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Abstract
Dynamic factor models (DFMs), which assume the existence of a small number of
unobserved underlying factors common to a large number of variables, are very popular
among empirical macroeconomists. Factors can be extracted using either nonparamet-
ric principal components or parametric Kalman filter and smoothing procedures, with
the former being computationally simpler and robust against misspecification and the
latter coping in a natural way with missing and mixed-frequency data, time-varying
parameters, nonlinearities and non-stationarity, among many other stylized facts often
observed in real systems of economic variables. This paper analyses the empirical con-
sequences on factor estimation, in-sample predictions and out-of-sample forecasting
of using alternative estimators of the DFM under various sources of potential misspec-
ification. In particular, we consider factor extraction when assuming different number
of factors and different factor dynamics. The factors are extracted from a popular
data base of US macroeconomic variables, widely analyzed in the literature without
consensus about the most appropriate model specification. We show that this lack of
consensus is only marginally crucial when it comes to factor extraction, but it matters
when the objective is out-of-sample forecasting.
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1 Introduction

In recent decades, dynamic factor models (DFMs) have been widely used to repre-
sent comovements within large systems of macroeconomic and financial variables, in
which the cross-sectional dimension is often relatively large compared with the time
dimension; see Stock and Watson (2017) for the importance of DFMs in time series
econometrics. DFMs generally assume the existence of a small number of unobserved
factors capturing the comovements in the system.1 Two main types of procedures
for factor extraction are popular in the related literature. First, in many applications,
factors are extracted using nonparametric procedures based on principal components
(PC), which are attractive because they are computational simple and havewell-known
theoretical properties. In particular, PC is consistent under mild conditions and, as far
as the factors are pervasive and the idiosyncratic dependence is weak, it is robust to
the underlying dependence of common factors and idiosyncratic components. As a
consequence, PC procedures are very popular for factor estimation and several excel-
lent surveys are available in the literature; see, among others, Bai and Ng (2008a) for
a technical survey on the econometric theory for PC. However, when the common
factors and/or idiosyncratic components are serially dependent, PC procedures do not
use this information and, consequently, they are not efficient.

Alternatively, after casting the DFM as a state-space model (SSM), factors can be
extracted using Kalman filter and smoothing (KFS) procedures. One important fea-
ture of these procedures is that they open the door to Maximum Likelihood (ML)
estimation of the model parameters. Furthermore, KFS is also very flexible, allowing
to handle in a straightforward way data characteristics often observed in practice as,
for example, missing data, mixed frequencies, seasonal dependencies, nonstationar-
ity or regime-switching nonlinearity. Moreover, KFS procedures are also of interest
in empirical applications because they allow incorporating restrictions on the factor
loadings, as in multi-level DFMs, or on the idiosyncratic components, and to perform
counterfactual exercises; see, for example, Banbura et al. (2011) formulti-levelmodels
and Luciani (2015) for counter-factual analysis. However, the main drawback of KFS
is that it requires full specification of the dependence of the common and idiosyncratic
components, opening the door to potential misspecification; see Poncela et al. (2021)
for a very recent survey on KFS for factor extraction in DFMs.

There are few papers looking at the effects of the misspecification of the fac-
tors on factor extraction and forecasting and all of them focus on factors extracted
using PC. Boivin and Ng (2006) conclude that overestimating the number of factors
affects the precision with which they are estimated and the forecasting results, while
Barigozzi and Cho (2020a) also conclude that overestimating the number of factors
could yield non-negligible estimation errors. In an empirical application forecasting
GDP growth for Germany and France, Barhoumi et al. (2013) show that not necessar-
ily more factors imply better forecasting. Gonçalves et al. (2017) analyzing the same
data set considered in this paper, conclude that the forecasting ability depends on the

1 In this paper, we focus on models representing comovements in the first order moments of the variables
in the system of interest. However, there are also proposals in the literature to model common movements
in other characteristics of the distribution; see Chen et al. (2021) for a factor model with the factors being
common in the quantiles.
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specific combination of eight PC factors used in factor-augmented predictive regres-
sion. Finally, Breitung and Eickmeier (2011a) conclude that, if the cross-sectional
dimension is large, the dynamic properties of the factors are not important for factor
extraction and forecasting. This paper contributes to the literature by analyzing the
empirical consequences on factor estimation and in-sample predictability and out-
of-sample forecasting of extracting factors using not only PC but also KFS under
various sources of potential misspecification. In particular, we consider factor extrac-
tion and forecasting when assuming different number of factors and different factor
dynamics. The analysis is carried out extracting factors from the ubiquitous data base
of US macroeconomic variables described by McCracken and Ng (2016) and fore-
casting some key US macroeconomic magnitudes. Factor extraction procedures have
been previously being compared using this data set; see, for example, Poncela andRuiz
(2015) and the references therein. However, as far as we know, the empirical properties
of KFS extraction under potential sources of misspecification have not been analyzed
before when extracting factors from the same data set; see, Aruoba et al. (2009) for the
importance of comparing factor extraction procedures in the context of the same data
set. In the particular US macroeconomic data set analyzed in this paper, we show that
specifications with more factors and more lags are favored in-sample when looking
both at log-likelihood ratio tests and at measures of fit of factor-augmented predic-
tive regressions. However, increasing the number of factors and/or their lag structure
does not always lead to an increase in the out-of-sample forecast precision with the
out-of-sample mean square forecast errors (MSFEs) being generally minimized when
forecasts are based on simplemodelswith one factor extracted usingKFSandmodelled
as an AR(1) process. It is important to note that these results might not be applicable
beyond the macroeconomic system considered in this paper. Whether they can be gen-
erally applicable is an interesting issue that is beyond our objectives. Careful Monte
Carlo experiments could be designed to analyze their general applicability.

The rest of the paper is organized as follows. Section 2 briefly describes the rep-
resentation of DFMs as SSMs and how factor extraction can be performed by PC
and KFS. In Sect. 3, the factors are extracted from a system of US macroeconomic
variables under the assumption of serially uncorrelated idiosyncratic components. We
analyze the differences in terms of point and interval estimation of factors, in sam-
ple prediction and out-of-sample forecasting, when factors are extracted using PC
and the KFS under different assumptions on the number of factors and their dynamic
dependence. Section 4 concludes the paper.

2 Dynamic factor models and factor extraction

For completeness, in this section, we briefly describe the DFM as well as factor
extraction based on PC and on KFS.
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2.1 The dynamic factor model

The following stationary approximate DFM has been extensively analyzed in the
related literature2

yit = λ′
i Ft + εi t , (1)

where yit is the observation of the i th variable, for i = 1, . . . , N , at time t , for
t = 1, . . . , T , λi = (λi1, . . . , λir )

′ is the r × 1 vector of unknown factor loadings
corresponding to yit , Ft = ( f1t , . . . , fr t )

′ is the r×1 vector of unobservable stochastic
factors at time t and εi t is the idiosyncratic component of yit . The number of factors, r ,
is assumed to be known and fixed as the cross-sectional and temporal dimensions, N
and T , respectively, grow. If the idiosyncratic components, are assumed to be cross-
sectionally uncorrelated, i.e., their covariance matrix, �ε is diagonal, the DFM is
known as “exact” while, if the idiosyncratic noises are weakly cross-correlated, the
DFM is called “approximate”.

The DFM in equation (1) can be also written in matrix form as follows

Y = F�′ + ε, (2)

where Y is the T × N matrix of observations, F is the T ×r matrix of factors,� is the
N ×r matrix of factor loadings and ε is the T × N matrix of idiosyncratic components.
Finally, it is also useful to express the DFM in the following vector form

Yt = �Ft + εt , (3)

where Yt = (y1t , . . . , yNt)′ and εt = (ε1t , . . . , εNt)
′ are N × 1 vectors.

2.2 Principal components factor extraction

PC, which is among the most popular factor extraction procedures due to its simplicity
and low computational burden together with its good theoretical properties, estimates
� and F by minimizing the following sum of squares:

V (r) = (NT)−1
N∑

i=1

T∑

t=1

(
yit − λ

′
i Ft

)2
. (4)

The factors cannot be individually identified and we can only estimate the space
spanned by them. In the context of PC factor extraction, it is popular to assume that
F

′
F

T = Ir and�
′
� is diagonal with distinct elements in the main diagonal arranged in

decreasing order; see Bai and Ng (2013) for a discussion on identification restrictions
inDFMs.With respect to the identification of the sign, it could be useful to use external
information; see, for example, Geweke and Zhou (1996), who propose determining

2 We assume that all deterministic components have been removed from the series yit previous to their
analysis.
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the sign of a single factor by assuming that its weight in a given variable is positive
and Stock and Watson (2016) for an application.

Stock and Watson (2002b) show that, if r is known, the serial and cross-sectional
correlations of the idiosyncratic components are weak and the factors are pervasive,
the space spanned by the estimated PC factors is consistent when both N and T tend

simultaneously to infinity. Later, Bai (2003) shows that, if also
√

N
T → 0, the factors

are asymptotically normal. If the idiosyncratic noises are further assumed to be serially
uncorrelated, then the limiting distributions are independent across t . The asymptotic
approximation of the mean square error (MSE) of the PC factors at time t , f̃ PCt , can
be estimated as follows

MSEt =
(

�̃PC′
�̃PC

N

)−1
�̃t

N

(
�̃PC′

�̃PC

N

)−1

, (5)

where �̃PC is the PC estimate of the matrix of loadings and, according to Bai and
Ng (2006), �̃t can be estimated using the following estimator, which is robust to
cross-sectional dependence and heteroscedasticity of the idiosyncratic components

�̃t = 1

n

n∑

i=1

n∑

j=1

λ̃PCi λ̃PC
′

j
1

T

T∑

t=1

ε̃i t ε̃ j t , (6)

where n = min[√N ,
√

T ]. Note that the robust estimator in (6) is consistent but
requires covariance stationarity with E(εi tε j t ) = σi j ,∀t .3

Results on the performance of the asymptotic distribution to approximate the finite
sample distribution of the estimated PC factors are scarce; see Ouysse (2006), Pon-
cela and Ruiz (2015) and Maldonado and Ruiz (forthcoming), who show that the
uncertainty of PC factors is underestimated when computed using asymptotic results.

2.3 Kalman filter and smoothing factor extraction

Alternatively, factor extraction is often based on KFS. Assume that the vector of
common factors, Ft , evolves over time according to the following stationary VAR(p)
model

Ft = �1Ft−1 + �2Ft−2 + · · · + �p Ft−p + ut , (7)

where ut is an r ×1white noise vector with covariance matrix�u . Although the vector
of idiosyncratic components may have temporal dependence, we will consider that it
is white noise.

When a particular specification is assumed for factors, as in (7), DFMs are particular
cases of the much larger class of SSMs, in which observable variables are expressed
in terms of unobserved or latent variables, which in turn evolve according to some

3 Bai andNg (2013) derive the limiting distribution of PC factors under alternative identification restrictions.
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lagged dynamics. It is straightforward to write the DFM as a SSM and, assuming
that r and p as well as all DFM parameters are known, KFS can be implemented
to extract the factors, regardless of the cross-sectional dimension, N ; see Poncela
et al. (2021) for a survey on factor extraction based on KFS and a description on
how to express the DFM as a SSM when the idiosyncratic components are serially
correlated. However, even if r and p were known, in practice, one needs to estimate the
model parameters before KFS algorithms can be run. Assuming that �ε is diagonal,
i.e., the idiosyncratic components are serially uncorrelated, and assuming normality,
estimation of the parameters can be carried out by ML with the Kalman filter (KF)
used to compute the innovation decomposition form of the Gaussian likelihood, which
is given by

logL(Y ;	) = −NT

2
log(2π) − 1

2

T∑

t=1

log|�t | − 1

2

T∑

t=1

ν
′
t�

−1
t νt , (8)

where the innovation vector, νt = Yt − E(Yt |Y1, . . . , Yt−1), and its covariance matrix,
�t , can be obtained from the KF and 	 is the vector of parameters to be estimated,
namely the loadings in �, the variances in the main diagonal of the covariance matrix
of the idiosyncratic noises, σ 2

ε1
, . . . , σ 2

εN
, the autoregressive parameters of the VAR

model for the factors in �1,…,�p and the parameters in the covariance matrix �u .
After imposing thenecessary identification restrictions, the log-likelihoodcanbemaxi-
mized using numerical optimizationwith, for example, Newton–Raphson algorithms.4

Following Harvey (1989), the identifying restrictions on the parameters considered
in this paper are λi, j = 0 for j > i and i = 1, . . . , r and �u = Ir .5 The resulting
estimator is denoted as ML-NO. In this very simple DFM, the main hurdle found
in the ML-NO estimator appears when N is extremely large, because the number of
parameters to be estimated, r2 × p + N × (r + 1 − r(r−1)

2 ), increases with N .
Alternatively, given that direct optimization of the log-likelihood in (8) can be

infeasible when N is large, the ML estimator of the DFM parameters can be obtained
by the iterative expectation maximization (EM) algorithm. To simplify the description
of the EM algorithm, let us assume that p = 1, i.e., the factors are specified as a
VAR(1) model.6 First, starting values for the parameters in �̂(0), �̂

(0)
ε and �̂(0), are

obtained based on factors and loadings estimated by PC. The starting parameters for
the loadings are �̂(0) = �̃PC while the autoregressive parameters are estimated by the
following least squares (LS) estimator

�̂(0) =
(

T∑

t=1

f̃ PCt−1 f̃ PC′
t−1

)−1 T∑

t=1

f̃ PCt f̃ PC′
t−1 , (9)

4 The optimization algorithm used in the empirical application of this paper is a quasi-Newton–Raphson
algorithm as implemented in the subroutine Optim in R.
5 These triangular restrictions link the first factor with the first variable in the system, the second with the
first two variables and so on. However, note that, as mentioned above, the estimated matrix of loadings can
always be rotated to give alternative interpretations of the factors.
6 Note that, if the VAR order is p > 1, the EM estimator can be easily modified.
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and the covariance matrix of the idiosyncratic components is estimated by

�̂(0)
ε = diag

{
1

T

T∑

t=1

ε̃t ε̃
′
t

}
(10)

where ε̃t = Yt − �̃PC f̃ PCt .
The expectation step consists in running the KFS algorithm with the parameters

of the DFM substituted by the starting values above to obtain f (0)
t |T , P(0)

t |T and C (0)
t ,

where f (0)
t |T and P(0)

t |T are the smoothed estimate of Ft and its corresponding estimated

MSE, given by the Kalman smoother, and C (0)
t = E

[(
Ft − f (0)

t |T
) (

Ft−1 − f (0)
t−1|T

)′

|Y1, . . . , YT

]
can also be obtained by the Kalman smoother by augmenting the state

vector to include Ft−1.7 In the maximization step, the parameters of the DFM are
estimated as follows

�̂(1) =
T∑

t=1

Yt f (0)′
t |T

(
T∑

t=1

f (0)
t |T f (0)′

t |T + P(0)
t |T

)−1

, (11)

�̂(1) =
(

T∑

t=1

f (0)
t |T f (0)′

t−1|T + C (0)
t

) (
T∑

t=1

f (0)
t−1|T f (0)′

t−1|T + P(0)
t−1|T

)−1

, (12)

while �(ε) is estimated as in (10) with the PC residuals substituted by ε̂
(1)
t = Yt −

�̂(0) f (0)
t |T .8 Recall that, for identification purposes, the parameters of the DFM need to

be restricted and, therefore, using the restrictions described above, �u = Ir does not
need to be estimated. Furthermore, denoting by F (S) and P(S), the T × r matrix of
smoothed factors and their correspondingMSEmatrix in the steady state, respectively,
the restrictions in the loadings can be imposed as follows

vec
(
�̂(1)∗) = vec

(
�̂(1)

)

−
(

Rvec
(
�̂(1)

)
− c

)′ [
R

((
F (S)′F (S) + P(S)

)−1 ⊗ IN

)
R′

]−1

R

((
F (S)′F (S) + P(S)

)−1 ⊗ IN

)
(13)

7 The estimates f (0)
t |T of this first iteration are usually known as two-step LS (TS-LS) estimates of the

factors; see Doz et al. (2011). In this case, the covariance matrix of ut is estimated by

�̂
(0)
u = 1

T

T∑

t=1

ũt ũ′
t

where ũt = f̃ PCt − �̂(0) f̃ PCt−1.
8 Note that Bai and Li (2016) propose using �(1) instead of �(0) to calculate the idiosyncratic residuals.
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where R is an r(r−1)
2 ×Nr matrix of zeros and ones of the coefficients of the parameters

in the restrictions and c is a r(r−1)
2 vector of zeros for the restrictions considered in

this case. Consider, for example, that r = 3, then the matrix of coefficients of the
restrictions is given by the following 3 × 3N matrix

R =
⎡

⎣
0 0 ... 0 1 0 ... 0 0 0 ... 0
0 0 ... 0 0 0 ... 0 1 0 ... 0
0 0 ... 0 0 0 ... 0 0 1 ... 0

⎤

⎦

︸ ︷︷ ︸
N

︸ ︷︷ ︸
N

︸ ︷︷ ︸
N

. (14)

The expectation and maximization steps are iterated until convergence and the
corresponding estimator is denoted as ML-EM. The parameters of the DFM with
serially and cross-sectionally uncorrelated idiosyncratic components can be estimated
byML-EM regardless of N ; see, among many others, Stock andWatson (1989, 1991)
with N = 4, Quah and Sargent (1993) with N = 60 and Proietti (2011) with N = 148.

If the number of factors, r , and their autoregressive lag, p, are known and under
weak cross-correlation of the idiosyncratic components, Doz et al. (2011) show that the
smoothed factors extracted using the TS-LS estimates of the parameters are consistent
even if�ε is wrongly considered as diagonal when it is not, due to the misspecification
error vanishing as N and T diverge to infinity. Later, Doz et al. (2012) extend the result

to theML-EM.9 Themin
(√

N , T
)
- consistency and asymptotic normality of the latter

factors have been proved by Barigozzi and Luciani (2020b) who derive the conditions
under which the asymptotic distribution can still be used for inference in case of
mis-specification. Note that normality of the DFM is not required for the asymptotic
normality of the factors. Barigozzi and Luciani (2020b) compare the loadings, factors
and common components estimated using PC and QML estimators and conclude that,
in static DFMs, both procedures are rather similar.

2.4 Forecasting with DFM

When the number of predictors is large, it is very popular to obtain out-of-sample
forecasts of the variables of interest using factor-augmented predictive regressions
(also known as diffusion indexes as proposed by Stock and Watson 2002a). The one-
step-ahead forecast of the i th variable in the system is given by

ŷiT +1|T = μ +
q∑

j=1

δ j yiT − j+1 +
s∑

j=1

B ′
j FT − j+1 (15)

where B j = (
β1 j , . . . , βr j

)′ are parameters. In practice, the parameters of the diffusion
index in (15) are estimated by LS after substituting the factors by the corresponding
estimates. When the factors are extracted by PC, Stock and Watson (2002a) show

9 The resulting estimator is known in the related literature as Quasi-ML (QML).
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that ŷiT +1|T is consistent for yiT +1. Bai and Ng (2006) show that, if
√

T
N → 0, the

LS estimator of the parameters is
√

T consistent and asymptotically normal. Fur-
thermore, they show that the conditional mean predicted by the estimated factors is
min[√T ,

√
N ] consistent and asymptotically normal.10 Finally, Bai and Ng (2006)

also derive the asymptotic distribution of the forecasts of yiT +1, which can be used to
construct forecast intervals.11

As far as we are concerned, there are no results available on the asymptotic prop-
erties of the parameter estimator and forecasts when the factors extracted using KFS
are used in (15). Our conjecture is that, if the convergence rates of PC factors and
ML-EM factors are the same, so should be the rate of convergence of the conditional
mean predicted by (15). All in all, the theoretical results that are known point out to
the same convergence rates of the previous estimators and, therefore, it remains an
empirical question the true behavior of the different possibilities when analyzing the
data.

The usefulness of the factors can be evaluated out-of-sample by comparing the
MSFE of the forecasts obtained from the factor-augmented regression in (15) with the
following univariate autoregression for yit that does not include the factors

ŷ∗
iT +1|T = μ∗ +

q∑

j=1

δ∗
j yiT − j+1. (16)

In order to test the out-of-sample predictive ability of the factors, one can use the
ENC-F and MSE-F tests as proposed by Gonçalves et al. (2017), who show that the
presence of estimated PC factors leads to only minor size distortions of predictive
ability tests, although it reduces power relative to the case where factors are observed.
The ENC-F and MSE-F tests are given by

ENC − F =
∑T +H

t=T +1 û1t
(
û1t − û2t

)

σ̂ 2
2

(17)

and

MSE − F =
∑T +H

t=T +1

(
û2
1t − û2

2t

)

σ̂ 2
2

, (18)

where H is the number of one-step-ahead forecasts, û1t = yit − ŷ∗
i t |t−1, with ŷ∗

i t |t−1
being the one-step-ahead forecasts obtained from the autoregression in (16) and û2t =
yit − ŷi t |t−1, with ŷi t |t−1 given by the factor-augmented regression in (15). Finally,

10 In the context of inference for the LS estimator of the parameters of factor-augmented predictive
regression models, Gonçalves and Perron (2014) show that the finite sample properties of the asymp-
totic distribution can be poor, especially if the cross-sectional dimension is not sufficiently large relative to
the temporal dimension.
11 The asymptotic variance is obtained using the usual formulae for regressionmodels, adding an additional
additive term due to the estimation of the factors. However, if N is large, this additional term disappears.
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σ̂ 2
2 = 1

H

∑T +H
t=T +1 û2

2t+1. The asymptotic critical values in Clark and McCracken
(2001) and McCracken (2007) can be used to test whether the predictive ability of
both models is the same using ENC-F and MSEF , respectively.12

3 Empirical extraction of factors

The forecasting performance of KFS procedures for factor extraction is analyzed, both
in-sample and out-of-sample, in the context of the ubiquitous database described by
McCracken and Ng (2016), which consists of N = 128 variables observed monthly
from January 1983up to and includingDecember 2020,with a total of 444 observations
per series.13 Previous to their analysis, the data are transformed to stationarity and
outliers and missing observations are dealt with as described by McCracken and Ng
(2016). Then, all variables in the system are centered and standardized. The sample
period is split into an estimation period from January 1983 to December 2016 (T =
396) and an out-of-sample forecast period, from January 2017 to December 2020
(H = 48). The focus of prediction are the stationary transformations of industrial
production (IP), inflation, employment and real income; see, among others, Quah
and Sargent (1993), Stock and Watson (2002b), Bai and Ng (2008b), Alvarez et al.
(2016), McCracken and Ng (2016), Granziera and Sekhposyan (2019) and Stauskas
and Westerlund (in press) for the interest in forecasting these variables.

3.1 Determining the number of factors and their dependence

Todetermine the number of static factors,wevisually inspect the scree plot proposed
by Cattell (1966), which appears in Fig. 1; see, for example, Hindrayanto et al. (2016),
who also look at the scree plot to determine r . The message from the scree plot is not
clear with only the presence of one factor being obvious. Alternatively, we also use
statistical criteria to determine the number of factors; see Table 1 for a summary of
the results. Using the criteria proposed by Alessi et al. (2010), the number of factors
is determined to be either r = 5 or r = 7. These numbers are in concordance with
the related literature analyzing the same data set (observed over different time spans),
in which a large number of works determine r = 7 (Stock and Watson 2005) and
Bai and Ng 2007), see also Poncela and Ruiz (2015) and Bennedsen et al. (2021),

12 These critical values are valid under the assumption of homoscedasticity of the forecast errors. Clark
and McCracken (2012) and Hansen and Timmermann (2015) derive critical values under conditional het-
eroscedasticity. Very recently, Stauskas andWesterlund (in press) propose an extension of the tests proposed
by Gonçalves et al. (2017) that takes into account that the number of factors is unknown.We were not aware
of this extension at the moment of writing the paper.
13 This data base is an updated version of the data base used by Stock and Watson (2002a) and Stock and
Watson 2012. Although data are available from January 1959, there is a generalized consensus about the
presence of a structural break in 1982 due to the change of policy rule of the Federal Reserve which swichted
from targeting non-borrowed reserves to targeting the federal funds rate; see, for example, Hallin and Liska
(2007) and Luciani (2015). To avoid the problems associated to the presence of structural breaks when
determining the number of factors, we analyze the data set observed from 1983; see Breitung and Tenhofen
(2011b) who show that, in the presence of a structural break, the number of factors is overestimated and
the factor loadings are inconsistently estimated, and Chen et al. (2014) for a test for breaks in DFMs.
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Fig. 1 Scree plot of the
eigenvalues of the covariance
matrix of the US
macroeconomic data set

Table 1 Determination of the
number of underlying factors
according to different criteria

1983–2016

Alessi, Barigozzi, Capasso 1 5

Alessi, Barigozzi, Capasso 2 7

Bai, Ng 1 8

Bai, Ng 2 8

Bai, Ng 3 8

Onatski 1

who chose r = 4. We also determine r using the popular criteria proposed by Bai
and Ng (2002), according to which r = 8; see also Gonçalves et al. (2017), who, in
a related application, select 8 factors without using any particular statistical criterion
and McCracken and Ng (2016), Demetrescu and Hacioglu Hoke (2019) and Despois
and Doz (2020), who also select r = 8. Moreover, the criteria proposed by Onatski
(2010) determines r = 1; see, for example, Alvarez et al. (2016), who consider the case
of r = 1 factors in this data set. Therefore, there is no agreement about the number
of factors that should be used to represent the common movements in the system
considered. Stauskas and Westerlund (in press) discuss about the uncertainty relative
to the number of factors in this data set. Choi and Jeong (2019) also discuss about
the number of factors in this data set and have Monte Carlo results on the difficulty
in determining which criterion performs best. Consequently, in order to analyze the
effect of the number of factors on the forecasts, we carry out the analysis by assuming
three scenarios, namely, r = 1, r = 3 and r = 7.

Once the number of factors, r , is determined, factor extraction based on KFS
requires assuming a particular lag p of the VAR model in (7). It is popular in the
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related literature, to assume that the dependence of the factors can be represented by
VAR(1) models, i.e. by (16) with p = 1; see, for example, Stock and Watson (2005),
Poncela and Ruiz (2015) and Alvarez et al. (2016). However, in practice, the temporal
dependence of the factors may be represented by a VAR(p) model with p > 1; see,
for instance, Banbura and Modugno (2014), who also consider p = 2 for a quarterly
dataset and Solberger and Spanberg (2020), who also specify p = 2 for monthly data.
In order to chose p, we extract a single factor by PC and analyze its correlogram and
partial correlogram, which suggest that the factor could be represented by an AR(3)
model. Consequently, in order to analyze the effect of p on KFS factor extraction and
on the corresponding forecasts, we estimate the DFM assuming either that p = 1 or
p = 3.

3.2 In-sample factor extraction

In this subsection, we first analyze the effect of the choice of r and p on the properties
of factors extracted both by PC and KFS and on the in-sample performance of the
factor-augmented predictive regressions in (15).

We first extract one single factor by PC and estimate the corresponding exact DFM
with either p = 1 or p = 3.14 In the latter case, the parameters of the DFM are
estimated by TS-LS (PC for the loadings), ML-NO and ML-EM. Table 2 reports a
summary of the results. In particular, it reports

∑N
i=1 λ̂2i1,

∑N
i=1 σ̂ 2

εi together with the
estimated autoregressive parameters and the MSE of the smoothed factor.15 First of
all, we can observe that the sums of squared loadings and of idiosyncratic variances
and MSE( f̂t |T ) are the same regardless of whether the factor is assumed to be AR(1)
or AR(3) or whether we estimate the model parameters by ML either using EM or
numerically maximizing the log-likelihood. When the Kalman filter is run with the
parameters estimated by TS-LS (PC), we can observe that the sum of squared load-
ings is slightly larger and the sum of idiosyncratic variances is slightly smaller. As a
consequence, the Kalman (steady) MSE of the smoothed factor, f̂t |T , is smaller with
an apparent increase in precision as compared with the steady MSE obtained when
the parameters are estimated by ML. In any case, it is remarkable that the MSE of
the PC extracted factor estimated as proposed in Bai (2003) is 0.01, approximately 5
times smaller than that obtained when the factors are extracted using the KF with ML
estimates of the parameters. Furthermore, the implications of the estimation method
and specification assumed for the factor are also clear when estimating its dynamic
dependence. Consider first the estimated parameters in the model with p = 1. TheML
estimate of the autoregressive parameter (regardless of whether it is estimated max-

14 Note that PC factor extraction is nonparametric and, consequently, it does not rely on any particular
value of p.
15 Note that for the results to be comparable, all estimated loadings and factors have been rotated to the
same base as those estimated by PC; see Poncela and Ruiz (2015) for the rotation. This rotation is needed
because of the different restrictions used for identification by PC and KFS. While under PC the sample
variance of the factors is assumed to be one, the restriction imposed when estimating by ML based on
the KF is σ 2

u = 1. The ML estimate of the autoregressive parameter, φ̂1 = 0.87 implies that the factor
has variance 4.11. Therefore, the ML weights should be divided by 2.03 for the variance of the common
component to be the same.
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Fig. 2 Factor loadings estimated for the set of macroeconomic variables using: (i) PC (blue bars) and (ii)
ML with numerical optimization, ML-NO (green bars) and with EM, ML-EM (orange bars) (colour figure
online)

imizing numerically the likelihood, 0.87, or using the EM algorithm, 0.85) is larger
than that based on PC, 0.78. Furthermore, note that the slight differences between the
ML results obtained when the likelihood is maximized numerically or when using
the EM algorithm disappear when p = 3 is assumed. It seems that when the "true"
log-likelihood is maximized its value at the maximum is the same regardless of the
procedure used for its maximization. Finally, let us look at the roots implied by the
estimated parameters of the AR(3) model. When the parameters are estimated based
on the PC factors, the roots are 0.94 and −0.30±0.35i while, if they are estimated by
ML, the roots are 0.95 and −0.27 ± 0.28i . In both cases, there is a cyclical behavior
of the factor with a largest real root when the parameters are estimated by ML. In any
case, the persistence of this real root is clearly larger than that obtained when an AR(1)
model is assumed for the factor. These differences in the estimated persistence and
number of lags of the factor may have implications for forecasting, mainly in periods
of changing points because the forecasts adapt quicker if the number of lags is smaller.
Finally, Table 2, which also reports the value of the log-likelihood at the maximum for
the ML estimates, shows that, although there are not significant differences between
the log-likelihood values obtained when the maximization is based on EM or numeri-
cal optimization, the difference between the log-likelihood when p = 1 and p = 3 is
significant, according to the log-likelihood ratio test.

Figure 2, which plots the loadings estimated by PC and by ML, in the latter case,
using both numerical optimization and EM, shows that the loadings are similar regard-
less of the procedure used to estimate them. Furthermore, Fig. 3 plots the factors
together with their corresponding 95% confidence intervals obtained by the KFS
based on PC and EM parameter estimates reported in Table 2, together with their
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Table 2 Parameter estimates (associated with the first factor) of DFMs obtained using TS-LS, ML-NO,
and ML-EM when r = 1, 3 and 7 and p = 1 and 3

p = 1 p = 3

TS-LS ML-NO ML-EM TS-LS ML-NO ML-EM

r = 1
∑N

i=1 λ̂2i1 18.09 17.72 17.75 18.09 17.75 17.75
∑N

i=1 σ̂ 2
εi 109.87 110.97 110.87 109.86 110.88 110.86

ˆφ11 0.78 0.87 0.85 0.34 0.42 0.41

φ̂21 – – – 0.35 0.36 0.36

φ̂31 – – – 0.20 0.14 0.15

MSE (F̂1t ) 0.030 0.038 0.044 0.03 0.05 0.05

log-Lik – −69475.1 −69485.94 – −69437.7 −69438.5

r = 3
∑N

i=1 λ̂2i1 18.09 – 17.90 18.09 – 17.90
∑N

i=1 σ̂ 2
εi 89.52 – 92.67 89.52 – 92.65

ˆφ11 0.78 – 0.86 0.24 – 0.85

φ̂21 – – – 0.49 – 0.31

φ̂31 – – – 0.15 – −0.27

MSE (F̂1t ) 0.022 – 0.022 0.024 – 0.027

log-Lik – – –61211 – – −61123.9

r =7
∑N

i=1 λ̂2i1 18.09 – 18.03 18.09 – 18.03
∑N

i=1 σ̂ 2
εi 68.76 – 72.73 68.76 – 72.69

φ̂11 0.78 – 0.74 0.34 – 0.68

φ̂21 – – – 0.45 – 0.29

φ̂31 – – – 0.05 – −0.03

MSE (F̂1t ) 0.012 – 0.018 0.012 – 0.028

log-Lik – – −52948.98 – – −52744.7

95% confidence intervals.16 The EM estimated factors have been rotated to be in the
same space as those estimated by PC. Figure 3 illustrates that the extracted factors
are similar regardless of the particular method implemented to extract them. However,
the intervals constructed using ML parameter estimates are clearly larger than those
obtained using PC parameters; see also Poncela and Ruiz (2015), who conclude that
the asymptotic RMSEs obtained from the asymptotic distribution of the PC factors
are unrealistically small.17

16 The confidence intervals of the PC factors are based on the asymptotic distribution derived byBai (2003).
17 The intervals for the factors could be more realistic if the asymptotic MSE is modified by subsampling
as proposed by Maldonado and Ruiz (forthcoming).
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Fig. 3 A single factor (blue) extracted from the set of macroeconomic variables using PC (first row) and
KFSwith EMestimates of the parameters (second row). The first column plots the smoothed factor extracted
assuming an AR(1) dependence while in the second column the factor is assumed to be an AR(3) process.
The red lines represent the corresponding 95% confidence intervals (colour figure online)

The conclusions are similar when the factors are extracted assuming either that
r = 3 or r = 7.18 Table 2 shows that the only difference with respect to when r was
assumed to be 1, is that, obviously, the sum of idiosyncratic variances is now smaller
and, consequently, the MSE of the extracted factors is reduced to half.19 It is also
remarkable that the maximum of the log-likelihood reported in Table 2 is significantly
larger when r = 3 than when r = 1. Similarly, when we assume that r = 3 and p = 3
and the parameters are estimated by TS-LS, we can observe that the estimation results
are very similar to those obtained when we assumed that r = 1 and p = 3. Looking
at the estimated dynamics of the first factor, we can observe that, they are very similar
to those estimated when assuming that r = 1.20 In particular, when the parameters are
estimated by TS-LS, the roots of the characteristic equation are 0.94 and 0.35±0.20i ,
very close to those estimated above. However, the results are somehow different when
the parameters are estimated by ML. In this case, the roots are 0.81, −0.56 and 0.6,
rather different from those obtained when the parameters are estimated by TS-LS and
when assuming that r = 1. Note that the estimation results reported in Table 2 when
r = 7 are similar to those reported when r = 3.

The sample pairwise correlations between the first factor estimated in the different
specifications and estimators considered range from 0.96 to 1.00 when r = 1 or 3.

18 In this case, it is infeasible to maximize numerically the likelihood. Consequently, the ML estimates of
the parameters are only obtained using the EM algorithm.
19 Note, however, that the MSE still doubles that obtained for the PC factors, which is 0.01.
20 The off-diagonal elements of the estimated autoregressive matrices are fixed to zero as, in practice, they
are not far from zero.
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If r = 7, some of these correlations fall down to a minimum of 0.8. The minimum
correlation, 0.96, is obtained when the factor is extracted assuming that r = 1 and
p = 1 and estimating the parameters by ML and when it is assumed that r = 3 and
p = 3 and the parameters of the DFM used to extract the factors are estimated by TS-
LS. On the other hand, the maximum correlation, 1.00, is obtained when it is assumed
that r = 1 and p = 3 and the parameters are estimated by ML either maximizing
numerically the likelihood or using the EM algorithm; see also Lewis et al. (2020),
who conclude that the factors are robust to whether PC or KFS is implemented for
factor extraction when constructing a weekly index of real activity (EWI) based on
N = 10 variables for USA and Breitung and Tenhofen (2011b), who conclude that,
in the context of PC factor extraction, the specification of the underlying factors is not
important when N is large.

Finally, note that the sum of squared loadings (idiosyncratic variances) is larger
(smaller)when theparameters are estimatedbyTS-LS thanwhen estimatedbyMLand,
consequently, the confidence intervals for the factors are larger (and more realistic?)
when the parameters are estimated byML.Assuming a larger number of factors implies
reducing the sum of idiosyncratic variances and, consequently, decreasing the MSE
of the factors extracted using KF. This result is in concordance with Boivin and Ng
(2006) who, in the context of PC factor extraction, conclude that overestimating the
number of factors increases the precision of factor estimates (and the forecasts), while
underestimating it has the opposite effect (on top of loosing consistency).

3.3 In-sample predictions

To analyze whether the small differences in the estimated factors have implications
on in-sample prediction, we estimate the factor-augmented predictive regressions in
equation (15) with q = s = 4 for each of the four variables to be forecast, namely, IP,
inflation, employment and real income, using the factors extracted by the alternative
methods considered assuming that r = 1, 3 and 7 and p = 1 and 3. Note that, in

this application, both T and N are rather large with
√

T
N =

√
396
128 = 0.155 being close

to zero and, consequently, using the results in Bai and Ng (2006), we can conclude
that the factor estimation uncertainty should be negligible when conducting inference
in the factor-augmented regression. Table 3 reports the estimates of the parameters
of these regressions for IP growth, yt , together with their corresponding p-values
obtained under the assumption of homoscedastic forecast errors, u2t = yt − ŷt |t−1,
the sample standard deviation of the corresponding residuals, σu , and the adjusted
determination coefficient, R̄2. In the case of more than one factor, Table 2 only reports
the parameter estimates for the first factor.21 First of all, note that testing for the
joint in-sample significance of the factors, we reject the null regardless of r and p.
Therefore, the factors have predictive power for IP. Comparing the R̄2’s obtained using
the factors extracted by PC for r = 3 and 7 with respect to those obtained for r = 1,
we can observe that adding more factors does not increase significantly the in-sample

21 The results for the other variables aswell as residual diagnosis analysis of the factor augmented predictive
regressions are available upon request.
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predictive performance of the regressions for IP.22 This result is in concordance with
the conclusions in McCracken and Ng (2016), who interpret the first common factor
(extracted using PC) as a real activity/employment factor. They find that the predictive
information of the factors over IP changes over time with only the first common factor
retaining its predictive information at the end of the sample period they consider.When
r = 1, the estimated parameters of the factor-augmented predictive regressions are
very similar regardless of whether p = 1 or 3 and the particular procedure used to
extract the factors. Increasing the autoregressive lag of the factors and/or the number of
factors only implies small improvements in the adjusted coefficient of determination
with the best results obtained when the factors are extracted usingML-EMwith p = 3
if r = 1 or 3. However, when r = 7, the results are slightly better when the factors
are extracted using KFS with the parameters of the DFM estimated using TS-LS.

Table 4,which reports the R̄2 of the augmentedpredictive regressions corresponding
to inflation, employment and income, shows that the conclusions are the same for these
variables than those of IP. Note that McCracken and Ng (2016) interpret the third
common factor as an inflation factor while the second common factor was dominated
by forward-looking variables such as term interest rate spreads and inventories. They
show that, in the sample period they consider, the first common factor does not have
any predictive content for forecasting inflation in later times. Therefore, it seems that
including the relevant number of factors could be relevant in in-sample predictionwhile
the specification of the autoregressive lag could be of less importance. Furthermore,
factor extraction based on KFS is slightly better than that based on PC and, unless the
number of parameters is too large, it is better to estimate the parameters using EM.

3.4 Out-of-sample forecasts

Finally, using the estimated factor-augmented regressions reported in Table 3 and
the filtered factors obtained in the out-of-sample period, we obtain one-step-ahead
forecasts of IP, inflation, employment and income from January 2017 to December
2020 and their corresponding 70% and 95% forecast intervals. We consider a fixed
scheme with the parameters used for forecasting not being updated. Table 5 reports
the empirical mean square forecast errors (MSFEs) and the empirical coverages of the
70% forecast intervals computed bothwith the forecasts obtained until December 2019
and until December 2020.23 Note that in the latter case, we are incorporating in the
analysis the forecasts obtained during the turbulent times due to the recession induced
by the COVID-19 pandemic, while, in the former case, the forecasts are obtained in a
“normal” time in the evolution of the variables. The ratio between the out-of-sample
and in-sample number of observations is 48

396 = 0.12.

22 A word of caution is due. In this paper, we include in each of the factor-augmented predictive regression
all factors considered together with their corresponding four lags in a systematic way. However, one can also
select the combinations of factors and/or lags with higher predictive content as in, for example, Gonçalves
et al. (2017) andDemetrescu andHacioglu Hoke (2019). Alternatively, one could extract the relevant factors
taking into account that the objective is to use them as predictors for the variable yt and using, for example,
Partial Least Squares (PLS); see the discussion by Ng (2013) and the application by Fuentes et al. (2015).
23 Note that these quantities are merely descriptive as they are based on just 36 forecasts in the former case
and 48 in the latter. Results for intervals with 95% nominal coverage are also available upon request.
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Fig. 4 Out-of-sample forecasts of IP (first row) and inflation (second row) together with the corresponding
70% confidence intervals

First of all, Table 5 shows that, even if the differences between the in-sample
estimated factors and corresponding predictive regressions areminor, the performance
of out-of-sample one-step-forecasts can be quite different. The procedure used to
extract the factors and the estimator of the DFM parameters when the factors are
extracted using the Kalman filter and smoother are relevant for the out-of-sample
one-step-ahead forecasts performance. Table 6 reports the value of the ENC-F and
MSE-F statistics to test the out-of-sample predictive ability of each of the factor-
augmented predictive regressions considered when r = 1 with respect to the AR(4)
model without factors.24 Note that the asymptotic null distributions of ENC-F and
MSE-F are not strictly positive and, consequently, the fact that the test values are
sometimes negative does not necessarily constitute evidence in favor of the restricted
model; see the explanations by Stauskas andWesterlund (in press). Table 6 shows that
the ENC-F tests support that the factors are significative to forecast IP, employment and
income. However, out-of-sample forecasts of inflation are only significantly different
from the forecasts obtained with the AR(4) model without factors at the 90% level.
In general, the ENC-F statistic is largest when the factor is extracted using KFS with
the parameters estimated by ML-EM. However, the MSE-F test is more conservative
and, except for IP, it generally rejects that the out-of-sample MSFEs are reduced

24 We do not report the statistics for r = 3 and 7 as, in these cases, the critical values are not available.
Furthermore, note that the critical values reported in Table 6 have been obtained using a rolling window
scheme while we are using a fixed window. Therefore, they should be interpreted as approximations.
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by introducing a factor. Nevertheless, the differences between procedures used to
extract the factors are more obvious when there are extraordinary movements in the
series, as those observed during the COVID-19 crisis; see Fig. 4. When we take into
account 2020, the differences in theMSFE obtainedwith respect to PC are striking (for
instance, for IP, the out-of-sample MSFE based on the PC extracted factors is more
than twice that of the forecasts based onML extracted factors). However, removing the
year 2020 gives very different numerical results. First, the magnitude of the MSFEs
is considerably reduced. In particular, PC induced MSE is around 10 times smaller
when excluding 2020.Nevertheless, the PC extracted factors still renders out of sample
MSFEs around 20% larger than those of KFS methods. Regarding the length of the
AR polynomial of the common factor for IP, notice that we always obtain smaller
MSEs for p = 1, that is, the shorter the memory of the common factor, the smaller the
MSFE. According to our results, forecasts of inflation based on models with r = 1 or
r = 3 are different; see Fig. 4. On top of the noticeable differences between results
including pre-COVID times and those that do not include them that we can also
observe with three factor models, notice that both for IP and inflation including more
factors does not necessarily translate into smaller out- of-sample MSFEs; see also
Barhoumi et al. (2013), who also conclude that increasing the number of factors do
not decrease MSFEs when forecasting French and German GDP. Indeed, in occasions
those are larger than the corresponding ones from one factor predictive regressions.
In general, regardless of the variable to be forecast, the out-of-sample performance is
better for those forecasts based on models with smaller number of factors and smaller
autoregression lags extracted using KFS and with the parameters estimated using
TS-LS. Our results seem to support the KISS (Keep it sophistically simple) principle.

Table 5, which also reports the empirical coverages of the 70% forecast intervals,
shows that these intervals are usually too large with coverages well above the nominal.
The reason for this empirical observation deserves further investigation, which is
beyond our objectives in this paper.

3.5 Robustness check: forecasting over different periods of time

It is well known that, when forecasting in practice, the use of different window sizes
for the out-of-sample forecasts may lead to different empirical results. It is possible
that, for a given forecast window, significant predictive ability is not detected while it
could be detected in another window. On the other hand, it is also possible to obtain
satisfactory results just by chance. Moreover, the results on the ability of predictive
models relies on the ratio between the out-of-sample and in-sample observations with
the predictive tests, ENC-F and MSE-F, being more accurate when H is large. Conse-
quently, in this subsection, we study the robustness of the empirical results above to
the choice of estimation and out-of-sample window sizes. In particular, the parameters
are estimated using data up to December 2007, so that the in-sample period does not
include data from the last global financial crisis. In this case, the estimation size is

T = 288 while the out-of-sample forecast size is H = 156. Therefore,
√

T
N = 0.13

and a ratio of out-of-sample to in-sample observations of 0.54.
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Table 7 reports the parameter estimates of the factor-augmented predictive regres-
sions for IP obtained using the in-sample data from January 1983 to December 2007
while Table 4 reports the R̄2 of the regressions not only of IP but also of inflation,
employment and income.25 Looking at the results for IP in Table 7, we can observe
that the conclusions are mostly the same as those obtained when the regressions were
estimated with data up to December 2016. The factors are significant and, although
the fit, measured by the adjusted coefficient of determination, is smaller than those
reported in Table 3, it is maximized when the predictive regressions are estimated
including 7 factors estimated using KFS and specified as a VAR(3).

With respect to the in-sample fit of the predictive regressions of inflation estimated
with data up to December 2007, Table 4 shows that it is very similar to that reported for
the regressions estimatedwith data up toDecember 2016. The only difference observed
is that in this latter case, the factors are not even significant to forecast inflation. The
results for employment are very similar to those described for IP. Finally, when looking
at the R̄2 coefficients of the predictive regressions for real income, we observe that
they are slightly larger than those of the models estimated using data up to December
2016 but still support the main conclusion about being significant when the factors are
included to forecast and maximized if 7 factors extracted using KFS and modeled as
VAR(3) are considered. All in all, the main conclusions from the in-sample analysis
are supported using this alternative estimation window.

Finally, Table 8 reports the MSFEs and coverages of the out-of-sample forecasts
obtained from January 2008 until either December 2019 or December 2020. We can
observe that the factors have predictive power if they are extracted using KFS; see also
the results of the predictive ability tests in Table 6. As above, when considering the
forecasts since January 2017, the results are stronger when the COVID19 pandemic
year, 2020, is included in the out-of-sample period.

4 Conclusions

The factors are highly correlated among them regardless of the procedure or estimator
used for their extraction and the number of lags specified for their autoregressions.
However, the main differences between factor estimates obtained using PC or KFS
based on either TS-LS orML-EM are observed in their dynamics and these differences
may have implication in forecasting. In the particular US macroeconomic data set
analyzed in this paper, the largest autoregressive root is closer to one when the factor
is extracted using theKFSalgorithmwith theDFM’s parameters estimated byML-EM.
The likelihood-ratio tests of the DFMs favor specifications withmore factors andmore
lags. Furthermore, the same conclusion is obtainedwhen looking at the results of the in-
sample factor-augmented predictive regressions, which have larger fit measures when
the factors are extracted using KFS from DFMs with large number of factors modeled
as VAR(p) processes with p > 1. With respect to the estimator of the parameters of
the DFM, the results are better if the ML-EM estimator is used when the number of

25 Note that the number of factors determined by each of the criteria considered are the same as those
determined in the longer in-sample period analyzed before and reported in Table 1.
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parameters to be estimated is not very large. However, if the number of parameters
is large, the ML-EM estimator seems to have numerical problems and, consequently,
the fit of the factor-augmented predictive regressions is better when the parameters
are estimated using the simpler TS-LS estimator. Finally, according to our empirical
results,we show that increasing the number of factors and/or their lag structure does not
always lead to an increase in the out-of-sample forecast precision. The out-of-sample
MSFEs are generally minimized when forecasts are based on simple models with
one factor extracted using KFS and modelled as an AR(1) process. This conclusion
is rather general for the four variables considered for forecasting in this paper. In
any case, answering the question in the title of this paper, a careful specification of
the DFM before factor extraction could be important in terms of in-sampling fitting.
However, when forecasting out-of-sample simple specifications seem to be favored.
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