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Abstract
Weanalyze text data in all the articles published in the top five (T5) economics journals
between 2002 and 2019 in order to find gender differences in their research approach.
We implement an unsupervisedmachine learning algorithm: the structural topicmodel
(STM), so as to incorporate gender document-level meta-data into a probabilistic text
model. This algorithm characterizes jointly the set of latent topics that best fits our
data (the set of abstracts) and how the documents/abstracts are allocated to each topic.
Latent topics are mixtures over words where each word has a probability of belong-
ing to a topic after controlling by journal name and publication year (the meta-data).
Thus, the topics may capture research fields but also other more subtle characteristics
related to the way in which the articles are written. We find that females are unevenly
distributed over the estimated latent topics. This and other findings rely on “automat-
ically” generated built-in data given the contents in the abstracts of the articles in the
T5 journals, without any arbitrary allocation of texts to particular categories (as JEL
codes, or research areas).
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1 Introduction

Despite the efforts undertaken for the whole economic profession to fight against dis-
crimination, women are underrepresented in academia. Lundberg and Stearns (2019)
make an assessment of the presence of female economists in the profession, and they
report a very slow improvement in the last two decades. The picture is as follows. In the
beginning of this century, 35%percent of PhD students and 30%of assistant professors
were female. Since then, these numbers have not increased.1 Additionally, Siniscalchi
and Veronesi (2020) summarizing Chevalier (2020) (Report of the Committee on the
Status ofWomen in the Economics Profession) point out that the proportion of women
assistant professors in the “top 10” schools has declined to less than 20% by 2019.
They document also that female have been less successful in promoting to tenured
associate or full professors.

In economics, the tenure path often requires to publish in the top five (Top 5, or just
T5) journals, namely American Economic Review (AER), Econometrica (ECA), Jour-
nal of Political Economy (JPE), Quarterly Journal of Economics (QJE) and Review
of Economic Studies (REStud). Heckman and Moktan (2020) analyze the tenure deci-
sions of the top 35 Economics departments in the USA, and they conclude that T5
publications are a very powerful explanatory variable of the promotion to tenure. Pub-
lishing in a T5 is becoming the main goal of young professors in economics because
their professional career may depend on succeeding on this target. In addition, the con-
tent published in these journals is also determining the path of research in economics.
As a consequence of these facts, the competition to publish in any of these journals has
increased in recent years. Card and DellaVigna (2013) analyze the publication records
in the Top 5 from 1970 to 2012 showing that the acceptance rate has fallen from 15%
(1970) to 6% (2012). They explain this fact as a combination of the increasing number
of submissions and a declining number of published papers. Card et al. (2019) further
analyze the publication records from two of the T5 journals (the QJE and REStud),
together with the Journal of European Economic Association and the Review of Eco-
nomics and Statistics. They report that the current proportion of accepted papers is 3%.
Is the T5 entry barrier harder for women? The answer provided by Card et al. (2019)
to this question is ambiguous. On the one hand, these authors do not find any gender
biases in the refereeing process, and editors decisions are gender-neutral conditional
on the referee advises. On the other hand, they find that conditional on referee process,

1 Boustan and Langan (2019) analyze the performance of women across PhD programs in economics. They
report that in 2017, women were a 32% of entering PhD students in economics, This proportion of women
in economics is below many other fields including science, technology, engineering, and mathematics (see
also Bayer and Rouse (2016)).
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female authored papers end up accumulating more citations in later years.2 A poten-
tial explanation for this second result is that journals hold female-authored papers to
higher standards. Hengel (2020) uses readability scores and finds that female-authored
papers are better written and improve during peer review and as they publish more
papers. These results could be related to some “horizontal” features or characteristics
of female-authored papers that lead to more citations or better writing standards, but
not to higher acceptance rates in the editorial process. As Card et al. (2019) control
by research fields (JEL codes), their results may be linked to more subtle horizontal
differences. For instance, in the same research field, males may choose a more theo-
retical approach and females a more applied perspective (which tends to be more cited
or subject to less complicated wording), leading to particular career outcomes.3

Several papers have pointed out persistent gender differences in the choice of
research fields in economics. Dolado et al. (2012) analyze the gender distribution of
research fields in the top-50 economics departments in 2005, and show that women are
unevenly distributed across fields. Similarly, Chari andGoldsmith-Pinkham (2017) use
data from submissions to theNational Bureau of EconomicResearch Summer Institute
(2001–2016) and show that the distribution of female researchers is not uniform across
fields. From these, we learnt that women are particularly underrepresented in macro,
finance and economic theory, and more prevalent in labor or applied microeconomics
fields. Beneito et al. (2021) find similar results using data from the annual AEA meet-
ings from 2010–2016, while Lundberg and Stearns (2019) focus on PhD dissertations
in Economics from 1991–2017, in almost all major PhD-granting departments in the
USA. Using the JEL code for research areas, they find that women are more prone to
study topics in Labor and Public Economics than in Macro and Finance. They also
show that this pattern has not changed over time.

Wewant to contribute to this literature in twodirections. First, we focus on exploring
the gender horizontal distribution across research topics in the leading economics
journals.We do so by using a newmethodological approach based onmachine learning
techniques. This classifies our abstracts’ database into latent topics. We collect all the
articles published in T5 journals for the period 2002–2019. We obtain 5311 articles,
and we keep track for each article of the authors’ names, year of publication, journal
and the abstract. With this information, we can provide a very accurate picture of
the performance of men and women publishing record in these leading journals. Our
primary objective is to describe what these latent topics are and the gender distribution
across them. Notice this is a very particular sample of researchers though.

Second, from the universe of algorithms for topic modeling we implement and
develop the structural topic model (STM) developed by Roberts et al. (2019). This

2 Hengel and Moon (2020) analyze publications in T5 and they also find that female authors published
articles are more cited.
3 Weborrow from the industrial organization literature the term “horizontal” differentiation sincewe refer to
differences in gender approaches and topics choices unrelated to research quality (“vertical” differentiation)
When those “horizontal” differences exist, papers of the same subjective quality may receive different
citations depending for instance on the popularity of the topic or the number of scholars working on it. If we
were able to control for “horizontal” gender differences (which is the goal of the paper), we could identify,
in a more accurate way, the potential gender discrimination biases. We will discuss in greater detail, how
to use our methodology for assessing gender discrimination biases when we discuss our future research
agenda at the conclusion section.
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choice is because the algorithm allows to incorporate document-level meta-data into
a probabilistic text model. Precisely, we keep track of journal names and publication
years as covariates to improve the estimation of the prevalence of topics in our data.
Our abstracts come from different sources and different periods of time, so it is natural
to allow this meta-data to affect the frequency with which a topic appears. The output
of the algorithm is a stochastic model that generates latent topics and allocate the
documents to them in a probabilistic way. The main advantage of this unsupervised
machine learning approach is that latent topics are mixtures over words where each
word has a probability to belong to the different topics. Therefore, these topics can
capture, conditional on covariates and without human intervention, research fields,
information regarding the style of writing, methodology, conversational patterns or
even different ways of thinking.

We start by identifying the number of latent topics forwhich the stochasticmodel fits
best our data. The result is that female authors are unevenly distributed across latent
topics. It turns out that female prevalence dispersion is higher across these topics
compared to other approaches. Moreover, we show that although the proportion of
females is slightly increasing among the population of T5 authors over the years,
the identified horizontal differences persist. We compute the empirical distribution
of latent topics by gender and we show some striking differences between male and
female expected proportions. We want to emphasize the importance of these results,
not only because latent topics may capture subtle horizontal differences, but also
because the gender differences we estimate are “automatically” generated given the
documents, without any arbitrary allocations to particular categories (as JEL codes,
or declared areas). Thus, they are possibly more robust.

Notwithstanding, the choice of the number of latent topics, even if optimal as we
discuss, is subject to clustering issues. To address these issues,we also choose to reduce
the number of topics the algorithm has to generate, and in order to capture the mixtures
of words that more closely resemble to research areas. There is a trade-off when
choosing ex ante the number of latent topics. On the one hand, a relatively high number
of topics usually fits better the data. On the other hand, a lower number of latent topics
facilitates the broad semantic interpretation of them. In our setting, a lower number of
topics turns out to make them closer to traditional research fields. Consistently with
our main findings, we corroborate the uneven distribution of topic/research fields by
gender, but now, much more in line with the existing literature cited above. Thus, we
can also discuss the link between the existing literature and our class of probabilistic
results. Our approach provides complementary evidence from previous literature over
horizontal research differences between males and females. The idea is that the larger
set of research topics may allow to identify more precisely the gender gaps, and what
is more important, may help to understand the driving forces behind these gaps.

There are several channels forwhich the gender differences in the choice of research
topic that we identify can have an impact on the probability of publishing in top
journals, earning tenure and in general on career success. Conde-Ruiz et al. (2017,
2021) and Siniscalchi and Veronesi (2020) provide two dynamic mechanisms that
may explain how “horizontal” gender differences, together with an initially uneven
distribution of gender researchers, may generate an unintentional discrimination trap
linked with the functioning of academic organizations (journals, departments, etc.).
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In particular, Conde-Ruiz et al. (2017, 2021) analyze a promotion setting in which
workers’ skills are assessed by committees whose members have different abilities to
evaluate workers’ signals (they are better at evaluating workers from the same group).
This “homo-accuracy” assumption naturally translates to the present academic set-
ting, where promotions and editorial processes are done by “committees” and where
evaluators making research in the same research field are able to assess better the
underlying quality of the candidate. Under this “homo-accuracy bias,” the group that
is most represented in the evaluation committee generates more accurate signals, and,
consequently, has a greater incentive to invest in human capital. This gives rise to a dis-
crimination trap. If, for some exogenous reason, one group is initially poorly evaluated
(less represented into evaluation committees), this translates into lower investment in
human capital of individuals of such group, which leads to lower representation in
the evaluation committee in the future, generating a persistent discrimination process.
Siniscalchi and Veronesi (2020) focus specifically on the academic labor market and
point out a similar unintentional discrimination trap linked to the so-called self-image
bias. Research evaluation is biased toward young researchers with similar characteris-
tics to them.The authors build up an overlapping-generationsmodelwith twogroups of
researchers with equally desirable (but a little bit different) research characteristics and
identical ex ante productivity distributions. If one group is slightly over-represented
into the evaluation group, this group (and its specific research characteristics) may
dominate forever. These theoretical results go in line with the empirical findings of
Dolado et al. (2012) that show that the probability for a female researcher to work on
a given field is positively related to the share of women already working on that field
(path-dependence). The proportions these authors find based on JEL codes are very
similar to what we find automatically at the same level of aggregation, but we can set
forth a lot more field idiosyncrasy under an extended optimal topic choice. At the end
of the paper, we discuss various issues for further research in related applications.

The paper is organized as follows: the next section presents the raw data and the
descriptive analysis of the patterns of publication in T5 journals. Section 3 presents the
structural topic model. Section 4 studies the gender differences in the latent estimated
topics. Section 5 extends the model to analyze topics as research fields. Last section
concludes, and in Appendix we explore several extensions and provide details about
the functioning of the structural topic model (STM) algorithm.

2 RawData and Descriptive Analysis

We collect the publicly available information from all articles published between 2002
and 2019 in the T5 leading journals in economics, as already indicated: The American
Economic Review, Econometrica, The Journal of Political Economy, The Quarterly
Journal of Economics, and The Review of Economic Studies. For each article, we
collect the information about the journal, year of publication, authors and the abstract
of the paper.

We have 5311 articles in total over the period 2002–2019, the average number of
papers published in top-5 journals per year is 295, with a maximum of 351 (on year
2017), and a minimum of 234 (on year 2002). Figure 1 shows that the distribution of
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Fig. 1 Number of articles published per year in T5. Note Publications exclude notes (without abstract),
comments, announcements, and Papers and Proceedings (P&P)

published papers by journal is uneven. AER accounts for 34.3%, while JPE only rep-
resent 13.4% of the sample. AER publishes regular articles as well as shorter papers.4

We include in our sample the shorter papers (as long as they have abstract) since their
editorial processes is similar to regular articles. We exclude the articles published in
AER as Papers and Proceedings since their requirements and editorial processes are
different.5 Wewant to compare this descriptive information with Card and DellaVigna
(2013) who analyze all the articles published in the T5 from 1970 to 2012. They obtain
several interesting facts, among them, that the total number of articles published in
these journals declined from 400 per year in the late 1970s to 300 per year in 2012.
They also show that one journal, the American Economic Review, accounted in 2012
for 40% of T5 publications, up from 25% in the 1970s. In our updated sample, as it is
shown in the figure, we find that this trend has stabilized after 2012.

Card and DellaVigna (2013) also find that the number of authors per paper has
increased from 1.3 in 1970 to 2.3 in 2012. We observe the same trend in the recent
years, in particular in 2019 the average number of authors was above 2.5. Figure 2
reports the share of articles by number of authors, one to five or more. Clearly, the
steepest trend downward is for solo authorship, whereas the three-author case (or
even the four-author case) exhibits the opposite pattern. The two-author case share
has remained fairly stable over the entire sample at around 40% of articles (base, not
augmented). Five or more authors in economics articles at leading journals are still a
rare event.

Next, we move to analyze gender issues. We do not observe directly gender in our
data. For solving that problem, we classify authors by gender according to their first

4 AER stopped publishing shorter papers in 2018.
5 In “Appendix E”, we add P&P articles to our data and we replicate the analysis for these extended data.
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Fig. 2 Number of authors of published papers in T5

name. We rely on three different databases: the first-names’ database published by the
USA. Social Security Administration, created using data from Social Security card
applications; the database constructed by Tang et al. (2011), who use Facebook to
collect data on first names and self-reported gender; and finally, the names’ database
developed by Bagues and Campa (2017). We check manually any candidate who (a)
falls within the [0.05 0.95] probability interval of being male/female or (b) cannot be
found in any of the databases.

We convert the original sample of articles into an articles-authors sample. We
transform the original 5311 articles to a total sample of 11,721 (with implied 9840
articles-men authors, and 1881 articles-women authors). Except otherwise indicated
all measures below are computed over this augmented articles-authors sample.

Figure 3 depicts the share of female authors (right axis), which has been increasing
(with fluctuations) at a rate of 6.2% per year, (compared to men’s share average rate
at 3.7%), reaching 20% share during a couple of years in the recent past. Despite
female authors are increasing at a higher rate, and that there have been an important
improvement in the last decades, women are clearly under-represented in T5 publica-
tions. These data are consistent with the data from the report of the Committee on the
Status of Women in the Economics Profession, Chevalier (2020). Figure 4 compares
the evolution of the share of women in the different professor categories of the top 20
Schools of Economics in the USA in 2020 with the proportion of female authors in top
5. Notice that the share of female authors is very similar to the 20,4% share of women
in the faculty of the top 20 Schools in the USA on 2020. In line with Heckman and
Moktan (2020), the rate of increase of female coauthors in T5 seems to parallel the
rate of increase of female full Professors in these departments. The average proportion
of females that are full professor in Spain and the EU average are very similar as well.

We have split the description of the data into two figures: one for single gender
groups and another formixed teams. Figure 5a shows the corresponding co-authorships

123



276 SERIEs (2022) 13:269–308

Fig. 3 Number of article-author observations by gender and the share of female articles

Fig. 4 The pipeline for top 20 economics departments: percent and numbers of faculty and students who
are women. Source CSWEP Report, 2020 and own elaboration

pattern when the set of co-authors are single gender groups. The more salient feature
of these data is that while the share of sole male authors has been declining from 30%
of total, to slightly above 10%, the share of sole female authors has been stable over
the entire sample, at a share close to 5%. We want also to point out that despite the
slow decline, two males are the most common co-authors team.
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Fig. 5 Co-authorships patterns in T5 journals

The equal share of male-female authors has been fairly stable at about 12% (92.7%
of these articles are, in particular, one male-one female). Alternatively, the share of
articles with at least one woman and at least two men has been increasing from nearly
5% over total to around 14%. Thus, the strongest trend in data seems to be associated
with the participation of female authors in articles with relatively more male authors.
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Fig. 6 Distribution of number of T5 papers published by gender

Figure 6 shows the distribution of the number of published papers by gender. Con-
ditioning on having published in T5 journals, females are more likely than males to
publish only one or two papers, while the proportion of authors that have published
more than three papers is greater for males than for females. Clearly though, more than
80% of either female (15% of the distribution) or male authors have published less
than two T5 over the last 20 years. This is an important fact for understanding the role
of superstars in the profession as well as the mechanisms underlying the formation of
networks of coauthors.

3 The Empirical Model: Structural Topic Model (STM)

Our empirical strategy is to use unsupervised machine learning techniques to uncover
the hidden structure of our text documents.6 By unsupervised we denote the absence
of human intervention in order to identify the latent topics behind the abstracts of
articles published in the T5 journals during the period 2002–2019. For us, an abstract
is a set of words and these words have different probabilities to belong to one or several
latent topics. Informally, when we are writing on a particular topic there are words
that are used more often than others. Our objective is to provide a low-dimensional
representation (topics) of a high-dimensional object (abstracts) while retaining as
much as possible its informational content.

6 For an excellent non-technical introduction to machine learning, see Hansen et al. (2018).
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The baseline for topic modeling is the LDA algorithm (latent Dirichlet allocation)
developed by Blei et al. (2003) and also the most popular machine learning algorithm
in reducing the dimensionality of text documents.7 In this paper, we use an algorithm
called STM (structural topic model) developed by Roberts et al. (2019), which can
be understood as a refinement for this LDA algorithm. This topic model is said to
be structural because it allows the use of “covariates” to inform about the structure
(partial poolingof parameters). These covariates in our case are going to be the different
journal names and the different years in the sample. The idea is to better capture along
these dimensions the changing relationship between words in abstracts and the latent
topics. Next, we want to explain the algorithm and the outcome variables, and in
“Appendix A” we provide a more technical discussion over STM and LDA.

We start by describing the inputs. We have our 5311 abstracts (or documents) to
extract all the words. First, we have to “clean” this set of words in order to reduce the
vocabulary and select terms with more informational content. This helps us for a better
estimation of more semantically meaningful topics. The corpora is the set of unique
words that we obtain, after converting to lower case and remove from the original raw
text common stopwords,8 as “for” or “in.” Also, we prune the words until we get their
original linguistic root (“educ” instead of “education”) and eliminate the words that
appears one or two times only.9 In our case, we start with a set of 13,835 different
terms and end up in a corpora of 4241 of unique words.

The second step is to represent our text data in a document-term matrix of D rows
(5311 abstracts) and V columns (4182 unique words in our corpus) where the element
(d, v) of the matrix is the number of times the vth unique word appears in the dth
abstract. This document-term matrix that reduces the dimensionality of our original
text variables is the input of the algorithm. Our objective is to find a probabilistic
topic model that is able to explain the document-term-matrix in two additional steps.
First by identifying K topics in our corpora and then by representing documents as a
combination of those topics. What is a topic? The topic k is a probability distribution
βk over all the unique words of our corpus, where βv

k is the probability that topic k
generates word v. Each document d has its own distribution over the set of topics θd .
This captures that each document/abstract can refer to several topics. Then, θkd would
mean the weight of topic k in document d. The probabilistic topic model is described
by these topic βk and document θd distributions. Given that, we can compute the
probability that an arbitrary word in the document d coincides with the vth term is
pdv = ∑

k βv
k θkd . Using these probabilities, we can obtain the total likelihood of our

data,
∏

d
∏

v p
nd,v

d,v , where the nd,v corresponds to the elements in the document-term

matrix (the number of times the vth unique word appears in the dth abstract).10

This total likelihood is our “objective” function. In a nutshell, the LDA and the
STM algorithms are designed for finding numerically the stochastic model of latent
topics (the distributions βk and θd ) that better suit our document-term matrix, that is

7 For technical description of the LDA algorithm, see the original article of Blei et al. (2003) and also
Hansen et al. (2018) that is the first paper that uses the LDA algorithm in the economic literature.
8 In particular, we remove the stopwords from the SMART list, developed at Cornell University in 1960.
9 See “Appendix B” for the details of this pre-processing.
10 See Hansen et al. (2018) for a precise description of the computation of the total likelihood.
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that maximizes this total likelihood. We are going to skip here further details on the
algorithms we use, and we refer the interested reader to “Appendix A” (and also to
Roberts et al. 2014). However, we want to make two important observations.

First, as indicated above, we are implementing STM instead of LDA. The main
advantage of STM for our data is that we can use very relevant covariate information
about our documents in order to improve parameter estimation.11 In particular, for each
document/abstract we interact the year of publication as well as the journal name. We
take advantage of the variability of the abstract along the time and across journals for
improving the estimation of our stochastic model in particular of the distribution θd ).

The second important observation refers to the determination of the number of
topics. We can follow two strategies. One, it is to find the number of topics that better
fits the data, which usually leads to a large (optimal) K . The alternative is to force the
algorithm to use a given number of topics for facilitating the interpretation of those.
For our baseline analysis, we use the first approach and we work with 54 topics, but
we also pursue the estimation of our stochastic model using a fixed number of topics
to facilitate comparison with the results in existing literature.

Previous literature, using JEL codes (for example, in Card et al. 2019) or research
areas in top departments (for example, in Dolado et al. 2012) have concentrated in a
broad definition of topics as fields of research, say, Labor or Econometrics. However,
the unsupervised learning methodology we use allows us to go beyond pre-labeled
research areas so as to capture more subtle differences, such as writing style, particular
methodologies, or the variation in research questions. For example, our methodology
allow us, when identifying latent topics, to separate two papers of labor economics, but
one more applied and other with a theoretical contribution. We consider our approach
a promising tool to analyze if there are horizontal gender differences in economics
research, that is, whether or not male and female write different articles evenwithin the
same research field. For this reason, in the next section we will analyze our stochastic
model with K = 54 topics, while in Sect. 5, we will be focusing on estimating our
stochastic model with K = 15 topics. In addition to these two exercises, in Appendix
we extend our original sample for including the abstracts of 1117 articles published
as Papers and Proceeding in AER, between 2011 and 2018 (before 2011 these types
of papers do not have abstracts and after 2018 are published in a different journal).
We will show that for this extended sample the optimal number of topics increases
to K = 70. While we have preferred to exclude these papers of the main baseline
analysis because these are very short papers with very different editorial processes
than regular submissions, this extended sample generates interesting new insights.

4 Gender Differences in Latent Estimated Topics

As we said above, the number of topics that best fits the text data is 54.12 We estimate
probabilities for each document to belong to this set of built-in latent topics using the

11 In Cabrales et al. (2018) there is an attempt to impute also gender as an additional covariate for the
articles published in the British press by looking for female names in the body text of this articles.
12 In “Appendix C”, we provide a formal discussion about the optimal number of topics.
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structural topic model. The STM output is summarized by the latent topics displayed
in Fig. 7 that shows the key words associated with each of the 54 topics. The words
within each row are ordered left to right by the probability they appear in each latent
topic. Eventually, we could assign some labels to latent topics, based on well-known
fields names in economics. For instance, we can associate the more prevalent topic
in the sample in expectation, topic 28, to international trade. Likewise, the second
more prevalent topic in the distribution, topic 9, may be associated with Econometric
Theory. However, this is not the goal of the analysis as we have indicated above.
The important thing is that latent topics may be related to something beyond research
fields, as methodology or style of writing. These latent characteristics hide gender
differences too.

4.1 Topic Prevalence

Once we have identified the estimated latent topics, we can analyze how our docu-
ments/abstracts are distributed among them. In allocating an abstract to a particular
topic, we consider our underlying θd distribution. Then, we assign document d to dif-
ferent topics with different probability weights. Following this approach, Fig. 8 shows
latent estimated topics in a way that also illustrates the number of documents in each
topic, notice that in Fig. 8 the size of the circle is proportional to the expected number
of documents in the topic (we have also reproduced numerically this information in a
column in Fig. 7). As we cannot make a mapping of our 54 topics to particular fields
of research, it is difficult to interpret the information of Fig. 8 regarding the size of the
topics. For example, topics 11, 9 and 21, in Fig. 8 are related to “Econometric Theory,”
and are relatively large compared with other topics. However, if the algorithm would
have introduced more topics within “Econometric Theory,” each topic would have had
a smaller mass, the weight of the research field being the same. In other words, our
perception of the successful topics is affected by how the research field is split into
topics.

Figure 8 also contains information over the connectedness between topics. For
example, if the latent topic k is closer to k′ than k′′, it means that the distribution
βk is more alike to the distribution βk′ than to distribution βk′′ . Looking at Fig. 7
and the description of the latent topics in Fig. 8, some interesting patterns arise. For
example, the previous discussed topics 11, 9 and 21 (“Econometric Theory”) are in
someway isolated from the rest of topics. In Fig. 8, we can also identify some other
clusters of topics, for example (east in Fig. 8) 51, 34, 23, 2, etc., are topics related
to Macro-Finance, closer to those in Econometric Theory, but not that much; (west
in Fig. 8) 50 is a central node of a set of topics related to Political Economy and
Institutions); (southwest in Fig. 8) 29, 32, 22, etc., are topics related tomicroeconomics
(contract theory, decision theory, etc.). Finally, applied areas as labor, international-
development, or public economics are located around topics 19, 49, 28, and 48 (north
in Fig. 8). In “Appendix D”, we undertake a more formal analysis of the distance
between topics using a simple correspondence analysis of the probability matrix for
documents to belong to the different latent topics. We find the corpus organized along
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Fig. 7 Optimal K topics ranked by prevalence in the corpus

two dimensions: Dimension 1 can be interpreted as going from Applies to Theory,
whereas Dimension 2 goes from, say, Economics to Econometrics.

Using our classification of authors’ names by gender and the allocation of docu-
ments to latent topics, we can build up a similar figure with information about the
gender distribution. Figure 9 shows latent topics where the sizes of circles are pro-
portional to the percentage of female authors working in such topics (we have also
reproduced numerically this information in the last column in Fig. 7).
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Fig. 8 Connectedness between topics and the fraction documents/abstracts in each topic (θd distribution)

Fig. 9 Connectedness between topics and the female authors documents/abstracts in each topic
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Fig. 10 Topic Word Clouds: Topic 49 vs Topic 16

Fig. 11 On the presence of women, by topic: mean and one standard deviation across time

Figure 9 provides interesting evidence of the main message of this paper, male and
female display different patterns when doing research. Independently of the grade of
under-representation of women in the profession, if there were not significant gender
horizontal differences we would expect that sizes of latent topics measure for the
proportion of females were similar. On the contrary, we observe an uneven distribution
of sizes.

There is a small subset of topics (north in Fig. 9), specially topic 49, with a relative
high proportion of females, that moreover seem to be closely connected (according to
the terminology for applied economics fields). On the contrary, there is other set of
topics (for example, southwest in Fig. 9) that are also closely connected and where
the presence of females is scarce (around terms common to economic theory research
questions).
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4.2 Topic Analysis and the Gender Distribution

As we said above, it is difficult to describe the precise semantic meaning of the latent
topics when we are working with K = 54. We are able, however, to look closer to the
latent topics where females are more or less prevalent and its potential implications.
In particular, Fig. 10 shows that the latent topic with the highest proportion of female
authors is topic 49 (32.8% as indicated in Fig. 7). On the contrary topic 16 turns out
to be the topic with the lowest proportion of females (10.1% as indicated in Fig. 7).
As a simple illustration, Fig. 10 represents these topics as word clouds, where the size
of terms in the cloud is equivalent to its probability in the latent topic distribution βk .

The words that seem to be more prominent in the cloud 49 are women, men, parent,
children, health, etc. These words could be easily linked to research fields, as gender
or health economics, traditionally associated with women. Similarly, the word cloud
of topic 16 seems to be related to Micro theory that has been often labeled (while not
statistically) as an area where there are less female than average.

Latent topics may differ in other dimensions beside semantic content. For instance,
Hengel (2020) uses readability scores to measure the quality of writing of article
abstracts.13 We have implemented E. Hengel’s Python module Textatistic to
compute readability results over the article abstracts across our latent topics. The
finding is that scores across more female topics are better rated than across more male
topics. However, it is hard to disentangle the role of the prevalence of female authors
face to face the wording within a topic. Moreover, scores that are outliers should be
properly treated to ease comparisons. We leave the study of these readability issues
implying fundamental gender differences for further research.

Rather, Fig. 11 shows the mean of the presence of women authors by topic, together
with the standard deviation of this presence over the sample of years. For some latent
topics, the proportion of females is larger than the average (which is 15.9% over
the period 2002–2019), reaching a proportion of 33% for topic 49. On the contrary,
females are specially underrepresented in other topics, as topic 16, with only a 10%.
Dispersion over timediffers also across topics, and it seems that is higher for topicswith
higher proportion of females (the correlation between dispersion and the proportion
of females is 0.35). While it is true that the proportion of female authors has been
increasing in the last two decades from around 13% on 2002 to 19% on 2019, we do
not see a trend in the dispersion of the proportion of females by topic. Consequently
we see the prevalence of females across topics as a signal of gender “horizontal”
differences in research.

Nevertheless, for having a more accurate picture of this “horizontal” differences,
we need to add the information regarding the relative prevalence of the topics. It could
be possible that females are unrepresented in a particular topic, and this circumstance
having little impact as far as this topic contains very few published papers.

Figure 12 shows the distribution between males and females across topics normal-
ized for having the same size. This gives us the propensity that, say, a female authored
paper belongs to any of the 54 topics. We rank the topics according to probability of

13 As E. Hengel discusses in detail, abstract readability is strongly positively correlated with the readability
of other sections of a paper.
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Fig. 12 Empirical distributions across topics between males and females (conditional of having published
an article in Top 5)
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Fig. 13 Relative propensity of publishing papers by females over topics

being chosen by a male author. This figure provides evidence that male and female
authors either have different preferences or follow different strategies when pursuing
and publishing their research. We observe that topics with higher “demand” by males
are also highly demanded by females. However, there is a set of topics, for which
the proportion of published papers for men are high, which are less attractive (o more
difficult to publish) for females. In general, male and female distributions are different,
with the salient feature of topic 49 for females, that it is a clear spike in the female
distribution of published papers.
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Fig. 14 Empirical distributions across topics between males, females and mixed authorship (conditional of
having published an article in top 5)

We confirm this evidence with a complementary Fig. 13 representing the disper-
sion of published female authored papers across topics, but accounting also for the
prevalence of latent topics. In particular, for each topic we have the proportion of pub-
lished papers by female authors (taken fromFig. 12)minus the proportion of published
papers in this topic overall. Conditioning on having published a paper, male and female
would be equally likely to publish a paper in a specific topic, this difference would
be zero. Then, we can interpret this difference as the excess propensity to publish a
paper in a particular topic by females. These differences can be positive or negative,
and the sum over all topics is zero. The figure shows that there are topics for which
the propensity of publishing papers by females is higher than males, and the opposite.
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Fig. 15 Diversify across latent topics by gender (HHI)

Again topic 49 but also topics 41 (health) and 30 (applied IO) are in one side, while
theory topics as 16 or 37 are in the other side.

In order to analyze the pattern of coauthor-ships we have pooled the articles in
three groups, papers written by male authors, by female authors, and gender mixed
team of authors. The main results are summarized in Fig. 14 that shows that there is
a important difference between the pattern of latent topics between sole male teams
and sole female teams, while mixed teams generate an intermediate distribution over
the latent topics.

Finally, we want to address a related but different question, how male and female
diversify across topics. For example, when writing an article, an author may contribute
to a single latent topic or several, authors that have published several papers may have
written similar articles or they could have been more diverse: are these diversification
patterns different for males and females? For addressing this question, the first step
is to choose a measure of latent topic dispersion/concentration. A natural candidate is
the Herfindahl–Hirschman Index (HHI) that is used to measure the concentration in a
market.

The HHI index is calculated by squaring the market share of the firm (the topic)
that compete in a single market and then summing up the resulting numbers HHI =∑N

i=1 s
2
i . We apply this index to our problem as follows. For each author (the market),

we identify all the latent topics that she has contributed to (the firms). For each article
the algorithm computes a probability distribution over the latent topics. We repeat the
process for all articles of the same author. Then, the cumulative probability divided by
the number of articles is the contribution of the author to this particular latent topic (the
market share, si ). For example, if an author publishes very similar papers related to a
single or a few latent topics, her HHI will be high. On the contrary, authors with a more

123



290 SERIEs (2022) 13:269–308

diverse research agenda will have a lower HHI. Figure 15 shows the corresponding
average HHI for males and females.

We have computed the HHI controlling for the number of papers by author. It is
clear that an author that has published more papers is likely to have contributed to a
larger set of latent topics and therefore she must have a lower HHI. Interestingly, the
figure shows some differences between genders in terms of diversification. Females
are more diverse (lower HHI) when publishing one or two papers, but less (higher
HHI) when publishing a larger number of papers in the Top 5.14

5 Topics as Research Fields

In this section, we estimate the stochastic model with a lower number of topics, with
two objectives. On the one hand, a low K facilitates the semantic interpretation of
topics and then to analyze, for instance, whether or not, the weight of a particular field
in the T5 has increased over time. On the other hand, a low number of topics will
allow us to frame our results with previous literature that has used a small number of
categories linked to JEL codes and research areas in top departments. After estimating
the model for a range of K ∈ 10, . . . , 20, we have found that K = 15 is a number of
topics for which the estimated model performs better in terms of fitting to the data and
the semantic content of the latent topics at the same time. The model with K = 15
latent topics is summarized in Fig. 16.

The reader may then wonder what additional information is contained in the unre-
stricted version of the structural topic model (STM). One way to illustrate on the
importance of an adequate selection of the number of topics is to explore in detail
the composition effects we already discussed above. We proceed as follows. First, we
consider the stem “labor,” and we look for it among the fifteen more frequent words
within the restricted version of the STM, that is, the version with just 15 latent topics
(K = 15). We only find that particular word under the required frequency within topic
8 in Fig. 16. Figure 17 depicts the word cloud for that topic 8 in the restricted version
of the model with K = 15. Clearly, in this particular case, one may say this cloud
describes well the research field corresponding to JEL code J, which is Labor and
Demographic Economics.

The key idea with the structural topic model is that a field like “Labor” can fit
many research lines in the unrestricted version of the model, in our case the one with
54 latent topics. When we look for the stem “labor” within the 54 latent topics, we
find it among the fifteen more frequent words in as many as six topics. Figure 18
illustrates on the most prevalent among these topics which are: Labor Search, Labor
Supply, Human Capital, or Productivity Analysis. Notice, in particular, that there are
important differences on the prevalence of females across these different subtopics,
from 18 per cent in the more policy oriented topic which is “labor supply” to 14
per cent in the more theoretical “labor search” (go back to Fig. 7 for these shares).

14 TheHHI is a first approximation as measure of research diversification. In the future, wewant to improve
the measure by taking into in account that some latent topics are close to others.
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Fig. 16 Latent topics ranked by prevalence in the corpus with k = 15

Important variability can be washed out when the methodology used account for the
research field environment rather than for the research topic environment.

As we have anticipated, the reduction of the number of topics to K = 15 makes
easier to label the latent topics as meaningful research fields, though. Following our
previous analysis, Fig. 19a plots the latent topics showing the relative semantic distance
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Fig. 17 A topic with “labor”:
topic 8 in the set with K = 15

Fig. 18 Word clouds for topics with the stem “labor” among the fifteen more frequent words in the set with
K = 54
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(a) Connectedness between topics and the fraction docu-
ments/abstracts in each topic (θd distribution).

(b) Connectedness between topics and the female authors doc-
uments/abstracts in each topic.

Fig. 19 Connectedness for K = 15
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between topics as well as their weight in terms of the fraction of documents/abstracts
that they contain.

If we compare Fig. 7 (with K = 54) and Fig. 19a (with K = 15), they have a similar
“geography” in terms of general areas of knowledge. Therefore, similar patterns in
terms of the distances between topics arise. For example, “Econometric Theory” seems
to be isolated, whereas applied fields such as Labor and Public Economics are closely
connected.

Figure 19b (as Fig. 8 with K = 54) provides evidence of the “horizontal” differ-
ences between males and females in doing research. The results go in line with the
previous literature as in Dolado et al. (2012), Chari and Goldsmith-Pinkham (2017),
Beneito et al. (2021) and Lundberg and Stearns (2019) that point out that females
are unevenly distributed across fields. We concur with previous literature that females
are over-represented in Applied-Micro fields, specially Health-Gender, Experimental
and Education and underrepresented in Econometric and Economic Theory fields,
Macro-Monetary and Finance.

For example, Dolado et al. (2012) use the classification of women by research
areas (JEL 20 fields) in the top 50 economic departments in 2005. The proportions
they find are very similar to ours: (i) I-Health, Education and Welfare, 25%, (ii) D-
Microeconomics, 14%; (iii) J-Labour and Demographic Economics, 15% or (iv) C2-
Econometrics, 14.3%. In our analysis, we found that the percentage of female authors
are, for example: (i) Health and Gender, 23%; (ii) Decision Theory (13.6%), Game
Theory (11.4%); (iii) Macroeconomics and Monetary, 14.2%; or (iv) Econometrics,
14.4%. Having said that, the distribution of the proportion of females across these
restricted topics seems to be slightly less disperse than those identified in the previous
literature with other sources of data. This can be due to the fact that our methodology
is more “continuous” than allocating females to fixed categories, and as far as the
probabilistic model allocates females’ articles to latent topics with statistical weights.

Figure 20 analyzes together the evolution of the prevalence of the topics and the
proportion of females authors. For building this figure, we have computed the growth
rate of topics’ prevalences and topics’ female proportions from the averages in the
latest seven years (2013–2019) and the first seven years (2002–2008) of the sample.
First, we can observe that the proportion of females have increased in all topics, but
Finance (−6.6%). Regarding the prevalence, only four topics have decreased their
weight in terms of prevalence, Mechanism Design (−10.3%), Econometrics (−29%),
GameTheory (−22.5%) andExperimental (−8.4%).On the one hand, the topicswhere
the percentage of women authors have risen more are Political Economy (+67.7%),
Decision Theory (+42.5%),Macroeconomics andMonetary (+32.3%), Experimental
(+40%) or Labor (+35%). In all of them, the women were clearly underrepresented.
On the other hand, the topics where the percentage of women has grown the least,
besides Finance, have been Health and Gender (+11.4%), Econometrics (+9.4%),
and IO (+9.2%).

Finally, there is no clear relationship between the growth rate of topic prevalence
and the increase in female prevalence. This is surprising. We do not have data about
the seniority of authors, but as the proportion of female is increasing, we can expect
that the proportion of females among the new entrants in the T5 market should be
relatively large. New entrants should be more likely to work in “hot” topics rather
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Fig. 20 Growth rates of prevalence and female proportion by topics

than in declining ones. The combination of both effects should lead to a positive
correlation between the increase in the prevalence of a topic and the increase in female
representation, something that we do not observe clearly in the data. However, another
alternative explanation to the increase of the proportion of women in some topics is
that females that already have published in top five in the past, have extended their
network of male coauthors and getting more papers published.

6 Conclusions

Using unsupervised machine learning techniques and a new data base composed by
the abstracts of all articles published in T5 journals in Economics for the period (2002–
2019), we have shown that there are persistent and significant horizontal differences in
the waymales and females approach research in Economics. Using the structural topic
model, we have identified latent topics for which the distribution of female authors
is more uneven than with research fields. These findings are important for several
reasons, because: (i) T5 publications are key for research careers and also for deter-
mining the path of economic research; (ii) the results are robust in the sense that they
are automatically generated with a probabilistic model without any deterministic allo-
cation of papers to pre-established categories or fields of research; (iii) finally, recent
theoretical results by Conde-Ruiz et al. (2017, 2021) and Siniscalchi and Veronesi
(2020) show that “horizontal” gender differences in the choice of research topic may
lead to a gender discriminatory trap.

Beyond the scope of the present paper, we plan to extend our analysis in several
directions. Firstly, we want to recollect more information about the authors, in order
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to be able to capture dynamic effects. For instance, we want to differentiate between
the research patterns by senior and junior authors. We want also to investigate how
male and female build the network of coauthors and how this process determines the
choice of latent topics. Secondly, we want to show the usefulness of the methodology
and the latent topics we have identified by reviewing research questions analyzed by
previous literature in academic gender gaps. For example, Hengel (2020) analyzes the
differences in quality ofwriting of papers. She shows that female-authoredmanuscripts
are better written and concludes that female are subject to higher writing standards.
The reason might be an unwelcome gendered culture through the entire editorial
process at the time of deciphering complicated texts. We are currently implementing
Hengel’s readability scores methodology to the latent topics. Our preliminary findings
suggest that those papers belonging to topics with more prevalence of females are
better written. Although this evidence can be interpreted as supporting the view that
female-authored articles are better written than equivalent articles by men, it can be
also the case that the results are driven by the particular topics. In other words, we
need a deeper econometric analysis to disentangle if the written quality of the papers
is driven by gender of the author or by the choice of the latent topics.

Likewise, Card et al. (2019) shows that female authored papers havemore citations,
suggesting that journals hold female-authored papers to higher standards. They have
obtained this result controlling for research field. We plan to collect data on citations
and review this result but controlling by latent topic. Finally, we want also to use
algorithms (for example, LASSO a widely used regression analysis machine learning
method) for testing if the differences between gender research patterns are important
enough, for building a predictive model of gender given an observed abstract.
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Appendix A: The Topic Model

We implement and develop the structural topicmodel (STM) to incorporate document-
level meta-data into a probabilistic text model. The topic model is said to be structural
because “covariates” inform about structure (partial pooling of parameters). We keep
track of journal names and publication years as covariates to estimate the prevalence
of topics.

The starting point to understand the STM probabilistic model is the LDA (latent
Dirichlet allocation) generativemodel. According to LDA, the data generating process
for document d ∈ D assigns terms in vocabulary V to positions Nd in the document-
term matrix, where the element (d, v) of the matrix is the number of times the vth
unique word appears in the dth abstract. The algorithm follows the steps below

1. Draw a K-dim Dirichlet vector θd containing the expected fraction of words in d
attributed to topic k ∈ K .

2. For each word (position) in d, sample the indicator zd,n from MultK (θd , 1) that
indicates the position n associated with a topic.

3. Sample the indicator wd,n from MultV (Bzd,n , 1), where matrix B has distributions
βk over vocabulary V; [βk] is frequency with which terms are generated from k.

STM in its turn builds upon identifying covariates to improve the estimation of the
topics. Covariates affect (i) the proportion of a d devoted to a k (topic prevalence-TP),
and (ii) how much a word is used in k (topical content-TC). To this purpose:

• for TP, Dirichlet θd draws of document-level attention to each topic are replaced
with a logistic-normal with amean vector parameterized as a function of document
covariates.

• for TC, βk distribution is proportional to a multinomial logistic regression param-
eterized as indicated below.

A (partially collapsed) variational expectation–maximization algorithm is imple-
mented to approximate the posterior (inference). Then posterior predictive checks (cf.
Gelman et al. 1996) and tools for model selection as in Roberts et al. (2014) are used.
Beyond TP and TC functions of document metadata, the structural topic model can
be summarized as:

1. Given parameters: (i) a variance–covariance matrix for topics �, (ii) a matrix of
observed document-level covariates X (journals names and years) and (iii) a vector
γk (of prevalence of each topic) for each covariate,

γk ∼ N (0, σ 2
k Ip),

sample the topic proportion in each document, vector `d , that is,

`d ∼ LogisticNormalK−1(0
′ x′

d , �), 0 = [
γ1| . . . |γK

]

as a substitute for the Dirichlet conjugate prior, to conform the topic prevalence
model.

2. The core language model given the topic proportion per document `d consists of:
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• sampling the probability zd,n that a word is in a topic: zd,n ∼ MNK (2d), with
K outcomes

• conditional on topic, choose a word from βzd,n , that is wd,n ∼ MNV (βzd,n ),

overB = [β1| . . . |βK ] matrix of distributions over vocabulary V.

3. The topical content model samples the topic word distribution βd,k,v,. By now, we
do not use covariates to explain topical content of documents.

Appendix B: Details of this Pre-processing Data

Pre-processing of the abstracts that conform our database is essential in order to
organize the words that form the texts in an homogeneous way. The main goal of
this process is to reduce the dimensionality by reducing the set of words, but at the
same time trying to maximize the information contained in the words used by the
authors by selecting the terms with more informational content. This helps us for a
better estimation of more semantically meaningful topics.

First step is tokenization so as to differentiate words by selecting only single
words (monograms), instead of bigrams, trigrams, paragraphs, etc. Then, we elim-
inate punctuation, and capital letters are converted to small letters. This allows as
to remove duplicates, for example “Education” and “education” are different words
in our database if we do not convert all the words to lowercase. Once this is done,
we eliminate numbers and stopwords. By stopwords we refer to those words with-
out any informational content: “common” words such as “and,” “for” and “in.” We
removed the stopwords from the list SMART developed by Buckley (1985), a public
list with more than 500 words. Additionally, we remove some custom stopwords
that were very common in our database but not informationally relevant. These
are: “download,” “slides,” “slide,” “jel,” “abstract,” “paper,” “author,” “literature,”
“among,” “whether,” “authors,” “model,” “show,” “showed,” “shows,” “find,” “can,”
“matter,” “model,” “models,” “may,” “effect,” “find,” “can,” “show,” “paper,” “also,”
“provide,” “approach,” “thus,” “main,” “obtain,” “obtained,” “without,” “modelling,”
“modeling,” “modeled,” “modelled,” “use,” “result,” “results,” “resulting,” “resulted,”
“discuss,” “discussed,” “discussing,” “recent,” “recently,” “give,” “gives,” “given,”
“review,” “reviewing,” “reviews,” “require,” “required.”

We end by stemming the tokens so as to retain only the roots of words in the
same family, so as to unify the information contained in related words. For example
“education,” “educative,” and “educated,” are all related to education, so we just keep
the root “educ” for all of them. The use of these stems relax dimensionality problems
and groups all probabilities for families of words into one.

In our sample were initially 13,835 different terms. After this process without loss
of generality, we reduce the number of unique terms to 4241 in the corpora with which
we build the document term matrix.
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Fig. 21 Held-out likelihood estimation

Appendix C: The Optimal Number of Topics

To run the model involves a choice of hyperparameters as discussed in “Appendix A”
above, and one of those parameters is the number of this latent topics existing in our
corpus. As this can be interpreted as an arbitrary prior, we run some automatic tests in
order to choose this optimal K without human intervention, in order to classify texts in
the best possible way. This approach gives us the advantage of automatically selecting
the number of topics that better fits data. Arbitrary choosing too few topics means to
cluster several topics into a single one. Choosing too many topics means would tend
to identify patterns in language rather than topics.

We learn a lot on the different patterns of the datawhen choosing various alternatives
for a fixed number of topics, as we will discuss below. However, our primary selection
strategy for automatic selection focuses on the held-out likelihood estimated. Figure 21
reports the log-likelihood of the model evaluated at the estimated parameters on the
test set for each K between 15 and 100. The likelihood is maximized between 49 and
54 topics.

Figure 22, in its turn, displays the number of iterations to convergence of the model,
which sharply drops at 54 topics and remains at that number of iterations (except for
a small spike at 60) beyond 62 topics.

Finally, Fig. 23 reports the semantic coherence which is decreasing and stable after
59 topics. Semantic coherence is maximized when the more frequent words in a given
topic co-occur togetherMimno et al. (2011). High semantic coherence is reachedwhen
in the end there is less topics dominated each by fewwords. On the other hand, average
exclusivity is large when a particular word frequency corresponds to each topic. We
follow Roberts et al. (2014) to use the FREX metric for this criteria. As shown in
Fig. 24, there are two maximums in 51 and 54 topics.
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With our data, we found reasonable to assume that the result is in the neighborhood
of 52 topics given the held-likelihood procedure, and given the additional tests, we
select the highest number of topics in this neighborhood, corresponding to 54 topics.
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Appendix D: The Topics Profile

Given that we have chosen automatically the number of latent topics, it can be helpful
to try to disentangle their nature. As an alternative to Figs. 7 and 8, we use simple
correspondence analysis to measure the distance between topics. This is a descriptive
technique to explore relationships among categorical variables. In our application, we
use the matrix of probabilities (the matrix θd obtained from STM) for each and every
document to belong to any particular built-in topic in order to measure the distance
between topics. The rows in this matrix are probabilities that add up to one. The
clustering of rows measures the distance between topics (the columns of the matrix).
This is the so-called Chi-square distance:

θcoli j =
r∑

i=1

(
pai − paj

)2
,

where r is the total number of rows, and the measure we compute and represent gives
the Euclidean distance between columns i, j(col), for each and every row a (abstract).

Figure 25a depicts the two larger coordinates of the distance matrix computed
through classical multidimensional scaling (MDS), so as to obtain the coordinates of
the column category. The coordinates are given by the order of largest-to-smallest
variance. We find the corpus organized along two dimensions: Dimension 1 can
be interpreted as going from Applied to Theory, whereas Dimension 2 goes from,
say, Economics to Econometrics. We think this is apparent from casual inspection of
Fig. 25a, which involves square distances between [−4,+4].
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Fig. 25 Larger coordinates of the distance matrix computed through classical multidimensional scaling
(MDS)
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Fig. 26 Latent topics ranked by prevalence in the corpus with k = 70. Extended sample with P&P articles

Clearly though, outliers (understood as the topics far away from the origin) are very
important in this representation. First, we identify outliers 21, 9, 11, that we have asso-
ciated with Econometric Theory in the fields of estimation (“estim,” “asymptot,”…are
the keywords in this case) and testing (“test,” “asymptot,”…), together with structural
econometrics (“identifi,” “instrument,”…), respectively. These actually are among the
top 10 more prevalent topics. Moreover, topics 9 and 11 are 2nd and 3rd most preva-
lent. These outliers are located northeast in the diagram in terms of the language they
use.

The second set of outliers are located southeast and are equally far from the center,
while not isolated. These topics can be associated with Economic Theory texts. On
top of those, we find topic 5, and then not that further away from the center, topic 6, 16
and 10. These are, respectively, auction theory (auction, bid,…), together with game
(game, player,…) and information theory (belief, signal,…), as well as mechanism
design (mechan, implement,…). These topics are relatively less prevalent in the sample
than the Econometric Theory topics above as we discussed in the main text.
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Fig. 27 Connectedness between topics and the fraction documents/abstracts in each topic (θd distribution).
Extended sample with P&P articles

Finally, there are some outliers at the northwest corner of the diagram.We find here
topics that seems to be mostly empirically oriented (applied), and according to our
representation, nearly as distant fromEconometric than fromEconomic Theory. These
are particularly topics 19 and 49 that we have associated before with Education and
Gender issues, and for which female authors’ presence is relatively more prevalent.

There is finally a negative correlation between the two coordinates, suggesting that
distance values are larger than under the hypothesis of independence between these
two key dimensions. This finding would require a treatment that goes beyond the
scope in this paper. We leave further analysis of the nature of latent topics in leading
economic journals for future research. The interested reader can check the center of
the representations at square distances between [−1,+1] in Fig. 25b.

Appendix E: Analysis with the Abstracts of the Papers Proceeding
Papers (P&P)

In this section, we extend our original sample with the Papers and Proceedings (P&P)
articles published in AER in the especial issue ofMay during the period 2011–2018.15

15 Before 2011, the P&P articles did not have abstract and after 2018 the P&P articles are included in a
different journal.
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Fig. 28 Connectedness between topics and the female authors documents/abstracts in each topic. Extended
sample with P&P articles

These P&P articles are very short (for example, they could be just an extension of a full
article submitted to a different journal), and they are selected from the papers presented
in the annual January meeting of the American Economic Association’s (AEA). Part
of the papers are selected directly for the committee’s members of the AEA meetings
and others are chosen from external proposals of special sessions in AEA meetings.16

Interestingly for our analysis, papers in P&P are linked to the meeting sessions, and
then, they come in groups of three or four papers of a specific topic. Then, the editorial
process of this P&P is very different from regular submissions and the set of topics
is likely to be more diverse, since some of the special sessions in AEA meeting may
be relevant for current policy debate but not necessarily for research. For example, in
the issue of May 2020, among others, we can find two sessions and the corresponding
articles over “The economics of the health epidemics” or “Is United States deficit
policy playing with fire?”.

With these additional P&P papers, our sample contains 6428 abstracts/documents,
that generates 253,312 tokens and 12,936 unique terms. The number of topics that
best fits the these extended sample is 70. The larger number of latent topics can be
related to the larger number of unique words and documents, but also to the selection
process of P&P described above, sessions unrelated to standard research with a small
number of (“seed”) papers very related among themselves.

16 For more information about the about the AEA Papers and Proceedings go to: https://www.aeaweb.org/
journals/pandp/about-pandp.
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Fig. 29 Topic Word Clouds in
the extended sample with P&P
articles

As in the main text, we estimate these 70 latent topics using the STM algorithms.
Figure 26 presents the latent topic ranked by prevalence in the corpus with k = 70.

Figure 27 shows the STM output (the estimated latent topics) and also how the
documents are allocated among them.

As in the main text, in Fig. 27 the size of the circle is proportional to the number
of documents in the topic. The most salient feature of Fig. 27 is that in addition to
the larger number of topics, there are some of them with very small size that could
be related to the “seeds” described above, sessions of the AEA meetings, with very
related papers among themselves but quite different to research papers closer to them.

Figure 28 reinforces the evidence of themainmessage of this paper,male and female
display different pattern when doing research. There is a subset of topics (southeast in
Fig. 28) with a relative high proportion of females, that moreover seems to be closely
connected. On the contrary, there is other set of topic (southwest in Fig. 28) that is
also closely connected and where the presence of females is relatively scarce.
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Now, we want to look closer the content of some particular topics. In this larger
sample, it is easier to see that the latent topics go beyond standard research fields. In
particular, Fig. 29 points out that the latent topics with higher proportions of female
authors are topic 41 and topic 19. In the following figure, we can see the distributions
over terms that each of this two topic induces are represented as words clouds, where
the size of term in the cloud is approximately proportional to its probability in the
latent topic distribution βk . Clearly, topic 41 is related to family economics and topic
19 to gender discrimination.
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