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Abstract
Professor Dolado has developed much of his professional career in three cities:
Zaragoza, Oxford and Madrid. This fact, together with the recent appearance of lit-
erature relating climate with human behavior, has inspired us to analyze a set of
relevant climate change issues linked to these areas, particularly any possible hetero-
geneity. The novel methodology proposed in (Gadea Rivas and Gonzalo in J Econom
214:153–174, 2020a for analyzing a wide range of characteristics of the temperature
distribution (converting them into time series objects), instead of focusing solely on
the mean, allows us to carry out this analysis . Using this methodology, we can identify
local warming patterns within the global warming phenomenon of different types and
intensities. The results show that there is a clear warming process in the three areas.
The two Spanish cities (Zaragoza and Madrid) have many similarities, but Oxford
fits into a different type of warming category. The former are characterized by higher
trends in the upper quantiles than in the lower, an increase in dispersion, acceleration
and an “upper amplification” with respect to the mean. In Oxford, the type of climate
change is different, displaying higher trends in the lower quantiles, a weak negative
trend in dispersion, “lower amplification” and a more attenuated acceleration in recent
decades. There is no doubt that a better knowledge of local warming heterogeneity is
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recommendable for the design of more effective mitigation policies. The influence of
the climate on human behavior and, specifically, on Professor Dolado’s personality,
takes us into lesser-known regions which are left for the reader to discern.

Keywords Climate change · Global Warming · Local Warming · Functional
stochastic processes · Distributional characteristics · Trends · Quantiles ·
Temperature distributions

JEL Classification C31 · C32 · Q54

1 Introduction

There is a rapidly growing body of research analyzing the influence of climate change
on economic outcomes. The extensive survey by Dell et al. (2014) reviews the impact
on agricultural output, industrial output, labor productivity, energy demand, health,
conflict and economic growth, among other outcomes.

At themicro-level, the evidence of the impact of climate change on human behavior
(personality) is not so extensive. It is known that high temperatures have strong impacts
affecting not only physical labor capacity but also mood, behavior and mental health
through heat exhaustion and effects on cognitive and psychological performance (see
Taylor et al. 2015)). A recent study by Wenqui Wei and 25 co-authors (2017) tests
the relationship between ambient temperature and personality. The authors conducted
two large-scale studies in China and the US revealing that compared with individuals
who grew up in regions with less clement temperatures, individuals who grew up in
regions with more clement temperature (closer to 22C) score higher on personality
factors related to socialization and stability (agreeableness, conscientiousness and
emotional stability) and personal growth and plasticity (extraversion and openness to
new experiences).

In this paper, we analyze the climate of the three geographical places that have
marked Prof. Dolado’s life: Zaragoza (place of birth), Oxford (Phd studies) andMadrid
(place of residence). The existence of a clear local warming heterogeneity process
is shown, while the task of inferring how this climate heterogeneity has influenced
Dolado’s personality is left to the reader.

The study of local warming is carried out using the novel methodology introduced
in Gadea and Gonzalo (JoE 2020a, GG) where all the distributional characteristics
of the local temperature distribution are transformed into time series objects. These
distributional characteristics, not only the standard mean, are fully analyzed. In this
paper, the analysis is focused on the following three issues that are used to describe
the existence of climate-warming heterogeneity:

• Existence of Local Warming (LW) and determination of the type of LW in each
region

• LW acceleration over time.
• LW amplification with respect to the mean temperature.

This climate-warming heterogeneity is crucial in order to design more efficient
mitigation policies to fight against global warming.
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The rest of the paper is organized as follows. Section 2 summarizes the novel
econometric methodology introduced in GG. Section 3 describes the temperature
data of Zaragoza, Madrid and Oxford. Section 4 presents the results that show the
existence of localwarming in all the three cities and its heterogeneity. In this section,we
introduce a warming typology and definitions of warming acceleration and warming
amplification. Finally, Sect. 5 concludes.

2 Climate econometrics methodology

In this section, we briefly summarize the novel econometric methodology introduced
in GG to analyze Global and Local Warming processes. Following GG, Warming is
defined as an increasing trend in certain characteristics of the temperature distribution.
More precisely:

Definition 1 (Warming) Warming is defined as the existence of an increasing trend in
some of the characteristics measuring the central tendency or position (quantiles) of
the temperature distribution.

An example is a deterministic trend with a polynomial function for certain values
of the β parameters Ct = β0 + β1t + β2t2 + ... + βk tk .

In GG, temperature is viewed as a functional stochastic process X = (Xt (ω), t ∈
T), whereT) is an interval inR, defined in a probability space (�,�, P). A convenient
example of an infinite-dimensional discrete-time process consists of associating ξ =
(ξn, n ∈ R+) with a sequence of random variables whose values are in an appropriate
function space. This may be obtained by setting

Xt (n) = ξt N+n, 0 ≤ n ≤ N , t = 0, 1, 2, ..., T (1)

so X = (Xt , t = 0, 1, 2, ..., T ). If the sample paths of ξ are continuous, then we have
a sequence X0, X1, .... of random variables in the space C[0, N ]. The choice of the
period or segment t will depend on the situation in hand. In our case, t will be the
period of a year, and N represents cross-sectional observations.

We may be interested in modeling the whole sequence ofG functions, for instance
the sequence of state densities ( f1(ω), f2(ω), ..., fT (ω) ) as in Chang et al. (2015,
2016) or only certain characteristics (Ct (w)) of theseG functions, for instance, the state
mean, the state variance, the state quantile, etc. These characteristics can be considered
time series objects, and, therefore, all the econometric tools already developed in the
time series literature can be applied to Ct (w). With this characteristic approach, we
go from � to RT , as in a standard stochastic process, passing through a G functional
space:

�
(w)

X−→ G
Xt (w)

C−→ R
T

Ct (w)

Going back to the convenient example and abusing notation, the stochastic structure
can be summarized in the following array:
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X10(w) = ξ0(w) X11(w) = ξ1(w) . . . X1N (w) = ξN (w) C1(w)

X20(w) = ξN+1(w) X21(w) = ξN+2(w) . . . X2N (w) = ξ2N (w) C2(w)

.

.

.

.

.

.

. . .

. . .

. . .

.

.

.

.

.

.

XT 0(w) = ξ(T−1)N+1(w) XT 1(w) = ξ(T−1)N+2(w) . . . XT N (w) = ξT N (w) CT (w)

(2)
As in GG, we assume that the stochastic functional process X = (Xt(ω), t ∈ T)

satisfies certain regularity conditions, such that the state densities, distribution and,
therefore, quantiles and any distributional characteristics are estimated consistently.

The objective of this section is to provide a simple test to detect the existence of
a general unknown trend component in a given characteristic Ct of the temperature
process Xt . To do this, we need to convert Definition 1 into a more practical definition.

Definition 2 (Trend test) Let h(t) be an increasing function of t . A characteristic Ct

of a functional stochastic process Xt contains a trend if β �= 0 in the regression

Ct = α + βh(t) + ut , t = 1, ..., T . (3)

The main problem of this definition is that the trend component in Ct as well as the
function h(t) are unknown. Therefore, this definition cannot be easily implemented.
If we assume that Ct does not have a trend component (it is I (0)) and h(t) is linear,
then we have the following well-known result.

Proposition 1 Let Ct = I (0). In the regression

Ct = α + βt + ut , (4)

the OLS estimator

̂β =

T
∑

t=1
(Ct − C)(t − t)

T
∑

t=1
(t − t)2

(5)

satisfies

T 3/2
̂β = Op(1) (6)

The t-test of the null hypothesis β = 0 (vs. β �= 0) asymptotically (T → ∞) behaves
as a N(0,1)

tβ=0 is N (0, 1).

In order to analyze the behavior of the t-statistic tβ=0, for a general trend component
inCt , it is very convenient to use the concept of Summability (Berenguer and Gonzalo,
2014)
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Definition 3 (Order of summability) A trend h(t) is said to be summable of order “δ”
(S(δ)) if there exists a slowly varying function L(T ),1 such that

ST = 1

T 1+δ
L(T )

T
∑

t=1

h(t) (8)

is O(1), but not o(1).

Proposition 2 Let Ct = h(t) + I (0) such that h(t) is S(δ) with δ ≥ 0, and such that
the function g(t) = h(t)t is S(δ + 1). In the regression

Ct = α + βt + ut , (9)

the OLS ̂β estimator satisfies

T (1−δ)
̂β = Op(1). (10)

Assuming that the function h(t)2 is S(1 + 2δ − γ ) with 0 ≤ γ ≤ 1 + δ, then the
t-test of the null hypothesis β = 0 (vs. β �= 0)

tβ=0 =
{

Op(T γ /2) for 0 ≤ γ ≤ 1
Op(T 1/2) for 1 ≤ γ ≤ 1 + δ.

(11)

Examples of how this proposition applies for different particular Data Generating
Processes (DGP) can be found in GG.

A question of great empirical importance is howour trend test (T T ) of Proposition 2
behave when Ct = I (1). Following Durlauf and Phillips (1988), T 1/2

̂β = Op(1);
however, tβ=0 diverges as T→∞. Therefore, our T T can detect the stochastic trend
generated by an I(1) process. In fact, our test will detect trends generated by any of
the three standard persistent processes considered in the literature (see Müeller and
Watson 2008): (i) fractional or long-memory models; (ii) near-unit-root AR models;
and (iii) local-level models. Let

Ct = μ + zt , t = 1, ..., T . (12)

In the first model, zt is a fractional process with 1/2 < d < 3/2. In the second
model, zt follows an AR, with its largest root close to unity, ρT = 1−c/T . In the third
model, zt is decomposed into an I(1) and an I(0) component. Its simplest format is zt
= υt + εt with υt = υt−1 +ηt , where εt is I D(0, q ∗ σ 2), ηt is I D(0, σ 2), σ 2 > 0 and

1 A positive Lebesgue measurable function, L, on (0, ∞) is slowly varying (in Karamata’s sense) at ∞ if

L(λn)

L(n)
→ 1 (n → ∞) ∀λ > 0. (7)

(See Embrechts et al. 1999, p. 564).
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both disturbances are serially and mutually independent. Note that the pure unit-root
process is nested in all three models: d = 1, c = 0, and q = 0.

The long-run properties implied by each of these models can be characterized using
the stochastic properties of the partial sum process for zt . The standard assumptions
considered in the macroeconomics or finance literature assume the existence of a “δ,”
such that T−1/2+δ

∑T
t=1 zt −→ σ H(.), where “δ” is a model-specific constant and

H is a model-specific zero-mean Gaussian process with a given covariance kernel
k(r , s). Then, it is clear that the process Ct = μ + zt is summable (see Berenguer-
Rico and Gonzalo 2014). This is the main reason why Proposition 3 holds for these
three persistent processes.

Proposition 3 Let Ct = μ + zt , t = 1, ..., T , with zt any of the following three
processes: (i) a fractional or long-memory model, with 1/2 < d < 3/2; (ii) a near-
unit-root ARmodel; or (iii) a local-levelmodel. Furthermore, T−1/2+δ

∑T
t=1 zt −→ σ

H(.), where “δ” is a model-specific constant and H is a model-specific zero-mean
Gaussian process with a given covariance kernel k(r , s). Then, in the LS regression

Ct = α + βt + ut ,

the t-test of the null hypothesis β = 0 (vs. β �= 0) asymptotically diverges,

tβ=0 = Op(T
1/2).

In summary, Propositions 2 and 3 imply that Definition 3 can be simplified to the
following practical definition.

Definition 4 (Practical definition 2) A characteristic Ct of a functional stochastic
process Xt contains a trend if in the LS regression,

Ct = α + βt + ut , t = 1, ..., T , (13)

β �= 0 is rejected.

Several remarks are relevant with respect to this definition: (i) regression (13) has
to be understood as the linear LS approximation of an unknown trend function h(t)
(see White 1980); (ii) the parameter β is the plim of ̂βols ; (iii) if the regression (13)
is the true data-generating process, with ut ∼ I (0), then the OLS ̂β estimator is
asymptotically equivalent to the GLS estimator (see Grenander and Rosenblatt 1957);
(iv) in practice, in order to test β = 0, it is recommended to use a robust HAC version
of tβ=0 (see Busetti and Harvey 2008)2 and (v) this test only detects the existence of
a trend but not the type of trend.

For all these reasons, in the empirical applications we implement Definition 4 by
estimating regression (13) using OLS and constructing a HAC version of tβ=0 (Newey
and West 1987).

2 Note that all the characteristics (mean, median, etc.) contain an estimation error. This estimation error
would be accommodated into the regression error in (13) and assuming it is stationary it will not represent
any problem for the robust t − statistic.
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These linear trends can be common indicating similar patters in the time evolution
of several characteristics.

Definition 5 (Co-trending) A set of m distributional characteristics (C1t ,C2t ,...,Cmt )
do linearly co-trend if in the multivariate regression

⎛

⎝

C1t
...

Cmt

⎞

⎠ =
⎛

⎝

α1
...

αm

⎞

⎠ +
⎛

⎝

β1
...

βm

⎞

⎠ t +
⎛

⎝

u1t
...

umt

⎞

⎠ (14)

all the slopes are equal, β1 = β2 = ... = βm . 3

This co-trending hypothesis can be tested by a standard Wald test.
Whenm = 2, an alternative linear co-trending test can be obtained from the regres-

sion

Cit − C jt = α + βt + ut

i �= j i, j = 1, ...,m by testing the null hypothesis of β = 0 vs β �= 0 using a simple
tβ = 0 test.

3 The data of the temperature in the three cities

The data sources for the two Spanish cities and the Central England area are different,
but both are available at daily frequency for the same period of time.

In Spain, AEMET (Agencia Estatal de Meterología) is the agency responsible for
storing, managing and providing meteorological data to the public. In 2015, AEMET
developed AEMET OpenData, an Application Programming Interface (API REST)
that allows the dissemination and reuse of Spanish meteorological and climatolog-
ical information.4 In this paper, we are concerned with Spanish daily station data,
specifically temperature data. In particular, each station records the minimum, maxi-
mum and average temperature and in some cases the time the temperature is recorded.
The data period ranges from 1920 to the present although not all stations cover the
same time periods. Specifically, the two stations selected, Zaragoza-Aeropuerto and
Madrid-Retiro start in 1951 and 1920, respectively.

As regards the Central England region, we have the longest temperature record
series (thermometer measured) which runs from 1659 to the present. These data are
measured monthly and annually for England. There are also daily temperature data
that have been measured since 1772. However, there are no instrumental data prior to
1659 because the thermometer was only invented a few decades earlier. These data
were originally published by Gordon Manley in 1953 in a database called The Central
England Temperature (CET), which is available from http://www.metoffice.gov.uk/

3 This definition is slightly different from the one in Carrion-i-Sivestre and Kim (2019).
4 A detailed description of the historical publications on climate in Spain and the way to access AEMET
data can be found in Gadea and Gonzalo (2020b).
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Fig. 1 The three cities of Prof. Juan J. Dolado

hadobs/hadcet/. These daily and monthly temperatures are representative of a roughly
triangular area of the United Kingdom enclosed by Lancashire, London and Bristol,
in which the city of Oxford is located (Figs. 1,2,3,4,5).

In order to homogenize the results and make them comparable, the entire analysis
has been carried out from 1950 to 2019, following the shortest temperature data avail-
able (Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16). Specifically, 1951-2019 for Zaragoza,
1950-2019 for Madrid and 1950-2020 for Central England. This period also coincides
with the life cycle of Prof. Dolado. Figures 1,2, 6 and 10 represent the temporal density
of the temperature data at daily frequency for the three geographical areas.

The three cities have different geographical characteristics. Focusing on those that
most affect the climate, latitude and height, Oxford is located at a latitude of 51.72,
the highest of the three, and at an altitude of 76m, almost at sea level. Zaragoza and
Madrid have similar latitudes, 41.66 and 40.42, respectively, but differ in altitude:
208m for Zaragoza and 667m for Madrid, the latter being one of the highest European
capitals. The longitudes are -0.88, -3.70 and -1.26 for Zaragoza, Madrid and Oxford,
respectively, although this coordinate has less influence on the climate since the three
cities receive the warming effect of the Gulf Stream. The type of climate is oceanic in
the case of Oxford and continental in the case of the two Spanish cities (see map in
Fig. 1).

Following the convenient example (see scheme 2 in Sect. 2), X is the local tempera-
ture, T (number of periods) ismeasured in years, N has a temporal structure (days), and
Ct = (C1t ,C2t , ...,Cpt ) is a vector of p distributional characteristics (mean (mean),
maximum (max), minimum (min), standard deviation (std), interquartile range (iqr ),
total range (range), kurtosis (kur ), skewness (skw), and the following quantiles: q05,
q10, q20, q30, q40, q50, q60, q70, q80, q90, and q95 estimated from N observations.
The evolution of these characteristics throughout the available sample is displayed in
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Fig. 2 Zaragoza annual temperature densities calculated with daily data
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Fig. 3 Annual temperature distributional characteristics for Zaragoza calculated with daily data
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Fig. 4 Trend slopes of the mean, q05 and q95 for different time periods (Zaragoza data)

Figs. 3, 7 and 11 for Zaragoza, Madrid and Central England, respectively. These char-
acteristics are obtained from the corresponding estimated temperature densities (see
Figs. 2, 6 and 10).

4 Local climate in the three cities

In this section, we apply our methodology to each one of the three main regions where
Prof. Dolado has spent part of his life. We compare the results focusing particularly
on the main differences, in the local warming heterogeneity. With our methodology
(Gadea and Gonzalo 2020b), we are able to construct a typology of the different
types of warming processes. This typology is based on the evolution of the different
distributional characteristics, especially the lower and upper quantiles.

Definition 6 (Warming typology) We define four types of Warming processes:

• W0: Only the median has a positive trend.
• W1: All the quantiles share the same positive trend (iqr does not contain a trend)
• W2: The Lower quantiles have a larger positive trend than the Upper quantiles (iqr
has a negative trend)

• W3: The Upper quantiles have a larger positive trend than the Lower quantiles (iqr
has a positive trend).
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Fig. 5 Heatmap of the trend acceleration hypothesis (Zaragoza-Aeropuerto with daily data). Notes:Y axis:
trend slope coefficients of the different quantiles. X axis: time intervals from 1951-2000,1952-2000,...2000-
2019. The scale of colors represents sign and intensity

W0 is an unrealistic case that is introduced only for comparison-explanatory pur-
poses. Most of the literature on Global or Local Warming only considers the trend
behavior of the central part of the distribution (mean or median). By doing this, we
are losing very useful information that can be used to describe the whole warming
process. This information is considered in the other elements of the typology W1,
W2 and W3. This typology does not say anything about the intensity of the warming
process. Part of this intensity is considered in the following definitions of warming
acceleration and warming amplification.

Definition 7 (Warming acceleration) We say that there is warming acceleration in a
distributional temperature characteristic Ct between the time periods t1 and t2 if in the
following two regressions:

Ct = α1 + β1t + ut , t = t1, ..., t2, ..., T , (15)

Ct = α2 + β2t + ut , t = t2, ..., T , (16)

the second trend slope is larger than the first: β2 > β1.

Definition 8 (Warming amplification with respect the mean) We say that there is a
warming amplification in distributional characteristic Ct with respect the mean if in
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Fig. 6 Madrid annual temperature density calculated with daily data
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Fig. 7 Annual temperature distributional characteristics for Madrid calculated with daily data
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Fig. 8 Trend slopes of the mean, q05 and q95 for different time periods (Madrid data)

the following regression:

Ct = β0 + β1meant + εt (17)

the mean slope is greater than one: β1 > 1.

The results are presented according to the following steps: first, we apply our T T
to determine the existence of local warming; second, we test different co-trending
hypotheses to determine the type of local warming of each region; third, we analyze
heuristically the particular warming acceleration process of each region, and finally
we test the warming amplification hypothesis for different quantiles with respect to
the mean: H0 : β1 = 1 versus Ha : β1 > 1 in (17). 5

5 Before testing for the presence of trends in the distributional characteristics of the data, we test for the
existence of unit roots. To do so, we use the well-known Augmented Dickey–Fuller test (ADF; Dickey
and Fuller 1979), where the number of lags is selected in accordance with the SBIC criterion. The results,
available form the authors on request, show that the null hypothesis of a unit root is rejected for all the
considered characteristics.
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Fig. 9 Heatmap of trend acceleration hypothesis (Madrid-Retiro with daily data).Notes:Y axis: trend slope
coefficients of the different quantiles. X axis: time intervals from 1950-2000,1951-2000,...2000-2019. The
scale of colors represents sign and intensity

4.1 Zaragoza

Zaragoza shows positive and significant trends in all the characteristics measuring the
central tendency or position (quantiles) of its temperature distribution. These trends
are stronger in the upper part of the distribution (see Table 1), implying that dispersion
measures like std and iqr have a positive trend coefficient. The mean has a trend slope
of 0.0352, which means an increase of 3.52 degrees Celsius in 100 years. The highest
positive trend occurs in the upper quantiles represented by q95with a coefficient value
of 0.053, which implies an increase of 5.3 degrees in 100 years. The lower quantile
which is represented by q05 registers a value of 0.0303.

Table 2 shows the trend homogeneity behavior of all the quantiles. Full homogeneity
is rejected, but partial homogeneity cannot be rejected. There is a certain degree
of homogeneity in the lower-middle part and in the upper part of the temperature
distribution. A positive and very significant trend between q95 and q50 and between
q95 and q05 is identified.

This pattern of the temperature distribution accelerates as time passes (Table 3
and Fig. 4). The heatmap (Fig. 5) that represents the year-by-year recursive trend
slope estimation since 1950 also confirms the greater increase in the highest quantiles
compared to the low ones and highlights the strong increase in the trend in extreme
values (maximum and minimum) at the end of the period.
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Fig. 10 Central England annual temperature density calculated with daily data

Finally, we cannot reject the amplification hypothesis with respect to the mean for
medium and higher quantiles (from q60 to q95), which can be interpreted as a greater
increase in high temperatures with respect to the average. We call this phenomenon
“upper amplification.”

Summing up, the existence of local warming, acceleration and “upper amplifica-
tion” is confirmed. In this case, warming is not homogeneous throughout the whole
temperature distribution; it is more intense in the right tail of the distribution. Putting
all the pieces together, we classify the warming process in Zaragoza as type W3.

4.2 Madrid

Madrid shows positive and significant trends in all the characteristics measuring the
central tendency or position (quantiles) of its temperature distribution. These trends
are stronger in the upper part of the distribution (see Table 5), implying that dispersion
measures like std and iqr have a positive trend coefficient. The mean has a trend slope
of 0.0326, which means an increase of 3.26 degrees Celsius in 100 years. The highest
positive trend occurs in the upper quantiles represented by q95with a coefficient value
of 0.0527, which implies an increase of 5.3 degrees in 100 years. The lower quantile
which is represented by q05 registers a value of 0.0248. These estimates are very
similar to those found for Zaragoza.
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Fig. 11 Annual temperature distributional characteristics for Central England calculated with daily data

Table 6 shows the trend homogeneity behavior of all the quantiles. Full homogeneity
is rejected, but, again, partial homogeneity cannot be rejected. There is a certain degree
of homogeneity in the lower-middle part and in the upper part of the temperature
distribution. A positive and very significant trend between q95 and q50 and between
q95 and q05 is identified.

This pattern of the temperature distribution accelerates as time passes (Table 7 and
Fig. 8). The recursive estimate in the heatmap shows, as in the case of Zaragoza, that
the highest acceleration is produced in the high quantiles.

Finally, we cannot reject the amplification hypothesis (see Table 8) with respect the
mean for medium and higher quantiles (from q60 to q95), which can be interpreted as
a greater increase in high temperatures with respect to the average. As in Zaragoza,
Madrid’s warming experiences an “upper amplification.”

Summing up, the existence of local warming, acceleration and “upper amplifica-
tion” is confirmed. In this case, warming is not homogeneous throughout the whole
temperature distribution but is more intense in the right tail of the distribution. Putting
all the pieces together, we classify the warming process in Madrid as typeW3.
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Fig. 12 Trend slopes of the mean, q05 and q95 for different time periods (Central England data)

4.3 Central England

The trend-test indicates a significant trend in all the characteristics of the temperature
distribution of Central England (CET). All the trends are positive, except those corre-
sponding to the dispersion measures (std, iqr ), which are negative but non significant
at 10% (See Table 9). The dispersion results differ from those in GG for the period
1772-2018 for which clearer reduction in dispersion is found (similar results for the
USA are reported in Diebold and Rudebusch 2019 and for the whole Globe in Gadea
et al. 2020). Obviously, the decrease in the dispersion measures has a lower bound and
it seems that recently this dispersion decrease has been reduced. The mean has a trend
coefficient of 0.0178, which implies an increase of 1.78 degrees Celsius in 100 years
(Table 9). The highest positive trends occur in the lower quantiles. The trend coeffi-
cient of the quantiles ranges from 0.0246 in the quantile (q05) to 0.0184 in quantile
(q95).

According to the co-trending Wald test for CET data (see Table 10), trend homo-
geneity for the whole temperature distribution cannot be rejected. All the quantiles
share a trend co-feature.

Contrary to the full trend acceleration experienced by the Zaragoza and Madrid
temperatures, CET only presents partial acceleration (middle part of the distribution
from q20 to q80)(see Table 12 and Fig. 12). The recursive estimation shown in the
heatmap reinforces this finding (Fig. 13).
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Fig. 13 Heatmap of trend acceleration hypothesis (Central England temperature with daily data). Notes:
Y axis: trend slope coefficients of the different quantiles. X axis: time intervals from 1950-2000,1951-
2000,...2000-2020. The scale of colors represents sign and intensity

In contrast to the findings for the Spanish cities, inCentral England the amplification
phenomenon with respect to the mean is found in the lower quantiles, from q05 to
q20. We call this phenomenon “lower amplification.”

Summing up, the existence of local warming with no trend in the dispersion mea-
sures, acceleration in the middle part of the distribution and “lower amplification” is
confirmed. In this case, we classify the warming process in CET as a mildW1 type.6

4.4 Comparing: a tale of three cities

We have already classified the warming process of three cities according to definition
5. In this subsection, we compare the numerical intensity of this warming process.

A descriptive look at the evolution of the temperature distribution of the three cities
is presented in Fig. 14 for three of the relevant characteristics, the mean, and the
quantiles q05 and q95. In relation to the mean, higher values are observed on average
in the Spanish cities throughout the comparable period, specifically, 15.15 in Zaragoza,
14.73 inMadrid and 9.82 in Central England. The difference is verymarked in the case

6 In GG, the CET warming for the period 1772–2018 shows a more significant negative trend in the
dispersionmeasures. For this reason, theCETwarming for 1772–2018 is considered aW2 type.Nevertheless,
it seems that over time the trend behavior of CET temperature distribution has become more homogenous
(W1 type).
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mean

Fig. 14 Evolution of annual local temperatures (mean, q05 and q95) of the three cities calculated from
daily data

of the upper quantile with figures of 26.71, 26.77 and 17.73, respectively. In relative
terms, the differences in the lower quantiles, 3.94, 4.32 and 1.37, are also large. In all
three cases, a stronger upward trend seems to be observed for recent decades in the
two Spanish cities than in Central England.

From the detailed analysis of the characteristics of the temperature distribution of
the three cities,wehave concluded that there are two types of climate change at the local
level. However, size matters because it shows the intensity of each of these patterns.
What Fig. 15 illustrates is the different trend slopes of each of the characteristics in two
different periods. It is found that the trend is greater in almost all the characteristics in
the Spanish cities than in Oxford, especially in the mean and in the highest quantiles,
a feature that is accentuated in the second period. Also, noteworthy is the uneven
behavior of the characteristics associated with dispersion (std and iqr) which, as has
already been pointed out, have a different sign, positive in the case of Zaragoza and
Madrid and negative (non significant) in Oxford.

Finally, Fig. 16 represents the recursive estimate used in the heat maps jointly for
the three cities and three relevant characteristics. These figures clearly show the dif-
ferences in terms of the climate typology of the three regions. There are two elements
to highlight. The first is the existence of positive trends in the three selected character-
istics. The second is the difference in magnitude that clearly points to a more intense
warming in the Spanish cities compared to the English one. Other results are more
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Fig. 15 Trend slopes of the distributional characteristics of local temperature for the three cities

subtle. For example, the trend increase in q05 in Central England, which is attenuated
as we approach the end of the sample, or the small differences between the behavior
of Zaragoza and Madrid that are manifested only at the end of the period.

5 Conclusions

Professor Dolado has developed much of his professional career in three cities:
Zaragoza, Oxford and Madrid. This fact, together with the recent research linking cli-
mate with personal behavior (personality), has inspired us to analyze a set of relevant
climate change issues linked to these places, particularly any possible heterogeneity.
The findings of this paper, achieved using the novel methodology introduced in GG,
are very clear: There exists Local Warming in the three regions. This LW is not homo-
geneous. The warming in Zaragoza and Madrid is not only stronger than in Oxford,
it also follows different warming typologies according to definition 5. Zaragoza and
Madrid are of typeW3 and Oxford isW1. There are also other differences summarized
as follows:

• Zaragoza shows a warming acceleration over its whole temperature distribution
although it is stronger from q30 upwards.Madrid also suffers a strong acceleration
from q30 upwards, while Oxford has a very mild acceleration in the middle part
of its distribution (between q20 and q80).
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Fig. 16 Recursive estimates of trends for selected characteristics of the three cities. Notes: The character-
istics have been calculated from daily data. The sample of Zaragoza and Madrid ends in 2019

• Zaragoza and Madrid show an upper warming amplification (above q60), while
Oxford has a lower amplification (below q20) with respect their corresponding
means.

Properly identifying the type of local warming is crucial in order to know its causes
as well as its influence on the economy so as to implement the appropriate efficient
mitigation policies. Regions with different warming processes may require differ-
ent economic mitigation policies. These are issues under current investigation by
the authors. Much less is known about the influence of climate on human behavior,
although we believe that having shown the existence of a clear climate heterogeneity
can help shed light on this issue. Prof. Dolado’s life has alternated between Zaragoza
and Madrid with average temperatures slightly above 20 degrees and an intermediate
period in Oxford whose average temperature is around 10 degrees and with very dif-
ferent distributional characteristics. We leave it up to the reader to assess the extent
to which some of Dolado’s personality traits, such as his sociability, extraversion, and
capacity for diverse and hard work have been influenced by the climates of the main
cities in his life.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

123



496 SERIEs (2022) 13:475–511

Table 1 Trend test
(Zaragoza-Aeropuerto daily
data, AEMET 1951–2019)

Characteristic Coeff. p value

mean 0.0352 0.0000

max 0.0449 0.0000

min 0.0440 0.0003

sd 0.0077 0.0052

iqr 0.0181 0.0006

rank 0.0009 0.9387

kur −0.0019 0.0089

skw 0.0010 0.2876

q05 0.0303 0.0005

q10 0.0269 0.0003

q20 0.0255 0.0000

q30 0.0256 0.0000

q40 0.0298 0.0000

q50 0.0328 0.0000

q60 0.0389 0.0000

q70 0.0402 0.0000

q80 0.0439 0.0000

q90 0.0503 0.0000

q95 0.0532 0.0000

OLS estimates and HAC p values of the tβ=0 test from regression:
Ct = α + βt + ut

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Table 3 Trend acceleration
hypothesis
(Zaragoza-Aeropuerto daily
data, AEMET 1951–2019)

Names/periods 1951–2019 1970–2019

mean 0.0352 0.0504

(0.0000) (0.0000)

max 0.0449 0.0598

(0.0000) (0.0000)

min 0.0440 0.0383

(0.0003) (0.0195)

sd 0.0077 0.0137

(0.0052) (0.0017)

iqr 0.0181 0.0305

(0.0006) (0.0020)

rank 0.0009 0.0215

(0.9387) (0.1764)

kur −0.0019 −0.0030

(0.0089) (0.0104)

skw 0.0010 -0.0012

(0.2876) (0.3107)

q05 0.0303 0.0345

(0.0005) (0.0027)

q10 0.0269 0.0293

(0.0003) (0.0022)

q20 0.0255 0.0281

(0.0000) (0.0008)

q30 0.0256 0.0336

(0.0000) (0.0004)

q40 0.0298 0.0488

(0.0000) (0.0000)

q50 0.0328 0.0593

(0.0000) (0.0000)

q60 0.0389 0.0671

(0.0000) (0.0000)

q70 0.0402 0.0597

(0.0000) (0.0000)

q80 0.0439 0.0624

(0.0000) (0.0000)

q90 0.0503 0.0728

(0.0000) (0.0000)

q95 0.0532 0.0707

(0.0000) (0.0000)

OLS estimates and HAC p values in parenthesis of the tβ=0 test from
regression: Ct = α + βt + ut , for two different time periods
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Table 4 Trend amplification
hypothesis (Zaragoza daily data,
AEMET 1951–2019)

Periods/variables 1951–2019

q05 0.88

(0.747)

q10 0.82

(0.876)

q20 0.79

(0.999)

q30 0.81

(0.994)

q40 0.92

(0.883)

q050 1.03

(0.345)

q60 1.15

(0.048)

q70 1.11

(0.072)

q80 1.18

(0.006)

q90 1.24

(0.002)

q95 1.21

(0.015)

OLS estimates and HAC p values in parenthesis of the tβ1=0 test from
regression: Ct = β0 + β1meant + εt
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Table 5 Trend test
(Madrid-Retiro daily data,
AEMET 1950–2019)

Characteristic Coeff. p value

mean 0.0326 0.0000

max 0.0477 0.0000

min 0.0362 0.0011

sd 0.0112 0.0000

iqr 0.0270 0.0000

rank 0.0115 0.3666

kur −0.0016 0.0278

skw 0.0012 0.1538

q05 0.0248 0.0000

q10 0.0220 0.0000

q20 0.0200 0.0000

q30 0.0181 0.0000

q40 0.0236 0.0000

q50 0.0299 0.0000

q60 0.0334 0.0000

q70 0.0388 0.0000

q80 0.0519 0.0000

q90 0.0494 0.0000

q95 0.0527 0.0000

OLS estimates and HAC p values of the tβ=0 test from regression:
Ct = α + βt + ut
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Table 7 Trend acceleration
hypothesis (Madrid-Retiro daily
data, AEMET 1950–2019)

Names/periods 1950–2019 1970–2019

mean 0.0326 0.0447

(0.0000) (0.0000)

max 0.0477 0.0636

(0.0000) (0.0000)

min 0.0362 0.0087

(0.0011) (0.5859)

sd 0.0112 0.0197

(0.0000) (0.0000)

iqr 0.0270 0.0399

(0.0000) (0.0004)

rank 0.0115 0.0549

(0.3666) (0.0045)

kur −0.0016 −0.0022

(0.0278) (0.0660)

skw 0.0012 −0.0013

(0.1538) (0.2695)

q05 0.0248 0.0183

(0.0000) (0.0774)

q10 0.0220 0.0174

(0.0000) (0.0162)

q20 0.0200 0.0187

(0.0000) (0.0099)

q30 0.0181 0.0235

(0.0000) (0.0019)

q40 0.0236 0.0362

(0.0000) (0.0000)

q50 0.0299 0.0545

(0.0000) (0.0000)

q60 0.0334 0.0604

(0.0000) (0.0000)

q70 0.0388 0.0550

(0.0000) (0.0000)

q80 0.0519 0.0712

(0.0000) (0.0000)

q90 0.0494 0.0687

(0.0000) (0.0000)

q95 0.0527 0.0710

(0.0000) (0.0000)

OLS estimates and HAC p values in parenthesis of the tβ=0 test from
regression: Ct = α + βt + ut , for two different periods
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Table 8 Trend amplification
hypothesis (Madrid-Retiro daily
data, AEMET 1951–2019)

Periods/variables 1950–2019

q05 0.66

(0.993)

q10 0.58

(1.000)

q20 0.66

(1.000)

q30 0.72

(1.000)

q40 0.90

(0.887)

q50 1.08

(0.188)

q60 1.14

(0.040)

q70 1.22

(0.012)

q80 1.45

(0.000)

q90 1.31

(0.004)

q95 1.31

(0.001)

OLS estimates and HAC p values in parenthesis of the tβ1=0 test from
regression: Ct = β0 + β1meant + εt
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Table 9 Trend test (Central
England daily data, CET 1950-
-2020)

Characteristic Coeff. p value

mean 0.0178 0.0000

max 0.0376 0.0006

min 0.0314 0.0053

sd −0.0022 0.1671

iqr −0.0053 0.1304

rank 0.0061 0.4868

kur 0.0009 0.4309

skw 0.0021 0.1158

q05 0.0246 0.0013

q10 0.0239 0.0001

q20 0.0205 0.0000

q30 0.0195 0.0000

q40 0.0160 0.0000

q50 0.0132 0.0001

q60 0.0151 0.0000

q70 0.0142 0.0001

q80 0.0140 0.0001

q90 0.0164 0.0001

q95 0.0184 0.0002

OLS estimates and HAC p values of the tβ=0 test from regression:
Ct = α + βt + ut
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Table 11 Trend acceleration
hypothesis (Central England
daily data, CET 1950–2020)

Names/periods 1950–2020 1970–2020

mean 0.0178 0.0221

(0.0000) (0.0000)

max 0.0376 0.0483

(0.0006) (0.0033)

min 0.0314 0.0413

(0.0053) (0.0637)

sd −0.0022 −0.0017

(0.1671) (0.7028)

iqr −0.0053 −0.0029

(0.1304) (0.6784)

rank 0.0061 0.0070

(0.4868) (0.7361)

kur 0.0009 0.0005

(0.4309) (0.7474)

skw 0.0021 0.0002

(0.1158) (0.9263)

q05 0.0246 0.0240

(0.0013) (0.1338)

q10 0.0239 0.0220

(0.0001) (0.0503)

q20 0.0205 0.0229

(0.0000) (0.0030)

q30 0.0195 0.0254

(0.0000) (0.0000)

q40 0.0160 0.0237

(0.0000) (0.0000)

q50 0.0132 0.0184

(0.0001) (0.0022)

q60 0.0151 0.0240

(0.0000) (0.0002)

q70 0.0142 0.0239

(0.0001) (0.0000)

q80 0.0140 0.0175

(0.0001) (0.0070)

q90 0.0164 0.0175

(0.0001) (0.0194)

q95 0.0184 0.0180

(0.0002) (0.0409)

OLS estimates and HAC p values in parenthesis of the tβ=0 test from
regression: Ct = α + βt + ut , for two different time periods
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Table 12 Trend amplification
hypothesis (Central England
daily data, CET 1950–2020)

Periods/variables 1950–2020

q05 1.73

(0.000)

q10 1.51

(0.000)

q20 1.26

(0.003)

q30 1.08

(0.226)

q40 0.88

(0.873)

q50 0.70

(0.998)

q60 0.69

(1.000)

q70 0.72

(1.000)

q80 0.74

(0.991)

q90 0.91

(0.720)

q95 1.01

(0.475)

OLS estimates and HAC p values in parenthesis of the tβ1=0 test from
regression: Ct = β0 + β1meant + εt
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6 Appendix: typology of warming processes

To illustrate graphically the four different types of Warming processes described in
the text, the following simulation exercise has been carried out. We have generated
100 replications of series yit (i = 1, ..., N and t = 1, ..., T ) with T=150 and N=200
as a mixture of 3 normal distributions with weights η1, η2, η3, that take values of 0.05,
0.95 and 0.05, respectively. We define a discrete indicator variable S taking values in
the set 1, 2, 3 . The marginal density p(y) is obviously given by the following mixture
density,

p(y) =
3

∑

i=1

p(y/S) = η1 p(y/θ1) + η2 p(y/θ2) + η3 p(y/θ3).

In each replication, the random variable y follows the distribution p(y|θS) with θS
being the parameter in group S. In this case, p(y|θS) ∼ N (μSt , 1), where μSt =
αS + βS ∗ t + εt with εt ∼ N (0, 1). The value of αS and βS are different for each
group labeled with S and for each type of Warming process (Figs. 17, 18, 19, 20).

The following figures show the distributional characteristics q05, q50, q95 and
iqr=q95-q05 corresponding to the 100 replications. The linear trend for a given char-
acteristic is estimated from its average across replications.

Fig. 17 W0 type of Warming process. Notes: The estimated trends are -0.0002, 0.0118, 0.0002, 0.0004 for
the average across replications of q05, q50, q95 and iqr=q95-q05, respectively. The only significant one is
the corresponding to q50

123



SERIEs (2022) 13:475–511 509

Fig. 18 W1 type of Warming process. Notes: The estimated trends are 0.0148, 0.0148, 0.0149, 0.0001 for
the average across replications of q05, q50, q95 and iqr=q95-q05, respectively. All the trends are significant
but the one corresponding to iqr

Fig. 19 W2 type of Warming process. Notes: The estimated trends are 0.0179, 0.0127, 0.0112, -0.0067 for
the average across replications of q05, q50, q95 and iqr=q95-q05, respectively. All of them are significant
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Fig. 20 W3 type of Warming process. Notes: The estimated trends are 0.0098, 0.0098, 0.0224, 0.0126 for
the average across replications of q05, q50, q95 and iqr=q95-q05, respectively. All of them are significant
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