
z1 + μ2

2σ
2
z2 + 2μ1μ2σz1z2

)
μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

) .

For our purposes, it is convenient to rewrite these expressions as

AVar
(√

nα̃I V
) =

(
1 − R2

1

) (
1 − ρ2

y2z2.z1

)
(
1 − R2

2

)
ρ2
y2z2.z1

and

AVar
(√

nβ̃I V

)
=

R2
2

(
1 − R2

1

) (
1 − ρ2

y2z2.z1

)
(
1 − R2

2

)
ρ2
y2z2.z1

,

where R2
1 and R2

2 are the population coefficients of determination of Eqs. (1) and (2),
respectively, and ρy2z2.z1 the correlation coefficient between y2 and z2 after partialling
out the effect of z1.
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A.2 Ordinary least squares (LS)

As mentioned in Sect. 2, the restricted Gaussian PMLE that imposes σ12 = 0
coincides with the OLS estimator of the first equation. To consider both equations at
once, let

ZR
di (θ) = (I8, 08×1)ZU

di (θ , 0). (A4)

Then, analogous calculations to the ones in the previous subsection imply that

AVar
(√

nθ̂ LS

)
= A−1

R,θθ (θ)BR,θθ (θ,	)A−1
R,θθ (θ) , (A5)

where

AR,θθ (θ) = E
[
ZR
di (θ)Kv(0)ZR′

di (θ)
]
and BR,θθ (θ , 	) = E

[
ZR
di (θ)Kv(θ , 	)ZR′

di (θ)
]
,

After some straightforward calculations, it is easy to show that

AVar
(√

nα̂LS
) = σ 2

1 σz1
(
σ 2
z1σ

2
z2 − σ 2

z1z2

)
μ2
2[

μ2
2σ

2
z1z2 − σ 2

z1

(
σ 2
2 + μ2

2σ
2
z2

)]2 + σ 2
1 σ 2

2 σ 4
z1μ22[

μ2
2σ

2
z1z2 − σ 2

z1

(
σ 2
2 + μ2

2σ
2
z2

)]2

and

AVar
(√

nβ̂LS
) = σ 2

1

{
σ 2
z2μ

2
2

[
σ 4
z1μ

2
1 + 2σz1

(
σ 2
2 + σz1z2μ1μ2

)− σ 2
z1z2μ

2
2

]+ σ 2
z1σ

4
z2μ

4
2

}
[
σ 2
2 σ 2

z1 + μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)]2

+σ 2
1

(
σ 2
2 + μ1μ2σz1z2

)[
σ 2
2 σ 2

z1 − σz1z2
(
σ 2
z1μ1μ2 + 2σz1z2μ

2
2

)]
[
σ 2
2 σ 2

z1 + μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)]2

+ σ 2
1 σ 2

2

(
σ 2
z1μ1 + σz1z2μ2

)2
μ22[

σ 2
2 σ 2

z1 + μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)]2 .

Again, it is convenient to rewrite these expressions as

AVar
(√

nα̂LS
) =

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)[
μ22

(
1 − ρ2

y2z2.z1

)+ ρ2
y2z2.z1

]
1 − R2

2

and

AVar
(√

nβ̂LS
) =

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)[
1 + (

μ22 − 1
)(
R2
2 − ρ2

y2z2.z1

)]
1 − R2

2

,
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A.3 Optimumminimum distance (MD)

Let c = vec(C) and ω = vech(�) denote the parameters of the unrestricted reduced
form model. From Eqs. (5)–(6), we will have that

c10 = γ + αμ0, c20 = μ0, ω11 = σ11 + α2σ22 + 2ασ12,

c11 = β + αμ1, c21 = μ1, ω12 = ασ22 + σ12,

c12 = αμ2, c22 = μ2, ω22 = σ22.

Let φ̃LS = ( c̃10, c̃11, c̃12, c̃20, c̃21, c̃22, ω̃11, ω̃12, ω̃22)
′ denote their unrestrictedGaus-

sian PML estimators, which coincide with equation by equation OLS. To obtain the
asymptotic distributions of these estimators, we need the first derivatives of the con-
ditional mean vector and covariance matrix with respect to the unrestricted reduced
form parameters, which are given by

∂Czi
∂c′

= z′i ⊗ I2 and
∂vec[�(θ)]

∂ω′ = D2.

In this notation, the contribution to the Gaussian log-likelihood scores for c and ω

corresponding to observation i will be given by

sci (c,ω) = zi ⊗ �−1(θ)vi (c)

and

sωi (c,ω) = 1

2
D′
2vec[�(θ)−1vi (c)v′

i (c)�(θ)−1 − �(θ)−1].

Consequently, the outer product of the scores will be

sci (c,ω)s′ci (c,ω) = zi z′i ⊗ �(θ)−1vi (c)v′
i (c)�(θ)−1,

sωi (c,ω)s′ci (c,ω) = 1

2
D′
2vec[�(θ)−1vi (c)v′

i (c)�(θ)−1 − �(θ)−1][z′
i ⊗ v′

i (c)�(θ)−1]

and

sωi (c,ω)s′ωi (c,ω) = 1

4
D′
2vec

[
�(θ)−1vi (c)v′

i (c)�(θ)−1 − �(θ)−1]
×vec′[�(θ)−1vi (c)v′

i (c)�(θ)−1 − �(θ)−1]D2.

Similarly, we can easily adapt the expressions in Amengual et al. (2022) to write
the contribution of observation i to the Hessian matrix hc,ωi (c,ω) as

= −
{

(zi z′
i ⊗ �(θ)−1)

[
ziv′

i (c)�
−1(θ) ⊗ �(θ)−1]D2

D′
2

[
�(θ)−1vi (c)z′

i ⊗ �(θ)−1] D′
2{�(θ)−1 ⊗ [

�(θ)−1vi (c)v′
i (c)�(θ)−1 − 1

2�(θ)−1]}D2

}
.
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Thus, we have all the ingredients to compute AVar(
√
nφ̃LS) using the standard sand-

wich formula in White (1982) and Gouriéroux et al. (1984).
On this basis, we can show that the asymptotic variance of Malinvaud (1970)

optimum MD estimator will be given by

AVar(
√
nθ̂MD) =

{
∂φ′(θ)

∂θ

[
AVar(

√
nφ̃LS)

]−1 ∂φ(θ)

∂θ ′
}−1

, (A6)

where

φ(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c10 − γ − αμ0
c11 − β − αμ1
c12 − αμ2
c20 − μ0
c21 − μ1
c22 − μ2

ω11 − σ11 − α2σ22
ω12 − ασ22
ω22 − σ22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Specifically, we obtain that

AVar
(√

nα̂MD
) = σ 2

1 σ 2
z1μ22

σ 2
z1σ

2
2 + (

σ 2
z1σ

2
z2 − σ 2

z1z2

)
μ2
2μ22

and

AVar
(√

nβ̂MD
) = σ 2

1

[
σ 2
2 + (

σ 2
z1μ

2
1 + σ 2

z2μ
2
2 + 2σz1z2μ1μ2

)
μ22

]
σ 2
z1σ

2
2 + (

σ 2
z1σ

2
z2 − σ 2

z1z2

)
μ2
2μ22

,

which rewritten in terms of the population coefficients of determination, become

AVar
(√

nα̂MD
) =

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)
μ22(

1 − R2
2

)[
1 + ρ2

y2z2.z1

(
μ22 − 1

)]

and

AVar
(√

nβ̂MD
) =

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)[
1 + R2

2

(
μ22 − 1)

]
(
1 − R2

2

)[
1 + ρ2

y2z2.z1

(
μ22 − 1

)] .

A.4 Maximum likelihood with spherical innovations

Invoking Proposition C1 in Supplementary Appendix C of Fiorentini and Sentana
(2021), we can obtain the asymptotic variance of the ML estimator that imposes
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σ12 = 0 as

AVar(
√
nθ̂ML) = I−1

R (θ, η), where IR(θ , η) = E[ZR
i (θ)M(η)ZR′

i (θ)], (A7)

ZR
i (θ) =

(
ZR
di (θ) 0
0 Iq

)
, M(η) =

⎛
⎝Mll(η) 0 0

0 Mss(η) Msr (η)

0 M′
sr (η) Mrr (η)

⎞
⎠ ,

Mll(η) = mllI2,

Mss(η) = mss (I4 + K22) + [mss − 1]vec(I2)vec′(I2),
Msr (η) = vec(I2)msr

and

Mrr (η) = V [er t (φ)
∣∣φ] = −E[∂er t (φ)/∂η′∣∣φ],

with

mll = E
[
δ2(ςi , η)

ςi

2

]
,

mss = 1 + E

[
∂δ(ςi , η)

∂ς

(ςi

2

)2]
, and

msr = −E

[
ςi

2

∂δ(ςi , η)

∂η′

]
.

Similarly, we can compute the asymptotic variance of the unrestricted ML estimator
which also estimates σ12 as

AVar
(√

nϑ̃ML

)
= I−1

U (ϑ, η), where IU (ϑ, η) = E[ZU
i (θ , 0)M(η)ZU ′

i (θ , 0)], (A8)

with

ZU
i (θ , 0) =

(
ZU
di (θ , 0) 0

0 Iq

)
.

As a consequence,

AVar
(√

nα̂ML
) = σ 2

1 σ 2
z1

mssσ
2
2 σ 2

z1 + mllμ
2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)

and

AVar
(√

nβ̂ML
) = σ 2

1

[
mssσ

2
2 + mll

(
μ2
1σ

2
z1 + μ2

2σ
2
z2 + 2μ1μ2σz1z2

)]
mll
[
mssσ

2
2 σ 2

z1 + mllμ
2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)] .
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Analogous calculations using ZU
i (θ , 0) in place of ZR

i (θ , 0) for the unrestricted
ML estimator yield

AVar
(√

nα̃ML
) = σ 2

1 σ 2
z1

mllμ
2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)

and

AVar
(√

nβ̃ML
) = σ 2

1

(
μ2
1σz1 + μ2

2σ
2
z2 + 2μ1μ2σz1z2

)
mllμ

2
2

(
σz1σ

2
z2 − σ 2

z1z2

) .

Once again, we can write these expressions as

AVar
(√

nα̂ML
) =

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)
(
1 − R2

2

)[(
1 − ρ2

y2z2.z1

)
mss + ρ2

y2z2.z1mll
]

and

AVar
(√

nβ̂ML
) =

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)[
R2
2mll + (

1 − R2
2

)
mss
]

(
1 − R2

2

)
mll
[(
1 − ρ2

y2z2.z1

)
mss + ρ2

y2z2.z1mll
]

for the restricted estimator, and as

AVar
(√

nα̃ML
) =

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)
(
1 − R2

2

)
ρ2
y2z2.z1 mll

and

AVar
(√

nβ̃ML
) = R2

2

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)
(
1 − R2

2

)
ρ2
y2z2.z1 mll

for the unrestricted one.

A.5 Spherically symmetric semiparametric estimator (SS)

From Proposition C3 in Supplementary Appendix C of Fiorentini and Sentana (2021),
the spherically symmetric SP efficiency bound is given by

S̊ j (θ) = I j,θθ (φ) − W j
s (θ)W j ′

s (θ) ·
{
[2 mss − 1] − 2

4κ + 2

}

where

W j
s
(
θ
) = Z j

d

(
θ
)[
0′, vec′(I2)]′ for j = R,U ,

123



SERIEs (2023) 14:253–300 285

and

Iθθ (θ, η) = E
[
Zdi (θ)Mdd(θ , η)Z′

di (θ)
]
.

Under suitable regularity conditions, we have that

AVar
(√

nθ̂ SS
) = [S̊R

(
θ
)]−1 (A9)

and

AVar
(√

nθ̃ SS
) = [S̊U (θ)]−1

. (A10)

Tedious but otherwise straightforward calculations show that for the restricted esti-
mator that imposes σ12 = 0 we obtain

AVar
(√

nα̂SS
) = AVar

(√
nα̂ML

)
and AVar

(√
nβ̂SS

) = AVar
(√

nβ̂ML
)
,

while for the unrestricted one we get

AVar
(√

nα̃SS
) = AVar

(√
nα̃ML

)
and AVar

(√
nβ̃SS

) = AVar
(√

nβ̃ML
)
.

A.6 Maximum likelihood with general innovations

If we use Proposition D3 in Supplementary Appendix D of Fiorentini and Sentana
(2021), we can obtain the asymptotic variance of the ML estimator that imposes
σ12 = 0 by computing

AVar
(√

nθ̂ML
) = I−1

GR

(
θ, 	

)
, where IGR

(
θ, 	

) = E
[
ZGR
i

(
θ
)M(

	
)
ZGR′
i

(
θ
)]

,

where

ZGR
di (θ) =

[
ZR
li (θ),ZGR

si (θ)
]
, (A11)

ZGR
si (θ) = ∂vec′[� 1

2 (θ)]
∂θ

[
I2 ⊗ �− 1

2 ′(θ)
]
,
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∂vec′[� 1
2 (θ)]

∂θ
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

ασ 2
2√

σ 2
1 +ασ 2

2

σ 2
1 σ 2

2
(σ 2

1 +ασ 2
2 )3/2

0 − α

σ 2
1

(
σ 2
1 σ 2

2
σ 2
1 +ασ 2

2

)3/2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

2
√

σ 2
1 +ασ 2

2

− ασ 2
2

2(σ 2
1 +ασ 2

2 )3/2
0

α2σ 2
2

2(σ 2
1 +α2σ 2

1 σ 2
2 )

√
σ 2
1 σ 2

2
σ 2
1 +ασ 2

2

α2

2
√

σ 2
1 +ασ 2

2

2ασ 2
1 +α3σ 2

2
2(σ 2

1 +ασ 2
2 )3/2

0
σ 2
1

2(σ 2
1 σ 2

2 +α2σ 2
2 )

√
σ 2
1 σ 2

2
σ 2
1 +ασ 2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

M(	) =
⎡
⎣Mll(	) Mls(	) Mlr (	)

M′
ls(	) Mss(	) Msr (	)

M′
lr (	) M′

sr (	) Mrr (	)

⎤
⎦ ,

with

Mll(	) = V [elt (φ)|φ] = E
[
∂2 ln f (ε∗

t ; 	)/∂ε∗∂ε∗′∣∣ 	] ,
Mls(	) = E[elt (φ)est (φ)′|φ] = E

[
∂2 ln f (ε∗

t ; 	)/∂ε∗∂ε∗′ · (ε′∗
t ⊗ I2)

∣∣ 	] ,
Mss(	) = V [est (φ)|φ] = E

[
(ε∗

t ⊗ I2) · ∂2 ln f (ε∗
t ; 	)/∂ε∗∂ε∗′ · (ε∗′

t ⊗ I2)|	
]− K22,

Mlr (	) = E[elt (φ)e′
r t (φ)|φ] = −E

[
∂2 ln f (ε∗

t ; 	)/∂ε∗∂	′|	] ,
Msr (	) = E[est (φ)e′

r t (φ)|φ] = −E
[
(ε∗

t ⊗ I2)∂2 ln f (ε∗
t ; 	)/∂ε∗∂	′|	] ,

and

Mrr (	) = V [er t (φ)|φ] = −E
[
∂2 ln f (ε∗

t ; 	)/∂	∂	′|φ
]
.

Analogously, we can obtain AVar(
√
nθ̃ML) = I−1

U (θ , 	) by exploiting the expres-
sions for the derivatives of the unrestricted model that we obtained when we discussed
the IV estimators.

A.7 Semiparametric estimator (SP)

We can make use of Proposition D3 in Supplementary Appendix D of Fiorentini and
Sentana (2021), which indicates that the SP efficiency bound for j = R,U will be
given by

S̈ j (φ) = I j,θθ (θ , 	) − ZGj
d (θ)

[Mdd (	) − K(0)Kv+(	)K(0)
]
ZGj ′
d (θ), (A12)
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where + denotes the Moore–Penrose inverse, with

Mdd (	) =
(Mll(	) Mls(	)

M′
ls(	) Mss(	)

)

and the matrix of third- and fourth-order central momentsKv(	) in (A3). Then, under
suitable regularity conditions, we will have that

AVar
(√

nθ̂ SP
) = [S̈R

(
θ
)]−1 (A13)

and

AVar
(√

nθ̃ SP
) = [S̈U (θ)]−1

. (A14)

The expression forKu(	) simplifies considerably in the spherically symmetric case
because

E(u∗
i u

∗′
i ⊗ u∗

i ) = 0, (A15)

E(u∗
i u

∗
i
′ ⊗ u∗

i u
∗
i
′)= E[vec(u∗

i u
∗
i
′)vec′(u∗

i u
∗
i
′)]

= (κ+1)[(I4+K22)+vec (I2) vec′ (I2)]. (A16)

As a result, after some tedious calculations we obtain that for the estimator that
imposes the restriction σ12 = 0,

AVar(
√
nα̂SP ) = σ 2

1 σ 2
z1(1 + κ)

σ 2
2 σ 2

z1 + mll(1 + κ)μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)

and

AVar
(√

nβ̂SP
) = σ 2

1

[
σ 2
2 + (1 + κ)mll

(
μ2
1σ

2
z1 + μ2

2σ
2
z2 + 2μ1μ2σz1z2

)]
mll
[
σ 2
2 σ 2

z1 + (1 + κ)μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)] ;

while for the unrestricted one,

AVar
(√

nα̃SP
) = σ 2

1 σ 2
z1

mllμ
2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)

and

AVar
(√

nβ̃SP
) = σ 2

1

(
μ2
1σ

2
z1 + μ2

2σ
2
z2 + 2μ1μ2σz1z2

)
mllμ

2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

) .

Once again, we can rewrite these expressions as

AVar
(√

nα̂SP
) =

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)
(1 + κ)(

1 − R2
2

)[(
1 − ρ2

y2z2.z1

)+ ρ2
y2z2.z1mll(1 + κ)

]

123



288 SERIEs (2023) 14:253–300

and

AVar
(√

nβ̂SP
) =

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)(
1 + κ

)[
1 − R2

2 + R2
2mll

(
1 + κ

)]
(
1 − R2

2

)[(
1 − ρ2

y2z2.z1

)+ ρ2
y2z2.z1mll

(
1 + κ

)]
mll(1 + κ)

,

in the restricted case, and as

AVar
(√

nα̃SP
) =

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)
mll
(
1 − R2

2

)
ρ2
y2z2.z1

and

AVar
(√

nβ̃SP
) = R2

2

(
1 − R2

1

)(
1 − ρ2

y2z2.z1

)
mll
(
1 − R2

2

)
ρ2
y2z2.z1

when σ12 is also estimated.

A.8 Reparametrisations

The results in the previous subsections can be used to derive the asymptotic distribution
of alternative parametrisations. Specifically, for estimators that impose σ12 = 0, the
asymptotic covariance of the reparametrisation in (8) is simply

AVar
(√

nθ̂
†) = Jθ†θAVar

(√
nθ̂
)
J′
θ†θ

,

where

Jθ†θ = ∂θ†

∂θ ′ =

⎡
⎢⎢⎣
I6 0 0

0 1
2σ 2

1
− 1

2σ 2
2

0 σ2
2σ1

σ1
2σ2

⎤
⎥⎥⎦ . (A17)

In turn, for unconstrained estimators that also estimate σ12, so that ϑ† = (ϑ ′, ψ12)
′,

we would have

AVar
(√

nϑ̃
†) = Jϑ†ϑAVar

(√
nϑ̃
)
J′
ϑ†ϑ

with

Jϑ†ϑ = ∂ϑ†

∂ϑ ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I6 0 0 0

0 σ 2
1 σ 2

2 −2σ 2
12

2σ 2
1 (σ 2

1 σ 2
2 −σ 2

12)
− σ 2

1
2(σ 2

1 σ 2
2 −σ 2

12)

σ12
σ 2
1 σ 2

2 −σ 2
12

0 σ 2
2

2
√

σ 2
1 σ 2

2 −σ 2
12

σ 2
1

2
√

σ 2
1 σ 2

2 −σ 2
12

− σ12

2
√

σ 2
1 σ 2

2 −σ 2
12

0 −σ12
σ 4
1

0 1
σ 2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A18)
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B Proofs of Propositions

Proof of Proposition 1

Computing inMathematica the spectral decompositionofAVar(
√
nθ̂ LS)−AVar(

√
nθ̂MD)

using the expressions (A5) and (A6), we find that it has only one eigenvalue different
from zero, namely,

(
μ22 − 1

)2
μ2
2σ

2
1 σ 2

2

{
σ 2
z1z2

(
1 + τ 21

)
μ2
2 + [

1 + μ2
1 + (

μ0 + τ2μ2
)2]

σ 4
z1

}(
σ 2
z1σ

2
z2 − σ 2

z1z2

)
[
μ22μ

2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)− σ 2
2 σ 2

z1

][
σ 2
2 σ 2

z1 − μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)]2

−2
(
μ22 − 1

)2
μ2
2σ

2
1 σ 2

2 σz1z2μ2
[
τ1
(
μ0 + τ2μ2

)− μ1
]
σz1
(
σ 2
z1σ

2
z2 − σ 2

z1z2

)
[
μ22μ

2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)− σ 2
2 σz1

][
σ 2
2 σz1 − μ2

2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)]2 ,

which is non-negative, with

(
σz1
(
1 + μ2τ2

)− σz1z2μ2τ1

σz1μ1 + σz1z2μ2
,− σz1

σ 2
z1μ1 + σz1z2μ2

, 1, 01×5

)′
(B19)

as associated eigenvector.
Analogously, after computing the spectral decomposition of AVar(

√
nθ̃ I V ) −

AVar(
√
nθ̂MD) using the expressions (A2) and (A6 ), we find that it has only one

eigenvalue different from zero, namely,

σ 2
1 σ 2

2

{
σ 2
z1z2

(
1 + τ 21

)
μ2
2 − 2σz1z2μ2

[
τ1
(
μ0 + τ2μ2

)− μ1
]
σ 2
z1 + [

1 + μ2
1 + (

μ0 + τ2μ2
)2]

σ 4
z1

}
[
μ22μ

2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)− σ 2
2 σ 2

z1

]
μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

) ,

which is non-negative, with (B19) its associated eigenvector once again.
Finally, doing the same for AVar(

√
nθ̃ I V ) − AVar(

√
nθ̂MD) by combining (A2)

and (A5), we find that it has only one eigenvalue different from zero, namely,

(μ22 − 1)2μ2
2σ

2
z1σ

2
z2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

){
σ 2
z1z2

(
1 + τ 21

)
μ2
2 − 2σz1z2μ2

[(
μ0 + μ2τ2

)
τ1 − μ1

]
σ 2
z1

}
[
μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)− σ 2
1 σ 2

z1

]2[
μ22μ

2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)− σ 2
2 σ 2

z1

]

+
(
μ22 − 1

)2
μ2
2σ

2
z1σ

2
z2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

){[
1 + μ2

1 + σ 2
z1

(
μ0 + μ2τ2

)2]}
[
μ2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)− σ 2
1 σ 2

z1 ]2
[
μ22μ

2
2

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)− σ 2
2 σ 2

z1

] ,

which can be positive or negative depending on μ22, and with the same eigenvector.
��
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Proof of Proposition 2

Computing in Mathematica the spectral decomposition of AVar(
√
nθ̂

†
SS)−

AVar[√nθ̂
†
ML(η̄)] using (A17), the expression in (A9) and exploiting the fact that

AVar
[√

nθ̂ML(η̄)
] = [Iθθ

(
θ ,η̄
)]−1

,

where Iθθ (θ ,η) denotes the block of the information matrix of the mean and variance
parameters, we find that it has only one eigenvalue different from zero, with associated
eigenvector

(01×7, 1)
′ .

Similarly, we find that the spectral decomposition of AVar(
√
nθ̂ SP )

−AVar[√nθ̂ML(η̄)] using also (A13), has five eigenvalues different from zero. By
looking at the orthogonal basis for its null space, which is given by

(
0, σ 2

z1μ1 + σz1z2μ2, σ
2
z1 , 01×5

)′

and

(02×4, I2, 02×2)
′,

we can immediately see that the parameters that are estimated adaptively are μ1, μ2,
and the linear combination of α and β indicated by the first eigenvector. In turn, a
basis for its image is given by

(1, 01×7)
′,(

0,−σ 2
z1 , μ1σ

2
z1 + σz1z2μ2, 01×5

)′
,

(01×3, 1, 01×4)
′

and

(01×6, I2)′ .

Finally, using an entirely analogous procedure with (A13) and (A6), we find that
the spectral decomposition of AVar(

√
nθ̂MD) − AVar(

√
nθ̂ SP ) has four eigenval-

ues different from zero, with a basis for its image given by (02×1, I2, 02×5) and
(02×4, I2, 02×2), and a basis for its kernel by (02×6, I2), (1, μ0+μ1τ1+μ2τ2, τ1, 01×5)

and (01×3, 1, τ1, τ2, 01×2), as can be easily checked by premultiplying the difference
between the covariance matrices by an 8 × 8 matrix whose rows concatenate those
two basis and postmultiplying it by its transpose. ��
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Proof of Proposition 3

Computing the spectral decomposition of AVar(
√
nθ̃ML) − AVar(

√
nθ̂ML)

in Mathematica using the expressions (A7) and (A8), we find that it has only one
eigenvalue different from zero, namely,

σ 2
1 σ 2

2mss
{
σ 2
z1z2μ

2
2

(
1 + τ 21

)− 2σz1z2σ
2
z1μ2

[(
μ0 + μ2τ2

)
τ1 − μ1

]+ σ 4
Z1

[
1 + μ2

1 + (
μ0 + μ2τ2

)2]}
μ2
2mll

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)[
mssσ

2
2 σ 2

z1 + μ2
2mll

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)]

with associated eigenvector (B19).
Using (A9) and (A10), we find that the same turns out to be true for AVar(

√
nθ̃ SS)−

AVar(
√
nθ̂ SS).

Finally, if we do the same for AVar(
√
nθ̃N P ) − AVar(

√
nθ̂N P ) using (A13) and

(A14), we also find that it has only one eigenvalue different from zero, namely

σ 2
1 σ 2

2

{
σ 2
z1z2μ

2
2

(
1 + τ 21

)− 2σz1z2σ
2
z1μ2

[(
μ0 + μ2τ2

)
τ1 − μ1] + σ 4

Z1

[
1 + μ2

1 + (
μ0 + μ2τ2)

2
]}

μ2
2mll

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)[
σ 2
2 σ 2

z1 + (1 + κ)μ2
2mll

(
σ 2
z1σ

2
z2 − σ 2

z1z2

)] ,

and that its image is given by the same eigenvector as in the previous cases. ��
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C Simplifying the DGP

C.1 Standardised variables

We start by assuming that:

⎛
⎜⎜⎝

y1
y2
z1
z2

⎞
⎟⎟⎠ ∼

⎡
⎢⎢⎣

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 ρy1y2 ρy1z1 ρy1z2
ρy1y2 1 ρy2z1 ρy2z2
ρy1z1 ρy2z1 1 ρz1z2
ρy1z2 ρy2z2 ρz1z2 1

⎞
⎟⎟⎠

⎤
⎥⎥⎦ ,

where the correlation matrix is positive definite.
In this notation, the coefficients of the least squares projection of y1 onto y2 and z1

are

(
α

β

)
=
(

1 ρy2z1
ρy2z1 1

)−1 (
ρy1y2
ρy1z1

)

= 1

1 − ρ2
y2z1

(
ρy1y2 − ρy1z1ρy2z1
ρy1z1 − ρy1y2ρy2z1

)
,

the corresponding projection errors

u1 = y1 − αy2 − βz1 = y1 − ρy1y2 − ρy1z1ρy2z1

1 − ρ2
y2z1

y2 − ρy1z1 − ρy1y2ρy2z1

1 − ρ2
y2z1

z1

and the residual variance

V (u1) = 1 − (
ρy1y2 ρy1z1

) ( 1 ρy2z1
ρy2z1 1

)−1 (
ρy1y2
ρy1z1

)

= 1 − ρ2
y1y2 + ρ2

y1z1 − 2ρy2z1ρy1y2ρy1z1

1 − ρ2
y2z1

,

so that the R2 becomes

R2
1 = ρ2

y1y2 + ρ2
y1z1 − 2ρy2z1ρy1y2ρy1z1

1 − ρ2
y2z1

.

In turn, the coefficients of the least squares projection of y2 onto z1 and z2 are

(
μ1
μ2

)
=
(

1 ρz1z2
ρz1z2 1

)−1 (
ρy2z1
ρy2z2

)

= 1

1 − ρ2
z1z2

(
ρy2z1 − ρy2z2ρz1z2
ρy2z2 − ρy2z1ρz1z2

)
,
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the corresponding projection errors

u2 = y2 − μ1z1 − μ2z2 = y2 − ρy2z1 − ρy2z2ρz1z2

1 − ρ2
z1z2

z1 − ρy2z2 − ρy2z1ρz1z2

1 − ρ2
z1z2

z2

and the residual variance

V (u2) = 1 − (
ρy2z1 ρy2z2

) ( 1 ρz1z2
ρz1z2 1

)−1 (
ρy2z1
ρy2z2

)

= 1 − ρ2
y2z1 + ρ2

y2z2 − 2ρz1z2ρy2z1ρy2z2

1 − ρ2
z1z2

,

so that the R2 becomes

R2
2 = ρ2

y2z1 + ρ2
y2z2 − 2ρz1z2ρy2z1ρy2z2

1 − ρ2
z1z2

.

Finally, the covariance between the previous projection errors is

E[(y1 − αy2 − βz1)(y2 − μ1z1 − μ2z2)]

= E

[(
y1 − ρy1 y2 − ρy1z1ρy2z1

1 − ρ2
y2z1

y2 − ρy1z1 − ρy1 y2ρy2z1

1 − ρ2
y2z1

z1

)

(
y2 − ρy2z1 − ρy2z2ρz1z2

1 − ρ2
z1z2

z1 − ρy2z2 − ρy2z1ρz1z2

1 − ρ2
z1z2

z2

)]

= ρy1 y2 − ρy2z1 − ρy2z2ρz1z2

1 − ρ2
z1z2

ρy1z1 − ρy2z2 − ρy2z1ρz1z2

1 − ρ2
z1z2

ρy1z2

−ρy1 y2 − ρy1z1ρy2z1

1 − ρ2
y2z1

+ ρy1 y2 − ρy1z1ρy2z1

1 − ρ2
y2z1

ρy2z1 − ρy2z2ρz1z2

1 − ρ2
z1z2

ρy2z1

+ρy1 y2 − ρy1z1ρy2z1

1 − ρ2
y2z1

ρy2z2 − ρy2z1ρz1z2

1 − ρ2
z1z2

ρy2z2 − ρy1z1 − ρy1 y2ρy2z1

1 − ρ2
y2z1

ρy2z1

+ρy1z1 − ρy1 y2ρy2z1

1 − ρ2
y2z1

ρy2z1 − ρy2z2ρz1z2

1 − ρ2
z1z2

+ ρy1z1 − ρy1 y2ρy2z1

1 − ρ2
y2z1

ρy2z2 − ρy2z1ρz1z2

1 − ρ2
z1z2

ρz1z2

= (ρy2z2 − ρy2z1ρz1z2 )

1 − ρ2
z1z2

[ρy1 y2 (ρy2z2 − ρy2z1ρz1z2 ) + ρy1z1 (ρz1z2 − ρy2z2ρy2z1 ) − ρy1z2 (1 − ρ2
y2z1 )]

1 − ρ2
y2z1

Therefore, for y2 to be exogenous in the first equation, we need either

μ2 = ρy2z2 − ρy2z1ρz1z2

1 − ρ2
z1z2

= 0,

which seems very restrictive, or

ρy1z2 = ρy1y2(ρy2z2 − ρy2z1ρz1z2) + ρy1z1(ρz1z2 − ρy2z1ρy2z2)

1 − ρ2
y2z1
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= 1 − ρ2
z1z2

1 − ρ2
y2z1

μ2ρy1y2 + δρy1z1 , (C20)

where δ is the coefficient of z1 in the least squares projection of z2 onto y2 and z1,
whose coefficients are given by

(
γ

δ

)
=
(

1 ρy2z1
ρy2z1 1

)−1 (
ρy2z2
ρz1z2

)
= 1

1 − ρ2
y2z1

(
ρy2z2 − ρz1z2ρy2z1
ρz1z2 − ρy2z2ρy2z1

)
.

Therefore, if we assume μ2 = 0, then we need to choose ρy1z2 so that (C20) holds.

C.2 Original variables

Let us now consider the least squares projection of yo2 onto a constant, zo1 and zo2,
which is given by

yo2 = μo
0 + μo

1z
o
1 + μo

2z
o
2 + uo1.

We can then individually centre and standardise each of the variables involved as
follows

y2 = yo2 − μo
0 − μo

1E(zo1) − μo
2E(zo2)√

μo2
1 V (zo1) + μo2

2 V (zo2) + 2μo
1μ

o
2Cov(zo1, z

o
2) + V (uo1)

,

z1 = zo1 − E(zo1)√
V (zo1)

, and z2 = zo2 − E(zo2)√
V (zo2)

,

which leads to the following transformed equation

y2 = μ1z1 + μ2z2 + u1,

where

μ1 = μo
1

√
V (zo1)

μo2
1 V (zo1) + μo2

2 V (zo2) + 2μo
1μ

o
2Cov(zo1, z

o
2) + V (uo1)

,

μ2 = μo
2

√
V (zo2)

μo2
1 V (zo1) + μo2

2 V (zo2) + 2μo
1μ

o
2Cov(zo1, z

o
2) + V (uo1)

,

and

V (u1) = V (uo1)

μo2
1 V (zo1) + μo2

2 V (zo2) + 2μo
1μ

o
2Cov(zo1, z

o
2) + V (uo1)

= 1 − R2
2
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The coefficientsμ1 andμ2 are sometimes called the standardised regression coeffi-
cients, as they explain the ceteris paribus change in yo2 (measured in standard deviation
units) resulting from a unit standard deviation change in zo1 or z

o
2.

Thus, once we standardise the three variables involved, the crucial ingredients of
the first equation are the coefficient of determination R2

2, the correlation between the
regressors ρz1z2 and the partial correlations between y2 and each of the regressors,
which are given by

ρy2z1·z2 = E[(y2 − ρy2z2 z2)(z1 − ρz1z2 z2)]√
V (y2 − ρy2z2 z2)V (z1 − ρz1z2 z2)

= ρy2z1 − ρz1z2ρy2z2√(
1 − ρ2

y2z2

) (
1 − ρ2

z1z2

)

= μ1

√
1 − ρ2

z1z2

1 − ρ2
y2z2

,

ρy2z2·z1 = E[(y2 − ρy2z1 z1)(z2 − ρz1z2 z1)]√
V (y2 − ρy2z1 z1)V (z2 − ρz1z2 z1)

= ρy2z2 − ρz1z2ρy2z1√(
1 − d2

) (
1 − ρ2

z1z2

)

= μ2

√
1 − ρ2

z1z2

1 − ρ2
y2z1

.

In fact, there are only three underlying parameters that determine these four quan-
tities: ρy2z1 , ρy2z2 and ρz1z2 because

ρ2
y2z1·z2 = R2

2 − ρ2
y2z2

1 − ρ2
y2z2

,

ρ2
y2z2·z1 = R2

2 − ρ2
y2z1

1 − ρ2
y2z1

,

or alternatively

ρ2
y2z2 = R2

2 − ρ2
y2z1·z2

1 − ρ2
y2z1·z2

,

ρ2
y2z1 = R2

2 − ρ2
y2z2·z1

1 − ρ2
y2z2·z1

.

Thus, we can either select ρy2z1 , ρy2z2 and ρz1z2 , or we can select R2
2, ρ

2
y2z1·z2 and

ρ2
y2z2·z1 .
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D Onmultivariate discrete mixture of normals

Consider the following mixture of two multivariate normals

ut ∼
{
N (ν1,�1) with probability λ,

N (ν2,�2) with probability 1 − λ.
(D21)

Let st denote a Bernoulli variable which takes the value 1 with probability λ and 0
with probability 1−λ. As iswell known, the unconditionalmean vector and covariance
matrix of the observed variables are:

E(ut ) = τ = E[E(ut |st )] = λν1 + (1 − λ)ν2,

V (ut ) = � = V [E(ut |st )] + E[V (ut |st )] = λ(1 − λ)δδ′ + λ�1 + (1 − λ)�2,

where δ = ν1 − ν2.
Therefore, this random vector, which we will denote as u∗

t , will be standardised if
and only if

λμ1 + (1 − λ)μ2 = 0

and

λ(1 − λ)(μ1 − μ2)(μ1 − μ2)
′ + λ�1 + (1 − λ)�2 = I.

For example, in the bivariate case, if we let �L� ′
L denote the Cholesky decompo-

sition of �, we can write

ut = π + �Lu∗
t , where π =

[
π1
π2

]
and �L =

[
ψ11 0
ψ21 ψ22

]
.

Additionally, let

δ =
[

δ1
δ2

]
, and ℵL =

[
κ11 0
κ21 κ22

]
,

so that the vector of shape parameters of u∗
t becomes 	 = (δ1, δ2, κ11, κ21, κ22, λ)′.

Let us initially assume that ν1 = ν2 = 0, so that δ = 0. Let �1L�′
1L and �2L�′

2L
denote theCholeskydecompositions of the covariancematrices of the twocomponents.
Then, we can write

λ�1 + (1 − λ)�2 = �1L [λI2 + (1 − λ)�−1
1L�2L�′

2L�−1′
1L ]�′

1L

= �1L(λI2 + (1 − λ)ℵLℵ′
L)�′

1L .

Thus, it is not difficult to see that choosing

�1 = [λI2 + (1 − λ)ℵLℵ′
L ]−1 and �2 = �1LℵLℵ′

L�
′
1L
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or, equivalently,

�1L = [λI2 + (1 − λ)ℵLℵ′
L ]− 1

2 and �2L = �1LℵL

we can indeed obtain a bivariate standardised vector u∗
t .

Now consider the case δ = 0, and let ϒ = λ(1−λ)δδ
′ + I2. Then, it is easy to see

that

ν∗
1 = ϒ− 1

2 ν1, ν
∗
2 = ϒ− 1

2 ν2,�
∗
1 = ϒ

− 1
2

1 �1ϒ
′− 1

2 , and �∗
2 = ϒ− 1

2 �2ϒ
′− 1

2

continue to generate another standardised vector.
In summary, we can generate a standardised bivariate mixture as

u∗
t = ϒ− 1

2 {(si − λ)δ + [�1L − si (�1L − �2L)]zt } ,

where zt ∼ N (0, I2). The intuition is as follows. First, note that (st − λ)δ is a shifted
and scaled Bernoulli random variable with 0mean and variance λ(1−λ)δδ′. But since

[�1L − si (�1L − �2L)]zt

is a discrete scalemixture of normalswith 0 unconditionalmean and unit unconditional
variance that is orthogonal to (st −λ)δ, the sum of the two random variables will have

variance I2 + λ(1 − λ)δδ′, which explains the ϒ− 1
2 in front of the curly brackets.

Therefore, two equivalent ways of defining and simulating ut with mean τ and
variance � are

ut = τ + �Lu∗
t , where u∗

t =
{
N [ν∗

1(η),�∗
1(η)] with probability λ

N [ν∗
2(η),�∗

2(η)] with probability 1 − λ
(D22)

and

ut =
{
N (ν1,�1L�′

1L) with probability λ

N (ν2,�2L�′
2L) with probability 1 − λ

where

νi = (vec′(π), vech′(�L), vec′(δ), vech′(ℵL), λ)

and

�i L = �i L(vec′(π), vech′(�L), vec′(δ), vech′(�L), λ)
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for i = 1, 2. In this set-up, themeans of the componentswill be given by ν1 = (ν11 , ν
1
2)

′
with

ν11 = τ1 + (1 − λ)ψ11δ1√
1 + λ(1 − λ)δ21

and

ν12 = τ2 + (1 − λ)ψ21δ1√
1 + λ(1 − λ)δ21

+ (1 − λ)ψ22δ2

1 + λ(1 − λ)δ21

√
1 + λ(1 − λ)δ21

1 + λ(1 − λ)(δ21 + δ22)
,

and ν2 = (ν21 , ν
2
2 )

′ with

ν21 = τ1 − λψ11δ1√
1 + λ(1 − λ)δ21

and

ν22 = τ2 − λψ11δ1√
1 + λ(1 − λ)δ21

− λψ22δ2

1 + λ(1 − λ)δ21

√
1 + λ(1 − λ)δ21

1 + λ(1 − λ)(δ21 + δ22)
.

As for theCholesky decompositions of the covariancematrices of the two components,
namely

�1L =
[

γ 1
11 0

γ 1
21 γ 1

22

]
and �2L =

[
γ 2
11 0

γ 2
21 γ 2

22

]
,

we will have

γ 1
11 = 1√

[1 + λ(1 − λ)δ21 ][λ + (1 − λ)κ2
11]

ψ11,

γ 1
22 =

√
[1 + λ(1 − λ)δ21 ][λ + (1 − λ)κ2

11]
[1 + λ(1 − λ)(δ21 + δ22)]{λ[(κ2

11 + κ
2
21)(1 − λ) − λ] + (1 − λ)λκ

2
22 + (1 − λ)2κ2

11κ
2
22}

ψ22,

γ 1
21 = γ 1

11
ψ21

ψ11
− γ 1

22
(1 − λ)κ11κ21

λ + (1 − λ)κ2
11

−γ 1
22(1 − λ)λδ1δ2

√
λ[(κ2

11 + κ
2
21)(1 − λ) − λ] + (1 − λ)λκ

2
22 + (1 − λ)2κ2

11κ
2
22

[1 + λ(1 − λ)δ21 ][λ + (1 − λ)κ2
11]

,

γ 2
11 = κ11γ

1
11,

γ 2
22 = κ22γ

1
22,
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and

γ 2
21 = γ 2

11
ψ21

ψ11
− γ 1

22
λκ21

[λ + (1 − λ)κ2
11]κ22

−γ 1
22(1 − λ)λδ1δ2κ11

√
κ
2
11κ

2
22 + (1 − λ)[κ2

22 + κ
2
21 + κ

2
11(1 − κ

2
22)] − λκ

2
11(κ

2
22 − λ) + λ2

[1 + λ(1 − λ)δ21 ][λ + (1 − λ)κ2
11]κ22

.

Similar calculations can be applied for general n, the only difference being that the
number of free parameters of the standardised mixture increases with the square of
the cross-sectional dimension.
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