ECOMNZTOR

Make Your Publications Visible.

A Service of

ﬂ I I I Leibniz-Informationszentrum
° Wirtschaft
o B Leibniz Information Centre
h for Economics

Amengual, Dante; Fiorentini, Gabriele; Sentana, Enrique

Article

PML versus minimum x2: The comeback

SERIEs - Journal of the Spanish Economic Association

Provided in Cooperation with:
Spanish Economic Association

Suggested Citation: Amengual, Dante; Fiorentini, Gabriele; Sentana, Enrique (2023) : PML
versus minimum x2: The comeback, SERIEs - Journal of the Spanish Economic Association,
ISSN 1869-4195, Springer, Heidelberg, Vol. 14, Iss. 3/4, pp. 253-300,

https://doi.org/10.1007/s13209-023-00280-4

This Version is available at:
https://hdl.handle.net/10419/286579

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

-. https://creativecommons.org/licenses/by/4.0/

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s13209-023-00280-4%0A
https://hdl.handle.net/10419/286579
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

SERIEs

Journalofthe
Spanish Economic Association

®

Check for
updates

SERIEs (2023) 14:253-300
https://doi.org/10.1007/513209-023-00280-4

ORIGINAL ARTICLE

PML versus minimum y?: the comeback

Dante Amengual’ ) - Gabriele Fiorentini?® - Enrique Sentana'

Received: 5 November 2022 / Accepted: 31 March 2023 / Published online: 24 June 2023
© The Author(s) 2023

Abstract

Arellano (J Econ 42:247-265, 1989a) showed that valid equality restrictions on covari-
ance matrices could result in efficiency losses for Gaussian PMLESs in simultaneous
equations models. We revisit his two-equation example using finite normal mixtures
PMLEs instead, which are also consistent for mean and variance parameters regardless
of the true distribution of the shocks. Because such mixtures provide good approxima-
tions to many distributions, we relate the asymptotic variance of our estimators to the
relevant semiparametric efficiency bound. Our Monte Carlo results indicate that they
systematically dominate MD and that the version that imposes the valid covariance
restriction is more efficient than the unrestricted one.

Keywords Covariance restrictions - Distributional misspecification - Efficiency
bound - Finite normal mixtures - Partial adaptivity - Sieves
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1 Introduction

Maximum likelihood and minimum chi-square methods have been competing for the
estimator throne for a long time. At the turn of the nineteenth century, Legendre (1805)
and Gauss (1809) put forward least squares estimation as a Gaussian-based alternative
to Laplace’s (1774) least absolute deviation method, which relied on his eponymous
distribution. Almost a century later, Pearson proposed not only the method of moments
(see Pearson 1894), but also the chi-square criterion in the context of matching the-
oretical and empirical frequencies (see Pearson 1900). In turn, the development of
maximum likelihood estimation (MLE) by Fisher (1922, 1925) was one of the most
important achievements in twentieth-century statistics. Under standard regularity con-
ditions, MLE asymptotically achieves the Cramér—Rao lower bound (see Cramér 1946;
Rao 1945), which makes it at least as good as any minimum 2 estimator. In addition,
it achieves second-order efficiency after a bias correction (see Rao 1961). Moreover,
the imposition of valid equality restrictions on the parameters systematically leads to
efficiency gains (see Rothenberg 1973).

However, not everybody was convinced (see Neyman and Scott (1948) on the inci-
dental parameter problem, as well as the inconsistent MLE examples in Basu (1955),
Kraft and Le Cam (1956), Bahadur (1958)), and minimum x2 methods remained
popular. In fact, Berkson (1980) argued that ML was often just a special case of min-
imum Xz, and not necessarily the best one. Soon afterwards, White (1982), building
on earlier work by Huber (1967), and Gouriéroux et al. (1984) studied the properties
of pseudo-MLEs, characterising their consistency and general inefficiency. Arellano
(1989a) put another nail on the ML coffin by showing that valid equality restrictions
could result in efficiency losses for Gaussian PMLEs. Arguably, the wooden stake to
the heart was driven by Newey and Steigerwald (1997), who described the inconsis-
tency of non-Gaussian PMLE procedures under distributional misspecification. Since
then, graduate students with non-Bayesian teachers learn the normal distribution only,
and Gaussian PMLE is just an example of Hansen (1982) Generalised Method of
Moments (GMM). In this paper, though, we argue that non-Gaussian PMLE, like a
B-movie vampire, deserves a second life (or death).

We do so by revisiting the two-equation textbook example in Arellano (1989a),'
except that instead of basing PMLE on the Gaussian distribution, as he did, we use
discrete mixtures of normals. The reason is twofold. First, Fiorentini and Sentana
(2023) show that, under standard regularity conditions, such estimators are consistent
for the conditional mean and variance parameters regardless of the true distribution of
the shocks to the model and the number of mixture components, thereby nesting the
results for Gaussian PMLE in Gouriéroux et al. (1984) while simultaneously avoiding
the concerns raised by Newey and Steigerwald (1997). Second, finite normal mixtures
with a sufficiently large number of components can provide good approximations to
many distributions (see Nguyen et al. 2020), so it is reasonable to conjecture that
PMLESs based on them may get close to achieving the semiparametric (SP) efficiency

1 Surprisingly, Arellano (1989a), which should be mentioned in all graduate econometric textbooks, has
received very few citations: Pollock (1988), Islam (1993), Monés and Ventura (1996), Calzolari et al. (2004),
and Sentana (2005), plus a handful of self-citations, and two more which really meant to cite Arellano,
(1989b).
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bound, and therefore exploit the potential adaptivity of some of the parameters when
it exists, at least asymptotically.?

The rest of the paper is organised as follows. Section 2 introduces the example in
Arellano (1989a) and summarises his main results. Then, in Sect. 3 we extend those
results to the entire parameter vector, derive the relevant semiparametric efficiency
bounds, and use them to benchmark the different estimators, including the PMLEs
based on finite Gaussian mixtures. Next, Sect. 4 contains the results of our extensive
Monte Carlo experiments, while Sect. 5 concludes. Proofs and auxiliary results are
relegated to the appendices.

2 The example
Consider the following textbook example:

yi =y +ay:+ Bz1 +ui, (D
V2 = o + (121 + m2z2 + ua, (2)

uj N 0 012 o012
(i)~ [(0)-(22 %))

As is well known, the unrestricted Gaussian PMLE of « and g coincides with the
IV estimator that uses a constant, z| and z» as instruments in the first equation. In turn,
the restricted Gaussian PMLE that imposes 012 = 0 coincides with the OLS estimator
of the first equation.

When the joint conditional distribution of #; and u» is Gaussian, OLS is at least as
efficient as IV, which justifies the Durbin—-Wu—Hausman test.> But Arellano (1989a)
seemingly counterintuitive result says that when the true conditional distribution is
not Gaussian, IV may be more efficient than OLS for « and 8 even though o1 = 0.
Specifically, he showed that IV will beat OLS if and only if

with

pn = 1+p.2 3)

where

up =FE 21,22

Q | <
— =1
Nq[\)|M=N

is the co-kurtosis coefficient between the two structural shocks and py, , -, is the cor-
relation coefficient between y; and z; after partialling out the effect of z;. Intuitively,

2 See Fiorentini and Sentana (2022) for a related discussion in the context of structural VARs.

3 Wu (1973) compared OLS with IV in linear single equation models to assess regressor exogeneity
unaware that Durbin (1954) had already suggested this. Hausman (1978) provided a procedure with far
wider applicability.
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Fig. 1 Relative efficiency OLS/IV for «.

Notes: When the R? of Eq. (2) coincides with p%z 221 the relative efficiency of the OLS/IV estimators of
Viars)
Viay)
np =1+ /’y_ziz-a , while the dotted line denotes the locus of (py,z,.z;, #22) combinations for which the
IV estimator of « reaches its maximum asymptotic efficiency relative to the corresponding OLS estimator,
which is given by p2, . . = 3122/ (u22 — 1)

«a is given by

=[0- P%zzz‘z] Y22 + p%zzz‘z] ]pgzzz-zl . The solid line denotes the boundary line

oo affects the correct sandwich version of the asymptotic covariance matrix of the
OLS estimators of the slope parameters.

Appendix A contains detailed expressions for the asymptotic variances of the OLS
and IV estimators of « and 5. We have used those expressions to create Fig. 1, which
displays in (0y,z, .z, 422) space (minus one plus) the ratio of the asymptotic variances
of the OLS and IV estimators of « for positive values of py,., .,.* We do so for the
special case in which the R? of Eq. (2) coincides with Pyyz5.2,» Which allows this
parameter to vary freely from 0 to 1.7 As expected, OLS is more/less efficient than IV
to the left/right of the boundary line (3).

This figure also shows the locus of (py,z, .7, #22) combinations for which the IV
estimator of « reaches its maximum asymptotic efficiency relative to the corresponding
OLS estimator in this set-up, which is given by the curve

2 _ 22
P = Y = 1)

Further increases in py,;, 7, for a given pi72 result in decreases in relative efficiency,
with OLS and IV becoming indistinguishable as py,,, ;,, — 1, in which case z;
becomes a perfect instrument for y;.

4 The plot would be the mirror image of Fig. 1 for negative values.

5 Asweshall seein Proposition 1 below, though, this special case is such that, asymptotically, the difference
between the IV and OLS estimators affects o exclusively.
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Fig.2 Relative efficiency MD/OLS-1V for .
Notes: When the R? of Eq. (2) coincides with '0;2 .21 the relative efficiency of the MD/OLS and MD/IV
estimators of « are given by
. . 2
Viayp) _ 122 and Y@mD) _ _ H2Pnzz
V@Ls) "~ 4o —Dp5y 2. =pfy 2y 2 22403525 21 ] V@rv) 7 1+ (un-Dogyzn .0
tively. The solid line denotes the boundary line pupr = 1 + Py_2212.z |

, respec-

In this context, Arellano (1989a) proposed solution is to replace Gaussian PMLE by
Minimum Distance (MD) estimators, a special case of minimum chi-square methods
popularised in econometrics by Malinvaud (1970). The rationale is as follows. Let
0 = (y,a, B, 1o, 1, U2, 012, 022)’ denote the vector of structural parameters. Given
that the reduced form of model (2) is

(2) 71,22 ~ D [(z1, 22: ), R(z1, 225 0)] “®

(y +apo) + (B +oauzr +ourzs
,22:0) = ’
n(z1,22;0) [ Mo + p121 + H222 ®

2, .2 2 2
o +a‘0y + 20012 «o; + 012

Qz1. 22: 0) = 1 2 2 s 6
(21, 22: 0) ( aoy + o o3 ) ©

which is exactly identified, the unrestricted MD estimator coincides with IV, which
is Indirect Least Squares. Then, Arellano (1989a) shows that imposing the restriction
o12 = 0leads to an overidentified optimal MD procedure (weakly) more efficient than
both IV and OLS for « and .

This optimal MD estimator requires an asymptotic covariance of the reduced form
parameter estimators which recognises that the third- and fourth-order multivariate
cumulants of u; and u, are not usually O when they are jointly non-normally dis-
tributed.
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Fig.3 Relative efficiency Student + ML/MD for « and 8.
Notes: When the R? of equation (2) coincides with p%zzz-zl’ the relative efficiency

. . . . AVar(/n&
of the ML/MD estimators of « and B s, respectively, given by Wm
(122 =103 29 2y AVar(vnByr) _ Pz
[(1=p3y 2.2 Mss +hFy 2.2, Mitli22 AVar(VnByp) — [(=phyzy.zy) Mss 02y Ml
My =v2+v)/[(v =2)(v + 4] and Mgs = (v +2)/(v +4) withv =2Q2uz — 1)/(k22 — D

, where
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Appendix A also contains detailed expressions for the asymptotic variances of the
optimal MD estimators of & and 8. We have used those expressions to create Fig.?2,
which depicts in (py,z, .z, #22) space (minus one plus) the ratio of the asymptotic
variance of the restricted optimal MD of « to the asymptotic variance of either the
OLS estimator (to the left of (3)) or the IV one (to its right) in the same set-up as Fig. 1.
As can be seen, the efficiency gains are relatively small over the displayed range, and
they vanish when either the partial correlation goes to 0 or 1 or the co-kurtosis term
goes t0 0.°

The predictable reaction of a fervent ML believer to Figs. 1 and 2 would be to argue
that condition (3) requires the combination of a very good instrument (a high ,0)2,2 2.21)
with a substantial amount of non-normality (a large i122), in which case the Gaussian
assumption would be very inappropriate. For example, a joint Student ¢ distribution
for u1 and uy cannot satisfy this condition when the number of degrees of freedom is
six or more, and the requirement becomes increasingly difficult for poor instruments.

A naive ML solution would be to assume that #; and u, follow a bivariate Student
t distribution to estimate the model parameters, which should dominate MD. In this
respect, we have used the expressions in Appendix A to create Fig. 3a, b, which display
in (0y,z,.z;» 422) space (minus one plus) the ratio of the asymptotic variances of the
t-based MLE of « and § that impose o12 = 0 to the asymptotic variances of the
corresponding restricted optimal MD. As can be seen, these figures confirm that ML
does indeed dominate MD in this case.

The problem with this naive approach is that if the assumed joint distribution is
incorrect, the resulting PMLEs may be inconsistent, as forcefully argued by Newey
and Steigerwald (1997).

However, this does not mean that all parameters will be inconsistently estimated.
Specifically, Proposition 3 in Fiorentini and Sentana (2019) implies that the unre-
stricted 7-based PMLEs of « and § are always consistent irrespective of the true
distribution. Similarly, their Proposition 1 implies that the restricted #-based PMLEs
of o and B will remain consistent when the conditional distribution of o 4 and
o,y Ty is elliptical even though it does not coincide with the distribution assumed
for estimation purposes. Besides, it may be possible to obtain two-step consistent
estimators in closed-form along the lines of Fiorentini and Sentana (2019).

More importantly, Fiorentini and Sentana (2023) show that all parameters will
always be consistently estimated if one assumes for estimation purposes that x| and
uy follow a finite mixture of bivariate normals regardless of the true distribution of
those innovations and the number of components of the mixture, as long as the shape
parameters are simultaneously estimated with the mean and variance parameters.’
Thus, the consistency of the Gaussian PMLE is just a special case.

The ability of finite Gaussian mixtures to approximate many other distributions
mentioned in the introduction suggests that we may be able to relate these finite mixture
PMLEs to SP estimators which simply exploit the independence of the shocks and the

6 Again, Proposition 1 below implies that the differences in asymptotic variances between the MD, IV and
OLS estimators affect o exclusively in the special case in which the (squared) partial correlation of y, and
zp given z1 coincides with the RZ in the regression of y, on z1 and z»

7" On the other hand, if the shape parameters of the mixture are fixed, then Theorem 7 in Gourieroux (1984)
guarantees the inconsistency of the resulting estimators except in the Gaussian limiting case.
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conditioning variables without making any parametric assumptions. For that reason,
in the next section we take SP estimators as our benchmark to study:

1. The efficiency of the OLS, IV, MD and correct ML estimators relative to SP ones,

2. Therelative efficiency of restricted and unrestricted versions of these SP estimators,
and

3. The relative efficiency of finite mixture-based PMLEs relative to SP estimators

in the context of model (2).

3 Theoretical analysis
3.1 Minimum distance revisited

Although the main focus of the analysis in Arellano (1989a) was « and g, it is of some
interest to study the asymptotic efficiency of the optimal MD estimators of the remain-
ing structural model parameters relative to their OLS and IV counterparts. Given that
the number of different bivariate cumulants of orders 3 and 4 is 4 and 5, respectively,
we focus on the special case in which the joint distribution of the (standardised) struc-
tural shocks conditional on the instruments is spherical, or s(0, I, ) for short, where
n is the possibly infinite vector of shape parameters. More formally,

Assumption 1

uyp uz
—_ =

o1 02

21,22:0, ~iid.s(0, 12, 7) (N

To simplify the expressions further, we are going to follow Appendix B in Fioren-
tini and Sentana (2019) and re-parametrise the unrestricted covariance matrix of the
structural residuals as

o2 o »f 1 0 e 0 1 Y2

(7 %)= (e D &) 7)o
where /15 is the coefficient in the least squares projection of 15 on 1, and o> and @
the geometric mean of their variances and the natural log of the ratio of the standard
deviations of these shocks, respectively, under the maintained assumption that they are
uncorrelated.® Let 87 = (v, a, B, o, 1, 12, @, 02)/ denote the vector of structural
parameters implied by (8) under the restriction ;2 = 0. Using the expressions for
the Jacobian linking 0" and 6 in (A17), we can then show under standard regularity
conditions that:

Proposition 1 Let (11, 12) and (Ufl,agz,am ) denote the means, variances and

covariance of 71 and z. If Assumption 1 holds, then:

8 More generally, o= \ /012(722 — 0122 and w = In ((71/,/(r22 - (7122/012>.
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(a) The difference between the asymptotic covariance matrices of the OLS and MD

. g AT A . . . . ;
estimators of 07, 0 Ls and 0y, respectively, is positive semidefinite of rank 1 at
most, with a basis for its image given by

{110 + (@2 = om0 mmal L=t + 00007702 05| . ©)

and a basis for its kernel by

(1,110 + (72 = 02,0307, 210012, 0, 01,5 (10)
[Ml + 05,50, 212, 0, o + (12 — 07,2,0. T pa, 01x5] (1)

and
(05x3, Is). (12)

(b) The difference between the asymptotic covariance matrices of the IV and MD

. ~F AT ] . L. . .
estimators of 07, 0 1v and 0 ., respectively, is positive semidefinite of rank 1 at
most, with the same basis for image and kernel.
(c) The difference between the asymptotic covariance matrices of the OLS and IV

woAY ~
estimators of 0', 0 ¢ and 0;‘,, respectively, is positive/negative semidefinite of
rank 1 depending of condition (3), with exactly the same basis for image and
kernel.

This proposition considerably sharpens the results in Arellano (1989a) for the
special case of spherically symmetric disturbances by showing that the asymptotic
efficiency gains concentrate in a single linear combination of the parameters of the
first equation y, & and g given by (9). In contrast, any other linear combination of the
parameters orthogonal to this one does not generate any efficiency gains. Specifically,
the parameters of the second equation and the residual variances are estimated just as
efficiently by the three procedures.

3.2 Semiparametric estimation and efficiency bounds

The optimal instruments theory of Chamberlain (1987) implies that Arellano (1989a)
MD estimator achieves the SP efficiency bound which exploits the correct specification
of the conditional mean and variance functions for y; and y» in the reduced form model
(2) when the joint third- and fourth-order cumulants of #; and u, conditional on z;
and z; are constant. However, if this last maintained assumption is true, then one can
in principle obtain an even more efficient MD estimator of the model parameters after
augmenting it with equations for the third- and fourth-order cumulants of the reduced-
form residuals under the assumption that the joint cumulants of #| and u, conditional
on z1 and zp are constant up to the eighth-order.

In fact, the results in Bickel et al. (1993) allow us to obtain the SP efficiency
bound which exploits that the joint distribution of # and u» is independent of z; and
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z2. Moreover, we can also consider a restricted version of this SP bound under the
maintained assumption that (7) holds, as in Hodgson and Vorkink (2003), which will
be bigger in the usual positive semidefinite sense. Henceforth, we shall refer to this
bound and its associated estimator by the abbreviation SS, reserving SP for the one
which does not impose sphericity.

An interesting question in this context is the possibility that some but not all of the
parameters of model (2) can be partially adaptively estimated, in the sense that their
SP estimators are as asymptotically efficient as the infeasible ML estimators which
exploit the information of the true distribution of the shocks, including the values of
their shape parameters. The following proposition provides a precise answer to this
question under sphericity for the restricted estimators that impose o2 = 0:

Proposition 2 [f Assumption 1 holds, then:

(a) The difference between the asymptotic covariance matrices of the restricted SS

and infeasible ML estimators of 07, é;s and éLL (), respectively, is positive
semidefinite of rank 1 at most, with a basis for its image given by (01x7, 1), and a
basis for its kernel by (I7, 07x1).

(b) The difference between the asymptotic covariance matrices of the restricted SP and

AT A
infeasible ML estimators of 07, 0 sp and 0 ,; (1), respectively, is positive semidef-
inite of rank 5 at most, with a basis for its image given by (1,01x7), (0, —1, u +
0212002212, 01x5), (013, 1, 014) and (026, I2), and a basis for its kernel by
0, 1 + %zZU{lez, 1,01x5) and (02x4, 12, 02x2).

(c) The difference between the asymptotic covariance matrices of the MD and SP

o At At
estimators of 0", 0y, and 0 gp, respectively, is positive semidefinite of rank 4 at
most, with a basis for its image given by (02«1, I3, 02x5) and (02x4, 12, 02x2),
and a basis for its kernel by (0246, I2), (1, no + @171 + w212, 71, 01x5) and
(01x3, 1, 71, 72, 01%2).

The first part of the proposition implies that all the structural model parameters
except the overall residual scale o> can be (partially) adaptively estimated by the SS
estimator, as expected from Proposition 12 in Fiorentini and Sentana (2021).

More interestingly, the second part of the proposition implies that in addition to 141
and wo, the coefficient of the linear projection of y; onto a constant and z1, which is
given by

B+ (Ml + Uz1zzo'z_12M2)Ol,

will be adaptively estimated by the restricted SP estimator. In this respect, a very impor-
tant by-product of this proposition is that the model parameters that can be partially
adaptively estimated often continue to be consistently estimated under distributional
misspecification of the innovations, as shown by Fiorentini and Sentana (2019, 2021)
in the context of multivariate location-scale models such as (1)—(2). We will revisit
this issue in the Monte Carlo section.

Finally, the last part of the proposition says that the variances of the structural-form
residuals, as well as the intercepts in the reduced-form regressions of y; and y, on
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a constant and the demeaned values of z; and zp, which are given by y + 71(8 +
apr) + a(apr) and po + T + Toup, respectively, are asymptotically equally
efficiently estimated by the MD and SP estimators. More importantly, it also says that
the efficiency gains are concentrated in the four slope coefficients of the two structural
equations.

It would be tedious but otherwise straightforward to extend Propositions 1 and 2
to the case in which the distribution of the shocks conditional on z; and z; is not
spherical as a function of the four third-order and five fourth-order cumulants of u
and uy. In fact, there is one important instance in which those higher-order cumulants
would be unnecessary for the comparisons. Specifically, we can use Proposition 13.2 in
Fiorentini and Sentana (2021) to prove that, subject to regularity, both the parameters
of the unrestricted covariance matrix of the reduced-form residuals and the intercepts
in the reduced-form regressions of y; and y, on a constant and the demeaned values
of z1 and z, will be as efficiently estimated by the IV estimator and the unrestricted
SP estimator, while the slopes will always be adaptively estimated, just as in the
second part of Proposition 2. The reason is twofold. First, the information matrix, the
feasible parametric efficiency bound, the SP bound, and the usual Gaussian sandwich
formula become block-diagonal between those reduced-form parameters and the four
structural slope coefficients «, B, ;1 and wa. In turn, this block diagonality leads to
a saddle-point characterisation of the asymptotic efficiency of the SP estimator of 6,
with the slope coefficients being adaptive and the others only reaching the efficiency
of the Gaussian PMLE.

3.3 Efficiency gains from the equality constraint

Itis also of interest to analyse the effects of imposing the covariance restriction o1y = 0
on the different estimators we have considered:

Proposition 3 If Assumption 1 holds, then:

(a) The difference between the asymptotic covariance matrices of the unrestricted and

restricted infeasible ML estimators of 0%, 5;4 L and éj\/! 1, respectively, is positive
semidefinite of rank 1 at most, with the basis for its image given by (9), and a basis
for its kernel by (10), (11) and (12).

(b) The difference between the asymptotic covariance matrices of the unrestricted and

restricted SS estimators of 07, ] I« sand ] ; 5, respectively, is positive semidefinite of
rank 1 at most, with the basis for its image given by (9), and a basis for its kernel
by (10), (11) and (12).

(c) The difference between the asymptotic covariance matrices of the unrestricted and
restricted SP estimators of 07, 0~§ p and 63 p» respectively, is positive semidefinite

of rank I at most, with the basis for its image given by (9), and a basis for its kernel
by (10), (11) and (12).

Therefore, when one uses “efficient” estimators, the imposition of the valid equality
constraint o1 = 0 always leads to (weak) efficiency gains for exactly the same linear
combination of the parameters of the first structural equation for which optimal MD
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leads to an efficiency gain relative to both OLS and IV. In fact, it is straightforward
to generalise (a) so that it applies to the feasible parametric ML estimators of o7
which simultaneously estimate the finite vector of shape parameters 5, as well as to
the ML estimators of these parameters themselves. This is in contrast to the seemingly
counterintuitive result in Arellano (1989a), which simply reflects the fact that OLS
does not use the optimal MD weighting matrix in the non-normal case.

3.4 Finite mixtures as sieves

Finally, we study the extent to which PMLEs based on finite mixtures of normals
with an increasing number of components could constitute a proper sieves-type SP
procedure, as we argued in the introduction.

We do so first when the standardised shocks to model (2) conditional on z; and z»
follow a bivariate Student ¢ with O means, unit standard deviations, no correlation and
5 degrees of freedom but whose parameters are estimated by finite scale mixture-based
log-likelihood functions with K = 2, 3 and 4 components. For comparison purposes,
we consider four different benchmarks that impose the restriction o1, = 0: (i) the
MLE based on the correctly specified log-likelihood function that fixes the number
of degrees of freedom to 5, (ii) the SS estimator, (ii) the OLS estimator, and (iv) the
optimal MD estimator.

We compute the expected value of the Hessian and outer product of the score of
the scale mixture-based PMLEs by means of large sample averages of the analytical
expressions in Fiorentini and Sentana (2021) evaluated at the true values of the mean
and variance parameters in 6 and the pseudo-true values of the shape parameters,
which we numerically obtain from samples of millions of simulated observations.

The results, which we report in Table 1, show that the scale mixture-based PMLEs
of all the model parameters except the overall residual scale o> quickly approach the
asymptotic efficiency of the infeasible MLE despite the fact that no finite scale mixture
of normals can approximate the unbounded higher-order moments, tail behaviour or
nonlinear tail dependence of a multivariate Student . In fact, although panel (a) in Fig. 3
of Gallant and Tauchen (1999) clearly illustrates that a more complex misspecified
model does not necessarily lead to more efficient estimators because one is not simply
adding new elements to the score, but also changing the pseudo-true values of the
shape parameters at which one evaluates the original components of the score, we
find that the efficiency improvements occur monotonically.” As a result, it seems that
the covariance matrix of the errors in the least squares projection of the scores of the
true model onto the scores of the mixture-based log-likelihood becomes smaller and
smaller as K increases (see Proposition 7 in Calzolari et al. 2004).

In contrast, the asymptotic variances of the scale mixture-based PMLEs of o2 coin-
cides with the asymptotic variances of the OLS estimators irrespective of the number
of components, which reflects (i) the block diagonality of the different asymptotic
covariance matrices in Proposition 12.2 of Fiorentini and Sentana (2021) because the

9 In this respect, the efficiency gains of any K > 1 relative to K = 1 should be easy to prove formally
because the ML estimators of the unconditional mean of the mixture of gamma random variables underlying
the scale mixture model coincide regardless of K.
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Table 1 Asymptotic variances of alternative estimators

Parameter OLS PML-SMNg
K=2 K=3 K=4 SS ML MD

Mean parameters of equation la

y 1.268 0.931 0.905 0.902 0.901 0.901 1.201
o 1.500 0.782 0.731 0.725 0.723 0.723 1.125
B 1.000 0.656 0.631 0.627 0.627 0.627 0.875
Mean parameters of equation 1b

) 1.000 0.792 0.775 0.772 0.771 0.771 1.000
1 0.333 0.264 0.258 0.257 0.257 0.257 0.333
7% 0.333 0.264 0.258 0.257 0.257 0.257 0.333
(Reparametrised) variance parameters of structural innovations

w 3.000 1.493 1.313 1.290 1.286 1.286 3.000
o2 0.833 0.833 0.833 0.833 0.833 0.300 0.833

Notes: DGP for structural innovations: bivariate Student ¢ with 0 means, unit standard deviations, no
correlation and 5 degrees of freedom. Parameter values: y = 0.204, « = B = 0.398, ug = 0.155,
n1 = po = 0.577, 012 =1/2, 022 =1/3, gy = pzp =1, ozzl = UZ22 =1, and 07,7, = 0. OLS denotes
the usual ordinary least squares estimator, PML-SMNg denotes Pseudo-ML based on a bivariate scale
mixture of K normals, SS denotes the spherically symmetric SP estimator, ML denotes MLE which exploit
the information of the true distribution of the shocks, including the degrees of freedom, and MD denotes the
optimum minimum distance estimator. We compute the expected value of the Hessian and variance of the
score of the finite mixture-based PMLEs by means of large sample averages of the analytical expressions
in Fiorentini and Sentana (2021) evaluated at the true values of the mean and variance parameters in 6 and
the pseudo-true values of the shape parameters, which we numerically obtain from samples of millions of
simulated observations

determinant of (8) is precisely o4, and (ii) the fact that the ML estimators of the mean
in a scale mixture of K gammas is numerically the same regardless of K, as explained
in Fiorentini and Sentana (2023).

We then conduct a similar exercise when u; and u; conditional on z; and z, follow a
bivariate asymmetric Student ¢ with 0 means, unit standard deviations, no correlation,
negative tail dependence and the same wy> as in the symmetric case. We estimate
the unrestricted model parameters using general finite mixture-based log-likelihood
functions with K = 2, 3 and 4 components, and consider as benchmarks the following
three unrestricted estimators: infeasible MLE, SP, and IV. In this case, we compute
the expected value of the Hessian and outer product of the score of the mixture-
based PMLEs using large sample averages of the theoretical expressions in Amengual
et al. (2023) evaluated at the true values of the mean and variance parameters and
the pseudo-true values of the shape parameters obtained from very large samples of
simulated observations.

The results we report in Table 2 show that the mixture-based PMLEs of the slope
parameters approach the asymptotic efficiency of the infeasible MLE despite the
fact that no finite mixture of normals can approximate the unbounded higher-order
moments, tail behaviour or nonlinear tail dependence of a multivariate asymmetric
Student 7. Again, we find that the efficiency improvements occur monotonically. In
contrast, the asymptotic variances of the mixture-based PMLEs of the intercepts and
covariance matrix of the reduced form in mean-deviation form coincide with the
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Table2 Asymptotic variances of alternative estimators

Parameter v PML MN g
K=2 K=3 K=4 SP ML

Slope parameters of equation la

a 1.502 1.320 1.301 1.300 1.296 1.296
B 1.000 0.879 0.867 0.865 0.863 0.863
Slope parameters of equation 1b

"1 0.333 0.259 0.252 0.251 0.251 0.251
U2 0.333 0.259 0.252 0.251 0.251 0.251
(Reparametrised) reduced form intercepts

E(y1) 0.553 0.553 0.553 0.553 0.553 0.499
E(y2) 0.333 0.333 0.333 0.333 0.333 0.299
Reduced form variance parameters

w11 1.803 1.803 1.803 1.803 1.803 0.796
[37%) 0.950 0.950 0.950 0.950 0.950 0.308
12 0.815 0.815 0.815 0.815 0.815 0.229

Notes: DGP for structural innovations: bivariate asymmetric Student # with O means, unit standard deviations,
no correlation and shape parameters v = 9.65 and b; = —1. Parameter values: y = 0.204,« = = 0.398,
jo = 0.155, 11 = pp = 0.577, 0% = 1/2,03 =1/3, pz) = pzy = 1,02 =02 =l andoy,z, =0.1V
denotes the usual instrumental variables estimator, PML-MNg denotes Pseudo-ML based on a bivariate
mixture of K normals, SP denotes the semiparametric estimator, ML denotes MLE which exploit the
information of the true distribution of the shocks, including the degrees of freedom. Moreover, E(y1) and
E(yp) are short-hand for y + 71 (B + auy) + 12 (app) and g + 71001 + 12 42, respectively. We compute
the expected value of the Hessian and variance of the score of the finite mixture-based PMLEs using large
sample averages of the theoretical expressions in Amengual et al. (2023) evaluated at the true values of the
mean and variance parameters and the pseudo-true values of the shape parameters obtained from very large
samples of simulated observations

asymptotic variances of the corresponding IV estimators irrespective of the number
of components, which reflects the fact that the ML estimators of the mean vector and
covariance matrix in mixtures of K normals are numerically the same for any K > 1
(see also the discussion at the end of Sect. 3.2).

4 Monte Carlo analysis

In previous sections, we have derived several asymptotic results regarding the relative
efficiency of the LS, IV and MD estimators, as well as the finite mixture-based PMLE:s,
the SS estimators, and the feasible and infeasible MLEs. In this section, in contrast, we

make use of an extensive Monte Carlo simulation exercise to asses their small sample
behaviour.

4.1 Design

We consider three different parameter configurations:
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a juy =3and py,oy., = (uaa — 1)72 = 1/3/2 ~ 0.71, which is such that the IV
and OLS estimators of o and 8 have the same asymptotic efficiency (see the solid
line in Fig. 1);

b. u» = 3 and py,z ., = 2*%./;;22/(;1,22 —1) = +/3/2 ~ 0.87, which corre-
sponds to the dotted line in Fig. I; and

c. upp =7/3and py,z, 7, = (22 — 1)’% = \/§/2 ~ (.87, which is another case of
equal efficiency of IV and OLS, but with lower co-kurtosis.!?

As for the distribution of the structural shocks, we consider four non-Gaussian
possibilities in which (u1, u;) follow a:

1. Student ¢ distribution with v = 5 or v = 5.5 degrees of freedom corresponding to
u22 = 3 and pory = 7/3, respectively;

2. Scale mixture of two normals in which the higher variance component has prob-
ability A = .05 and the ratio of the variances is either > = 0.094 or sz = 0.122
corresponding to ua> = 3 and uoy = 7/3, respectively;

3. Asymmetric Student ¢ distribution with negative tail dependence b = ( — 1, — 15
but degrees of freedom v = 9.65 or v = 10.38, respectively;

4. Location-scale mixture of two normals in which the higher variance component
has probability A = .05, w2 is as in /., and the marginal skewness of #1 and u; is
as in 3., which is achieved with

—1.01 —1.16 032 0 038 0
8= <—1.06)°r5= (—1.24) amm:( 0 o.32>°r< 0 0.38)’
respectively (see Appendix D for further details on this parametrisation).

For illustrative purposes, we display the joint densities and contours for standard-
ised versions of these distributions in comparison with the bivariate spherical Gaussian
distribution in Figs.4 and 5 for the spherically symmetric and general cases, respec-
tively.

In all simulated samples, the exogenous variables z = (z1, z2) are generated
according to a bivariate Student ¢ distribution with 8 degrees of freedom with mean
vector T = (1, 1)’ and an identity variance covariance matrix.!!

Next, for each choice of the partial correlation py, , -, mentioned above, we choose

2 _ 2
2Pyzzz.z1 R; Pyr2.21

R%: and Oy,z, = Pyyz0 =
1 + ’0}’2ZZ~ZI e e

’

1— Pyrzr.21

which guarantees that (i) ,032 o = R% < 1, and (ii) the two slope coefficients of the
second equation coincide. If we fix the variance of both y; and y, to 1 without loss

10" We do not consider the case in which n22 = 7/3 and py,z,.z; = 54/ 22/(22 — 1) because the
efficiency of IV relative to OLS for « is just 1.02 in that case.

T Notice that the choice of 07,2z, = 0 considerably simplifies some of the eigenvectors in Propositions 1,
2 and 3. For example the linear combination that according to Proposition 2.b can be adaptively estimated
by the SP estimator and consistently estimated by a distributionally misspecified ML estimator becomes
B+ua.
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Fig.4 Monte Carlo spherical data generating processes versus Gaussian distribution.

Notes: In all panels, E(u’l‘i) = E(u;i) =0, V(uTi) = V(u%) =1, and cov(u’l‘i, u;i) = 0. Panels c—d:
Student ¢ distribution with v = 5 degrees of freedom. Panels e—f: Scale mixture of two normals with scale
parameter s = 0.09 and mixing probability A = 0.05
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Fig.5 Monte Carlo non-spherical data generating processes versus Gaussian distribution.

Notes: In all panels, E(u’l‘i) = E(u?i) =0, V(uTi) = V(u’z‘i) = 1, and cov(u*fi,uzl.) = 0. Panels
c-d: Asymmetric Student # density with v = 9.65 degrees of freedom, skewness parameters b; = —1.
Panels e-f: Location-scale mixture of two normals with mixing probability A = 0.05, location vector
§ = —(1.01, 1.06)" and scale parameter > = 0.32 (see Appendix D for details)
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of generality, these restrictions implicitly determine the variance of the error term of
the second equation as 022 =1- R%. We also impose the same balancing restriction
on the slopes of the first equation by choosing

[(1+ py. ) R?
w=p= ( +:0;211) 1

Then, we fix R? to 0.5, which implies o = 1/2, an arbitrary choice that simply
scales the asymptotic variances of all the different estimators of @ and 8 by the same
amount (1 — Rlz).12 Finally, we choose the values of the intercepts y and g so that
E(y1) = E(y2) = 1 (see Appendix C for further details).

4.2 Simulation results

We simulate 10,000 samples of length N = 250 and N = 1000 for each of the
above designs. For each simulated sample, we compute the IV, LS and optimal MD
estimators, together with unrestricted and restricted versions of PMLE estimators
that use either a discrete mixture of two normals—UPML(mn) and RPML(mn)—or
a Student ¢ distribution-UPML(t) and RPML(t). In both cases, we simultaneously
estimate the shape parameters. Finally, we also compute a two-step SS estimator that
starting from the consistent OLS estimator, € s, carries out one BHHH iteration using
the efficient spherically symmetric semiparametric score estimated nonparametrically.
Specifically, we compute the standardised reduced form residuals

_ 1

=0 [y p(z1,2:009)].

Aol
where & ° denotes the inverse of the Cholesky decomposition of the sample covari-

ance matrix of the reduced form residuals [y — p (z1, z2; 01.5)], define & = 9" and
estimate nonparametrically the density of ¢ = ¢!/3, g(¢), and its derivative, g’(¢),
using a Gaussian kernel with the usual Silverman (1986) “rule-of-thumb” bandwidth.
The change of variable formula then yields

_ 28 4
3c2 () 3¢

8(s)

which we use to compute the semiparametric efficient score using expression (C30)
in the Supplemental Appendix C of Fiorentini and Sentana (2021) by subtracting

2
We®1s) [8(;)% 105G 1)]

12 In design a., we then have R = 2/3, 057 = 1/3,y = 020, @ = B = 0.40, o = 0.16, and
i1 = pp = 0.58. In turn, in designs b and c., R} = 6/7, of = 1/7,y = 022, ¢ = p = 0.39,
no = —0.31,and 1 = upy = 0.66.
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Fig.6 Monte Carlo results: 7 = 250, oo = 3 and py,z5.z; = (U22 — 1)_].

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the restricted (012 =
0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn) and RPML(smn) denote
the restricted (012 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (o012 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (o1 = 0) and unrestricted feasible
PML estimators based on a Student . DGPs: Panel a: Student ¢ distribution with v = 5 degrees of freedom;
Panel b: scale mixture of two normals with scale parameter »c = 0.09 and mixing probability A = 0.05;
Panel c: asymmetric Student ¢ density with v = 9.65 degrees of freedom, skewness parameters b; = —1;
and Panel d: location-scale mixture of two normals with mixing probability 2 = 0.05, location vector
§ = —(1.01, 1.06)’ and scale parameter s« = 0.32 (see Appendix D for details). In all DGPs, we set 012 =1

so that R12 = 1/2. In order to have a tie between IV and LS, we set py,z5.z; = 1/\/5 so that 022 =1/3
and, therefore, y = 0.20, « = 8 = 0.40, ug = 0.15 and 1 = o = 0.58

from the nonparametric score, where k denotes the coefficient of multivariate excess
kurtosis (see Mardia (1970) for details) and W (@) is defined in Appendix A.5.

We display the finite sample results by means of the box plots in Figs.6, 7, 8, 9,
10 and 11, which concentrate on « and S, the two parameters of interest. Figures 6,
7 and 8 show the Monte Carlo results for 250 observations for cases a., b. and c.,
respectively, while Figs.9, 10 and 11 contain the results for 1000 observations in the
same order.

Our findings indicate that OLS is better in finite samples than what the asymptotic
theory suggests because the sample co-kurtosis coefficient is downward biased for
u22. In fact, the asymptotic efficiency of the IV estimator of « relative to LS can
only be observed in panels b and d of Fig. 10 when the sample length is large and the
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Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the restricted (012 =
0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn) and RPML(smn) denote
the restricted (012 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (012 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (o1 = 0) and unrestricted feasible
PML estimators based on a Student . DGPs: Panel a: Student ¢ distribution with v = 5 degrees of freedom;
Panel b: scale mixture of two normals with scale parameter »c = 0.09 and mixing probability A = 0.05;
Panel c: asymmetric Student ¢ density with v = 9.65 degrees of freedom, skewness parameters b; = —1;
and Panel d: location-scale mixture of two normals with mixing probability 2 = 0.05, location vector
§ = —(1.01, 1.06)’ and scale parameter s« = 0.32 (see Appendix D for details). In all DGPs, we set 012 =1

so that R]2 = 1/2. In order to have a maximum relative efficiency of IV versus LS, we set py,z,.z; = V3/2
so that (722 = 1/7 and, therefore, y = 0.22, 0 = 8 =0.39, ug = 0.31 and | = pp = 0.65

distribution of the shocks is either a scale or a general finite mixture of normals, which
is when there seems to be a lower small sample bias for w2;.

They also confirm that optimal MD dominates both OLS and IV in finite samples,
but the need to estimate third- and fourth-order multivariate cumulants to compute
the optimal weighting matrix handicaps it somewhat (see Altonji and Segal (1996))
for analogous results in the context of optimal GMM estimators when the shocks are
fat-tailed).
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Fig.8 Monte Carlo results: T = 250, o2 = 7/3 and py,z5.z; = (122 — 1)*1.

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the restricted (012 =
0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn) and RPML(smn) denote
the restricted (072 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (012 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (012 = 0) and unrestricted feasible
PML estimators based on a Student-z. DGPs: Panel a: Student ¢ distribution with v = 11/2 degrees of
freedom; Panel b: scale mixture of two normals with scale parameter »c = 0.12 and mixing probability
A = 0.05; Panel c: asymmetric Student ¢ density with v = 10.38 degrees of freedom, skewness parameters
b; = —1; and Panel d: location-scale mixture of two normals with mixing probability 2 = 0.05, location
vector § = —(1.16, 1.24)’ and scale parameter » = 0.38 (see Appendix D for details). In all DGPs, we
set 012 = 1 so that R12 = 1/2. In order to have a tie between IV and LS, we set py,z5.z; = V/3/2 so that

022 = 1/7 and, therefore, y = 0.22, ¢ = 8 = 0.39, ug = 0.31 and | = pup = 0.65

Our results also indicate that non-Gaussian PML based on a restrictive parametric
distribution like the Student 7 or a discrete scale mixture of normals works well when
the true distribution is spherical, but it generates inconsistencies otherwise when we
impose the constraint o1 = 0. Notice, though, that the unrestricted estimators are
always consistent for the slope parameters while the restricted estimators seem to be
consistent for B + 1o despite being inconsistent for both o and 8, which is in line
with our theoretical discussion following Proposition 2.
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Fig.9 Monte Carlo results: 7 = 1000, pp2 = 3 and py,z,.z; = (u22 — 1)_1.

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the restricted (012 =
0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn) and RPML(smn) denote
the restricted (012 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (o012 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (o1 = 0) and unrestricted feasible
PML estimators based on a Student-z. DGPs: Panel a: Student ¢ distribution with v = 5 degrees of freedom;
Panel b: scale mixture of two normals with scale parameter >z = 0.09 and mixing probability 1 = 0.05;
Panel ¢: asymmetric Student ¢ density with v = 9.65 degrees of freedom, skewness parameters b; = —1;
and Panel d: location-scale mixture of two normals with mixing probability A = 0.05, location vector
§ = —(1.01, 1.06)" and scale parameter > = 0.32 (see Appendix D for details). In all DGPs, we set
012 = 1 so that R% = 1/2. In order to have a tie between IV and LS, we set py,z,.z; = 1/+/2 so that

022 = 1/3 and, therefore, y = 0.20, « = 8 = 0.40, uo = 0.15 and o1 = o = 0.58

In turn, the performance of the two-step SS estimators is very similar to the per-
formance of the corresponding parametric estimators, although their finite sample
variances are larger than what the asymptotic theory predicts. Specifically, the consis-
tency pattern of the restricted and unrestricted SS estimators is almost identical.

More importantly, we find that non-Gaussian PMLEs based on a flexible distribution
like a general finite mixture of normals works well in practice regardless of the true
distribution, systematically dominating MD. In addition, the version that imposes the
valid covariance restriction o> = 0 is always more efficient than the unrestricted one.
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Fig. 10 Monte Carlo results: 7' = 1000, 22 = 3 and py,z,.z; = %uzg(uzz — 1)_1.
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Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the restricted (012 =
0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn) and RPML(smn) denote
the restricted (012 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (o012 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (o1 = 0) and unrestricted feasible
PML estimators based on a Student . DGPs: Panel a: Student ¢ distribution with v = 5 degrees of freedom;
Panel b: scale mixture of two normals with scale parameter 2 = 0.09 and mixing probability 1 = 0.05;
Panel ¢: asymmetric Student ¢ density with v = 9.65 degrees of freedom, skewness parameters b; = —1;
and Panel d: location-scale mixture of two normals with mixing probability A = 0.05, location vector
§ = —(1.01, 1.06)’ and scale parameter s« = 0.32 (see Appendix D for details). In all DGPs, we set 012 =1

so that R]2 = 1/2. In order to have a maximum relative efficiency of IV versus LS, we set py,z,.z; = V3/2
so that 022 = 1/7 and, therefore, y = 0.22, ¢ = 8 = 0.39, ug = 0.31 and | = pp = 0.65

5 Directions for further research

As we mentioned at the end of Sect. 3.2, it would be useful to generalise our theoretical
results dropping the assumption of spherical symmetry. Similarly, and although we
have seen that our proposed finite mixture-based PMLEs get close to achieving the
SP efficiency bound both under sphericity and in general, an obvious extension of
our Monte Carlo experiments would be to consider standard two-step SP estimators
that starting from a consistent estimator such as OLS carry out one BHHH iteration
using the efficient SP score estimated nonparametrically without imposing spherical
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Fig. 11 Monte Carlo results: 7 = 1000, o = 7/3 and py,z,.z; = (22 — n-!

Notes: IV denotes the instrumental variables estimator, LS denotes the ordinary least squares estimator, MD
denotes the optimum minimum distance estimator, UPML(mn) and RPML(mn) denote the restricted (012 =
0) and unrestricted PML estimators based on a mixture of two normals, UPML(smn) and RPML(smn) denote
the restricted (012 = 0) and unrestricted PML estimators based on a scale mixture of two normals, USS
and RSS denote the restricted (072 = 0) and unrestricted elliptically symmetric semiparametric estimators
described in Sect. 3, while UPML(t) and RPML(t) denote the restricted (o1 = 0) and unrestricted feasible
PML estimators based on a Student . DGPs: Panel a: Student ¢ distribution with v = 11/2 degrees of
freedom; Panel b: scale mixture of two normals with scale parameter > = 0.12 and mixing probability
A = 0.05; Panel ¢: asymmetric Student ¢ density with v = 10.38 degrees of freedom, skewness parameters
b; = —1; and Panel d: location-scale mixture of two normals with mixing probability A = 0.05, location
vector § = —(1.16, 1.24)’ and scale parameter » = 0.38 (see Appendix D for details). In all DGPs, we
set ‘71 = 1 so that R2 = 1/2. In order to have a tie between IV and LS, we set py,z, z; = V/3/2 so that

2 = 1/7 and, therefore, y =022, 0 ==0.39, up =031and 1 = pup = 0.65

symmetry. The curse of dimensionality in estimating multivariate densities, though,
might further reduce the theoretical advantages of this method in finite samples.

Another worthwhile exercise would be to extend the analysis in this paper to the
general simultaneous equation model with an arbitrary numbers of endogenous vari-
ables and instrumental ones considered by Arellano (1989a). Aside from involving
more complex analytical expressions than in the bivariate example we have consid-
ered, the main practical complication would be that the number of free parameters of
a standardised multivariate mixture increases with the square of the cross-sectional
dimension, as we explain in Appendix D.

Last, but not least, deriving a formal result that shows that finite Gaussian-
mixture-based PMLEs may provide a proper sieve ML estimator when the number of
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components increases at a suitable rate constitutes a particularly interesting avenue
for further research.
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A Asymptotic covariance matrices
A.1 Instrumental variables (IV)

Let v; = (vy;, v2;) denote the reduced form innovations

vi=y;, —Czi = B 'u;,

where y; = (y1;, y2:) and z; = (1, z1;, 22;)’, so that E(v;|z;) = 0 and V (v;[z;) =
B 'Y B! = @, with

In this context, the unrestricted Gaussian PMLE of « and S coincides with the
IV estimator that uses a constant, z; and z» as instruments in the first equation. To
consider both equations at once, let # = (8’, 512)" and

ARG VAR CANAAC IR (A1)
where
op (9 1
Zjj) = —"a; ‘ot
zV9) = %%;W ERZCELRI)!
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1 0

o + 1zt + pm2z2i 0

22 0

1

BIL;("’) = Ol(;l' 21i
- 11 ) )

09 o22j 22i

0 0

0 0

0 0
0 0 0O 0
2(0{022 +o12) 0y 022 0
0 0 0O O
0 0 0 O

0 "1
—”eca[ﬂ @1 _ 0 o 0 o],
0 0 0 O
1 0 0 O
o? a o 1
200 1 1 0
and
I 0
,/012+a2022+2a012
2@ = 2 2, 22
_ o5 4012 / 01 0'2 012 of+a’os+2a01)
012+a2<122+2a<712 \/01 24q2 o3 21 20012 \/ (leozzf(flzz

is the inverse of the (lower) Cholesky decomposition of €2.
We can then exploit Proposition C2 in Supplementary Appendix C of Fiorentini
and Sentana (2021) to obtain

AVar(Vnd 1v) = [Av,p9 ()] By ss (@,0)[Av,99 (], (A2)
where
Au,90 () = E [Z5,@) K02 )] and
Bu.os(@.0) = E | ZL@K* @, @25/ )]
with

K3, 0) = Viea: (9. 0)] = [ o0.0) ;‘;EZZ;] (A3)

@7 (¥, 09) = E[vivec' (v;v)], Y¥(#0. 09) = E[vec(viv} —I)vec (vivy —I3)]
and v = Q‘l/zv,, so that ®¥(0) = 0 and Y*(0) = (I4 + K2,) if we use @ = 0 to
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denote normality and K,,,, for the commutation matrix of orders m and n (see, e.g.
Magnus and Neudecker (2019)).

Given that the assumption of constant conditional higher-order cumulants applies
to the structural model, though, we need to relate the higher-order moments of the
reduced form residuals to those of the structural ones. Defining

2a o?
F@) =L B '(0)® B~ (0)]D; = a |,
1

S O =

1
0
where L, and D> are the elimination and duplication matrices of order 2, respectively
(see Magnus and Neudecker (2019)), we will have that

Elvived (v;v))] = =B~ (0)Z(8)? 9 ()[Z(8)' ® Z(6)*'F'(9)

and

Elvec(v;v) — I)vec (0,0} — I5)] = FO)[2(8)2 ® £(8)2 17" ()[Z(6)2' ® £(8)2'|F'(9),

where ®“ (o) = E[u}vec' (ufu;)], Y*(0g) = E[vec(uu; — Io)vec' (ufu’’ —1I,)]
and u} = > V2y;.
After some tedious calculations, it is straightforward to prove that

2.2
g le

AVar (Vnagy) =
Vna) = erar —a2)

and

of (uio2 + u3oZ, + 2111207, 2,)

w3 (0303 — o)

AVar (ﬁ Bi V) =
For our purposes, it is convenient to rewrite these expressions as

(1 - R%) (1 - p%zzz.m)
(1 - R%) p,%zzz.zl

AVar (ﬁ&[v) =

and

R% (1 - R%) (1 - '05222-11)

(1 - R%) pizzz.m

)

AVar (ﬁﬁw) =

where R% and R% are the population coefficients of determination of Egs. (1) and (2),
respectively, and py, , -, the correlation coefficient between y; and z; after partialling
out the effect of z;.
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A.2 Ordinary least squares (LS)

As mentioned in Sect.2, the restricted Gaussian PMLE that imposes o1, = 0
coincides with the OLS estimator of the first equation. To consider both equations at
once, let

ZR.0) = (I3, 0551)25.(0, 0). (A4)

Then, analogous calculations to the ones in the previous subsection imply that

AVar (VfLs) = Aglyy 8) Br.oo 8,0) Axlpy @) (AS)

where

Ao ®) = E[ZE @K 25 ®)] and Broo . 0) = E[25 )" 0. 025 ®)].

After some straightforward calculations, it is easy to show that

PO et MY 070304 i
ar (Vndys) = ) 2 22112 2.2 2 (2 22112
[V“Zamzz -0y (02 + “2022)] [M20z1z2 — 03 (02 + M2Gzz)]
and
AVar(\/ﬁ,éLs) = 012{0222“%[%41“% + 20 (622 + 02112";1“2) 2_ 022152“2] + 0221 ;2“3}
[ + M2( 949, — 02122)]
_}_“12("’22 + Mlm"flfz)[%z"zzl — Ouz (011/“/1“2 + 2‘72122“%)]

2
[02 %% +/l“2( 121 122 _Uzzlzz)]
2.2

010, (Gzl,ul + 0212211«2) Mm22

5
[02 94 +'u2( 121 222 _Uzzlzz)]

Again, it is convenient to rewrite these expressions as

(1 B R%)(l B pgm.z])[“ﬂ(l B pgzzz.u) + '0322211]
1 — R?

AVar(ﬁ&Ls) =

and

(1 - R%)(l - 'ngzz-m)[l + (M22 - 1)( pvzzz 21)]
1 — R?

AVar(\/ﬁﬁLS) =

El
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A.3 Optimum minimum distance (MD)

Let ¢ = vec(C) and @ = vech(f2) denote the parameters of the unrestricted reduced
form model. From Egs. (5)-(6), we will have that

cl0 =y +auo, c0 = o, w11 = 011 + a’oxn + 20012,
ci1 =B +aur, 1 =W, w2 =000+ 02,
C12 = a2, €22 = {2, W22 = 022.

Let‘iLS = ( C10, C11, C12, €20, C21, €22, W11, @12, 5)22)/ denote their unrestricted Gaus-
sian PML estimators, which coincide with equation by equation OLS. To obtain the
asymptotic distributions of these estimators, we need the first derivatives of the con-
ditional mean vector and covariance matrix with respect to the unrestricted reduced
form parameters, which are given by

aCz;
ac’

avec[(0)] .

/
=2z;® I, and e

D,.

In this notation, the contribution to the Gaussian log-likelihood scores for ¢ and @
corresponding to observation i will be given by

sci(c,0) = 2; @ 71(0)v;(c)
and
1
Swi(C,®) = ED/ZveC[Q(O)_lvi v} (RO —@0)7.

Consequently, the outer product of the scores will be

Sei (€,@)s,; (c,0) = z;Z, ® (O)'v; (c)v}(c)R(O) ",

1
Si (€,0)5;(¢,0) = - Dyvec[R(0) v (©V;(©)RO) "' — 20) Iz ® v (©)R(O) ']

and

501 (€050, (¢.0) = TDYNeC[R(0) W @V (©20) " —20) ]
xvec/[ﬂ(o)_lVi(C)VE(C)Q(o)_l - 9(0)_1]1)2'

Similarly, we can easily adapt the expressions in Amengual et al. (2022) to write
the contribution of observation i to the Hessian matrix he 4; (¢,®) as

3 iz, ® 0)™") [zvj©Q7'®) ® 26)' D,
| p[e@) iz @ @) DyRO) @ [20) ViV ©@) ! - 12@)7'D, |
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Thus, we have all the ingredients to compute AVar(ﬁgZ Ls) using the standard sand-
wich formula in White (1982) and Gouriéroux et al. (1984).

On this basis, we can show that the asymptotic variance of Malinvaud (1970)
optimum MD estimator will be given by

3¢’ (0) -1 0¢@0)) "
g Wl

AVar(v/nfyp) = { "

[Avar(vds)]

where

Clo — Y —auo

cir— B —ap

C12 — 02

€20 — MO
é0) = €21 — (1

€22 — 2

w1 — o011 — afon
w12 — 0022
@22 — 022
Specifically, we obtain that
0?02

AVar ﬁ&MD =
s s gy ey

and

A 252 2.2 52,200
AVar(v/nBup) = oi o) +2(G;1“1 + 0213 + 207, 1 2 ka2

252 52 2
O-z162 + (O-zlo'zz Gz1zz)M2/‘L22

’

which rewritten in terms of the population coefficients of determination, become

(1 B R%)(l B 'ngzz.zl)p“22

AVar(y/nayp) = (1- R%)[l + pgm_m (n22 —1)]

and

(1 - Rlz)(1 - '05212.11)[1 + R%('U“zz - 1)]
(1 - R%)[l + p%zzz.zl (M22 - 1)]

Avar(\/;.éMD) =

A.4 Maximum likelihood with spherical innovations

Invoking Proposition C1 in Supplementary Appendix C of Fiorentini and Sentana
(2021), we can obtain the asymptotic variance of the ML estimator that imposes
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o2 =0 as

AVar(vnb 1) = Iz' 0, n), where g0, n) = E[ZF@O)MmZF' @)1, (A7)

R M (n) 0 0
Z§<0)=<Zd6“’) . ),Mm): 0 M) My |
1 0 My M@

Mu(m) = My,
Mss(”) = My (Iy + K22) + [Mys — l]vec(Iz)Vec’(Iz),
Msr(ﬂ) = UeC(IZ)Msr

and
M, () = Ve (9)|p] = —E[de, ()/n|$],
with
My =E [32(9’, ﬂ)%] ,

98 i N2
o= 14 5| 2D (2)7], ang

Jac 2
M, = _E| % (i m)
2 oy

Similarly, we can compute the asymptotic variance of the unrestricted ML estimator
which also estimates o, as

AVar (ﬁﬁML) —7,,' @, ), where Ty #, ) = E[ZU 0,0 M@ZI 8, 0)], (A8)

with

206.0) — 740,00 0
P 0 L)

Asa consequence,

ofor
AVar (Vnéy) = . i
MssUz(Tzzl +M11/J,2(O'Z210'Z22 _Ozzlzz)
and
2 2 2.2 2.2
2 op [Mssoy + My (ujo;, + 130z + 210
AV&I‘(\/I;,BML) = 1[ 5572 (M’l Z1 2] 22 Hip Z|Z2)]

Mu[Myso3o2 +Mup3 (o3 07, — o3, )]
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Analogous calculations using ZlU (@, 0) in place of ZiR (@, 0) for the unrestricted
ML estimator yield
2.2

010z

AV % =
S AL Rvmre et ey

and

U]Z(M%Um + M%Uzzz + 2M1M2‘711Z,2)

2 2 _ 52
MUMZ(GZIUZZ Uzlzz)

AVar(«/ﬁ,gML) =

Once again, we can write these expressions as

(1 - R12)(1 - '03212-11)
(1 - R%)[(l - pgzzz.a)MSS + 'ngzzmM”]

AVar(\/ﬁ&ML) =

and

(1 - R%)(l - p?zZz-Zl)[RgM” + (1 - R%)MSS]
(1 - R%)M”[(l - p}z*zzz.zl)M” + p,%zzz.mM”]

AVar(ﬁ,éML) =

for the restricted estimator, and as

(1 B R%)(l B p%zzz.m)
(] - R%)p)z)zzz.m M

AVar(ﬁ&ML) =

and

R%(l - R12)(1 B 'O)z’zzz.m)
(1 - R%)pgzzz.m My

AVar (\/EBML) =
for the unrestricted one.

A.5 Spherically symmetric semiparametric estimator (SS)

From Proposition C3 in Supplementary Appendix C of Fiorentini and Sentana (2021),
the spherically symmetric SP efficiency bound is given by

o j i’ 2
Sj(0) =T 90(¢) — Wi (OYW'(0) - {[2 Mys = 1= 2 2}

where
W (0) = Z/(8)[0, vec' ()] for j =R, U,
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and
Tpg(0.n) = E [Zai (0)Maa (0. ) Zy;0)] .

Under suitable regularity conditions, we have that

AVar(v/nfss) = [Sx(6)] (A9)
and

AVar(/nfss) = [Su (6)] " (A10)

Tedious but otherwise straightforward calculations show that for the restricted esti-
mator that imposes 012 = 0 we obtain

AVar(v/négs) = AVar(v/né 1) and AVar(ﬁ,éSS) = AVar(ﬁBML),
while for the unrestricted one we get

AVar(\/ﬁdgg) = AVar(\/ﬁdML) and AVar(ﬁﬁgg) = AVar(\/ﬁ,gML).
A.6 Maximum likelihood with general innovations
If we use Proposition D3 in Supplementary Appendix D of Fiorentini and Sentana

(2021), we can obtain the asymptotic variance of the ML estimator that imposes
o12 = 0 by computing

AVar(v/nby1) = I (9, @), where Zgr(6, @) = E[ZCR (0)M(0)ZEF (0)],
where

28R 0) = [Z,’f(ﬂ), ZgR(())] , (A11)

dvec' [R2 (0)]

Z5R0) = o

[Lee o).
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B 0 0 0 0
ac} o203 0 _a (ot \"
\/alz-i-omzz (‘712+0“722)3/2 Ulz ‘712+0“722
0 0 0 0
rrea L 0 0 0 0
duec’[R2(0)] _ 0 0 0 0
30 0 0 0 0
1 o otazz 0 (Y20'22 0'120'22
2foitac}  20itwo))’ 2o7+a’atad) | af+ac]
a2 20((712+a3<722 0 012 012022
2\/012+a022 2(07+ao3)32 20i0y +a203) | of +aoy
and
Mu@) M@ Mir(@)
M(Q) = ;s (0) M () My @ |,
@ M. (@) My (o)
with

Mi(e) = Ve ($)$] = E [ In f(e]; 0)/de*de™ | 0] .

Mis(0) = Elen(d)ey (9)'|9] = E[9°In f(e]: 0)/0e* 0™ - (] @ )| 0] .

Ms(@) = Viey(9)19p] = E [(ef @ L) - 97 In f (e} 0)/0e* 06 - (e @ I)|e] — Koo,
My (@) = Ele; ()€}, ($)|¢] = —E [9° In f (e} 0)/0e* 00 |0] .

M, (@) = Eley (d)e) (9)|d] = —E [(e] ® 1)d* In f(]: 0)/0e* 3@ |0] .

and
M1 (@) = Vien(@)|é] = —E [0%In f (e} 0)/9000'16)].

Analogously, we can obtain AVar(\/ﬁO~ mL) =1, o, 0) by exploiting the expres-
sions for the derivatives of the unrestricted model that we obtained when we discussed
the IV estimators.

A.7 Semiparametric estimator (SP)
We can make use of Proposition D3 in Supplementary Appendix D of Fiorentini and

Sentana (2021), which indicates that the SP efficiency bound for j = R, U will be
given by

S (@) =T;.00(0.0) — 23 (0) [Mua () — KOIK* (@K ()] 25 (8). (A12)
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where + denotes the Moore—Penrose inverse, with

_ ([ Mu(e) Mis(o)
Mdd(g)‘(M;Sw) M”w))

and the matrix of third- and fourth-order central moments ¥ (@) in (A3). Then, under
suitable regularity conditions, we will have that

AVar(Vnbsp) = [$x(6)] " (A13)
and

AVar(Vnbsp) = [Su(8)] " (Al4)

The expression for " (@) simplifies considerably in the spherically symmetric case
because

E(uju’ @u’) =0, (A15)
E(ufu’ @ ufu’) = E[vec(uu)vec' (uju}’)]
= (k + D[4+ Kp)+vec (Ip) vec’ (Ip)]. (A16)

As a result, after some tedious calculations we obtain that for the estimator that
imposes the restriction o2 = 0,

N o O' (l + k)
AVar(y/ndsp) = 1 3 .
%z +M”(1 + K)MZ( 949 — 01112)
and
2[52 2 2 2 2
5 of|os + (14 k)M 02 + picZ +2u1 a0
AVar(ﬁﬂSp) — 1 [ 2 (l‘l’l 7] H707, 153028 lez)];

Mll["z +(1 +K)'U“2(0210122 _012112)]
while for the unrestricted one,

2.2
g 021

AVar(ﬁ&Sp)

2 _ 42
M”'MZ (Uzlgzz 02122)

and

of(uio? + n3ol +2uipu20,2,)

My 3 (02 222 —02.)

AVar(vnBsp) =

Once again, we can rewrite these expressions as

(1 - R%)(l B p)z’zzz-u)(l +«)
(1 - R%)[(l - p%zzz.m) + p)%zzzmM”(] + K)]

AVaI‘(\/E&SP) =
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and

(1= R (1 = £3,epe ) (L) [1 = RS + R3Mu (1 + )]
(1= R = Phrzyc)) + Phazyc Mt (14 1) IMur (1 4 16)

AVar(x/EBSP) =

in the restricted case, and as

(1 - R]2)(1 - p)z’zzz.m)

AV o =
ar(\/ﬁaSP) M”(l - R%)'O}z’zzz.m
and
. RI(1—RY)(1 = p5,c, )
AV: _ ¥222.21
ar(v/nBsp) (1~ K)ot

when o7 is also estimated.

A.8 Reparametrisations
The results in the previous subsections can be used to derive the asymptotic distribution

of alternative parametrisations. Specifically, for estimators that impose o12 = 0, the
asymptotic covariance of the reparametrisation in (8) is simply

AVar(\/ﬁ@T) = JofoAVar(\/ﬁé)J;w,

where
. Is O 0
20 1 1
Yoo =547 = 0 57 32 (A17)
0 92 91
201 207

In turn, for unconstrained estimators that also estimate o2, so that = @, ¥r12),
we would have

AVar(\/ﬁﬁé) = JI,TI,AVar(\/ﬁﬁ)J’Nﬂ

with
M Ig 0 0 0 7
2 2 2 2
0 ojoy—207, _ 9] a2
a9t Wetd—oh) | Neld—oh)  dei-ah
oo =2557=1 o o2 o2 o . (A18)
2foioioh,  2Joidi-oh  2Jetai-oh

012 1

0 -z 0 L
L o] of _
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B Proofs of Propositions

Proof of Proposition 1

Computing in Mathematica the spectral decomposition of AVar(ﬁé Ls) —AVar(ﬁé MD)
using the expressions (A5) and (A6), we find that it has only one eigenvalue different
from zero, namely,

(22 = 1)*u3otod {02, (1 + 7)) + [1+ 1 + (o + mam2)"Jo J (0202 — 02,
2
[“22“2( 9% 222 _012112) 02202][022 _'u2( z10z22 _ozzlzz)]

_2(M22 - 1) n30t030;, 5 ua[t1 (o + ama) — wiloz, (0202 — o2 )

2
[M22M2( z103 - 072122) - ‘722‘721][022021 M2( 110222 - 022122)]

which is non-negative, with

/
Uzl(l +M27—'2) — O0z1z7, 12T B 0z, 10 (B19)
) 2 s 1, Ul x5
Oz 1 + 0712042 O 1+ 05542

as associated eigenvector. .

Analogously, after computing the spectral decomposition of AVar(/nf;y) —
AVar(ﬁé mp) using the expressions (A2) and (A6 ), we find that it has only one
eigenvalue different from zero, namely,

ofo3 (o2, (L+ 1P)id — 200zl (o + Taps2) — iiJo2 + [1 4+ 13 + (o + 22p2)Jor

[M22M2( %z 222 072172)_02 ]“‘2( 02 _0121’2) ’

which is non-negative, with (B19) its associated eigenvector once again.
Finally, doing the same for AVar(y/n6;y) — AVar(s/nfyp) by combining (A2)
and (AS), we find that it has only one eigenvalue different from zero, namely,

(22 = D308 07, (07,02 = 022, ){0d, (L + 72)13 = 200z iaf (o + pama) Tt — miJo? }
[13(0202 —02.,) —0to2 ' [nad(o2 02 —02.,) — 0302 ]
(122 = 1)’ 1307, i((fszz o2 M1+ 1 +02 (o + mam)°])
[13(0202 = 022,) —ofol Plunui(of 03 — of,) —o302]

which can be positive or negative depending on w22, and with the same eigenvector.
O
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Proof of Proposition 2

Computing in Mathematica the spectral decomposition of AVaI(«/EOKL §)—
AVar[ﬁé;,, 1 ()] using (A17), the expression in (A9) and exploiting the fact that

AVar[ /nb 1 ()] = [Zoo (6.7)] .

where Zyg (0 ,7) denotes the block of the information matrix of the mean and variance
parameters, we find that it has only one eigenvalue different from zero, with associated
eigenvector

01x7, ).

Similarly, we find that the spectral decomposition of AVar(ﬁés P)
—AVar[\/nf 1 ()] using also (A13), has five eigenvalues different from zero. By
looking at the orthogonal basis for its null space, which is given by

/
2 2
(0, o i1+ 07z L2, UZI,les)
and

(0254, 12, 022),

we can immediately see that the parameters that are estimated adaptively are w1, w2,
and the linear combination of « and S indicated by the first eigenvector. In turn, a
basis for its image is given by

(1,017,

0, —c? 2 015)
k] o'zl’l‘l/lo-zl +011Z2H27 1x5 ’
(01x3, 1,01 54)

and
01x6. ).

Finally, using an entirely analogous procedure with (A13) and (A6), we find that
the spectral decomposition of AVar(ﬁé MD) — AVar(ﬁéS p) has four eigenval-
ues different from zero, with a basis for its image given by (0241, Iz, 0245) and
(02x4, I, 0242),and abasis forits kernel by (02x¢, I2), (1, mo+p1 71+ 1212, 71, 01%5)
and (0143, 1, 71, 72, 01x2), as can be easily checked by premultiplying the difference
between the covariance matrices by an 8 x 8 matrix whose rows concatenate those
two basis and postmultiplying it by its transpose. O

@ Springer



SERIEs (2023) 14:253-300 291

Proof of Proposition 3

Computing the spectral decomposition of AValr(\/ﬁo~ ML) — AVar(ﬁé ML)
in Mathematica using the expressions (A7) and (AS8), we find that it has only one
eigenvalue different from zero, namely,

otosM {02 15 (14 17) = 205,507 pa[ (o + pawa)tt — i ] + 03 [1+ 17 + (o + 1)’}

waMn (07,02, = 07,,) [Mss 0303, + iiMu (07,02, — 07,

with associated eigenvector (B19). _
Using (A9) and (A10), we find that the same turns out to be true for AVar(/nfss) —

AVar(y/nf gs).
Finally, if we do the same for AVar(y/n0yp) — AVar(/nf yp) using (A13) and
(A14), we also find that it has only one eigenvalue different from zero, namely

oto3 {02 L3 (1 + 77) = 200,507 pa[ (o + pama) Tt — il + 03, [1+ 17 + (o + paw)?]}

oM (0202 — o2 )[o702 + (1 +iouaMy(o2 o2 — a2 )] ’

and that its image is given by the same eigenvector as in the previous cases. O
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C Simplifying the DGP
C.1 Standardised variables

We start by assuming that:

M 0 L by Pvizi Pyiza
2 1 o 0 Py1yz L oy Pyn
Z1 0 Pyizi Pyzy 1 Pz122
22 0 Pyiza  Pyrza  Pzizn 1

where the correlation matrix is positive definite.
In this notation, the coefficients of the least squares projection of y; onto y; and z;

are
-1
<a> _ ( 1 Pyzm) (py1yz>
B Pyrzy 1 Pyiz1
— ! (p)’lyz ~ Pyiz1Pyrz1 )
1— 0%, \Pyizi = Pyiy Pyozy
the corresponding projection errors

Pyiyy — PyniziPyrzi - Pyizi — PyiyaPyaz
) — 2
L= 05 L= 05

up=yr—ay»— Bz1 =y —

and the residual variance

—1
1
V) =1- (pylyz Pyiz1 ) < pylzzl ) (pmyz)

Pyrz1 Pyz
2 2
_ Pyiya PNz T 2Pz Py Pyiz
— 2
L= Py,

=1

’

so that the RZ becomes

2 2
_ Py + 0320 = 20321 Py1ya Pyizy

R}
2
- Pyrzy

In turn, the coefficients of the least squares projection of y, onto z; and z; are

—1
(ﬂl) _ ( 1 szz) (pyzzl)
2% Pz 1 Pyrzo
_ 1 (pyzzl ~ PyrzaPz120 )
- 1022112 Pyrza = Pyrz1Pz122
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the corresponding projection errors

Pyrz1 = Pyrz2Pz1z2 Pyrza — Pyaz1 Pz1z2
~ Pz ~ Pz

and the residual variance

-1
1
V) =1-— (Pyzz1 /Oyzzz) (lezz pZiQ) (Ziii;)

2 2
_ Py + 05,2, = 202122 Py221 Pyoza
—_ 2
I=pin

=1

)

so that the R% becomes

2 2
R2 Pz T Pzy = 20212 P10z Pyaza
2 — 1 _ 2 N
leZ2

Finally, the covariance between the previous projection errors is

El(y1 —ay2 — Bz1) (02 — n1z1 — n2z2)l

—E |:(y1 _ Pyiys T PyiziPyaz 2 — py1z1l_ Py1y2 Pyrzi Zl)

— 52 —_ 2
1= 05,z Pz
Pyrz1i =~ PyrzaPziza Pyrza = Pyrzi Pzizo
y2 - 1 2 i1 — 1 2 . 22
~ Phz ~ Pz
=p _ Pyz T PpzPuz _ Pyrz T Pyrzi Pz
— Py _ 2 Y121 2 yiz2
=07 =9z,
~ Pyiyy T PyiziPyzi | Pyiya T Pyizi Pyazi Pyazi T Py Pz
— 2 _ 2 _ 2 Y221
1= p35,2, 1= p5,, e
+/)ylyz ~ PyiziPyszi Pyaza T Pz Puiz _ Pyizi T PyiyPyaz
1—p2 1—p2 V222 1—p2 Pyrzi
V221 2122 221

Pyizi = Pyiy2Pyrzi Pyrzi = PyzaPziza | Pyizi = PyiyaPyazi Pyaza = PyziPaiza

2 2 2 2
- Pyyz - Pz I— Pyrzy 1= Pziz

2122

+

2
. (pyzzz — pyzz]pmzz) [ﬂylyz (Pyzzz - pyzzlpzlzz) + Pyiz (0212 — Pyzzzpyzzl) - pylzz(l - pyzm)]
= 2 2
1 ~ Pz 1_'0yzz1
Therefore, for y, to be exogenous in the first equation, we need either

1y = Pyzzzl_ :Oy;zuomzz —0,
~ Pz

which seems very restrictive, or

o _ Pyiy (Py222 = Py2z1 Pz122) + Py1z1 (Pz120 — Pyazi Pyaza)
yiz2 — 2
- Pyazy
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2
—p
= ﬁpupylyz +8pyi215 (C20)
Py

where § is the coefficient of z; in the least squares projection of z> onto y, and zj,
whose coefficients are given by

-1
<V> - < L pyyzy ) (loyZZZ) - ! <p}‘212 — PunPyz )
) Pyrzy 1 Pziz2 1— p%m Pz1z2 = Pyrz2Pyrzy

Therefore, if we assume w2 7# 0, then we need to choose py, ;, so that (C20) holds.

C.2 Original variables

Let us now consider the least squares projection of y§ onto a constant, z{ and z,
which is given by

¥y = mg+pizi +pugzy +uf.

We can then individually centre and standardise each of the variables involved as
follows

L y5 — g — HTE@Z]) — nSE(z5)
JHPVED +HPV @) + 255 Cov(S. 29) + V()

20— E(2Y 2§ — E(Z5

B @) and zp = 2 ()

JVED JVE

which leads to the following transformed equation

y

1 =

Y2 = 121 + H2z2 +uy,

where
w1 = pni Vi
1 = 9
WPV @ED + uPV (@) + 205 1S Cov(z, 23) + V ()
H2 = p3 Ve
2V PV () + uSV (29) +2uiusCov(zf. 29) + V)’
and
V(ul
V(uy) = i =1-R;

M?ZV(zf) + M‘Z’ZV(ZZ) +2ufusCov(zy, z25) + V(uy) N
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The coefficients 111 and p, are sometimes called the standardised regression coeffi-
cients, as they explain the ceteris paribus change in y5 (measured in standard deviation
units) resulting from a unit standard deviation change in z{ or z§.

Thus, once we standardise the three variables involved, the crucial ingredients of
the first equation are the coefficient of determination R%, the correlation between the
regressors p;,;, and the partial correlations between y, and each of the regressors,
which are given by

P _ E[(y2 — Py2z222)(11 - 10111212)] _ Pyrz1 — Pz122Pyrz0
Vz122 = =
T WV pnad Ve = ean) (1 2 V(1 2
~ Pz ~ Pz
2
= 1— Pziz
- '05222 ,

_ E[(y2 = py,2:21)(22 — pz12,21)] _ Pyzza — PzizaPyazy

Pyrza-z1 =

V2 = pyaz)V (@2 = pmz) \/(1 —d?) (1-p2.)

2
1 - Pz

= M2 5 -
- Pyrzi

In fact, there are only three underlying parameters that determine these four quan-
tities: Py,z,, Py,z, and p;,,, because

22
2 _ R2 Pyyz
'Oy221~z2 - 1— 2 ’
Pyyz
2 2
2 _ R2 — Pz
'Oy212~21 - 1 = 02 ’
Pyzy
or alternatively
2 2
2 Rz ~ Pyziz
pyzZz - 1= 02 ’
Pyrzi-z
2 2
2 R Pyyza-21
pyzzn - 1— 2 .
Pyyzy-21

Thus, we can either select py,;,, py,z, and p;,,, or we can select R3, and

2
’OyZZl 22
2
’0)/212'ZI !
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D On multivariate discrete mixture of normals

Consider the following mixture of two multivariate normals

u ~ {N(Vl, I'1) with probability A, (D21)

N(v2,T'y) with probability 1 — A.

Let s; denote a Bernoulli variable which takes the value 1 with probability A and 0
with probability 1 —X. Asis well known, the unconditional mean vector and covariance
matrix of the observed variables are:

E(u) =7 = E[E(]|s)] =2Av) + (1 —1)vy,
V(u) =W =V[E|s)]+ E[V(uls)] = A(1 —1)88" + AT + (1 — V)T,
where § = v| — vy.

Therefore, this random vector, which we will denote as u;, will be standardised if
and only if

A+ (1 =py =0
and
A1 =) (g — ) (g — ) +AT 1+ (1 =T =1

For example, in the bivariate case, if we let W7 ¥, denote the Cholesky decompo-
sition of W, we can write

w=n +¥ou, wherer = [Z;} and ¥; = |:W11 0 :|

Y1 Yoo

Additionally, let

81 »x11 O
8 = 5 dN = )
[32} ameRL [%21 %22:|

so that the vector of shape parameters of u} becomes 0 = (81, 82, »11, 21, 322, 1)

Let us initially assume that v; = v = 0, sothat § = 0. Let I'1, T}, and T, T/,
denote the Cholesky decompositions of the covariance matrices of the two components.
Then, we can write

AT| + (1 =22 = Typ[ady + (1 — W)L To Ty, TITY
=TIz + (1 — MRLR)TY ;.

Thus, it is not difficult to see that choosing
Ty =y + (1 — )RR, and Ty = T 8RR, T,
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or, equivalently,
-
Fip=[AI+0—-0)8.R;]72and Ty =T1.R8,
we can indeed obtain a bivariate standardised vector u}.

Now consider the case § # 0,and let ¥ = A(1 — )»)66/ + I,. Then, it is easy to see
that

R U T Sy | PN RN |
vi=Y"2v, v =""2v, T =", "T'/Y 72, and[5 =Y"2IY 2

continue to generate another standardised vector.
In summary, we can generate a standardised bivariate mixture as

W' ="Y"7{(si — )8+ [T1; — si(Ty, — Tap)lz) .

where z; ~ N(0, I,). The intuition is as follows. First, note that (s; — A)§ is a shifted
and scaled Bernoulli random variable with 0 mean and variance A(1 —1)88’. But since

[Typ —si(Ti —Tap)lzs

is adiscrete scale mixture of normals with 0 unconditional mean and unit unconditional
variance that is orthogonal to (s, — A)8, the sum of the two random variables will have
variance I + A(1 — A)88’, which explains the Y7 in front of the curly brackets.

Therefore, two equivalent ways of defining and simulating #, with mean t and
variance ¥ are

N[vi(n), TF(n)] with probability A

up =+ Wyou;, whereu; = { N[v3(y), T5(n)] with probability 1 — A (D22)
and
o= [N T e
) 2L
where
v; = (vec'(x), vech/ (W), vec'(8), vech’ (R), 1)
and

Ti; = T (vec' (x), vech/ (W), vec'(8), vech’ (E1), 1)
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fori = 1, 2. Inthis set-up, the means of the components will be givenby v; = (v } , v% )
with

1 (I =M¥1é

V=T + ——
J1+a0 =28

and
' (1 — Y2181 (1 = M) ¥0é 1+ 21— )82
v, =T+ + 2 2, 52y’

and vy = (vlz, v%)’ with

2 AY1181

V=T — —F—————
J1+ A =218

and
2o A1181 A28y 1+ A(1 —2)87
=1 — p— .
’ L2 —ne  THAA=08V 1+a0 =16 +63)

As for the Cholesky decompositions of the covariance matrices of the two components,
namely

1 2
rle[Vlll 01} andFZLz[ylzl 02}
Vo1 V22 21 VY

we will have

1
}’111 = Y11,
\/[1 + A1 = DA+ (1 = 1)3,]

L [L+ A0 =821+ (1 — 1) ]
2=V aa — B+ DAMGE + 52 (1= 1) — A+ (1 = MAsd, + (1 — 1252, 5, )
1 V21 1 (=)0

Y2t U= A)xisan
V21 Vnwn VZZA+(1—A)%121

Y22,

VHGR + 58D = 2) = 0+ (1= sy + (= 12553,

—yh (1 —M)A818
yall = DA [+ 20— WS+ (1 — 2]

2 1
Y11 = #1111

2 1
Yoo = 22V
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and

Y L R S
Ty P o (= 05 e

V7B + (1= 03,y + 3, + (1L = 5By)] = 1y (3, — 1) + 22

—yah (1 —2)2818
rRll ZRaha [+ A — 800+ (1 — )52 e

Similar calculations can be applied for general n, the only difference being that the
number of free parameters of the standardised mixture increases with the square of
the cross-sectional dimension.
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