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Abstract
The synthetic control method (SCM) is widely used to evaluate causal effects under
quasi-experimental designs. However, SCMsuffers fromweaknesses that compromise
its accuracy, stability and meaningfulness, due to the nested optimization problem of
covariate relevance and counterfactual weights. We propose a decoupling of both
problems. We evaluate the economic effect of government formation deadlock in
Spain-2016 and find that SCM method overestimates the effect by 0.23 pp. Further-
more, we replicate two studies and compare results from standard and decoupled
SCM. Decoupled SCM offers higher accuracy and stability, while ensuring the eco-
nomic meaningfulness of covariates used in building the counterfactual.

Keywords Synthetic control · SHAP · Regularization · Quasi-experiments ·
Causality · Government

JEL Classification C32 · E65 · H11

1 Introduction

Since the seminal works of Abadie and Gardeazábal (2003) and Abadie et al. (2010),
the synthetic control method (SCM) has been increasingly adopted as a technique to
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evaluate causal effects under quasi-experimental design (see, among others, Montalvo
2011; Billmeier and Nannicini 2013; Cavallo et al. 2013; Kleven et al. 2013; Bohn
et al. 2014; Percoco 2015; Acemoglu et al. 2016; Kreif et al. 2016; Albalate and Bel
2020; Sun et al. 2019). The method provides a practical solution to the evaluation of
case studies in which either only a single unit or very few aggregate units are treated
(countries, regions, cities, etc.) and it is considered one of the most influential recent
contributions to empirical policy evaluation (for instance, Athey and Imbens 2017, p.
9). The SCM creates a hypothetical counterfactual (the synthetic unit) by taking the
weighted average of pre-intervention outcomes from selected donors (control units).
The impact of treatment is quantified by the simple difference between the treated unit
and its synthetic cohort after the treatment (post-treatment period).

As discussed in a series of papers by its pioneering authors (see Abadie and
Gardeazábal 2003; Abadie et al. 2010, 2015; Abadie and L’Hour 2019), the SCM
has two main advantages over other methods, such as regression-based counterfactu-
als or nearest-neighbor matching. First, by being constrained to nonnegative weights
that need to sum one, it does not impose a fixed number of matches and ensures spar-
sity, while avoiding negative weights or weights greater than one that would imply an
unchecked extrapolation outside the support of the data and complicate the interpre-
tation of the estimate. Second, weights are calculated to minimize the discrepancies
between the treated unit and the synthetic control in the outcome and the values of
certain matching variables or covariates. Thus, the SCM is intended to ensure that the
synthetic unit reproduces the control unit not only in terms of the outcome, but also in
terms of the drivers that explain the evolution of the outcome of the treated unit before
treatment.

In spite of the influential contribution made by the SCM, the method suffers from
some weaknesses that, if not properly addressed, may erode the reliability and robust-
ness of its causal estimates and, consequently, of its policy implications. For instance,
Ferman et al. (2020) have highlighted that lack of guidance on how to choose covari-
ates gives researchers specification-searching opportunities that directly influence the
choice of comparison units and therefore the signification of the results. Abadie (2020)
also pointed out that even assuming a proper set of covariates and a counterfactual that
matches the treated unit, interpolation biases may arise if this matching is obtained by
averaging donors that have large differences in covariates but compensate each other
to match the treated unit. As stated by Albalate et al. (2020), the bilevel optimization
design of the SCM and its NP-hard1 nature helps to explain why quasi-experimental
methods for estimating covariate importance under the SCM are unstable and highly
dependent on the donor pool, thus affecting weight estimation.

The contribution of this paper is twofold. First, we develop a proposal of decou-
pling synthetic control methods, to overcome the limitations of the bilevel design of
the SCM. Our approach is simpler and more operational, since it breaks down the NP-
hard problem of the nested optimization into two independent problems of quadratic
optimization with linear constraints. Themethod we propose ensures robustness of the

1 A problem is set to be NP-hard if an algorithm for solving it can be translated into one for solving
any non-deterministic polynomial time problem. That is, NP-problems are those which cannot be solved
(with certainty) in polynomial time. See Arora and Barak (2007) for a detailed review and discussion of
complexity theory.
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estimation of both covariate importance and the weights. By decoupling the estimation
of covariate importance from that of weights, it minimizes interpolation biases and
guarantees economic sense. To estimate covariate importance, we use a new method-
ology for estimating feature importance suggested by Lundberg and Lee (2017; 2019):
SHapley Additive exPlanation (SHAP) Values. This method allows us to analyze the
marginal effects and average contribution of the different features of a model, even
in the case of nonparametric models. Thus, we can obtain sound estimates for each
unit of the relation of the different covariates with the outcome and define a distance
between the donor pool and the treated unit in terms of how covariates influence the
outcome. To estimate weights, the procedure we use minimizes quadratic error in
the pre-treatment outcome, restricting the donor pool to the most similar units to the
treated unit. Roughly speaking, we obtain a synthetic control that is the benchmark
that best reproduces the pre-treatment outcome and whose behavior is explained by
the same factors that explain the treated unit.

Second, to illustrate the main advantages of our proposal, we apply both methods
to an evaluation of the causal economic effects of the 10-month-long government for-
mation impasse in Spain, after the December 2015 elections. In line with the approach
taken by Albalate and Bel (2020) for the 18-month government formation deadlock in
Belgium, we use the SCM to build an appropriate counterfactual to identify and isolate
the gap between Spain’s actual GDP per capita growth rate and the rate at which it
would have grown without a government formation deadlock. Our results indicate that
the growth rate was not affected by government deadlock, ruling out any damage to
the economy attributable to the institutional impasse. Moreover, as a robustness check
of the advantages of the decoupled synthetic control method, we use our methodology
to reproduce two previous studies: the impact of German reunification (analyzed in
Abadie et al. 2015) and the effect of tobacco control programs in California (Abadie
et al. 2010).

The rest of this paper is organized as follows: First, we describe the standard SCM
and we evaluate its stability, consistency and economic meaningfulness. In light of the
limitations identified, in Sect. 3 we propose a new decoupled SHAP-distance synthetic
control method (DSD-SCM) that overcomes the limitations of the standard SCM. In
Sect. 4,we apply bothmethods to the estimationof the causal economic effects of a long
government formation deadlock in Spain between December 2015 and October 2016.
We discuss the findings, focusing on the magnitude of the differences between the two
methods (SCM vs. DSD-SCM), the advantages of the DSD-SCM, and the economic
implications of the impasse. In Sect. 5, we present the replication of two case studies,
as a robustness check of the improvements of ourmethodologywith respect to the orig-
inal synthetic control. Concretely, we replicate the analysis of the impact of German
Reunification and of the effect of the tobacco control program in California. In Sect. 6,
we offer our main conclusions and considerations about the new method proposed.

2 The synthetic control method: an evaluation of its stability,
consistency andmeaningfulness

The synthetic control method builds a counterfactual of a specific treated unit as a
weighted average of a number of control units (the so-called donor pool), to reproduce
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what would have been its performance if it had not been exposed to the treatment and
to identify, by its difference with respect to reality, the causal effect of the policy. In
this section, we first describe the main features of the SCM, and then, we evaluate its
consistency and stability.

2.1 The working of the SCM

The SCM assumes there are J control units and observations during T periods (pre-
treatment). Let XTU be a (K × 1) vector of the outcome growth predictors of the
treated unit (the covariates). Let X = (X1, . . . , X J ) be a (K × J ) matrix which
contains the values of the same variables for the J possible control units. Both XTU

and X could include pre-treatment observations of the dependent variable. Let V be
a diagonal matrix with nonnegative components reflecting the relative importance of
the different growth predictors. Let YTU be a (T × 1) vector whose elements are the
values of the outcome of the treated unit for the T periods, and Y = (Y1, . . . ,YJ ) a
(T × J ) matrix whose elements are the values of the outcome of the control units.
Then, the counterfactual is built as YW ∗, where W ∗ = (w∗

1, . . . , w
∗
J ) is a (J × 1)

vector containing the weights of the control units in the counterfactual. W ∗ is chosen
to minimize the objective function D(W ) = (XTU − XW )′V (XTU − XW ), subject
to wi ≥ 0 and

∑J
i=1 wi = 1.

V is chosen as V = argminV∈V (YTU − YW ∗(V ))′(YTU − YW ∗(V )), where V
is the set of all nonnegative diagonal (K × K ) matrices, whose Euclidean norm is
one. Notice that V is the key element for determining W ∗ and avoiding interpolation
biases, since it defines the relative importance of the adjustment of each covariate in
the counterfactual.

Several contributions have recently been made aimed at extending the scope of use
of the SCM and improving its accuracy and robustness. As regards the former, Powell
(2018) suggested a way to estimate policy effects when the outcomes of the treated
unit lie outside the convex hull of the outcomes of the other units. Since the treated unit
may be part of a synthetic control for a non-treated unit, the post-treatment outcome
differences for these units are informative of the policy effect. In recent studies, the
SCM has been extended to contexts with disaggregated data, where samples contain
large numbers of treated and untreated units, and interest lies in the average effect of
the treatment among the treated (see Abadie and L’Hour 2019). Building synthetic
controls for each of the treated units as opposed to a synthetic control for the average
treated unit has been proposed in order to minimize interpolation biases.

To increase SCM accuracy and robustness, studies have addressed three issues: the
role of covariates, the estimation of weights, and the best way to gauge the uncer-
tainty of the estimated treatment effect. As regards the first of these, Doudchenko
and Imbens (2016), Gobillon and Magnac (2016) and Kaul et al. (2015) showed that
high accuracy can only be achieved if lagged outcomes are included as covariates.
However, by so doing, other covariates may become irrelevant, which could lead to
interpolation bias if the set of pre-treatment outcomes is not long enough (Botosaru
and Bruno (2019)), or if there is an imperfect pre-treatment fit (Arkhangelsky et al.
2018). Ferman et al. (2020) have also highlighted that this lack of guidance on how to
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choose covariates gives researchers specification-searching opportunities that directly
influence the choice of comparison units and the signification of the results. Indeed,
they showed that with few pre-treatment periods (between 10 and 30), a researcher
would have substantial opportunities to select statistically significant specifications
even when the null hypothesis is true. Moreover, Klobner et al. (2015) showed that
the current SCM suffers from high numerical instability in covariate importance and
weights.

Studies of the estimation of weights have proposed different strategies to reduce
interpolation biases. Hastie et al. (2009), andHastie et al. (2015) combined a Lasso and
Ridge regularization to capture a preference for a small number of nonzero weights,
as well as for smaller weights. Likewise, Abadie and L’Hour (2019) introduced a
penalization parameter that trades off pairwise matching discrepancies with respect to
the characteristics of each unit in the synthetic control against matching discrepancies
with respect to the characteristics of the synthetic control unit as a whole.

Finally, to gauge the uncertainty of the estimated treatment effect, the SCM com-
pares the estimated treatment effect with the “effects” estimated from placebo tests in
which the treatment is randomly assigned to a control unit (seeAbadie andGardeazábal
2003). Building multiple synthetic controls by leaving countries out of the optimal
control has also been proposed (Abadie and L’Hour 2019). In this regard, Xu (2017)
proposed a parametric bootstrap procedure to obtain confidence intervals of the esti-
mates of the treatment effect.

Following Albalate et al. (2020), in the next subsection, we show that the bilevel
design of the SCM is at the root cause of the main concerns related to its stability,
consistency and meaningfulness.

2.2 An evaluation of the SCM as a bilevel problem

The SCM is characterized as a bilevel problem. Such problems are optimization prob-
lems (upper level) that contain another optimization problem as a constraint (lower
level).

Definition 1 For the upper-level objective function F : IRn × IRm → IR and lower-
level objective function f : IRn × IRm → IR the bilevel problem is given by

min
xu∈Xu ,xl∈XL

F(xu, xl)

xl ∈ argmin
xl∈XL

{ f (xu, xl) : g j (xu, xl) ≤ 0, j = 1, . . . , J }

Gk(xu, xl) ≤ 0, k = 1, . . . , K

where Gk : XU × XL → IR, k = 1, . . . , K denote the upper-level constraints, and
g j : XU × XL → IR represent the lower-level constraints, respectively. Equality
constraints may also exist that have been avoided for brevity.

Figure 1 illustrates a general bilevel problem. Given a xu vector, x∗
l is the optimal

lower-level vector for the lower-level optimization. But, as seen in the figure, the
solution (x∗

l , xu) is not optimal for the upper-level optimization given x∗
l .
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Fig. 1 A general sketch of a bilevel problem

The SCM proposed by Abadie et Gardeazabal is a bilevel optimization problem of
the form:

min
V ,W

(YTU − WY )′(YTU − WY )

W ∈ argminW {(XTU − WX)′V (XTU − WX) : 0

≤ w j , j = 1, . . . , J ,

J∑

j=1

w j = 1}

vk ≥ 0, k = 1, . . . , K ;
K∑

k=1

vk = 1

Bilevel programming is known to be strongly NP-hard (Hansen et al. 1992), and it has
been proven that merely evaluating a solution for optimality is also a NP-hard task
(Vicente et al. 1994). Moreover, the hierarchical structure may introduce difficulties
such as non-convexity and disconnectedness (that is, that the solution set can be sepa-
rated into two disjoint sets) even for simpler instances of bilevel optimization, which
may cause solutions to be highly unstable to small perturbations and the algorithm to
converge to different local optima.

In the particular case of theSCMmethod, theflawsof bilevel optimization imply that
the solution V can be completely arbitrary and highly unstable to small perturbations.
As a result, weights are also unstable and V does not offer reliable insights in terms of
economic meaningfulness since it can be driven by interpolation biases. In Appendix
I (supplementary materials), we illustrate the aforementioned flaws with two simple
examples.

In Sect. 6, we present an empirical assessment of the numerical instability for the
case study of Spain’s government deadlock. As seen there, current implementation
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of the SCM method can lead to very unstable results just by removing or adding to
the donor pool units that are given no weights in the synthetic control. Although this
is clearly counterintuitive and should not be possible, it is due to the fact that the
implementation of the optimization problem is done using an interior point method
(Abadie et al. 2011). That is, weights can be given values close to zero, but not zero.
Thus, although the final result is presented as 0, the real value for the algorithm could
be of the order of 10−7 or 10−8 (depending on the margin parameter given to the
function). Therefore, removing units with zero weight in the solution is equivalent to
introduce a very small perturbation, which, as we have showed, can be devastating in
terms of optimal parameters and goodness of fit.

3 The decoupled SHAP-distance-based synthetic control method

The aim of this section is to propose and present a modification of the SCM that can
guarantee economicmeaningfulness and the stability of feature importance, at the same
time as it increases the robustness of the estimation of weights and treatment effect.
Our proposal is coined as the decoupled SHAP-distance synthetic control method
(DSD-SCM) and is designed as an operational alternative to the use of the SCM that
involves less complexity than the standard approach due to the NP-hard nature of
bilevel optimization and guarantees higher stability and economic sense.

In the previous section,we showed that theminimization problemof SCM is defined
over covariates and that feature importance estimation is nested to weights, potentially
leading to considerable instability and a lack of economic meaningfulness. Therefore,
we propose decoupling feature importance from weight estimation by defining the
optimization problem of the SCM as a minimization of the error in the pre-treatment
outcome adjustment, conditional to using units that are as similar as possible to the
treatment unit. As highlighted by Abadie (2020), donors’ similarity to the treated unit
is one of the most critical requirements for the synthetic method to be an appropriate
tool for policy evaluation. Hence, we also present a concrete methodology for feature
estimation and unit similarity that guarantees economic sense and stability, the regu-
larized SHAP-based distance. However, other distances or previous expert knowledge
on the feature importance would also be worth considering.

3.1 Optimization function

Let us note by d(XTU , Xi ) a distance between the treated unit and the unit i , dependent
on their respective vector of covariates XTU , Xi . The vector of weights W ∗ in our
modified method is chosen as

W ∗ = argmin
W

T∑

t=1

(Y t
TU − WỸ t )2 (1)

subject to W > 0 and
∑l

i=1 wi = 1. Ỹ t is a vector that contains the outcome in
time t of the top L most similar units to the treated unit. This optimization problem

123



556 SERIEs (2021) 12:549–584

is a minimization of a quadratic and positive-definite function with linear constraints.
The number L of units is chosen to balance the potential trade-off between a pure
minimization of the adjustment error and the similarity to the treated unit. We require
all the units entering the synthetic control to be similar to the treated unit so as to
minimize interpolation biases (as suggested in Abadie et al. (2015), Abadie (2020)).
Roughly speaking, this is equivalent to saying that, for example, what most resembles
a medium-size house is not the average of a small and a big house, but the average of
two medium-size houses.

As we will see next, in our procedure the distance function is not linked to the
weights,which in the SCMcontributed to increasing instability and reducing economic
meaningfulness, but determined independently through an econometric model that
involves another quadratic minimization.

Notice that the choice of L is not uniquely determined and depends on several
conditionings. For example, the stronger the relation between the covariates and output
evolution, the more sense it makes to choose a lower value of L . In the next section,
we present a method for assessing the importance of L and for choosing an adequate
value.

3.2 SHAP-based distance

Intuitively, we would like to consider that a unit is similar to the treated unit if their
outcomes evolved in a similar way before the treatment and for similar reasons. For
example, a 99% correlation in the evolution of GDP per capita between two countries
would tell us nothing about their similarity if one has an economy based on natural
resources that grew because of a hike in petrol prices, whereas the other’s growth was
attributable to manufacturing exports. In short, to define a distance between units it is
critical we understand the relationship between their outcome and their covariates. To
do so, we propose the following methodology. First, we build a model of the evolution
of the outcome using the covariates as explanatory variables. Second, we use one of
the newest and most popular methods of model interpretation to estimate the average
marginal contribution of each feature to each prediction of the model: the SHapley
Additive exPlanation or SHAP values. Finally, by estimating the SHAP values, we
are able to define a distance based on feature importance and average contributions to
outcome evolution.

3.2.1 Outcome evolution model

Let us note the growth rate of unit i by gti = Y t
i −Y t−1

i

Y t−1
i

, where i ∈ {1, . . . , J , TU }.
Recall that YTU is the (T × 1) vector containing the values of the outcome for the
treated unit, and Y = (Y1, . . .YJ ) the (T × J ) matrix with values of the outcome for
the control units.
Let us consider G(Xs

i |s ∈ {1, . . . , t}) a model for gt , that is G(Xs
i |t ∈ {1, . . . , T }) =

gti + εt , where εt is the error term at time t . Notice that G is a model that depends
on covariates, and for which no concrete functional form is required. It could be a
linear model, but also a nonlinear and even a nonparametric model, such as a gradient
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Fig. 2 SHAP values explain the output of a function f as a sum of the effects φi of each feature being
introduced into a conditional expectation

boosting tree.2 It may also include past information from covariates. It is important
to highlight that the robustness, stability and consistency of the variable importance
are inherited by the properties of the modeling technique G. For instance, if we use
OLS, under the hypothesis of homoscedasticity, no autocorrelation, and normality of
the error terms, estimates are consistent, efficient and non-biased. As we will see in
the empirical illustrations in Sects. 4 and 5, the decoupling ensures that the importance
attributed to each variable is stable and practically does not change even if we add
or remove countries from the donor pool, while it is highly unstable for the original
SCM.

3.2.2 Shapley additive explanation values

SHAP values have been proposed as a unified framework for assigning feature impor-
tance to parametric and nonparametric models (Lundberg and Lee 2017 and Lundberg
and Lee 2019). Roughly speaking, given an instance x , the SHAP value of feature i
on x corresponds to the marginal impact of feature i on the output of the model, with
respect to other instances that share some of the features with x but not i .
Formally, let us consider the subset S of the set of input variables V and Gx (S) =
E[G(x)|xS] the expected value of the model G conditioned on the subset of input
features S. Then, SHAP values are the combination of these conditional expectations:

φi (x) =
∑

S⊂V \{i}

|S|!(|V | − |S| − 1)!
|V |! [Gx (S ∪ {i}) − Gx (S)]

where the combinations are needed because for nonlinear functions the order in which
features are introduced matters. For a linear model G(x) = ∑k

i=1 αi xi , the SHAP
value is straightforward: φ j (x) = α j (x̂ j − E(x j )). Notice that model estimation,
which is required for the SHAP value, is based on a quadratic minimization, which
consists of the second quadratic problem of the DSD-SCM.
Figure 2 shows how the SHAP values explain the output of a function f as a sum of
the effects ψi of each feature being introduced into a conditional expectation.

2 Gradient boosting trees are models that combine into a single prediction a sequence of models, called
base learners, in which each subsequent base learner focuses on the residual error of the previous base
learners. Often, these base learners are decision trees or stumps.
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3.2.3 Feature importance and SHAP-based distance

Let us note by φm(Xt
1) the SHAP value of the covariate m for the treated unit at time

t . Then, we can estimate the relative importance of the covariate m in the outcome
evolution of the treated unit, RIm , as:

RIm =
∑T

t=1 |φm(Xt
1)|

∑K
k=1

∑T
t=1 |φk(Xt

1)|
where J is the total number of covariates and T the total number of observations.

Therefore, we can define V as the diagonal matrix such that Vmm = RIm . This
matrix has economic sense, because it is exactly estimating the importance of each
covariate on the outcome evolution of the treated unit before the treatment. It is also
stable in the sense that it relies on the stability of parameter estimation or model
inclusion of the different variables. Thus, features whose relation with outcome is less
robust will tend to not be considered (for example, discarded in a linear model if their
p value is lower than 0.1 or 0.05) or be assigned lower relevance.

Having estimated V , let define ACi
m the average contribution of feature m in out-

come evolution for unit i :

ACi
m =

∑T
t=1 φm(Xt

i )

T

Then, we can define the SHAP distance between non-treated unit Ui and the treated
unit TU as:

dS(Ui , TU ) = (ACi − ACTU )′V (ACi − ACTU ) (2)

where ACi = (ACi
1, . . . , AC

i
J ) and ACTU = (ACTU

1 , . . . , ACTU
J ) are the vectors

containing the average contributions of the covariates for unit Ui and the treated unit
TU .

3.2.4 Choice of the size of the restricted pool

Given L , let us note by W (L) the solution of (1) and by R2(L) as the R − squared3

of the synthetic control Y (L) = W (L)Ỹ . Let us note by l ≤ L the number of units
that have a positive weight in W (L). Let us define the covariate distance between the

treated unit and Y (L) as d(L) =
∑l(L)

i=1 d(XTU ,Xi )

l(L)
. Since units are ordered by similarity,

given L1 > L2, we have that d(L1) ≥ d(L2) and R2(L1) ≥ R2(L2). The higher
the number of units, the larger the distance and the higher the goodness of fit. Hence,
d(J ) ≥ d(L) and R2(J ) ≥ R2(L) for L ∈ 1, . . . , J . Notice that, in particular, W (J )

3 R − squared is defined as in a linear model: R2(W ) = 1− (YTU−WY )′(YTU−WY )

(YTU−ȲTU )′(YTU−ȲTU )
, where ȲTU is the

mean value of the outcome of the treated unit in the pre-treatment period. Notice that R − squared is not
necessarily defined between 0 and 1, since there is no constant and W is nested to V to solve the covariate
adjustment. Hence, R − squared could even be negative, since the adjustment of YTU by WY could be
worse than using ȲTU .
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is equivalent to the constrained regression synthetic method suggested in Doudchenko
and Imbens (2016)
Let us define also the error loss of L as the ratio

EL(L) = 1 − R2(L)

1 − R2(J )

and the similarity gain as

SG(L) = d(J ) − d(L)

d(J )

The error loss is the ratio between the error of the counterfactual Y (L) and the best
potential counterfactual in terms of goodness of fit, Y (J ). The similarity gain captures
the relative increase in similarity between Y (L) and the treated unit, with respect the
similarity between Y (J ) and the treated. The lower the EL the better, since this means
the goodness of fit is near to the maximum possible. Likewise, the higher the SG the
better, since this means that the countries in the synthetic control are closer to the
treated unit. As we stated in Sect. 3.2.1, L sets a threshold in terms of goodness of
fit with respect to similarity loss (or, conversely, in terms of error loss with respect
similarity gain) for a new unit to be considered in the counterfactual. Therefore, we
propose finding the optimal value of L as the value L , which minimizes the ELSG
(error loss–similarity gain) ratio. That is:

L∗ = argmin
L≥Lν

EL(L)

SG(L)

where Lν is the minimum L such that R2(Lν) > νR2(J ). That is, values of L that
ensure at less a certain level of goodness of fit, to prevent degenerated cases where
the distance is almost no related with outcome (for L = J , the ELSG ratio is defined
as ∞). We recommend using ν = 0.9 or 0.95. By doing so, it is guaranteed that the
goodness of fit of the DSD-SCM will be equal to or higher than that of the SCM,
unless the SCM uses all pre-treatment outcomes as the only covariates, and control
units that do not resemble the treated unit in the underlying drivers of the outcome.
As highlighted in Abadie (2020), the asymptotic bias of the SC estimator should be
small in situations where one would expect to have a close-to-perfect fit for a large
pre-treatment period. Hence, ensuring that pre-treatment fit is (in general) at least as
in the original SC ensures also that any bias in the estimation of the treatment effect
is expected to be lower.

Notice that, in comparison with other extensions that limit the donor pool for
regularization purposes, such as the best subset selection procedure described inDoud-
chenko and Imbens (2016), our restriction is primarily linked to similarity. Therefore,
in our method, the role of the distance is to offer practical guidance for the applied
researcher on the reliability of the estimates, specially in cases where the pre-treatment
period is not that large, and in which could be biases in the estimation. For example, if
the goodness of fit of the outcome model is low, similarity between units is expected
to be less reliable, the number L is expected to be closer to J , and therefore, the
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researcher may include additional covariates to minimize the risk of interpolation
biases, or be more cautious about the conclusions derived from the estimation of
the treatment effect. In particular, this reduces the risk of using specification search,
because it makes it clear whether the similarity function between units is accurate or
not.

Althoughwehave presented here the SHAPdistance, any other distance that ensures
economic and statistical sense might be used. The main contribution of our proposal
is the decoupling of the minimization involved in the original SCM, which helps to
prevent instability and biases in the estimates.

4 Empirical illustration: the economic effects of the government
formation deadlock in Spain, 2016

Although hardly new, lengthy government formation processes in parliamentary
regimes after a general election are becoming more usual in Europe. In the last two
decades, there have been seven cases of government formation deadlocks lasting more
than threemonths: sixmonths inBelgiumafter the June 2007 election, eighteenmonths
after the June 2010 election and sixteen months after the May 2019 election, both of
them again in Belgium, ten months in Spain after the December 2015 election and ten
months after the April 2019 election, seven months in the Netherlands after the March
2017 election, and six months in Germany after the September 2017 election.

Contrary to widespread claims that government deadlocks and the associated polit-
ical instability harm a country’s growth by disrupting economic policies that might
otherwise promote better performance (Alesina et al. 1996; Angelopoulos and Econo-
mides 2008; Aisen and Veiga 2013), studies of recent impasses provide evidence that
this might not always be the case. Using the SCM to build an appropriate counterfac-
tual to reproduce Belgium’s economic growth if it had had a full-powered government,
Albalate and Bel (2020) reported a nonnegative effect on economic growth during the
18 months of government deadlock in that country following the June 2010 election.
The study suggests that certain characteristics peculiar to Belgium could be behind
this (perhaps) counterintuitive result. First, the country’s highly decentralized multi-
level governance, which assigns a considerable number of functions and powers to
the communities and regions, at the same time as the European Union’s institutions
have absorbed some of the core functions performed by conventional Member States
(Bouckaert and Brans 2012; Hooghe 2012). Second, the existence of robust, efficient
institutions, outside government, that played a positive role in protecting the econ-
omy from the difficulties of the impasse. Third, the delay in fiscal consolidation that
could have caused higher short-term economic growth thanmight otherwise have been
expected.

4.1 Spain’s political deadlock

The general election held in Spain on December 20, 2015, resulted in a fragmented
political landscape following the emergence of two new political parties: Podemos
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Fig. 3 Real Gross Domestic Product per capita growth rate (2008–2016)

(left-wing) and Ciudadanos (Cs) (right-wing). In spite of winning the election, the
Partido Popular (PP) (right-wing), who ruled Spain with an absolute majority between
2011 and 2015, lost 63 seats and got 123 seats, far from the 176 needed for the
majority. Due to the numerous corruption cases in which leading members of the PP
were then embroiled, the other main right-wing party, Cs, refused to facilitate a right-
wing government and offered their votes to the Partido Socialista Obrero Española
(PSOE). Together the two parties controlled 130 of the chamber’s 350 seats and needed
either the support of Podemos (69 seats) or the abstention of the PP. Neither of the
two requirements was met, and fresh elections were held in June 2016. The 2016
election results reinforced the position of the PP, which won 14 additional seats,
totaling 137. However, it was still not enough to form a government. After two months
of negotiations, Cs (along with the Coalición Canaria, a right-wing regional party in
the Canary Islands) announced their support for Mariano Rajoy, PP’s candidate for the
Presidency. With 170 votes and the controversial abstention of the PSOE, Rajoy was
re-elected President of Spain on October 29, 2016, ending a ten-month-long deadlock.

Despite this period of impasse and the limited powers of a caretaker government,
Spain’s economic performance did not appear to suffer greatly. Indeed, even the
Spanish Central Bank (Banco de España) published an article in 2017 estimating
the negative effect of the political uncertainty of the previous year at just 0.1% of
GDP, although this result was not statistically significant (see Gil, Pérez and Urtasun,
2017). If we observe the GDP growth rate (Fig. 3), Spain’s performance during 2016
was slightly higher than the EU average, and better than the euro area average, as it
had been in 2015. However, as Albalate and Bel (2020) discuss in their evaluation
of the 18-month government deadlock in Belgium, this comparison tells us only how
Spain’s performance compared to that of the other countries of Europe, but it offers
no causal insights as to how it might have performed had it had a full-powered gov-
ernment. Thus, we need to build a counterfactual to reproduce how Spain would have
performed in the absence of its government formation deadlock.
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Table 1 Covariate means and
importance without including
lagged outcome

Predictor Spain Synthetic Pool Importance

Openness 57.03 60.13 98.00 54.1%

Low education 50.12 48.12 28.04 26.0%

Trade surplus −1.37 −3.74 −0.51 12.8%

Unemployment 15.90 10.78 9.21 4.2%

High education 27.28 18.46 21.44 1.9%

Investment 24.02 20.81 22.31 1.1%

Debt 61.41 98.88 56.68 0.0%

Average 2001–2015

4.2 Results with the standard synthetic control method

To evaluate the robustness and meaningfulness of the SCM and the advantages of
implementing our proposedDSD-SCMalternative,we compare the estimates provided
by the two methods of the causal effects of this political deadlock. First, we apply the
standard SCM, with and without outcome lags in the covariates, to show that in both
cases covariate importance is highly unstable, highly dependent on the donor pool and
lacking in economic meaningfulness. Second, we implement our proposed SHAP-
distance based synthetic control method to show how this approach addresses and
avoids the main weaknesses of SCM, providing more stable, accurate and meaningful
estimates.

The donor pool used in the comparison includes a sample of the EU-28 countries.
Malta and Luxembourg had to be excluded given the amount of missing data for
some of the key predictors used in the analysis. Belgium was excluded since it was
also affected by a lengthy government deadlock between 2010 and 2011, and Ireland
because of the marked change in GDP pc in 2014 (26.3% growth rate) due to the
reallocation of the intellectual property of large multinational firms.

Tables 1 and 2 report the pre-treatment values of several variables typically associ-
ated with a country’s growth potential and used as covariates, as well as their relative
importance, for the casewithout andwith lagged outcomes. Table 3 presents theweight
matrix for the donor pool, where the synthetic weight is the country weight assigned
to each country. When the lagged outcomes are not included, the synthetic Spain is
made up of the four main contributors: Portugal (33.5%), France (30.7%), Greece
(23.3%), and Italy (12.0%). Finland also plays a role, but only a minor one (0.4%).
When using this counterfactual to predict Spain’s GDP per capita from 2001 to 2015,
R2 is 92.60% and the mean absolute percentage error (MAPE) is 0.64%. When initial
and final outcomes are included, the results are quite similar. The main contributors
remain the same, although their relative importance changes. The minor role played
by Finland disappears, and instead, Denmark (3.7%) and Sweden (2.6%) enter the
synthetic control. The goodness of fit improves slightly (R2 = 93.44%) and the MAPE
remains unchanged at 0.64.

Figure 4 shows the GDP per capita evolution of the real and synthetic Spain built
with and without lagged outcomes. In both cases, the growth rate during the 2016
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Table 2 Covariate means and importance including initial and final outcome

Predictor Spain Synthetic Pool Importance (%)

GDP per capita2001 22190.00 22120.28 19306.36 57.2

GDP per capita2015 23080.00 22523.79 22645.00 30.1

Low education 50.12 48.83 28.04 7.5

Openness 57.03 62.88 98.00 3.7

Unemployment 15.90 10.81 9.21 0.8

Trade surplus −1.37 −3.79 −0.51 0.4

Investment 24.02 20.75 22.31 0.1

Debt 61.41 97.39 56.68 0.1

High education 27.28 18.41 21.44 0.0

Average 2001–2015

Fig. 4 GDP per capita evolution: real versus synthetic Spain

deadlock was around 1.8 percentage points (p.p.) higher than expected, while in 2017
and 2018 the gap was reduced to 0.4 and 0.1 p.p., respectively.

To evaluate the robustness of the SCM, two placebo tests have been widely used:
in-time and in-space. In the former, the SCM is applied considering that the treatment
occurred in an earlier timeframe (i.e., the treatment is reassigned to occur during
the pre-treatment period) and so the control is built using observations up to this new
moment in time. The test examines the uncertainty associatedwithmaking a prediction
after the last observation considered for the estimation. In the in-space test, the SCM
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is applied to the control units as if they too had been treated at the same moment of
time as the treated unit. Hence, it tests the uncertainty associated with the volatility of
outcomes of the control units during the treatment.

However, neither of these two tests evaluates the stability of covariate importance
and weights, and their economic foundations, which are the main ideas on which
the SCM is based. Even if the methodology passes the in-time and in-space placebo
tests, it would be difficult to rely on its results if, for example, V had no relation with
economic theory. Moreover, if a placebo test fails to confirm robustness, it is unable
to tell us whether it is because the treatment had no significant effect or because
the methodology was not properly applied and its accuracy could be improved (for
example, by adding new covariates).

Here, therefore, we analyze the stability and economic meaningfulness of covariate
importance and weights and show that SCM does not guarantee any of them, even in
those cases when the methodology passes the placebo tests.

As Fig. 4 shows, in this particular case, including lagged outcomes has almost
no impact in terms of the goodness of fit and the estimation of the treatment effect.
Nonetheless, as recognized elsewhere, including Doudchenko and Imbens (2016),
Gobillon and Magnac (2016) and Kaul et al. (2015), variable importance is greatly
affected, and the covariates become almost irrelevant (Tables 1 and 2). This might
not, however, be important in terms of the economic foundations and robustness of
V . If the covariates reflect the economy drivers, they could also be influencing lagged
outcomes in the sense that countries with more similar values for these covariates
would also have similar outcomes. This means that the importance of the covariates
could be hidden behind the lagged outcomes; the only problem being that the inclusion
of lagged outcomes makes it almost impossible to gain any economic insights from
V and to judge whether the estimations are the result of an interpolation bias.

However, here, an analysis of V shows that its estimation is neither consistent with
the economic foundations nor is it stable. First, if we turn our attention to the SCM
without lagged outcomes, the most important variables are openness (54.1%) and
low education (26.0%), while unemployment, investment and debt have almost no
influence (4.2, 1.1 and 0%, respectively). The Spanish economy’s cumulative growth
per capita in real terms from 2000 to 2007was 2.8 p.p. higher than that of the euro area,
driven mainly by exceptionally high levels of investment due to the housing bubble
(Akin et al. 2014). Total investment in Spain averaged 27.7% of GDP from 2000 to
2007, 5.2 p.p. higher than in the euro area. Once the crisis began, investment dropped
significantly, reaching a minimum of 17.4% in 2013, almost 13 p.p. lower than its
maximum in 2006. In the euro area, the fall in investment was much lower: from a
maximum of 23.4% in 2007 to a minimum of 19.7% in 2013. Unemployment more
than tripled, from 8.2% in 2007 to a maximum of 27% in the first quarter of 2013, the
highest level in the euro area. As a result, Spain’s public debt almost tripled, growing
from 35.8% of GDP in 2007 to 99.3% in 2015. In the euro area, however, the increase
was much lower, from 65.9 to 90.8%.

Thus, it has no solid economic foundations to devise a similarity measure with
respect to Spain that assigns no importance to debt, unemployment and investment,
while at the same time assigning almost 70% of the importance to the degree of
openness and the percentage of the population with a low education. Openness, for
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Table 4 Variable importance stability

No lagged outcomes With lagged outcomes
Predictor Mean (%) St. Dev (%) Mean (%) St.Dev (%)

Debt 2.40 4.14 0.28 0.53

Unemployment 5.57 2.83 1.86 1.85

Openness 41.3 22.54 11.40 12.16

Investment 3.38 2.85 0.73 1.18

Trade 14.36 15.52 3.51 4.91

Low education 29.12 18.06 12.30 13.57

High education 3.85 3.13 0.87 2.02

GDP per capita 2001 40.99 22.11

GDP per capita 2015 28.03 10.50

Results over 100 simulations removing 3 countries with no weight in the synthetic Spain built with all the
donor pool

example, remained largely stable before and during the crisis. In the period 2000–2007,
imports and exports accounted for 56.2%ofGDP,while in 2008–2015 they represented
58.2%. In conclusion, openness and low education levels are not assigned a high level
of importance because they are themain drivers of Spain’s economy, but rather because
a number of countries whose real GDP per capita evolution correlated highly with
Spain’s presented similar levels of openness and low education (see Appendix II in
supplementary materials).

Secondly, because of the interpolation bias, covariate importance, weights and
goodness of fit are highly unstable and dependent on the donor pool (as in Klobner
et al. (2015)). Table 4 shows the average importance and standard deviation for 100
simulations after removing three countries from the donor pool that were assigned
no weights in the synthetic Spain. The standard deviation is higher than 50% of the
average importance estimation for almost all covariates, both with and without lagged
outcomes. As a result, the distance between the synthetic and real Spain is modified
and, so, the weights are adjusted accordingly (Table 5). Yet, weight instability may
not necessarily compromise the SCM. Indeed, it might just be the result of the fact
that the donors are so similar to each other that a small perturbation in V modifies the
selection of one of them into the control. However, as Table 6 shows, the goodness of
fit is significantly affected for the SCMwithout lagged outcomes and slightly affected
for SCM with lagged outcomes.

Given the high instability of the goodness of fit without lagged outcomes, the SCM
does not pass the in-time placebo test using 2012 as the treatment (Fig. 5). However,
the same does not hold true for the SCM with lagged outcomes. Yet, in both cases,
the placebo test fails to provide any information as to why the methodology works
properly or not, or whether it can be improved.

In conclusion, we have shown, first, that covariate importancemay not be consistent
with economic theory and provide no meaningful insights; second, that this lack of
meaning is due to interpolation biases that make estimations highly unstable and
dependent on irrelevant countries (i.e., countries with no weight) in the donor pool;
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Table 5 Unit weights stability

No lagged outcomes With lagged outcomes
Country Mean St. Dev Mean St.Dev

Austria 0 0 0 0

Bulgaria 0 0 0 0

Croatia 1.17 4.04 1.44 3.27

Cyprus 0 0 0 0

Czechia 0 0 0 0

Denmark 0 0 1.11 3.47

Estonia 0.47 1.95 0 0

Finland 12.14 14.15 0.35 1.36

France 22.49 16.97 24.16 14.27

Germany 0 0.01 0.09 0.69

Greece 23.38 5.38 22.65 5.68

Hungary 0 0 0 0

Italy 3.90 7.27 11.89 11.84

Latvia 0 0.02 0 0

Lithuania 0 0 0 0

Netherlands 0.05 0.41 0 0

Poland 0.05 0.41 0.03 0.24

Portugal 36.33 10.04 34.07 4.64

Slovakia 0.02 0.13 0.47 2.11

Slovenia 0 0 0 0

Sweden 0 0.02 3.13 4.86

United Kingdom 0 0 0.60 3.45

Results over 100 simulations removing 3 countries with no weight in the synthetic Spain built with all the
donor pool

Table 6 Goodness-of-fit stability

No lagged outcomes With lagged outcomes
Measure Mean (%) St. Dev (%) Mean (%) St.Dev (%)

R2 81.42 14.03 91.17 2.84

MAPE 1.16 0.43 0.77 0.17

Results over 100 simulations removing 3 countries with no weight in the synthetic Spain built with all the
donor pool

and, third, that although including lagged outcomes may make the results more robust
in terms of goodness of fit, it does not solve the problem of meaning and stability of
covariate importance. Moreover, it also tends to make the other covariates irrelevant,
thus compromising the main idea behind the SCM. Finally, we have also shown that
standard robustness checks, such as the in-time placebo test, may be unable to identify
these flaws and to suggest any strategy to improve the results.
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Fig. 5 Placebo test for Spain

Table 7 Real GDP per capita
growth model (OLS)

Variable name Estimate Std. Error Pr(> |t |)
Constant 3.722e-02 (4.128e-03) < 2e-16

invest_gr 3.569e-03 (1.052e-03) 0.00078

openness_gr 1.692e-03 (1.704e-04) < 2e-16

gdp_pc_lag1 –9.058e-07 (9.574e-08) < 2e-16

debt_gr –1.705e-03 (2.070e-04) 4.24e-15

unemp_gr –6.046e-03 (8.767e-04) 2.73e-11

educlow –1.945e-04 (6.552e-05) 0.00321

educhigh 2.786e-04 (1.331e-04) 0.03709

Multiple R-squared: 0.7333, Adjusted R-squared: 0.7277 . Error
weighted by population . F statistic: 129.2 on 7 and 329 DF, p value:
< 2.2e-16

4.3 Results with the decoupled SHAP-distance synthetic control

In this subsection, we build the synthetic Spain adhering to the strategy described
in Section III, that is we build a model of GDP per capita growth, define a distance
using SHAP values, select a regularization parameter and estimate optimal weights.
We consider a linear model of the GDP per capita growth rate from 2001 to 2015,
using as our explanatory variables the covariates used in the previous subsection and
all the countries in the donor pool including Spain. The results are presented in Table
7 (variables with gr indicate growth rates of the covariate). Note that while the covari-
ates are able to explain 73.33% of the variation in economic growth, around 25% of
the variation remains unexplained. Thus, a synthetic control that relies solely on the
covariates would not be sufficiently accurate or robust.
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Table 8 Covariate importance

Predictor Importance Spain Importance pool

Unemployment 30.03 17.43

Debt 27.78 15.74

Openness 11.94 21.48

Investment 11.48 11.09

Low education 11.13 4.50

High education 4.19 4.39

Conditional convergence (GDP_lag1) 3.44 25.37

SHAP feature importance during 2001–2015

Table 9 Donor pool ordered by
distance (normalized to 100)

Country Distance Country Distance

Cyprus 3.22 Hungary 26.22

Greece 8.53 Germany 31.71

Italy 9.78 Sweden 39.03

France 11.98 Latvia 40.05

Portugal 14.52 Czechia 40.15

United Kingdom 16.76 Denmark 51.24

Slovenia 18.61 Estonia 52.98

Croatia 22.15 Lithuania 54.20

Austria 22.76 Poland 54.82

Finland 24.18 Slovakia 64.58

Netherlands 25.25 Bulgaria 100.00

Table 8 shows the feature importance of the different covariates of economic growth
in Spain and the donor pool. According to the DSD-SCM results, Spain’s economic
evolution has been characterized primarily by high levels of unemployment and debt
growth. Conditional convergence has had a much lower impact on Spain than it has
had on the donor pool, mainly because Spain’s GDP was already very close to the
average of the selected countries (a 6% difference, on average, during the period).
Using covariate importance, we define the distance between countries in the donor
pool and Spain as in (2), but normalizing to be between 0 and 1. The corresponding
results are presented in Table 9.

Based on the ELSG ratio (as described in Section II.B), the optimal L is 6. Restrict-
ing the donor pool to the six most similar countries reduces the number of units in the
counterfactual from six (case with no restriction) to four, almost halves the distance
with respect to the treated unit (from 0.21 to 0.11) and implies a loss of only 0.45 p.p. in
R2 with respect to the counterfactual that uses all the units in the donor pool (96.84%
vs 96.39%). It is worth pointing out that even in the case of no regularization, the
average distance of countries in the synthetic control is much lower than the average
distance of those in the donor pool (0.21 vs. 0.33). This means that the more similar
countries are to Spain, the more likely they are to be selected.
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Fig. 6 GDP per capita evolution: real vs synthetic Spain

When using the DSD-SCM with L∗ = 6, the counterfactual consists of Portugal
(34.5%), UK (27.5%), Italy (19.4%), and Greece (18.2%). The R2 is 96.39% and
the MAPE 0.42%. Notice that this counterfactual uses fewer countries than the stan-
dard method and obtains between 3 and 4 additional percentage points in R2. Hence,
the DSD-SCM ensures greater economic meaningfulness of feature importance and
achieves better results while reducing the number of parameters.

Figure 6 shows the different counterfactuals we have built. In all cases, growth
in 2016 was higher than expected, lying in a range between 1.58 p.p. (DSD-SCM)
and 1.81 p.p. (SCM without lagged outcomes). Thus, SCM overestimates the effect
of the Spanish deadlock by a 0.23 p.p. However, our primary goal was to provide
a more robust method. As Table 10 shows, the covariate importance estimates are
highly stable, with standard deviations of 2 p.p. As a result, in all simulations, the
same countries are selected and assigned the same weights.

Finally, Fig. 7 shows the results of the in-time placebo test. In the case of the in-
space placebo test, we excluded countries whose MAPE for 2001–2015 was three
times higher than Spain’s. Thus, countries with an MAPE greater than 1.2% were
excluded when we compared the base model to the best placebos (with eight countries
surviving). The comparison showed a difference in the average treatment effect in 2016
for placebo countries of - 0.006 p.p. in the growth rate and of 0.92 p.p. in the standard
deviation. The treatment effect for Spain is estimated at 1.58, which is higher than 0
at a 7.8% confidence level, assuming a normal distribution of the placebo estimates.
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Table 10 Feature importance stability

Predictor Mean (%) St. Dev (%)

Unemployment 29.81 (2.42)

Debt 28.29 (1.43)

Openness 11.59 (1.49)

Investment 11.30 (1.86)

Low education 10.90 (1.38)

High education 4.61 (0.47)

Conditional convergence (GDP_lag1) 3.49 (2.11)

Results over 100 simulations removing 3 countries with no weight in the synthetic Spain built with all the
donor pool

Fig. 7 Placebo test in time for SHAP distance synthetic Spain

5 Robustness check: the German reunification and the effect of
tobacco control programs in California

5.1 German Reunification

Abadie et al. (2015) evaluate the impact of the German Reunification in 1991 on
GDP per capita, considering 1971 to 1980 as the pre-treatment period and 16 OECD
countries as the donor pool. They considered five covariates: trade openness, inflation
rate, industry share, schooling levels, and invest ment rate. We replicate the analysis
using the DSD-SCM.

As investment rate and schooling levels are given on 5-year basis, we build the
model of GDP growth in 5-year basis, starting from 1970. As can be seen in Table 11,
only inflation and initial GDP (conditional convergence) are relevant. Thus, including
other covariates would not ensure capturing similarity in economic growth dynamics,
since those drivers are not statistically relevant. The relative importance for West
Germany for inflation is 11.4% and for conditional convergence 88.6%. This explains
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Table 11 Real GDP per capita
growth model (OLS)

Variable name Estimate Std. Error Pr(> |t |)
Constant 1.120e-01 2.645e-02 7.88e-05

Inflation −1.522e-03 4.613e-04 0.00162

Trade −2.356e-05 6.440e-05 0.71574

Schooling −1.976e-04 1.407e-04 0.16532

InitialGDP −4.202e-06 5.899e-07 1.43e-09

Industry 3.118e-04 4.526e-04 0.49348

investment 4.739e-02 3.687e-02 0.20351

Multiple R-squared: 0.6834, Adjusted R squared: 0.6523 F statistic:
21.95 on 6 and 61 DF, p value: 1.432e-13

why GDP has to be used as a covariate in Abadie et al. (2015): only by including
conditional convergence a reasonable fit in terms of outcome can be achieved.

The best ELSG ratio is achieved with L = 7. The counterfactual consists of 40.4%
Austria, 33.3% USA, 19.8% Netherlands, and 6.5% France. The MAPE is 0.64%.
In comparison, the counterfactual in the original paper consists of 6 countries (42%
Austria, 22%USA, 16% Japan, 11% Switzerland, and 9%Netherlands) and its MAPE
is 0.85%. Notice that the counterfactual with the decoupled method has less units
and higher goodness of fit. Both counterfactuals share 3 units, which account for
93.5% of the importance in the decoupled and 73% in the original synthetic method.
Remarkably, France, which is the 6thmost similar country toWest Germany according
to the similarity distance in Abadie et al. (2015), does not belong to the original
counterfactual, while it has a 6.5% weight in the DSD-SCM. Japan and Switzerland,
which have a positive weight in the original counterfactual, are among the less similar
countries (10th and 13th, respectively). Thus, the original counterfactual is build with
countries that the method considers not to be similar to the treated unit. If we applied
the decoupled method with the original distance, we get that the best ELSG ratio is
achieved with L = 9 units, instead of seven, and the counterfactual would be exactly
the same as the one built with the SHAPdistance. As explained in Sect. 3.2.4, the larger
the number of similar units needed for the second step of the decoupled method, the
lower the reliability of the similarity measure. Hence, decoupling the problem allows
to identify the lower economic sense of the distance built in the nested optimization.

Figure 8 shows the results. Both methods estimate a clear negative impact, but they
differ in the estimation. Concretely, GDP per capita in West Germany in 2003 was
4283.5 USD lower that it would have been without the Reunification according to the
DSD-SCM, while the difference accounted for 3379.3 USD in the original estimation.
It is worthmentioning that other extensions of the synthetic controlmethod, such as the
constrained regression or the best–subset (Doudchenko and Imbens 2016) discussed
in Sect. 3.2, also find a negative impact, although lower than the estimated by the
decoupled synthetic. Concretely, the impact in year 1995 for these extensions lays
between 790 and 1019 USD, while in our case is 1301 USD.

Moreover, results obtained with the decoupled synthetic method are also robust to
placebo test in time and space, as can be seen in Figs. 9 and 10. The placebo test in
time considered a placebo re-unification effect from 1985 to 1990. For the placebo in
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Fig. 8 Per capita GDP gap between West Germany and synthetic West Germany

Fig. 9 Placebo test in time for the German re-unification

space, all units with a MAPE lower than three times that of the decoupled synthetic
were considered.

In conclusion, the comparison between the original synthetic control method and
our decoupled version in the German re-unification shows that while both methods
get a similar conclusion, the decoupled ensures higher economic sense and stability
in the similarity measure between countries (for instance, using the distance metric of
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Fig. 10 Placebo test in space for the German re-unification

the original synthetic would require the top 9 most similar countries instead of the top
7 to get the same goodness of fit) and achieves higher goodness of fit.

5.2 California’s tobacco control program

Abadie et al. (2010) estimate the effect ofCalifornia’s TobaccoControl Program imple-
mented in 1988, in terms of per capita cigarettes sales. They use annual state-level panel
data from the period 1970 to 2000. They consider the following covariates: income per
capita (in natural logarithm), beer consumption, percentage of population aged 15–24,
and the average retail price of a cigarettes pack. In order to increase the goodness of fit
of the counterfactual, they are also forced to include three lagged outcomes: cigarettes
sales in 1975, 1980 and 1988. The donor pool consists of 38 states where no con-
trol program or cigarettes’ tax raise was implemented during the period of analysis.
The counterfactual build using the SCM consists of 5 states: Utah (33.4%), Nevada
(23.4%), Montana (19.9%), Colorado (16.4%), and Connecticut (6.9%). Remarkably,
95% of the covariate importance is given to previous lagged outcomes. Indeed, authors
highlight that the counterfactual does not reproduce covariates such as GDP per capita
because they are given a very small weight, meaning that it does not have substantial
power predicting the per capita cigarette consumption. Actually, none of the covari-
ates is given more than 3% weight, which compromises the main idea of covariates.
That is why, for instance, the two most relevant states in the counterfactual, Utah and
Nevada, are among the less similar to California, according to the distance estimated in
the study. Concretely, they are ranked the 34th and 35th out of 38, respectively. Hence,
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Table 12 Cigarettes
consumption per capita
evolution model (OLS)

Variable name Estimate Std. Error Pr(> |t |)
Constant 2.981060 0.963366 0.002270

lnincome 0.329826 0.090611 0.000351

beer 0.009114 0.002922 0.002099

age15to24 −4.090836 1.732094 0.019199

retprice −0.009874 0.001264 3.78e-13

Multiple R-squared: 0.35, Adjusted R-squared: 0.3363. F statistic:
25.58 on 4 and 190 DF, p value: < 2.2e-16

a counterfactual is built where covariates are not relevant (only lagged outcomes) and
the units are not similar to the treated unit.

We reproduce the analysis by using the DSD-SCM. Table 12 shows the estimated
parameters for the model of cigarettes consumption per capita (in natural logarithm),
using only non-lagged outcome covariates. The relative importance based on SHAP
values for the covariates is: 55.7% for retail price, 31.8% for income per capita, 10.4%
for the percentage of young people, and 2.0% for beer consumption.

The best ELSG ratio is achieved with a restricted pool of the 30th most similar
states. Notice that a large number of donor states is needed, indicating that the dis-
tance metric might not be accurate. The counterfactual consists of 40.3% Utah, 21.0%
Nevada, 16.5%Montana, 9.0% Colorado, 9.0% Nebraska, and 4.2%NewHampshire.
The MAPE is 0.98%, compared to a 1.05% in the original synthetic. Both counter-
factuals share 4 states, which account for around 90% of the total relevance, although
the relative weights are slightly different. However, the choice of the states in this
second counterfactual is more meaningful. For instance, Utah is the 15th most similar
according to the SHAP-based distance, instead of the 34th. As can be seen in Fig.
11, both methods estimate that by the year 2000 annual per capita cigarette sales in
California was about 26 packs lower than what they would have been in the absence
of the program, although the impact is slightly larger (0.55 packs) according to the
decoupled synthetic.

Finally, Figs. 12 and 13 show the results of the placebo tests. While the placebo in
space shows that the decrease in California was clearly larger than in the other states,
as in the original study and other extensions (see Doudchenko and Imbens 2016), the
placebo test in time shows a 7% decrease in 4 years, even when no legislation was
passed. Hence, it suggests that, at least partially, the effect observed in California,
although significantly larger than in the rest of states, might be caused by other factors
than the tobacco program. It is important to highlight that in the original paper by
Abadie, Diamond and Hainmueller, no placebo test was provided. However, when
applying the original methodology, the placebo test also fails, and even more than in
the decoupled version (10% decrease, instead of 7% with the decoupled), due to the
poor performance of the similarity measure, as discussed before. Figure 14 show the
results.

As in theGerman reunification case, the decoupled syntheticmethod ensures higher
economic sense and stability in the similarity measure between countries and achieves
higher goodness of fit. Furthermore, it gives a clear guidance on why results should be
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Fig. 11 Per capita cigarettes consumption gap between California and Synthetic California

Fig. 12 Placebo test in space for the California tobacco program
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Fig. 13 Placebo test in time for the California tobacco program

Fig. 14 Placebo test in time for the California tobacco program with the original synthetic control method
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taken cautiously, as seen in the placebo test in time. Because the similarity metric is
not highly accurate, units that are not similar to the treated unit have to be considered
as part of the counterfactual to get a proper goodness of fit of the pre-treatment period.

6 Conclusion

The synthetic control method has been an influential innovation in quasi-experimental
design, combining as it does elements of matching and difference-in-differences,
and providing a systematic approach to building a counterfactual. Similarly, it offers
new opportunities for evaluating causal treatment effects in single—or in very few—
aggregate units of interest. The method’s impact on the empirical policy evaluation
literature has been far-reaching and continues to grow, with its application in an
increasing number of disciplines, including economics, political science, epidemi-
ology, transportation, engineering, etc.

The SCM is credited with many advantages, including its transparency, sparsity
and interpretability. Nevertheless, we have shown that it also suffers from a number
of critical drawbacks and limitations, some of them directly derived from its bilevel
nature. In short, we have shown that (1) the covariate importance may not be con-
sistent with economic theory, thus eroding the model’s meaningfulness; (2) estimates
are unstable—due to the interpolation bias and the nested nature of the optimization
problem—and overly dependent on irrelevant countries in the donor pool; and (3)
including lagged outcomes does not solve the problem of meaning and the stability
of covariate importance—even if the goodness of fit improves—but rather it makes
other covariates irrelevant, compromising the main idea underpinning the SCM.

As an alternative to the SCM, we have proposed the decoupled SHAP-distance
synthetic control method (DSD-SCM), which overcomes the main limitations of the
standard method by decoupling feature importance from weight estimation and by
providing a new methodology for feature estimation and unit similarity that ensure
meaningfulness and stability.

Here, both methods were used to evaluate the effects on GDP growth of a ten-
month government formation deadlock in Spain and to re-estimate the impact of
German Reunification in West Germany GDP per capita (Abadie et al. 2015) and the
effect of the tobacco control program in California (Abadie et al. 2011). Regarding
the first case study, we provide evidence, consistent with Albalate and Bel (2020),
refuting the negative economic effects of lengthy impasses in government formation.
Thus, not only did Spain’s economy not suffer any damage, but it actually benefited
by 1.58 p.p.; however, and more importantly in the context of this paper, the SCM
overestimates these causal effects by 0.23 p.p. with respect to the DSD-SCM.

Moreover, we have demonstrated that the DSD-SCM is a more stable, accurate and
meaningful method than the standard SCM. Concerning the second and third cases
of study, we show that the DSD-SCM provides a better counterfactual, both in terms
of fitting and similarity of the units with respect to the treated unit. Both methods
provide similar conclusions. Namely, that German Reunification had a significant and
negative impact inWest GermanyGDP per capita and that the tobacco control program
reduced tobacco consumption. For the German reunification, the gap estimate with
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the DSD-SCM is 27% larger (904.3 USD) than with the original method, while for
the tobacco consumption the difference between the two methods is less than 5% (0.5
packs).

After almost two decades of being first proposed, the SCM has shown to be a very
useful method for policy evaluation. Some weaknesses of the originally proposed
version has been diagnosed and corrections suggested, so that results obtained can be
more precise, robust andmeaningful. This has been themain objective of this research.
Future research should try to further improve SCM, by focusing on how to assess the
similarity between units in the donor pool and the treated unit.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix I: examples of instability associated with the bilevel nature
of the SCM

The first example shows that if the treated lies inside the convex hull defined by the
untreated units, then any solutionW ∗ of the lower-level problem is insensitive to V . As
a consequence, any arbitrary V will do. The second illustrates the high dependency
between W ∗ and V and to what extent nesting both estimations can lead to highly
unstable results. As the SCM does not control for this instability, if no prior outcomes
are included as covariate variables there is no guarantee at all that results will have
proper goodness of fit. But if prior outcomes are included, as shown in Sect. 4, then
there is no guarantee that interpolation bias is avoided.

Example 1: V completely arbitrary
Let us note byW (V ) the set ofW that are solution of the lower-level problem, given V .
Let us note by � = {(W 1, V 1).., (Ws, V s)} the set of weights and feature importance
matrix such that Xi

TU = W j Xi for at least some covariate i but not all of them and
that W j is a solution of the lower-level optimization, that is, W j ∈ W (V j ). Let us
consider that there exists W ∗ such that XTU = W ∗X . Then:

(i) For any V , W ∗ ∈ W (V )

(ii) The optimal solution (or solutions) of the SCM problem is the solution of the
problem

min
(W ,V )∈�∪(W ∗,V ∗)

(YTU − WY )′(YTU − WY )

In particular, if W ∗ adjust better YTU than any W j ∈ �, the solution of the SCM
admits any arbitrary V .
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Fig. 15 Four illustrations of goodness of fit in pre-treatment outcomes given V

Proof (i) Given that XTU = W ∗X ,wehave thatD(W ∗) ≡ (XTU−W ∗X)
′
V

′
(XTU−

W ∗X) = 0 for any V . Since the lower-level function D is nonnegative for any
positive semi-definite matrix V , W ∗ ∈ W (V ) for any positive semi-definite V .

(ii) Let us consider V /∈ {V 1, . . . , V s}. Let us assume that there exists Ŵ �= W ∗ such
that Ŵ ∈ W (V ). Since D(W ∗) = 0 and W ∈ W (V ), then D(Ŵ ) = 0. But since
V is positive semi-definite, there has to exists at least one covariate i such that
Xi
TU = Ŵ Xi , and that is impossible because V /∈ {V 1, . . . , V s}. Thus, for any

W ∈ W (V )with V /∈ �,W = W ∗. Therefore, the solution of the bilevel problem
has to be a pair (W , V ) ∈ � ∪ (W ∗, V ) that minimizes the upper-level problem.

�
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Example 2: V unstable and driven by interpolation biases
Let us consider a donor pool formed by 15 units with 3 covariates each one: Xi =
(C1

i ,C
2
i ,C

3
i ), where C

j
i is the average value of the covariate j for the unit i during

the time period. Let us consider that the covariates are distributed as:

C1
i ∼ Uni f orm(0, 1)

C2
i ∼ 0.5C1

i +Uni f orm(0, 1) + N (0, 0.1)

C3
i ∼ 0.5C1

i +Uni f orm(0, 1) + N (0, 0.1)

Let us consider that the growth rate of Xi for the period t , γi,t , is defined as:

γi,t = 0.2 + 0.2Ĉ1
i + 0.5Ĉ2

i + 0.3Ĉ3
i

100
+ εt

where Ĉ j
i = C j

i −min(C j )

max(C j )−min(C j )
and εt ∼ N (0, 0.02).

Thus, we are ensuring that covariates are related to output, since growth rates depend
on covariates. All units are given the same output value at t = 0, that for simplicity
we take as 1. Therefore, Y 0

i = 1 and

Y t
i =

t∏

r=1

(1 + γi,r ), t = 1, . . . , T

Let us define the treated unit as:

Y t
TU = Y t

i + Y t
j

2
+ N (0, 0.01)

Ck
TU = Ck

i + Ck
j

2
+ N (0, 0.05)

where {Xi ,Yi }, {X j ,Y j } are two randomly selected donors such that C1
i, j < 0.5,

C2
i, j < 0.5, and the correlation between Yi and Y j is higher than 0.7. Notice that the

treated unit is related to donors in terms of output and covariates.
Figure SM1 shows four examples of simulated results. In each graph, it is repre-

sented the R−squared value of the synthetic unit in the z axiswhen feature importance
is V = (x, y, 1− x − y). As can be seen, the upper-level problem (the sum of squares,
which is a linear transformation of the R2) is highly non-convex and there are multiple
local optima. Moreover, small variations in V can lead to huge changes in R2. For
example, in the first figure, the maximum R2 is 0.948 and corresponds to x = 0 and
y = 1. However, a small perturbation can lead to the lowest R2, - 0.212, at x = 0.05
and y = 0.95.
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