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Abstract
We generalize the disutility of effort function in the linear-Constant Absolute Risk
Aversion (CARA) pure moral hazard model.We assume that agents are heterogeneous
in ability. Each agent’s ability is observable and treated as a parameter that indexes the
disutility of effort associatedwith the task performed. In opposition to the literature (the
“traditional” scenario), we find a new, “novel” scenario, in which a high-ability agent
may be offered a weaker incentive contract than a low-ability one, but works harder.
We characterize the conditions for the existence of these two scenarios: formally, the
“traditional” (“novel”) scenario occurs if and only if the marginal rate of substitution
of the marginal disutility of effort function is increasing (decreasing) in effort when
evaluated at the second-best effort. If, further, this condition holds for all parameter
values and matching is endogenous, less (more) talented agents work for principals
with riskier projects in equilibrium. This implies that the indirect and total effects of
risk on incentives are negative under monotone assortative matching.
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1 Introduction

When agents are heterogeneous in ability, the optimal contract offered by the principal
will typically depend on the ability/talent of the agent she faces.1 But will incentives
be stronger for low- or for high-ability agents? The aim of our paper is to offer insights
regarding the determinants of compensation schemes, the design of incentives and the
sorting of employees and employers—issues that have long been central to the agency
literature. So far, this literature has yielded what we label as the “traditional” scenario,
namely, that more talented agents are offered contracts with stronger incentives (Li
and Ueda 2009; Bandiera et al. 2015; Kandilov and Vukina 2016; Wulf 2007) and
exert more effort than less talented ones (Li and Ueda 2009; Bandiera et al. 2015;
Chade and Swinkels 2020).2 We show that a version of the Holmstrom and Milgrom
(1987)’s linear-CARA moral hazard model with quadratic costs in which agents are
heterogeneous in terms of their cost of effort (henceforth, the “canonical model”) also
predicts that the higher the ability of the agent is, the higher is the efficiency loss
caused by the associated inefficient risk sharing, despite a lower effort-distortion rate.
We prove that the previous predictions rely on the assumptions of a multiplicatively
separable and homogeneous (in effort) disutility of effort function. However, if a
more general cost function is considered, the model allows for a second, “novel”
scenario—overlooked by the literature—in which more talented agents are offered
weaker incentive schemes. In line with previous research (Li and Ueda 2009; Chade
and Swinkels 2020), we assume that agents are heterogeneous in their ability level,
which is public information and parameterizes the disutility or cost of effort (COE)
associated with the activity performed at the workplace, and that the more talented
the agent is, the lower the associated COE is.3 We depart from the “canonical model”
by generalizing the COE function and we find that the strength of incentives, the
efficiency loss and the effort distortion need not to individually increase with ability
or to move in unison.

Our main contribution to the agency literature is that we find a necessary and
sufficient condition on the properties of the original feature in our model, namely
the generalized COE function, that determines whether the “traditional” or “novel”
scenariowill occur (formally, it identifies the sign of the effect of ability on the strength
of incentives under pure moral hazard) and that, further, determines the sorting pattern

1 Throughout the paper, and without loss of generality, we will assume that the principal is female and the
agent is male.
2 Specifically, please refer to the sensitivity analysis example developed byHolmstrom andMilgrom (1987)
on page 323. A quadratic-in-effort cost structure is also assumed in Li and Ueda (2009), Bandiera et al.
(2015) and Kandilov and Vukina (2016).
3 In contrast, the disutility of effort is assumed only dependent on effort in Edmans and Gabaix (2011),
Bandiera et al. (2015) and Kandilov and Vukina (2016). In Bandiera et al. (2015) and Kandilov and Vukina
(2016), a manager’s higher ability is assumed to increase his productivity, instead of decreasing his COE,
and the COE is assumed to be quadratic in effort. In Edmans and Gabaix (2011), managers are assumed to
have CRRA utility functions instead, and hence, utility is multiplicative in wage and effort. As wealthier
managers are more willing to forgo incentive pay to enjoy leisure, exerting any given level of effort is more
costly to the manager the wealthier (i.e., more talented) he is. Furthermore, in Edmans and Gabaix (2011),
firms (principals) are assumed to differ in size rather than risk, whereas they differ in ownership in Bandiera
et al. (2015).
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that ensues in equilibrium under endogenous matching. Specifically, we prove that
the “traditional” (“novel”) scenario occurs if and only if the absolute value of the
marginal COE’s marginal rate of substitution between ability and effort is increasing
(decreasing) in effort when evaluated at the second-best solution. We refer to this as
the increasing (diminishing) marginal rate of substitution condition (henceforth the
IMRSC (DMRSC)).

In our framework, by the complementarity of effort and ability in the principal’s
maximization problem, principals prefer to hire high-ability agents to low-ability ones
if agents’ reservation utilities are not very sensitive to ability. In addition, principals
induce more talented agents to exert a strictly higher level of effort than less talented
ones. In the second-best contract, the power is set equal to the marginal COE at the
second-best effort. As it is standard in the literature (Li and Ueda 2009; Chade and
Swinkels 2020), we assume that the marginal cost of exerting any fixed level of effort
is strictly higher for less talented agents than more talented ones. Hence, the direct
effect of ability on incentives is to reduce the power since providing incentives to more
talented agents is less expensive. However, since the second-best effort increases with
ability and the marginal COE is increasing in effort, the indirect effect of ability on
incentives leads to an increase in the power of the scheme: the higher effort induced
to the more talented agent makes his provision of incentives more expensive.

Since themarginal rate of substitution (MRS) of themarginal COE function reflects
the relative sensitivity of said function to ability vis-a-vis effort, large (small) values
indicate that agents are (not) very responsive to changes in ability. Furthermore, in
equilibrium, the MRS denotes the direct effect of ability on effort, for a fixed power of
the incentive scheme. Under the IMRSC, the second-best effort is sufficiently respon-
sive to ability so that the indirect effect dominates the direct effect, leading to a strictly
higher power for more talented agents. Since a multiplicatively separable marginal
COE function that is log-concave in effort everywhere implies the IMRSC, the pre-
diction of an increasing in ability power by the “canonicalmodel” follows immediately.
On the contrary, since the second-best effort is not sufficiently responsive to ability
under the DMRSC, the direct effect overwhelms the indirect effect and the power is
decreasing in ability. Furthermore, it is not necessary for the IMRSC/DMRSC to hold
everywhere, and we illustrate this with an example (Example 2) in which the power
of the incentive scheme is non-monotonic in ability: the optimal sharing rule is an
inverted U-shaped function of ability since the marginal COE satisfies the IMRSC for
relatively low levels of effort (which are exerted by less talented agents in equilibrium),
whereas it satisfies the DMRSC for relatively high levels of effort (which are exerted
by more talented agents in equilibrium).

Our results suggest that the IMRSC/DMRSC is crucial to determine the equilib-
rium compensation package and, as we will see next, the sorting in the labor market.
Controlling for risk, Wulf (2007) finds that pay-performance sensitivities (i.e., the
power of incentive scheme) vary by authority across senior division managers in the
same job classification in large firms. Interpreting a manager with broader authority
as a high-ability division manager, pay is found almost four times more sensitive to
performance (firm sales growth) for high-ability managers than for low-ability ones
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(i.e., officer versus non-officer).4 This evidence is consistent with the performance of
managerial activities associated with a marginal COE that satisfies the IMRSC. How-
ever, data sets usually include a panel of firms that spans several industries.5 Consider
the following thought experiment in which two firms with manager positions in the
same job classifications, similar performance and variance of returns, operate in dif-
ferent sectors. Specifically, suppose that the marginal COE associated with the typical
managerial activity/task performed in firm 1 (firm 2) satisfies the IMRSC (DMRSC).
If we run a regression of pay on performance, controlling only for the variance of the
firm and the managers’ abilities, it will incorrectly find no significant effect of ability
on performance: since the more able managers are offered a higher powered incentive
contract than the less able managers in firm 1 but the reverse holds true in firm 2,
the estimated coefficient of ability will be biased toward zero, as the model ignores
the role of the shape of the marginal COE. In order to avoid such bias in the estima-
tion, and in addition to controlling for fixed effects, the inclusion of an interaction
term between industry/firm indicators, performance and ability in the empirical con-
tract choice equation would be highly recommended, as it would help to control for the
effect of the shape of themarginal COE structure on incentives. Consider now a second
thought experiment with firms operating in similar sectors. Suppose that the marginal
COE associated with the typical task performed by less talented managers satisfies
the IMRSC but the marginal COE associated with the typical task performed by more
talentedmanagers satisfies theDRMSC (or vice-versa). Ourmodel predicts an optimal
sharing rule that is non-monotonic in ability: the strongest (weakest) incentives are
offered to a manager with an intermediate level of ability. As the data contain discrete
measures of managers’ ability which are usually highly correlated with a job/activity
indicator of the management position (e.g., officers versus non-officers managers), it
may be possible that no performance sensitivity to ability is again spuriously found in
the estimation. In this case, the use of instruments for ability different from job indica-
tors and the estimation of a polynomial regression of higher degree in ability is highly
encouraged. In sum, we highlight that the nature of the agent’s task—in essence, the
shape of the marginal COE structure associated with the activity performed—is cru-
cial when assessing the relationship between risk, ability and incentives in empirical
work.

In our model we assume—as is standard in the literature—that the only source of
heterogeneity on the principal’s side is risk. Having that in mind, consider now an
industrial sector in which the typical (managerial) activities are characterized by a
marginal COE function that satisfies the IMRSC (DMRSC) for all parameter values.
Then, we show that positive (negative) assortative matching on ability ensues in equi-
librium for all type distributions: principals with riskier projects are pairwise-matched
with less (more) talented agents and offer themweaker incentives. In sum, the negative
indirect effect of risk on incentives reinforces the direct effect in both scenarios char-
acterized by monotone matching. However, the direct and indirect effects of risk on

4 Onaverage, 23%ofdivisionmanagers are corporate officers.A similar conclusion is obtainedbyAggarwal
and Samwick (1999) who find that at the median variance, estimated pay-performance sensitivities of top
executives who are not identified as CEOs are about one-fifth the size of those for CEOs.
5 For instance, the majority of the firms in Wulf (2007)’s data set operate in the food, paper, chemical,
machinery, electrical, transportation equipment, instrumentation, communications and utilities industries.
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the optimal effort only reinforce each other under positive assortative matching. Our
model predicts that in an equilibrium characterized by negative assortative matching,
more talented agents exert higher (lower) levels of effort than less talented ones if and
only if the matching function is sufficiently steep (flat).

To the best of our knowledge, our findings are novel in the literature, reviewed
recently by Macho-Stadler and Pérez-Castrillo (2018) and Macho-Stadler and Pérez-
Castrillo (2020).6 Positive sorting in equilibrium is predicted by Li and Ueda (2009)
and Chade and Swinkels (2020). Li and Ueda (2009) apply the “canonical model”
to an endogenous matching framework.7 More broadly, we show that the sorting
pattern that ensues in equilibrium depends on the properties of the marginal COE
associated with the performed activities, and hence, that negative sorting is plausible
for some COE structures (i.e., some tasks). Chade and Swinkels (2020) generalize the
COE function in a framework with hyperbolic absolute risk aversion (i.e., imperfect
transferable) utility functions. But while their risk preferences are more general than
ours, the validity of their results requires a sufficiently attractive outside option for
the agent. Furthermore, the authors center their research on performing comparative
statics of the second-best effort with respect to some variables of interest such as the
agent’s ability or his initial wealth. In contrast, we focus on the sign of the relationship
between incentives, ability and risk. The extra information structure imposed by the
linear contract and the CARA risk-preferences assumptions which imply a perfectly
transferable utility, allows us tomakemore predictions in a competitivemarket setting.

Finally, Serfes (2005) performs a similar theoretical analysis applying the “canon-
ical model” but assuming that agents differ in their degree of risk aversion, instead of
ability.8 He finds that a positive relationship between incentives and risk is plausible
only under negative assortative matching since the partial effect of both variables (risk
and risk aversion) on the incentive power is negative via the optimal induced effort.
Although a negative sorting pattern is a possible prediction of our model, we find that
the total effect of risk on power is unambiguously negative under monotone assortative
matching if agents are heterogeneous only in ability. This result is due to the positive
correlation between the sign of the total effect of ability on the incentive power and
the sorting pattern that emerges in equilibrium. We show that the indirect effect of
risk on incentives is locally negative for almost all parameter values even when the
equilibrium assignment is not globally assortative. Thus, a globally non-monotonic
relationship between incentives and risk could be obtained only if the matching func-
tion is discontinuous. The negative relationship between risk and incentives found in
our paper under endogenous matching is consistent with some of the evidence found
in the literature (Wulf 2007; Hilt 2006; Aggarwal and Samwick 1999). Ackerberg

6 For an overview of the personnel economics literature refer to Lazear and Oyer (2012).
7 The authors also consider the case of multidimensional agents who are heterogeneous not only in their
ability but also in their degree of risk aversion. They specifically assume that more able agents are at least
as risk tolerant as less able agents. Refer also to Bandiera et al. (2015) for a framework in which agents
(e.g., managers) are uniformly distributed on a two-dimensional space of ability and risk-aversion.
8 Chen et al. (2018) discuss endogenous matching between risk-averse principals and risk-averse agents
with endogenous risk as agents can make efforts not only to control the mean but also the idiosyncratic
risk of the output. They find that the presence of moral hazard leads to positive assortative matching in
equilibrium.
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and Botticini (2002) offered endogenous matching as an explanation for the puzzling
mixed empirical evidence on the relationship of risk and incentives. They point out
that empirical studies that ignore endogenous matching are likely to generate poten-
tially significant biases (in sign and magnitude) in the estimated coefficients of the
compensation-related independent variables.9

Our paper is organized as follows. The framework is described in Sect. 2. Section 3
computes the optimal policies associated with each informational setting. Section 4
presents the main results of the paper in an isolated principal-agent relationship. Sec-
tion 5 analyzes sorting in a general equilibrium setting and studies the effect of risk
on incentives and effort under monotone assortative endogenous matching. Section 6
briefly concludes the paper. All relevant proofs are contained in “Appendix.”

2 The baselinemodel

Amale risk-averse agent, characterized by his ability level, meets a female risk-neutral
principal, characterized by the risk (variance) of her project σ 2. The principal wishes
to hire the agent to perform a task (e.g., managerial activity) in exchange for a wage
w. The output of the relationship, denoted by x ∈ X , is informative about the hidden
effort exerted by the agent, a ∈ [aL , aH ] := A with aL ≥ 0.10 Specifically, x = a + ε

where ε ∼ N (0, σ 2) and σ 2 < ∞. We modify the canonical CARA-principal-agent
model by generalizing the COE function associated with the task executed v(k, a),
measured in monetary units, where parameter k ∈ [kL , kH ] := K , with kL > 0, is an
inversemeasure of the agent’s ability type: themost (least) talented agent is indexed by
kL (kH ).11 We assume that the function v and the values (k, σ 2) are public information
to abstract from hidden information issues.12

Assumption 1 Function v is thrice continuously differentiable, with v(k, aL) = 0 for
all k ∈ K , va > 0, vk > 0, vak > 0, vaa > 0 and vaak ≥ 0 for all (k, a) ∈ K × A
such that a > aL . Furthermore, aH ≥ v(kH , aH ), va(kH , aL) < 1 < va(kL , aH ) and
v2aa + vavaaa > 0 for all (k, a) ∈ K × (aL , aH ].

Under Assumption 1, the COE function is increasing and convex in effort but less
able agents experiment a higher total and marginal disutility of effort than their more
able counterparts. Similarly, their disutility is more convex in effort. The inequality
va(kH , aL) < 1 < va(kL , aH ) ensures that the optimal effort is interior in the first-
best scenario. Assumption aH ≥ v(kH , aH ) guarantees that hiring (an agent with any
ability level) is efficient when effort is verifiable since it generates a strictly positive

9 The endogenous matching generates correlation between the observable characteristic (risk) of the prin-
cipals and proxy errors of the agents’ imperfectly observable characteristic. Prendergast (2002) provides
some evidence of a positive relationship between risk and incentives across fields.
10 More generally, the results also hold if the action set is continuous but not compact, as long asAssumption
1 is satisfied (taking limits).
11 As in Li and Ueda (2009), we use an inverse measure of ability for comparison purposes.
12 Henceforth, for any given function f , we denote its partial derivative with respect to variable x by fx
and its elasticity with respect to variable x by ε f ,x : ε f ,x := (x fx )/ f . If the function is of a single variable,
its derivative is simply denoted by f ′.
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expected surplus. The last inequality in Assumption 1 guarantees that the principal’s
profit maximization problem is well-behaved. Note that the quadratic COE function
specified in the canonical CARA model, v(k, a) = (1/2)ka2 with aL = 0, satisfies
Assumption 1 if and only if aH ∈ (1/kL , 2/kH ]. Henceforth, we will refer to va(k, a)

as the marginal COE function.
The agent has CARA risk preferences, with u(w, k, a) = − exp{−r(w−v(k, a))},

where r > 0 denotes his Arrow–Pratt coefficient (of absolute risk aversion). He has
a reservation certainty-equivalent outside the relationship with the principal given by
CE(k) which may be type-dependent (e.g., CE′(k) ≤ 0). The principal’s objective is
to maximize the expected net profit given by a − E(w). We restrict attention to linear
compensation schemes of the form w(x) = w0 + sx , where s ∈ R is the power (e.g.,
pay-performance sensitivity) and w0 ∈ R is the fixed part of the incentive scheme.13

The timing of the contracting problem is as follows: (1) the principal offers a linear
wage scheme (w0, s) to the agent; (2) the agent decides whether to accept the offered
contract and if so, executes a hidden action; (3) if the contract has been accepted,
output is publicly observed and the agent is paid accordingly. Thus, the principal
assumes all the bargaining power and the agent is willing to accept the contract (w0, s)
as long as it guarantees him his reservation utility. The agent’s certainty-equivalent
income of accepting the contract (w0, s) is given by CE(k, a, w0, s) := w0 + sa −
v(k, a) − (1/2)rσ 2s2 and the principal’s expected profits are given by �(a, w0, s) =
a(1 − s) − w0.

3 Optimal policy in an isolated partnership

The following results are sketched briefly as they are standard.

3.1 First-best

When effort is verifiable, the first-best effort aFB ∈ (aL , aH ) is interior and it satisfies

va(k, aFB) = 1 (1)

Due to the agent’s risk-aversion, the first-best policy yields full insurance (sFB = 0)
with a fixed payment given by wFB

0 = v(k, aFB) + CE(k) if a = aFB and zero
otherwise, leading to a Pareto efficient outcome. The principal’s expected profits are
�FB(k) = aFB − v(k, aFB) − CE(k).

3.2 Second-best

By the First-Order Approach, the Incentive Compatibility Constraint (ICC) can be
replaced by the interior solution to the agent’s maximization problem, s = va(k, a),

13 Holmstrom and Milgrom (1987) show that the optimal contract is linear in output in a dynamic version
of the model in which the agent controls the drift vector with a Brownian motion process and observes his
accumulated performance before acting.
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leading to a strictly positive power.14 Therefore, the provision of incentives prevents
the provision of full insurance as is well-known in the literature. The induced interior
second-best effort level aSB satisfies:

va(k, aSB)[1 + rσ 2vaa(k, aSB)] = 1 (2)

We assume that the value rσ 2 is such that the solution to Equation (2) is interior (in
other words, it is never satisfied at aL ). If the agent is risk averse, the moral hazard
problem leads to under provision of effort in equilibrium: vaa(k, a) > 0 for any given
pair (k, a) ∈ K × A and Equations (1) and (2) imply va(k, aSB) < 1 = va(k, aFB),
and hence, aL ≤ aSB < aFB. Thus, given the asymmetry of information and the
noisiness of the outcome, the provision of incentives distorts the efficient allocation
of risk in the relationship and the efficient allocation of effort by the agent. Indeed,

sSB = va(k, aSB) (3)

wSB
0 = v(k, aSB) − va(k, aSB)aSB + 1

2
rσ 2v2a(k, aSB) + CE(k) (4)

�SB(k, r , σ 2) = aSB − v(k, aSB) − 1

2
rσ 2v2a(k, aSB) − CE(k) (5)

SSB(k, r , σ 2) := �SB(k, r , σ 2) + CESB(k, r , σ 2)

= aSB − v(k, aSB) − 1

2
rσ 2v2a(k, aSB), (6)

where the last equation refers to the joint surplus produced by the partnership under
moral hazard. Note that the agent receives his reservation utility in both settings (i.e.,
there are no information rents). Furthermore, since utility is perfectly transferable,
neither effort choice (be it first- or second-best) nor the strength of incentives (i.e., the
power) depend on the agent’s reservation utility. Instead, the fixed wage required to
hire the agent is increasing in the reservation utility since the Participation Constraint
is binding (Eq. 4). The second-best power of the incentive scheme is given by the
marginal COE evaluated at the second-best effort (Eq. 3). By Eqs. (2) and (3), the
second-best power depends directly and indirectly on the agent’s ability, and only
indirectly on the volatility of the project (σ 2) and the agent’s degree of risk aversion
(r ) via the second-best exerted effort aSB.

4 Analysis of the impact of ability in an isolated partnership

It is important to start this section by highlighting the fact that a change in the value
of the ability parameter affects both the total surplus and the ICC.15

14 The convexity of the COE function guarantees that the agent’s certainty equivalent is concave in effort,
and thus, that the First-Order Approach is valid in this setting.
15 In this way, the ability parameter’s role is akin to that of the probability of an accident in Rothschild
and Stiglitz (1976)’s imperfect-information insurance model, as said probability affects both the insurer’s
expected profits (objective function) and the insured’s incentive and participation constraints.
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By the Envelope Theorem and Assumption 1, we have that:

∂�FB

∂k
= −vk(k, aFB) − CE′(k) (7)

∂�SB

∂k
= −vk(k, aSB) − rσ 2va(k, aSB)vak(k, aSB) − CE′(k) (8)

If the reservation certainty-equivalent is not very sensitive to ability (i.e., CE is not
too steep in k if CE′(k) < 0), the principal’s expected profits are increasing in the
agent’s ability since the less able the agent, the more the principal must compensate
him for: (i) his higher COE function (first term in Eqs. (7) and (8)); and (ii) his higher
risk-premium since vak > 0 (second term in Eq. 8). In such case, and independently
of the risk of the project, the more talented the agent, the more desirable he is to the
principal.

4.1 Ability and effort

The optimal contract induces a more talented agent to exert a strictly higher level
of effort. This result is driven by the linearity of the production function, the strict
convexity of the COE in effort and the supermodularity of the COE and the marginal
COE functions in a and k.16 By the linearity of the production function, the marginal
cost of inducing an extra unit of effort (the left-hand side of Equations (1) and (2))
must remain constant in equilibrium. Said marginal cost is strictly decreasing in the
agent’s ability and strictly increasing in effort by Assumption 1, implying:

daFB

dk
= −vak(k, aFB)

vaa(k, aFB)
< 0 (9)

daSB

dk
= −vak(k, aSB)

vaa(k, aSB)

(
1 + λ(k, aSB)

)

= −vak(k, aSB)

vaa(k, aSB)︸ ︷︷ ︸
Direct Effect (DE)

−vak(k, aSB)

vaa(k, aSB)
λ(k, aSB)

︸ ︷︷ ︸
Indirect Effect (IE)

< 0 (10)

where

λ(k, a) :=
(1 − va(k, a))ε vak

vaa
,a(k, a)

εva ,a(k, a) + (1 − va(k, a))εvaa ,a(k, a)
(11)

To understand the importance of the shape of the cost structure in analyzing the
effect of ability on optimal effort, consider a diagram measuring the inverse of ability

16 More broadly, the results also hold if the production function f (a) is strictly concave in effort as then

we just need to replace va(k, a) with va(k, a)/ fa(a) and vaa(k, a) with ∂(va (k,a)/ fa (a))
∂a > 0 in Eqs. (1)

and (2).
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Fig. 1 Traditional scenario: the power increases with ability

Fig. 2 Novel scenario: the power decreases with ability

(k) in the horizontal axis and effort (a) in the vertical axis, as illustrated in Figs. 1
and 2. The dashed lines in the left panels of Figs. 1 and 2 are the level curves of the
marginal COE function. By Assumption 1, and for any given level of effort, a less able
agent experiments a higher marginal disutility than a more able one. Hence, the level
curves of themarginal COE are downward-slopping. The ratio vak/vaa is (the absolute
value of) the marginal rate of substitution of the marginal COE, that is, the slope (in
absolute values) of a level curve of the marginal COE: the steeper the level curve is,
the lower the effort exerted by a less able agent must be—relative to a more able one—
for both agents to experience the same marginal disutility of effort. Economically it
reflects the relative sensitivity of said function to ability vis-a-vis effort, so that large
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(small) values (i.e., steeper (flatter) level curves) indicate that agents are (not) very
responsive to changes in ability. Furthermore, in equilibrium—and as can be seen
from Eq. (10)—it denotes the direct effect of ability on effort, for a fixed power of
the incentive scheme: in other words, if the principal did not adjust the power of the
incentive scheme to a change in the ability of the agent, the latter will adjust his effort
choice by the magnitude of the marginal rate of substitution.

Equation (10) states that the total impact of ability on the second-best effort consists
of two effects: (i) a direct effect (DE),which is given by themarginal rate of substitution
of the marginal COE and reflects the response of the agent to a change in ability for a
given power s, and (ii) an indirect effect (IE)which is proportional to the biasλ(k, aSB)

(relative to the first-best) and embodies the principal’s adjustment of the incentive
scheme to said change in ability and the agent’s behavioral response, reflecting the
effect of the power on the risk-premium.17 Thus, the principal’s response can either
amplify, maintain or counteract the agent’s direct response, depending on whether the
bias is positive, equal to zero or negative. This can be seen graphically on the right
panels of Figs. 1 and 2: the DE reflects the change in effort for given power, from
initial point A to intermediate point B (a′ − a0), while the IE corresponds to the shift
from intermediate point B to final point C (a1 − a′).

The assumption that less talented agents bearmore convexdisutilities thanmore able
ones (vaak(k, a) ≥ 0 for all (k, a) ∈ K × A) guarantees that 1+λ(k, aSB) > 0, which
in turn implies that the equilibrium effort in the second-best scenario is increasing in
the agent’s ability.18 The sign of the bias is driven by the sign of ε vak

vaa
,a(k, aSB), that

is, by the shape of the cost structure: its sign is positive if and only if the absolute
value of the marginal rate of substitution is increasing in effort when evaluated at the
second-best solution.19

Definition 1 For any given ability level k: (i) the marginal COE satisfies the
increasing marginal rate of substitution condition (IMRSC) at effort ã if the rate
vak(k, a)/vaa(k, a) is strictly increasing ina at ã, that is, if ∂(vak(k, ã)/vaa(k, ã))/∂a >

0; (ii) the marginal COE satisfies the diminishing marginal rate of substitution con-
dition (DMRSC) at effort ã if the rate vak(k, a)/vaa(k, a) is strictly decreasing in
a at ã, that is, if ∂(vak(k, ã)/vaa(k, ã))/∂a < 0; the marginal COE satisfies the
constant marginal rate of substitution condition (CMRSC) at effort ã if the rate
vak(k, a)/vaa(k, a) is constant in a at ã, that is, if ∂(vak(k, ã)/vaa(k, ã))/∂a = 0.

Note that Definition 1 involves partial (not total) derivatives with respect to variable
a. Consider now a scenario in which the marginal COE is quasilinear with respect

17 “Appendix” provides further details of how Equations (10) and (11) are reached. As it is due to the
risk premium, the equilibrium size of the bias is given by the sensitivity of the ratio vak/vaa to risk when
evaluated at the second-best effort since λ(k, aSB) = −εaSB,σ2 (k, aSB)ε vak

vaa
,a

(k, aSB). Please, refer to

Equation (19) located in “Appendix.”
18 Furthermore, since ε vak

vaa
,a

(k, a) = εvak ,a(k, a) − εvaa ,a(k, a) for all (k, a) ∈ K × A, if the marginal

COE is multiplicatively separable and vaaa > 0, as in the “canonical model,” then εvak ,a(k, a) =
εva ,a(k, a) for all (k, a) ∈ K × A which implies λ(k, aSB) < 1 for all k ∈ K .
19 Equation (2) implies that va(k, aSB) < 1, and together with the last equation in Assumption 1, it implies
that the denominator of λ(k, aSB) in Equation (11) is positive.

123



464 SERIEs (2021) 12:453–487

to effort, so its level curves are vertically parallel for all parameter values. Then
the marginal COE satisfies CMRSC for all parameter values implying a zero bias:
ε vak

vaa
,a(k, a) = 0 for all (k, a) ∈ K × A implies λ(k, a) = 0 for all (k, a) ∈ K × A. In

other words, for all values of k, the locus of all second-best effort choices coincides
with a particular level curve of the marginal COE function and both the first-best and
second-best efforts are equally responsive to ability.

There are two other special scenarios to consider: one in which the marginal COE
satisfies the IMRSC for all parameter values, and another in which the marginal
COE satisfies the DMRSC for all parameter values. For instance, take an homothetic
marginal COE function. Then, if the superior sets were strictly convex, the second-
best effort curve (the solid line in the left panel of Fig. 1) would be steeper than the
corresponding level curve of the marginal COE that passes through that combina-
tion of (ability, effort), implying a positive bias: the marginal COE would satisfy the
IMRSC for all parameter values. In contrast, if the inferior sets were strictly convex,
the second-best effort curve (the solid line in the left panel of Fig. 2) would be flatter
than the corresponding level curve of the marginal COE that passes through that com-
bination of (ability, effort) and the implied bias would be negative: the marginal COE
would satisfy the DMRSC for all parameter values. Indeed, the responsiveness of the
second-best effort to ability, relative to the slope of the corresponding marginal COE
level curve, will be crucial when analyzing the total impact of ability on the strength
of incentives.

For simplicity, in the next subsections, we will make some abuse of notation as we
will refer to the first-best and second-best efforts simply as aFB and aSB. The reader
should keep in mind that they are functions of the agent’s risk aversion level as well
as the given characteristics of the participants in the relationship (k, σ 2): the agent’s
ability and the principal’s project risk.

4.2 Ability and incentives

We remind the reader that the optimal power is given by the marginal COE evaluated
at the second-best effort according to Eq. (3). An increase in the agent’s ability causes
two opposite effects on the optimal power of the incentive scheme: (i) a negative direct
effect (first term in Equation (12) below) since more able agents are assumed to have
lower marginal costs than their less able counterparts for any given effort level by
Assumption 1; and (ii) a positive indirect effect via the adjustment of the second-best
effort (second term in Equation (12)) sincemore able agents are induced to exert higher
levels of effort optimally. The total effect of ability on the strength of incentives is
driven by the balance of these two opposite forces:

dsSB

dk
= vak(k, aSB) + vaa(k, aSB)

daSB

dk
= −vak(k, aSB)λ(k, aSB), (12)

where the last equality follows from Equation (10).

Definition 2 Two basic scenarios can be distinguished depending on the sign of this
relationship:
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(i) the “traditional” scenario, in which the optimal power is increasing in ability;
(ii) the “novel” scenario, in which the optimal power is decreasing in ability.

According to Eq. (12) and Definition 2, for any given ability level k ∈ K , the
“traditional” (“novel”) scenario occurs if and only if the bias is positive (negative).

Now, we turn to the main result of this section:

Proposition 1 Suppose Assumption 1 holds. For any given ability level, the opti-
mal power sSB is strictly increasing (decreasing) in ability—i.e., the “traditional”
(“novel”) scenario occurs—if and only if the marginal COE satisfies the IMRSC
(DMRSC) at aSB. The optimal power does not change with ability if and only if the
marginal COE satisfies the CMRSC at aSB.

If the marginal COE satisfies the IMRSC at the second-best solution, then the
second-best effort is sufficiently responsive to ability that the indirect effect of ability
on the strength of incentives dominates overall in this case. In contrast, if the marginal
COE satisfies the DMRSC at the second-best solution, then the optimal effort does
not increase rapidly enough with ability and the direct effect of ability on incentives
dominates. Finally, the total effect of ability on the strength of incentives is null if the
marginal COE satisfies the CMRSC at aSB as the two opposite effects exactly balance
each other.

Figure 1 displays an example in which the marginal COE structure associated
with the task satisfies the IMRSC for all parameter values implying a positive bias
(λ(k, a) > 0 for all (k, a) ∈ K × A). On the contrary, the marginal COE structure
displayed in Fig. 2 satisfies the DMRSC for all parameter values implying a negative
bias (λ(k, a) ∈ (−1, 0) for all (k, a) ∈ K × A).

To understand the intuition behind Proposition 1, let us think of a principal who
needs to hire a newagentwho is less talented than his predecessor (k1 > k0). In the right
panels of Figs. 1 and 2, the optimal power offered to the predecessor (s0) is determined
by the point A, where the agent’s incentive compatibility curve (ICC(k0)) is tangent
to the principal’s expected profits level curve, being the tangency condition given by:
vaa(k0, a0) = (1 − va(k0, a0))/(rσ 2s0). Additionally, and according to Eq. (3), the
power of the incentive scheme offered to the predecessor is implicitly represented by
the level curve of the marginal COE associated with equilibrium point X in the left
panels of Figs. 1 and 2. If the principal offered the new agent the same contract as
his predecessor, the agent would optimally react by switching to point B, exerting a
lower level of effort (a′ < a0) according to his best response function—given by the
ICC(k1) curve in the right panels of Figs. 1 and 2—that is, a′ solves s0 = va(k1, a′).
This implies a movement along the same level curve of the marginal COE (as the
power does not vary) from point X to point Y in the left panels of Figs. 1 and 2.
Such decrease in effort would generally not be optimal for the principal as the cost
of providing incentives would generally change (i.e., vaa(k1, a′) �= vaa(k0, a0)).20 In
such case, the principal could sway the agent’s behavior by adjusting the power of the

20 Weuse adiscrete change in k for ease of graphical exposition, but in reality, the inequality is satisfied for an
infinitesimal change in k: for anyfixed power s and ability level k, ifa′(s, k) is defined by va(k, a′(s, k)) ≡ s,

then dvaa (k,a′(s,k))
dk = vak (k,a′(s,k))

a′(s,k)
ε vak

vaa
,a

(k, a′(s, k)).
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scheme accordingly. The direction of said adjustment would depend on whether the
principal wanted to intensify or counteract the agent’s preliminary choice of effort a′.

If the marginal COE structure satisfies the IMRSC, providing incentives to the
new agent, relative to the old one, becomes more expensive than before since the
ICC(k1) curve is steeper than the ICC(k0) curve at a′ (i.e., vaa(k1, a′) > vaa(k0, a0)).
Therefore, the principal wants to further decrease the agent’s choice of effort by pro-
viding him weaker incentives. Notice that the new tangency condition is achieved
at a1 < a′ in the right panel of Fig. 1, leading to a strictly lower optimal power:
s1 = va(k1, a1) < va(k1, a′) = s0 and, hence, to the “traditional” scenario. Likewise,
notice that Z is below Y in the left panel of Fig. 1. On the contrary, the provi-
sion of incentives to the new agent is cheaper than before under the DMRSC (i.e.,
vaa(k1, a′) < vaa(k0, a0)), and so the principal wants to induce the agent to exert
more effort (a1 > a′) by providing him stronger incentives (s1 > s0, “novel” sce-
nario) as it is illustrated in the right panel of Fig. 2. Notice also that Z is above Y
in the left panel of Fig. 2. As a result, the same change in ability can lead to: (i) the
“traditional” scenario if the marginal COE satisfies the IMRSC; or (ii) the “novel”
scenario if the marginal COE satisfies the DMRSC.

A digression might be due at this point. As mentioned at the beginning of the
subsection, the ability affects both the total surplus and the ICC. And this is the reason
why—to determine the total effect of ability on the power of the scheme—we need
to compare the slope of the total surplus’ level curve and that of the ICC at point B
(as we did in the previous two paragraphs and in the right panels of Figs. 1 and 2):
they reflect—from the principal’s point of view—the marginal benefit and marginal
cost, respectively, of inducing an extra unit of effort from the agent via the adjustment
of the power of the wage schedule. Yet, though this is indeed the economic intuition
behind this exercise of comparative statics, we find that it can be expressed more
compactly in terms of the MRS of the marginal COE function (as in Proposition 1). In
turn, this means that the analysis based on the above-mentioned economic rationale
(illustrated by the right panels of Figs. 1 and 2) is equivalent to the one based on the
IMRSC/DMRSC property (and illustrated by the left panels of said figures). The left
panels are thus a sort of closed form perspective that summarizes the actual analysis
that the economic players carry out (right panels) when they face the “change-in-
ability” comparative-statics case. The fact that the whole process can be distilled to
a relatively simple technical condition on the COE function is a nice result of the
model which helps us identify the two qualitatively different scenarios that can ensue
(namely, the “traditional” and “novel” ones).

We proceed to illustrate our main result of the section. The optimal power under
moral hazard is invariant to ability in Example 1 since the marginal COE satisfies the
CMRSC for all parameter values.

Example 1 Assume v(k, a) = k(eαa − 1), with α > 0, A = [0, 1], K ⊂
((αeα)−1, (eα − 1)−1). This COE function satisfies Assumption 1. Since vak(k, a)/

vaa(k, a) = 1/(αk) for all (k, a) ∈ K × A, the marginal COE satisfies the CMRSC
and the bias is zero for all parameter values. As a result, the second-best strength
of incentives does not depend on the agent’s ability level (e.g., dsSB/dk = 0) by
Proposition 1.
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In contrast, Example 2 illustrates a non-monotonic relationship between incentives
and ability undermoral hazard for some parameter values: if the project of the principal
is of moderate risk and the parameter α is sufficiently high, the optimal power shows
an inverted U-shape in ability since the marginal COE function satisfies the IMRSC
(DMRSC) for sufficiently low (high) levels of effort, which are exerted by low- (high-)
ability agents in equilibrium. Thus, the highest power is offered to an agent with an
intermediate level of ability.

Example 2 Assume v(k, a) = a2k3+ (1/α)aα , with α ≥ 3/2, 0 = aL < aH < 1, and(
1−aα−1

H
2aH

) 1
3

< kL < kH <

(
α−aα−1

H
αaH

) 1
3

. This COE function satisfies Assumption 1.

Furthermore, ε vak
vaa

,a(k, a) = (2k3 + (α −1)(3−α)aα−2)/(2k3 + (α −1)aα−2) for all

(k, a) ∈ K ×A. As a result, ifα ∈ [3/2, 3], then ε vak
vaa

,a(k, a) > 0 for all (k, a) ∈ K ×A

implying that the marginal COE satisfies the IMRSC for all (k, a) ∈ K × A, and
hence, the optimal power is increasing in ability by Proposition 1. Suppose instead
that α > 3. Then, the marginal COE satisfies the IMRSC (DMRSC) at a if and only

if a < (>)ã(k, α) where ã(k, α) := (
2k3/((α − 1)(α − 3))

) 1
α−2 is increasing in k.

Let us further assume that kL < k̄ where k̄3 := (1/2)(α − 1)(α − 3)(1 + (α −
1)(α − 3))−(α−2)/(α−1), implying aFB(kL , α) = aSB(kL , r , 0, α) > ã(kL , α). Since
aSB is decreasing in σ 2, let us implicitly define σ 2

h as aSB(kL , r , σ 2
h , α) ≡ ã(kL , α).

Similarly, and by Eq. (10), σ 2
l < σ 2

h satisfies aSB(kH , r , σ 2
l , α) ≡ ã(kH , α).21 Under

moral hazard, if the principal’s risk of the project is such that:

(i) σ 2 ≤ σ 2
l , then ε vak

vaa
,a(k, aSB) < 0 for all k ∈ [kL , kH ): the marginal COE satisfies

the DMRSC at aSB, the bias is negative and the optimal power decreases with
ability;

(ii) σ 2
l < σ 2 < σ 2

h , then ε vak
vaa

,a(k, aSB) < (>)0 for all k < (>)k̂ where k̂ ∈ K

satisfies aSB(k̂, r , σ 2, α) ≡ ã(k̂, α) and it is decreasing in σ 2. Thus, the optimal
power has an inverted U-shape in k: the power decreases (increases) with ability
for sufficiently (insufficiently) able agents;

(iii) σ 2 ≥ σ 2
h , then ε vak

vaa
,a(k, aSB) > 0 for all k ∈ (kL , kH ]: the marginal COE satisfies

the IMRSC at aSB, the bias is positive and the optimal power increases with ability.

Ceteris paribus, the equilibrium relationship between incentives and ability is non-
monotonic if the principal’s project is neither sufficiently risky nor sufficiently safe.
In such case, an agent with an intermediate level of ability (k̂) is offered the strongest
incentives. If the principal’s project is sufficiently risky, the optimal strength of incen-
tives ismonotonically increasing in ability, whereas if it is sufficiently safe, the optimal
strength of incentives ismonotonically decreasing in ability. In other words, this shows
that the same COE function can generate some situations in which only the “tradi-
tional” scenario is observed for all parameter values (case iii), others in which only
the “novel” one results for all parameter values (case i), and still others in which both
occur, depending on the value of the parameters.

21 We remind the reader that Eq. (10) implies that the second-best effort in the second-best scenario is
decreasing in k.

123



468 SERIEs (2021) 12:453–487

The results obtained in Proposition 1 can be applied to common classes of cost struc-
tures, such as homothetic or separablemarginal COEs. The following three Corollaries
deal with these cases. Let first define aFB(kL) as the first-best effort level exerted by
the most able agent (i.e., va(kL , aFB(kL)) ≡ 1).

Corollary 1 Let us suppose that Assumption 1 holds. If the marginal COE function is
homothetic and strictly quasiconcave for all (k, a) ∈ K ×[aSB(kH , r , σ 2), aSB(kL , r ,

σ 2)], then the equilibrium power sSB strictly increases with ability. If the marginal
COE function is homothetic and strictly quasiconvex for all (k, a) ∈ K ×
[aSB(kH , r , σ 2), aSB(kL , r , σ 2)], then the equilibrium power sSB strictly decreases
with ability.

As mentioned in the previous subsection, if the marginal COE function is homoth-
etic, then the IMRSC (DMRSC) holds for all parameter values if the superior (inferior)
sets are strictly convex, that is, if the marginal COE function is strictly quasiconcave
(quasiconvex). Examples 3 and 4 illustrate Corollary 1, generating a monotonic rela-
tionship between the optimal power and ability. Example 3 is a generalization of the
“canonical model.”

Example 3 Assume v(k, a) = (1/α)aαk with α ≥ 2, aL = 0 < aH and a1−α
H <

kL < kH ≤ αa1−α
H (the “canonical model” corresponds to the case α = 2).

This COE function satisfies Assumption 1 and it generates a marginal COE func-
tion that is homothetic and strictly quasiconcave for all (k, a) ∈ K × A since
vak(k, a)/vaa(k, a) = (1/(α − 1))(a/k) for all (k, a) ∈ K × A, implying that the
equilibrium power is strictly increasing in ability by Corollary 1. Indeed, the marginal
rate of substitution of the marginal COE function is unit-elastic in effort by Euler’s
Theorem: ε vak

vaa
,a(k, a) = 1 for all (k, a) ∈ K × A, and hence, the marginal COE

satisfies the IMRSC for all parameter values.

Example 4 Assume v(k, a) = (aρ+1/(ρ + 1)) + akρ , with ρ > 1, aL = 0, aH ∈
(0, 1), (1 − aρ

H )1/ρ < kL < kH ≤ (1 − (aρ
H /(ρ + 1)))1/ρ . This COE function

satisfies Assumption 1. Since vak(k, a)/vaa(k, a) = (k/a)ρ−1, the marginal COE is
homothetic and strictly quasiconvex for all (k, a) ∈ K × A. Hence, the optimal power
is strictly decreasing in ability by Corollary 1. In fact, the marginal COE satisfies the
DMRSC for all parameter values since ε vak

vaa
,a(k, a) = 1−ρ < 0 for all (k, a) ∈ K ×A.

Under multiplicative separability of the marginal COE function, the IMRSC
(DMRSC) holds for all parameter values if and only if the marginal COE func-
tion is log-concave (log-convex) in effort. We remind the reader that the marginal
COE is log-concave (log-convex) in effort at any given level of effort a if the ratio
va(k, a)/vaa(k, a) is increasing (decreasing) in a.

Corollary 2 Let us suppose that Assumption1 holds and that the marginal COE function
is multiplicatively separable. For any given ability level, the optimal power sSB strictly
increases (decreases) with ability if and only if the marginal COE is strictly log-
concave (log-convex) in effort at aSB.
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Any function of effort which is homogeneous of degree α ≥ 2 (i.e., of the form
f (a) = (1/α)aα) is log-concave in effort for all values of effort by Euler’s Theorem.
Thus, Corollary 2 and Euler’s Theorem directly imply that the power is increasing in
ability if the marginal COE function is multiplicatively separable and simultaneously
homogeneous of degree α ≥ 2 in effort (as in Example 3 and the “canonical model”)
since then, ε vak

vaa
,a(k, a) = 1 > 0 for all (k, a) ∈ K × A by Euler’s Theorem. Note

that Corollary 2 can be applied to marginal COE functions that are not homothetic, as
for instance, to a COE function of the form v(k, a) = (1/α)aα(kβ + γ ) with β > 1
and any positive scalar γ > 0. Corollary 2 implies that for IRMSC to hold for all
parameter values, if the marginal COE function is multiplicative separable but not
homothetic, then quasiconcavity must be replaced by a more restrictive condition:
log-concavity in effort.22 According to Corollary 3, and relative to Corollary 2, even a
stronger condition is required for the power to be monotonically increasing in ability
under additive separability of the marginal COE, due to the absence of the interaction
term.23

Corollary 3 Let us suppose that Assumption 1 holds and that the marginal COE func-
tion is additively separable. For any given ability level, the optimal power sSB strictly
increases (decreases) with ability if and only if the marginal COE function is strictly
concave (convex) in effort at aSB and it is constant in ability if and only if the marginal
COE function is linear in effort at aSB.

Note that the marginal COE displayed in Example 4 is simultaneously additively
separable and strictly convex in effort for all parameter values since ρ > 1. Thus,
Corollary 3 can be applied, resulting in an incentive scheme strictly decreasing in
ability.

In sum, the results displayed in this subsection emphasize the relevance of abil-
ity on the design of optimal compensation schemes and the importance of the
IMRSC/DMRSC property of the marginal COE on shaping the second-best incen-
tive scheme.

4.3 Ability and performance pay

For any given level of risk of the principal’s project, more talented agents work harder
than less talented ones in equilibrium.As a result, more talented agents unambiguously
obtain a higher expected variable pay than less talented agents under the IMRSC or
CMRSC since they are also offered stronger (or at least, no weaker) incentives. We
now show that more talented agents may also obtain a higher variable pay under the
DMRSC, i.e., when they are offered lower powered contracts than less talented agents.

Proposition 2 Let us suppose that Assumption 1 holds. For any given ability level, the
expected performance pay sSBaSB is strictly increasing (decreasing) in ability if and
only if λ(k, aSB) > (<)(−1)(1 + εva ,a(k, aSB))−1.

22 Recall that any log-concave function is quasi-concave.
23 Recall that concavity implies log-concavity.
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Proposition 2 states that more talented agents obtain a higher expected performance
pay than less talented ones as long as the optimal effort is sufficiently responsive to
ability, that is, as long as the bias is sufficiently high.

Example 5 Assume v(k, a) = ak + (a3/3), with aL = 0, aH ∈ (0, 1], 1 − a2
H <

kL < kH ≤ 1 − (a2
H /3). This COE function satisfies Assumption 1 and the marginal

COE function satisfies the DMRSC for all parameter values since ε vak
vaa

,a(k, a) =
−1 for all (k, a) ∈ K × A. Furthermore, εvaa ,a(k, a) = 1. These conditions imply
that λ(k, a) < 0 and |λ(k, a)| = (1 − va(k, a) + εva ,a(k, a))−1(1 − va(k, a)) <

(1 + εva ,a(k, a))−1. Thus, although more talented agents are offered lower powered
contracts, theywork harder and obtain a higher expected variable pay than less talented
agents by Proposition 2, since λ(k, a) > (−1)(1 + εva ,a(k, a))−1 for all (k, a) ∈
K × A.24

4.4 Ability and efficiency loss

The loss due to inefficient risk-sharing, also called “efficiency loss,” is defined as
L(k, r , σ 2) := �FB(k) − �SB(k, r , σ 2). This section shows that the effect of ability
on the efficiency loss is usually aligned with its effect on incentives.

By Eqs. (7) and (8),

∂L

∂k
= rσ 2va(k, aSB)vak(k, aSB) +

[
vk(k, aSB) − vk(k, aFB)

]
(13)

The first term in Equation (13) is positive and reflects the increase in the risk-
premium that must be paid to a less able agent for the risk borne (the “risk-premium
effect”). The second term in Equation (13) is negative and it reflects the impact of
ability on the savings in wages paid in the second-best vis-a-vis the first-best (the
“savings effect"): even if the risk premium is zero, any principal matched with a less
talented agent must increase the compensation specified in the contract due to his
higher disutility of effort if she wants the contract to be accepted. However, as a lower
effort is implemented in equilibrium in the second-best than in the first-best (recall
that the second-best effort choice is given by Eq. (2)) and vak > 0 by Assumption
1, the expected payment must be increased by less in the second-best relative to the
first-best scenario, generating some savings for the principal. Proposition 3 specifies
that the risk premium effect dominates the savings effect if and only if the marginal
COE is relatively more convex than the function vk on (aSB, aFB).

Proposition 3 Let us suppose that Assumption 1 holds. For any given ability level,
the efficiency loss increases (decreases) with ability if and only if the function va is
relatively less (more) convex in effort than the function vk on (aSB, aFB), that is, if and
only if:

vak(k, aSB)/vaa(k, aSB) ≤ (≥)(vk(k, aFB)−vk(k, aSB))/(va(k, aFB)−va(k, aSB))

24 Note that the marginal COE function is additively separable and convex in effort, so Corollary 3 can be
applied in this example.
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The size of the risk premium effect depends on the curvature of the marginal COE
by Equations (1) and (2): the more convex in effort the marginal COE is, the greater in
size the risk premium is. A linear marginal COE implies a risk premium that is directly
proportional to the effort distortion aFB − aSB. A convex (concave) marginal COE
implies a risk premium that is more (less) than proportional to the effort distortion
aFB − aSB. Analogously, the size of the savings effect depends on the curvature of
the function vk : the more convex in effort the function vk is, the greater in size the
savings effect is in absolute values. As a result, the risk premium effect dominates if
and only if themarginal COE is relativelymore convex in effort than the function vk on
(aSB, aFB). By Assumption 1, vk(a, k) is assumed either linear or convex in effort for
all parameter values. This assumption and Proposition 3 directly imply Corollary 4.

Corollary 4 Let us suppose that Assumption 1 holds. For any given ability level, if
the marginal COE function is not convex in effort on (aSB, aFB), the efficiency loss is
increasing in ability.

For instance, if α ∈ [3/2, 2), the marginal COE displayed in Example 2 is a strictly
concave function of effort for all (k, a) ∈ K × A. Thus, if α ∈ [3/2, 2), the efficiency
loss increases with ability in Example 2 by Corollary 4.

Furthermore, Proposition 3 implies Corollary 5 which provides a sufficient condi-
tion in terms of the marginal rate of substitution of the marginal COE for determining
the sign of the relationship between the efficiency loss and ability.

Corollary 5 Let us suppose that Assumption 1 holds. For any given ability level, the
efficiency loss increases (decreases) with ability if vak(k, aSB)/vaa(k, aSB) ≤ (≥
)vak(k, a)/vaa(k, a) for all a ∈ (aSB, aFB). For any given ability level, the efficiency
loss is constant in ability if vak(k, a)/vaa(k, a) is invariant in effort on (aSB, aFB).

For any given ability level k, the efficiency loss increases with ability if themarginal
COE satisfies the IMRSC on (aSB, aFB) by Corollary 5. Analogously, the satisfaction
of the DMRSC on (aSB, aFB) by the marginal COE is a sufficient condition for the
efficiency loss to decrease with ability. We already showed that the marginal COE
satisfies the IMRSC/CMRSC/DMRSC for all parameter values in Example 3 Exam-
ples 4 and 5. Therefore, the efficiency loss is increasing/constant/decreasing in ability
in those examples, respectively, by Corollary 5.

Corollaries 10, 11, and 12, located in Supplementary Appendix, are applications of
Corollary 5 under different specifications of the marginal COE function and therefore,
they are the analog of Corollaries 1, 2 and 3.

4.5 Ability and effort distortion

In addition to the generation of a risk premium, the inefficient risk sharing also causes
an effort distortion as a lower level of effort is exerted in the second-best scenario
relative to the first-best. Let us define the effort distortion resulting from the infor-
mation asymmetry as D(k, r , σ 2) := aFB(k) − aSB(k, r , σ 2). The effort distortion
decreases with ability if and only if the principal induces a more talented agent to
increase the effort exerted in the second-best scenario by a higher amount than in the
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first-best scenario. The impact of ability on the effort distortion depends on the cur-
vature of the marginal rate of substitution with respect to effort by Equations (9)
and (10) and the fact that the equilibrium size of the bias is proportional to the
rate of change of the marginal rate of substitution. Since the size of the equilib-
rium bias also depends on the sensitivity of the second-best effort to risk (recall that
λ(k, aSB) = −εaSB,σ 2(k, aSB)ε vak

vaa
,a(k, aSB)), this sensitivity also plays a crucial role

on determining the effect of ability on the effort distortion.

Proposition 4 Let us suppose that Assumption 1 holds. For any given ability level,
effort underprovision increases (decreases) with ability if and only if:

vak(k, aFB)

vaa(k, aFB)
≥ (≤)

vak(k, aSB)

vaa(k, aSB)
+

∂
(

vak (k,aSB)

vaa(k,aSB)

)

∂a
aSB(−εaSB,σ 2(k, aSB)) (14)

It is immediate from Proposition 4 that if the marginal COE satisfies CMRSC
for all parameter values as in Example 1, then effort underprovision is constant
in ability. Suppose now that the marginal COE satisfies the IMRSC (DMRSC) at
the second-best effort. Proposition 4 implies that for any given ability level, effort
underprovision increases (decreases) with ability if the marginal rate of substitu-
tion function, vak(k, a)/vaa(k, a), is relatively convex in effort on (aSB, aFB). To
see this, suppose that the marginal rate of substitution is linearly increasing in effort
for all parameter values (as in Example 3). Then, effort underprovision increases
with ability if and only if the equilibrium size of the effort distortion is relatively
high, that is, if and only if aFB − aSB ≥ aSB(−εaSB,σ 2(k, aSB)) or equivalently,
1 ≥ (1 − εaSB,σ 2(k, aSB))(aSB/aFB). Note that this inequality is satisfied as long as
the second-best effort is not too sensitive to risk, as is the case in the “canonical model”
(and more broadly, in Example 3). In such cases, the power, the efficiency loss and
the effort distortion move in unison as ability changes.

Example 6 Example 3 is revisited. By Eq. (19) located in “Appendix,”

εaSB,σ 2(k, aSB) = − (1 − va(k, aSB))

εva ,a(k, aSB) + (1 − va(k, aSB))εvaa ,a(k, aSB)

From Eq. (1), we have that:

1 − va(k, aSB) = 1 − va(k, aSB)

va(k, aFB)
= 1 −

(
aSB

aFB

)α−1

Furthermore, εva ,a(k, aSB) = εvaa ,a(k, aSB) + 1 = α − 1. Let us define R :=
aSB/aFB < 1. Then

1 − εaSB,σ 2(k, aSB) = 1 + (1 − Rα−1)

(α − 1) + (α − 2)(1 − Rα−1)

= (α − 1)(2 − Rα−1)

(α − 1) + (α − 2)(1 − Rα−1)
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It is straightforward to see that (1 − εaSB,σ 2(k, aSB))R is increasing in R and that
limR→1(1− εaSB,σ 2(k, aSB))R = 1. Therefore, 1 > (1− εaSB,σ 2(k, aSB))(aSB/aFB),
and hence, the more talented the agent is, the greater the effort distortion is by Propo-
sition 4.

The impact of ability on effort underprovision in Example 5 depends on the particu-
lar level of the agent’s ability. In contrast with the “canonical model,” the marginal rate
of substitution of the marginal COE is inversely proportional to effort in Example 5,
and hence, effort underprovision increases with ability if and only if the second-best
effort is sufficiently sensitive to risk.25

Example 7 We revisit Example 5. Let us define R := aSB/aFB < 1. Notice that
εvaa ,a(k, aSB) = 1 for all k ∈ K and using Eq. (1):

1 − va(k, aSB) = 1 − va(k, aSB)

va(k, aFB)
= (aFB)2 − (aSB)2 = (aFB)2(1 − R2)

= (1 − k)(1 − R2)

which implies

εva ,a(k, aSB) = 2(aSB)2

1 − (1 − k)(1 − R2)

and

εaSB,σ 2(k, aSB) = − 1 − R2
(

2R2

1−(1−k)(1−R2)

)
+ (1 − R2)

= −1 − R2 − (1 − k)(1 − R2)2

1 + R2 − (1 − k)(1 − R2)2

Then Eq. (14) becomes:

0 ≥ (≤)
1

2aSB

(
1 − R + εaSB,σ 2(k, aSB)

)

Thus, effort underprovision increases (decreases) with ability if and only if
|εaSB,σ 2(k, aSB)| ≥ (≤)1 − R or equivalently:

k ≥ (≤)1 − (1 + R)−2 ⇔ 1 ≥ (≤)(aFB + aSB)2

As both aFB and aSB are decreasing in k, the effort distortion decreases (increases)
with ability if the agent is (is not) sufficiently talented. For instance, assume that
rσ 2 = 0.2, aH = 0.75 and K = [0.50, 0.74]. Then, the effort distortion is non-
monotonic in ability: it increases with k (decreases with ability) for any k ∈ [0.5, 0.67]
and it decreases with k (increases with ability) for any k ∈ [0.67, 0.74]. The left panel
of Fig. 3 illustrates how the effort distortion reaches its highest value at an intermediate
level of ability, k = 0.67.
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Fig. 3 Example 5 with rσ 2 = 0.2, aH = 0.75 and K = [0.50, 0.74]. In the left panel, the effort distortion
is non-monotonic in ability. In the right panel, the effort distortion rate is globally decreasing in ability

In sum, the power and the effort distortion need not move in unison after a shock in
talent, as it has been illustrated in Example 7. As we already showed in Eq. (12), the
direction of the impact of ability on the strength of incentives is driven by the sign of
the bias (specifically, the sign of ε vak

vaa
,a(k, aSB)), whereas the direction of the impact

of ability on the effort distortion is driven by the size of the bias (specifically, the size
of |εaSB,σ 2(k, aSB)|).

We now briefly show that in some cases, like the canonical model, talent counteracts
the negative effect of informational asymmetries on effort provision in percentage
terms in spite of generating a greater effort distortion measured in absolute values. Let
us formally define the effort-distortion rate as 1 − R(k, r , σ 2) where R(k, r , σ 2) :=
aSB(k, r , σ 2)/aFB(k) ∈ (0, 1) is the effort rate.

Proposition 5 Let us suppose that Assumption 1 holds. For any given ability level, the
effort-distortion rate strictly decreases with ability if: (i) ε vak

vaa
,a(k, a) ∈ [0, 1] for all

a ∈ (aSB, aFB); or if (ii) the marginal COE is additively separable and of the form
va(k, a) = g(k)+ fa(a), where fa is an homogeneous of degree at least one function.

The effort rate increases with ability if and only if the principal induces a
more talented agent to increase the effort exerted in the second-best scenario by
a higher percentage than in the first-best scenario: εR,k = εaSB,k − εaFB,k =
η(k, aFB)−η(k, aSB)(1+λ(k, aSB)), where η(k, a) := (vak(k, a)/vaa(k, a))(k/a) =
εva ,k(k, a)/εva ,a(k, a) for all (k, a) ∈ K × A, by Eqs. (9) and (10). A non-negative but
inelastic or unit-elastic marginal rate of substitution of the marginal COE with respect
to effort for all parameter values (as in Example 3) guarantees a decreasing-in-ability
effort-distortion rate for all levels of ability since it generates a non-negative bias in the
second-best scenario and a decreasing-in-effort η(k, a) function. Thus, if the marginal
rate of substitution is not very sensitive to effort, we unambiguously obtain that the
more talented the agent is, the lower the effort-distortion rate is.

A second sufficient condition for the effort-distortion rate to be strictly decreasing
in ability is the specific form of additive separability of the marginal COE displayed

25 Note that in both examples, it is satisfied that |εaSB,σ2 (k, aSB)| < 1.
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in Proposition 5. For instance, Example 5 satisfies ε vak
vaa

,a(k, a) = −1 < 0 for all

(a, k) ∈ A × K , but Proposition 5 can still be applied since its marginal COE is given
by va(k, a) = k + a2. The right panel of Fig. 3 illustrates how the effort-distortion
rate is strictly decreasing in ability in Example 5 despite its non-monotonicity when
measured in absolute values (instead of percentage terms).

5 Endogenousmatching

In Sects. 3 and 4, we analyzed the optimal contract in any given isolated relationship,
that is, taking as given the characteristics of the participants in the relationship. As
is well-known in the literature, by Equations (2) and (3), the higher the risk of the
principal’s project is, the lower the induced effort and the optimal power are in the
second-best scenario.26 This is the negative direct effect of risk on optimal effort and
incentives.

We now embed the principal-agent model in a competitive market setting to address
the endogenous determination of the characteristics of the partnerships that sign con-
tracts in the market.27 The characterization of the equilibrium matching between
principals who differ in the risk of their projects and agents who differ in their abil-
ity is relevant as it has implications on agents’ compensation. The results of this
section constitute our second contribution to the agency literature: the equilibrium
sorting pattern crucially depends on the structure of the COE function. Previous con-
tributions which assumed heterogeneous-in-ability agents found a positive sorting in
equilibrium under endogenous matching. Our contribution resides in identifying the
conditions on the COE structure that lead to negative or positive sorting in equilib-
rium.

Let start our analysis by noting that the linear contract and the CARA risk-
preferences turn the principal-agent model into a matching problem with perfectly
transferable utility. Next, consider a competitive market where a unit-measure con-
tinuum of principals—who differ only in terms of the risk of their projects (σ 2 ∈
[σ 2

L , σ 2
H ] := 
)—endogenously match pairwise with a unit-measure continuum of

agents, who differ only in their ability.28 Once a match between a principal of type
σ 2 and an agent of type k is formed, the equilibrium strength of incentives and effort
choice are obtained as in Sect. 3.29

We first focus on the conditions on the COE function that yield monotone assorta-
tive matching in equilibrium. If the agents’ reservation certainty equivalent does not
increase sharply with ability, the joint surplus of any given match is increasing in both
the agent’s ability and the firm’s safety (i.e., decreasing in k and σ 2) by the Envelope

26 Please, refer to Equation (18) located in “Appendix.”
27 The book by Roth and Sotomayor (1990) is an excellent source for the theory of two-sided matching
models.
28 Therefore, the COE function associated with the tasks to be executed by all agents is assumed to be the
same across all matches. The matches are assumed to differ only in the traits of their partners.
29 Since utility is perfectly transferable, the fixed transfer from each principal to her agent will now be
endogeneized in equilibrium and not be given by Eq. (4). Yet, the cost of effort and risk bearing must be
added as in Eq. (4).
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Theorem.30 Define positive assortative matching, or PAM, as the case in which lower-
risk (lower-σ 2) principals match higher-ability (lower-k) agents. Similarly, negative
assortative matching, or NAM, is the case in which lower-risk (lower-σ 2) principals
match lower-ability (higher-k) agents.

Following Legros and Newman (2002)’s seminal paper, efficiency dictates PAM
in equilibrium for all type distributions if and only if the equilibrium joint surplus is
supermodular in (k, σ 2) for all parameter values, that is, if and only if the traits of the
agents and principals are complements (i.e., a riskier principal is less harmed by being
matched with a less talented agent than a safer one). Analogously, there will be NAM
in equilibrium for all type distributions if and only if the equilibrium joint surplus is
submodular in (k, σ 2) for all parameter values, that is, if and only if the traits of the
agents and principals are substitutes for all parameter values (i.e., a riskier principal
is more harmed by being matched with a less able agent than a safer one).

It turns out that the supermodularity/submodularity of the joint surplus is also driven
by the sign of the bias.

Proposition 6 Let us suppose that Assumption 1 holds. In equilibrium, the economy
is positively sorted for all type distributions if and only if the marginal COE does not
satisfy the DMRSC for each (k, a) ∈ K ×[aSB(kH , r , σ 2

H ), aSB(kL , r , σ 2
L)]. In equilib-

rium, the economy is negatively sorted for each type distributions if the marginal COE
does not satisfy the IMRSC for each (k, a) ∈ K × [aSB(kH , r , σ 2

H ), aSB(kL , r , σ 2
L)].

Proposition 6 resembles Proposition 1 since the joint surplus is supermodular if
and only if the bias is positive (hence, the “traditional” scenario) and submodular if
and only if the bias is negative (hence, the “novel” scenario). Therefore, PAM ensues
in equilibrium in Example 3 since the marginal COE satisfies the IMRSC for all
parameter values, whereas NAM ensues in equilibrium in Example 4 and Example 5
since themarginal COE satisfies theDMRSC for all parameter values. The equilibrium
assignment in Example 1 could be either PAM andNAMas themarginal COE satisfies
CMRSC for all parameter values.

The optimal equilibrium assignment in Example 2 depends on the principals’ and/or
agents’ characteristics. If either all projects are sufficiently safe, or all the agents have a
sufficiently low degree of risk aversion (i.e., if σ 2

H ≤ σ 2
l ), there is NAM in Example 2

since the bias is negative in equilibrium. If either all projects are sufficiently risky,
or all the agents have a sufficiently high degree of risk aversion (i.e., if σ 2

L ≥ σ 2
h ),

there is PAM in Example 2, as the bias is positive in equilibrium. On the contrary, if
σ 2

L < σ 2
h and σ 2

H > σ 2
l , the optimal assignment is not globally monotone assortative

in Example 2 since the equilibrium matching is negatively assortative for all σ 2 ∈
[σ 2

L , σ 2
l ], but it is positively assortative for all σ 2 ∈ [σ 2

h , σ 2
H ].31

30 We remind the reader that if the agents’ reservation certainty equivalent does not increase sharply with
ability, then principals unanimously agree on the ranking of agents: a more talented agent is more desirable
than a less talented one from all principals’ perspectives by Eq. (8).
31 The possibly discontinuous equilibrium matching function could be fully characterized for specific
numerical problems by solving the LP1 problem in the assignment game of Shapley and Shubik (1971), as
done in Serfes (2008).
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The results stated in Proposition 6 can be suitably modified if the marginal COE is
homothetic or separable. Thus, Corollaries 6, 7 and 8 are analogous to Corollaries 1, 2
and 3.

Corollary 6 Let us suppose that Assumption 1 holds. There is PAM in equilibrium for
all type distributions if the marginal COE function is homothetic and strictly quasi-
concave for all (k, a) ∈ K ×[aSB(kH , r , σ 2

H ), aSB(kL , r , σ 2
L)]. Instead, there is NAM

in equilibrium for all type distributions if the marginal COE function is homothetic
and strictly quasiconvex for all (k, a) ∈ K × [aSB(kH , r , σ 2

H ), aSB(kL , r , σ 2
L)].

Corollary 7 Let us suppose that Assumption 1 holds and that the marginal COE
function is multiplicatively separable. Then, there is PAM in equilibrium for all
type distributions if and only if the marginal COE is log-concave in effort for all
(k, a) ∈ K × [aSB(kH , r , σ 2

H ), aSB(kL , r , σ 2
L)]. There is NAM in equilibrium for

all type distributions if the marginal COE is log-convex in effort for all (k, a) ∈
K × [aSB(kH , r , σ 2

H ), aSB(kL , r , σ 2
L)].

Corollary 8 Let us suppose that Assumption 1 holds and that the marginal COE
function is additively separable. There is PAM in equilibrium for all type distri-
butions if and only if the marginal COE is concave in effort for all (k, a) ∈
K × [aSB(kH , r , σ 2

H ), aSB(kL , r , σ 2
L)] and there is NAM in equilibrium for all

type distributions if the marginal COE is convex in effort for all (k, a) ∈ K ×
[aSB(kH , r , σ 2

H ), aSB(kL , r , σ 2
L)].

Let μ(σ 2) denote the measure-preserving matching function under frictionless
endogenous matching and let μ′(σ 2) denote its derivative. The relationship between
risk σ 2 and incentives sSB is driven by two effects: the above-mentioned negative
direct effect (the first term in Eq. (15)), implied by the CARA assumption, and an
indirect effect (the second term in Eq. (15)), via the assignment. Specifically, the total
effect of risk on incentives is given by:

dsSB

dσ 2 = vaa(μ(σ 2), aSB)
daSB

dσ 2 +
(

vaa(μ(σ 2), aSB)
daSB

dk
+ vak(μ(σ 2), aSB)

)
μ′(σ 2)

(15)

= vaa(μ(σ 2), aSB)

(
daSB

dσ 2 − vak(μ(σ 2), aSB)

vaa(μ(σ 2), aSB)
λ(μ(σ 2), aSB)μ′(σ 2)

)
, (16)

where the second equality follows from Eq. (10) and daSB/dσ 2 < 0 is computed in
Eq. (18) in “Appendix.” The indirect effect of risk on incentives (the second term inside
the parenthesis of Eq. (16)) is proportional to the bias and negative under monotone
assortative matching due to the perfect correlation between the sign of the bias and
the monotone sorting pattern that ensues in equilibrium (Proposition 6). For any given
ability level, the indirect effect of risk on incentives is: (i) zero if the marginal COE
satisfies CMRSC for all parameter values, since the bias is zero; (ii) negative if the
marginal COE satisfies the IMRSC for all parameter values since there is PAM by
Proposition 6 and the bias is positive by Proposition 1; (iii) negative if the marginal
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COE satisfies the DMRSC for all parameter values since there is NAM by Proposition
6 and the bias is negative by Proposition 1. Corollary 9 summarizes these findings:

Corollary 9 Let us suppose that Assumption 1 holds. If the marginal COE does
not satisfy the DMRSC for all (k, a) ∈ K × [aSB(kH , r , σ 2

H ), aSB(kL , r , σ 2
L)],

or alternatively, the marginal COE does not satisfy the IMRSC for all (k, a) ∈
K × [aSB(kH , r , σ 2

H ), aSB(kL , r , σ 2
L)], then the indirect effect of risk on incentives

is non-positive for all type distributions, and therefore, the total effect of risk on incen-
tives is negative.

Therefore, according to Corollary 9, undermonotone assortativematching, the total
effect of risk on incentives is unambiguously negative in equilibrium since the direct
and indirect effects (if any) of risk on incentives reinforce each other. Intuitively, our
model predicts that in an equilibrium characterized bymonotone assortativematching,
riskier principals sign lower-powered contracts since output is a relatively poor signal
of effort, whereas safer principals sign higher-powered contracts since output is a
relatively good signal of effort.

In Example 2, the optimal assignment is not globallymonotone assortative for some
parameter values. However, the indirect effect of risk on incentives is negative in all
regions of the parameter space in which the matching function is locally continuous
andmonotone, since sign{μ′(σ 2)} = sign{λ(μ(σ 2), aSB(μ(σ 2), r , σ 2))} by the proof
of Proposition 6. As a result, if the strength of incentives did not globally decrease
with risk, it should be due to a discontinuity in the matching function.

The rest of the section analyzes the effect of risk on the equilibrium effort. As
mentioned earlier, the direct effect of risk on the optimal effort is clearly negative. But
there is also an indirect effect caused by the equilibrium assignment. If there is PAM in
equilibrium (that is, if the marginal COE satisfies either the IMRSC or CMRSC for all
parameter values), the direct and indirect effects of risk on effort reinforce each other.
In equilibrium, riskier principals sign lower-powered contracts and attract less talented
agentswho exert a lower level of effort in equilibriumboth due to their lower ability and
to their higher exposition to risk. Suppose now that the marginal COE satisfies either
the DMRSC or CMRSC for all parameter values and there is NAM in equilibrium
by Proposition 6. In this case, the direct and indirect effects of risk on the optimal
effort work in opposite directions since daSB/dσ 2 < 0 but (daSB/dk)μ′(σ 2) > 0. In
equilibrium, riskier principals sign lower-powered contracts but attract more talented
agents. On the one hand, the higher ability of the agent induces the riskier principal to
recommend a higher level of effort. On the other hand, the greater risk of her project
induces the riskier principal to recommend a lower level of effort. The sign of the total
effect of risk on optimal effort depends on which of these two effects dominates:

daSB

dσ 2 + daSB

dk
μ′(σ 2) ≥ (≤)0 ⇔

−μ′(σ 2) ≥ (≤)
aSB

σ 2

vaa(μ(σ 2), aSB)

vak (μ(σ 2), aSB)

(
−εaSB,σ 2 (μ(σ 2), aSB)

1 − εaSB,σ 2 (μ(σ 2), aSB)ε vak
vaa

,a(μ(σ 2), aSB)

)
⇔

−μ′(σ 2) ≥ (≤)
aSB

σ 2

vaa(μ(σ 2), aSB)

vak (μ(σ 2), aB)

(
(1 − va(μ(σ 2), aSB))

εva ,a(μ(σ 2), aSB) + (1 − va(μ(σ 2), aSB))εvak ,a(μ(σ 2), aSB)

)
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Ourmodel predicts that in an equilibrium characterized by NAM, the indirect effect
of risk on the optimal effort dominates and thus, more talented agents exert higher
levels of effort than less talented ones if and only if thematching function is sufficiently
steep. Alternatively, in an equilibrium characterized by NAM, the direct effect of risk
on the optimal effort dominates and thus, more talented agents exert lower levels of
effort than less talented ones if and only if the matching function is sufficiently flat.

6 Conclusions

Our paper highlights that incentives can depend on more dimensions than the prin-
cipal’s risk and the agent’s risk aversion, such as the agent’s ability and the nature
of the task performed. We extend the existing theory, while encompassing previous
models proposed in the agency literature. Specifically, we show the implications of
generalizing the disutility of effort function under linear-CARA risk preferences. We
find that, in equilibrium, there is a positive (negative) relationship between the power
of the incentive scheme and the agent’s ability—that is, we are in the “traditional"
(“novel”) scenario—if and only if the marginal COE satisfies the IMRSC (DMRSC).

The “canonical model”—in which the marginal COE function satisfies the IMRSC
for all parameter values—is thus the quintessential example of the “traditional” sce-
nario. Its two key predictions are that: (i) the strength of incentives is positively
correlatedwith the ability of the agent and (ii) the stronger the incentives, the harder the
agent will work. We show that these predictions do not hold true if the marginal COE
satisfies the DMRSC since, in this case, high-ability agents face weaker incentives
than low-ability ones but work harder in (partial) equilibrium.

Furthermore, we show that the market equilibrium sorting pattern is sensitive to
those same properties of the marginal COE structure: the market is positively sorted
in the “traditional” scenario (since the IMRSC holds for all parameter values) and
negatively sorted in the “novel” scenario (since the DMRSC holds for all parameter
values). Yet, the total effect of risk on incentives is negative undermonotone assortative
matching—that is, in both scenarios—since the indirect effect of risk on incentives
reinforces the direct effect via the market assignment. Finally, the direct and indirect
effect of risk on second-best effort reinforces each other only under positive assortative
matching (i.e., in the “traditional” scenario). Under negative assortative matching
(i.e., in the “novel” scenario), the direct (indirect) effect of risk on the optimal effort
dominates if and only if the matching function is sufficiently flat (steep). In such case,
efficiency dictates that riskier principals are matched with more talented agents, who
are offered less powered contracts and exert lower (higher) levels of effort than less
talented ones.

Modeling the heterogeneity of agents in talent and risk aversion and exploring the
robustness of our results in a model with wealth effects are left for future research.
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Appendix A: Proofs of results

Derivation of Equation (10):
By Eq. (2) and the implicit function theorem:

daSB

dk
= − vak(k, aSB)(1 + rσ 2vaa(k, aSB)) + rσ 2va(k, aSB)vaak(k, aSB)

vaa(k, aSB)(1 + rσ 2vaa(k, aSB)) + rσ 2va(k, aSB)vaaa(k, aSB)
=

= −vak(k, aSB)

vaa(k, aSB)

⎛
⎝1 + rσ 2vaa(k, aSB) + rσ 2va(k, aSB)

εvak ,a(k,aSB)

a

1 + rσ 2vaa(k, aSB) + rσ 2va(k, aSB)
εvaa ,a(k,aSB)

a

⎞
⎠ =

= −vak(k, aSB)

vaa(k, aSB)

(
a + rσ 2va(k, aSB)(εva ,a(k, aSB) + εvak ,a(k, aSB))

a + rσ 2va(k, aSB)(εva ,a(k, aSB) + εvaa ,a(k, aSB))

)
=

= −vak(k, aSB)

vaa(k, aSB)

(
1 + rσ 2va(k, aSB)(εvak ,a(k, aSB) − εvaa ,a(k, aSB))

a + rσ 2va(k, aSB)(εva ,a(k, aSB) + εvaa ,a(k, aSB))

)

By Eq. (2), rσ 2va(k, aSB) = 1−va(k,aSB)

vaa(k,aSB)
. Substituting this equality into the equa-

tion immediately above, multiplying and dividing the numerator and denominator by
vaa(k, aSB)/va(k, aSB) and using Footnote (18), we get:

daSB

dk
= −vak(k, aSB)

vaa(k, aSB)⎛
⎜⎝1 +

(
1−va(k,aSB)

va(k,aSB)

)
ε vak

vaa
,a(k, aSB)

εva ,a(k, aSB) +
(
1−va(k,aSB)

va(k,aSB)

)
(εva ,a(k, aSB) + εvaa ,a(k, aSB))

⎞
⎟⎠

Finally, Equation (10) is obtained by rearranging the denominator of the second term
inside the parentheses. 
�
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Proof of Proposition 1 The proof follows directly from Assumption 1 and Eqs. (11)
and (12), since

ε vak
vaa

,a(k, aSB) =
∂

(
vak (k,aSB)

vaa(k,aSB)

)

∂a

(
vak(k, aSB)

vaa(k, aSB)

)−1

aSB.


�
Proof of Corollary 1 If the marginal COE is homothetic, then it is a monotonic trans-
formation of an homogeneous-of-degree-one function: va(k, a) = h(w(k, a)) where
h(·) is a strictly increasing function and w(a, k) is homogeneous-of-degree-one. This
implies that wk(k, a) and wa(k, a) are homogeneous of degree zero. As a result,
for any scalar t > 0, the marginal rate of substitution of the level curves of the
marginal COE in a diagram with variable k measured in the horizontal axis satisfies
vak (k,a)
vaa(k,a)

= wk (k,a)
wa(k,a)

= wk (tk,ta)
wa(tk,ta)

= vak (tk,ta)
vaa(tk,ta)

. For any scalar α > 1, let us implicitly
define t > 1 by va(k, αa) ≡ va(tk, ta).

If the marginal COE is strictly quasiconcave for all (k, a) ∈ K × [aSB(kH , r , σ 2),

aSB(kL , r , σ 2)], then vak (k,αa)
vaa(k,αa)

>
vak (tk,ta)
vaa(tk,ta)

= vak(k,a)
vaa(k,a)

for all (k, a) ∈ K ×
[aSB(kH , r , σ 2), aSB(kL , r , σ 2)]. As vak (k,a)

vaa(k,a)
is strictly increasing in a for all (k, a) ∈

K × [aSB(kH , r , σ 2), aSB(kL , r , σ 2)], then for any given k ∈ K , the marginal COE
satisfies the IMRSC at aSB. The result follows by applying Proposition 1.

Conversely, if the marginal COE is strictly quasiconvex for all (k, a) ∈ K ×
[aSB(kH , r , σ 2), aSB(kL , r , σ 2)], then vak (k,αa)

vaa(k,αa)
<

vak (tk,ta)
vaa(tk,ta)

= vak (k,a)
vaa(k,a)

for all (k, a) ∈
K × [aSB(kH , r , σ 2), aSB(kL , r , σ 2)]. Thus, for any given k ∈ K , the marginal COE
satisfies the DMRSC at aSB. The result follows by applying Proposition 1. 
�

:

Proof of Corollary 2 If the marginal COE is multiplicatively separable, then it is of the
formva(k, a)=g(k) fa(a).Hence,vak(k, a)/vaa(k, a)=(g′(k)/g(k))( fa(a)/ faa(a)).

If the marginal COE is strictly log-concave in effort at aSB, then fa is strictly
log-concave in a at aSB since va(k, a)/vaa(k, a)= fa(a)/ faa(a). Since fa is strictly
log-concave in a at aSB, fa(a)/ faa(a) is strictly increasing in a at aSB implying
ε vak

vaa
,a(k, aSB) > 0 for all k ∈ K . Hence, λ(k, aSB) > 0 for all k ∈ K and

dsSB/dk < 0 by Eq. (12). For the necessary result, by Eq. (12), dsSB/dk < 0
only if λ(k, aSB) > 0 for all k ∈ K . By Eqs. (2) and (11) and Assumption 1,
λ(k, aSB) > 0 for all k ∈ K only if ε vak

vaa
,a(k, aSB) > 0 for all k ∈ K . Since

vak(k, a)/vaa(k, a) = (g′(k)/g(k))( fa(a)/ faa(a)), ε vak
vaa

,a(k, aSB) > 0 for all k ∈ K

only if fa(a)/ faa(a) is strictly increasing in a at aSB, that is, only if va(k, a)/vaa(k, a)

is strictly increasing in a at aSB, or equivalently, va is strictly log-concave in a at aSB.
The procedure is analogous for the log-convexity case. 
�
:

Proof of Corollary 3 Let us assume that themarginal COE satisfies Assumption 1 and it
is of the form va(k, a) = g(k)+ fa(a) for all (k, a) ∈ K × A. Then vak (k,a)

vaa(k,a)
= g′(k)

faa(a)
.

The result follows by directly applying Proposition 1. 
�
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:

Proof of Proposition 2 By Eqs. (3) and (10), we get that:

dsSBaSB

dk
= vak(k, aSB)aSB +

(
vaa(k, aSB)aSB + va(k, aSB)

) daSB

dk
=

=
(

−vak(k, aSB)

vaa(k, aSB)

)
va(k, aSB)

(
1 + λ(k, aSB)(1 + εva ,a(k, aSB))

)

Therefore, byAssumption 1, d(sSBaSB)/dk < (>)0 if and only if 1+λ(k, aSB)(1+
εva ,a(k, aSB)) > (<)0 or equivalently, λ(k, aSB) > (<) − (1 + εva ,a(k, aSB))−1. 
�

:

Proof of Proposition 3 By the use of Eqs. (1) and (2), Eq. (13) can be rewritten as
follows:

∂L

∂k
= vak(k, aSB)

[(
va(k, aFB) − va(k, aSB)

vaa(k, aSB)

)
−

(
vk(k, aFB) − vk(k, aSB)

vak(k, aSB)

)]

(17)

The result is obtained by rearranging Eq. (17). 
�
:

Proof of Corollary 4 First, we show that Assumption 1 implies that vk is either linear
or convex in effort for all a ∈ (aSB, aFB). To see this, notice that vaak(k, a) ≥ 0 for all

(k, a) ∈ K ×A such that a > aL implies that vk (k,aFB)−vk(k,aSB)

vak(k,aSB)
= ∫ aFB

aSB
vak (k,a)

vak (k,aSB)
da ≥

∫ aFB

aSB 1da = aFB − aSB for any given k ∈ K , and hence, vk(k, aFB) ≥ vk(k, aSB) +
vak(k, aSB)(aFB − aSB) for any given k ∈ K . Fix k ∈ K . If va is not convex in effort
on (aSB, aFB), then va(k, aFB) ≤ va(k, aSB) + vaa(k, aSB)(aFB − aSB), implying
va(k,aFB)−va(k,aSB)

vaa(k,aSB)
≤ aFB − aSB ≤ vk (k,aFB)−vk (k,aSB)

vak (k,aSB)
. By applying Eq. (17), we get

that ∂L
∂k ≤ 0. 
�

:

Proof of Corollary 5 Fix k ∈ K . By rearranging Eq. (17), we get that ∂L
∂k ≥ (≤)0 if and

only if:

∫ aFB

aSB
vaa(k, a)da ≥ (≤)

vaa(k, aSB)

vak(k, aSB)

∫ aFB

aSB
vak(k, a)da

⇐⇒
∫ aFB

aSB

(
vaa(k, a)

vak(k, a)
− vaa(k, aSB)

vak(k, aSB)

)
vak(k, a)da ≥ (≤)0
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If vak (k,a)
vaa(k,a)

≥ vak (k,aSB)

vaa(k,aSB)
for all a ∈ (aSB, aFB), then ∂L

∂k ≤ 0. Analogously, if vak (k,a)
vaa(k,a)

≤
vak (k,aSB)

vaa(k,aSB)
for all a ∈ (aSB, aFB), then ∂L

∂k ≥ 0. 
�
:

Proof of Proposition 4 By Eqs. (9) and (10):

dD

dk
= daFB

dk
− daSB

dk
= −vak(k, aFB)

vaa(k, aFB)
+ vak(k, aSB)

vaa(k, aSB)
(1 + λ(k, aSB))

Since λ(k, aSB) = −εaSB,σ 2(k, aSB)ε vak
vaa

,a(k, aSB), the result is obtained by substitut-

ing this expression into the above equation. 
�
:

Proof of Proposition 5 We showed in the text that εR,k = εaSB,k −εaFB,k = η(k, aFB)−
η(k, aSB)(1 + λ(k, aSB)).

The first sufficient condition in Proposition 5 follows directly from the fact that
εη,a(k, a) = ε vak

vaa
,a(k, a) − 1.

If the marginal COE is additively separable, i.e., va(k, a) = g(k) + fa(a), then
vak(k, a) = g′(k) and vaa(k, a) = faa(a) for all (k, a) ∈ K × A. Hence, η(k, a) =
(kg′(k)/a faa(a)). In addition, εvak ,a(k, a) = 0 and εvaa ,a(k, a) = ε faa ,a(a) implying
ε vak

vaa
,a(k, a) = −ε faa ,a(a) for all (k, a) ∈ K × A. By Eq. (11), η(k, a)(1+λ(k, a)) =

kg′(k)/ψ(k, a) where ψ(k, a) := a faa(a) + va(k, a)(1 − va(k, a))ε faa ,a(a). The
homogeneity of degree n implies—by Euler’s theorem—that ε fa ,a(a) is a constant
(and henceforth, it will be denoted by ε fa ,a) equal to its degree of homogeneity and

ε fa ,a = ε faa ,a + 1. Since ε faa ,a is also a constant, then
∂ε faa ,a

∂a = 0. This, in turn,
implies that

∂ψ(k, a)

∂a
= faa(a)

(
1 + 2ε faa ,a(1 − va(k, a))

)

Fix k ∈ K . If ε fa ,a ≥ 1, then ε faa ,a = ε fa ,a −1 ≥ 0, and by Assumption 1 and Eq. (2),
∂ψ(k,a)

∂a > 0 for all a ∈ [aL , aFB(k)]. In turn, this implies that η(k, a)(1 + λ(k, a)) is
strictly decreasing in a for all a ∈ [aL , aFB(k)]. 
�
Proof of Proposition 6 By applying the Envelope Theorem to Eq. (6), we find that
the joint surplus is increasing in both the principal’s safety and the agent’s ability.
As it is well known in the literature (please refer to Legros and Newman (2002),
supermodularity (submodularity) of the joint surplus is a necessary and sufficient
condition for PAM (NAM) for all distributions of agents’ and principals’ types. From
Eq. (2) and Assumption 1,

daSB

dσ 2 = − rva(k, aSB)vaa(k, aSB)

vaa(k, aSB) + rσ 2
(
v2aa(k, aSB) + va(k, aSB)vaaa(k, aSB)

) = (18)
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= −aSB

σ 2

(1 − va(k, aSB))

εva ,a(k, aSB) + (1 − va(k, aSB))εvaa ,a(k, aSB)
< 0 (19)

which, together with the application of the Envelope Theorem to Eq. (6), implies

∂2SSB

∂k∂σ 2 = −va(k, aSB)vak(k, aSB)

[
r +

(
1

va(k, aSB)
+ rσ 2

aSB (εva ,a(k, aSB) + εvak ,a(k, aSB))

)
daSB

dσ 2

]

= rva(k, aSB)vak(k, aSB)(−εaSB,σ 2(k, aSB))ε vak
vaa

,a(k, aSB)

where the last equality follows fromEq. (18) and Eq. (2) which implies 1
va(k,aSB)

aSB

rσ 2 =
va(k,aSB)

1−va(k,aSB)
εva ,a(k, aSB). ByAssumption 1, ∂2SSB

∂σ 2∂k
≥ (≤)0 if and only if ε vak

vaa
,a(k, aSB)

≥ (≤)0. Note that aSB(kH , σ 2
H ) = min{aSB(k, σ 2)|(k, σ 2) ∈ K × 
} and

aSB(kL , σ 2
L) = max{aSB(k, σ 2)|(k, σ 2) ∈ K × 
} since aSB is strictly decreas-

ing in both k and σ 2 by Eqs. (2) and (18). Let μ(σ 2) denote a measure-preserving
matching function. Then, underNAM,min{aSB(μ(σ 2), σ 2)|σ 2 ∈ 
} ≥ aSB(kH , σ 2

H )

and max{aSB(μ(σ 2), σ 2)|σ 2 ∈ 
} ≤ aSB(kL , σ 2
L). Therefore, the satisfaction of

ε vak
vaa

,a(k, aSB) ≤ 0 for all (k, a) ∈ K × [aSB(kH , σ 2
H ), aSB(kL , σ 2

L)] is a sufficient

condition for NAM. 
�
:

Proofs of Corollaries 6, 7 and 8 The proofs of Corollaries 6, 7 and 8 are analogous to
the proofs of Corollaries 1, 2 and 3 but applying Proposition 6 instead of Proposition 1.
The analogy is transparent so details are omitted. 
�

:

Proof of Corollary 9 We examine the sign of Eq. (16). The sign of daSB/dσ 2 is unam-
biguously negative by Eq. (18).

If the rate vak(k, a)/vaa(k, a) is weakly increasing in a for all (k, a) ∈ K ×
[aSB(kH , σ 2

H ), aSB(kL , σ 2
L)] and strictly increasing in a for some (k, a) ∈ K ×

[aSB(kH , σ 2
H ), aSB(kL , σ 2

L)], then: (i) we have a non-negative bias for all ability lev-
els (λ(k, aSB) ≥ 0 for all k ∈ K ), which implies that the second-best power sSB is
increasing in ability by Eq. (12) and Assumption 1; (ii) there is PAM in equilibrium by
Proposition 6 (μ′(σ 2) ≥ 0). Thus, −(vak(μ(σ 2), aSB)/vaa(μ(σ 2), aSB))λ(μ(σ 2),

aSB)μ′(σ 2) ≤ 0 which implies dsSB/dσ 2 < 0 by Eq. (16) and Assumption 1.
Analogously, if the rate vak(k, a)/vaa(k, a) isweakly decreasing ina for all (k, a) ∈

K × [aSB(kH , σ 2
H ), aSB(kL , σ 2

L)] and strictly decreasing in a for some (k, a) ∈ K ×
[aSB(kH , σ 2

H ), aSB(kL , σ 2
L)] then: (i) we have a non-positive bias for all ability levels

(λ(k, aSB) ≤ 0 for all k ∈ K ) and the second-best power sSB is decreasing in ability by
Proposition 1; (ii) there is NAMby Proposition 6 (μ′(σ 2) ≤ 0). Hence, dsSB/dσ 2 < 0
in Eq. (16) since−(vak(μ(σ 2), aSB)/vaa(μ(σ 2), aSB))λ(μ(σ 2), aSB)μ′(σ 2) ≤ 0 and
vaa(a, k) > 0 by Assumption 1.
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If the rate vak(k, a)/vaa(k, a) is invariant in a for all (k, a) ∈ K × [aSB(kH , σ 2
H ),

aSB(kL , σ 2
L)] then there is no bias for all ability levels (λ(k, aSB) = 0 for all k ∈ K ),

implying no indirect effect of risk on incentives. Thus, the total effect is equal to its
negative direct effect given by Eq. (18). 
�

Appendix B: Supplementary appendix

Corollary 10 Let us suppose that Assumption 1 holds. If the marginal COE function is
homothetic and strictly quasiconcave for all (k, a) ∈ K ×[aSB(kH , r , σ 2), aFB(kL)],
then the efficiency loss increases with ability. If the marginal COE function is homo-
thetic and strictly quasiconvex for all (k, a) ∈ K × [aSB(kH , r , σ 2), aFB(kL)], then
the efficiency loss decreases with ability.

Proof From the proof of Corollary 1, if the marginal COE is homothetic and strictly
quasiconcave for all (k, a) ∈ K × [aSB(kH , r , σ 2), aFB(kL)], then vak (k,a)

vaa(k,a)
is strictly

increasing in a for all (k, a) ∈ K × [aSB(kH , r , σ 2), aFB(kL)]. Thus, for any given

k ∈ K , vak (k,a)
vaa(k,a)

>
vak (k,aSB)

vaa(k,aSB)
for all a ∈ (aSB, aFB). The result is direct by applying

Corollary 5. Analogously, if the marginal COE is homothetic and strictly quasiconvex
for all (k, a) ∈ K ×[aSB(kH , r , σ 2), aFB(kL)], then vak (k,a)

vaa(k,a)
is strictly decreasing in a

for all (k, a) ∈ K ×[aSB(kH , r , σ 2), aFB(kL)] by the proof of Corollary 1. Hence, for
any given k ∈ K , vak (k,a)

vaa(k,a)
<

vak(k,aSB)

vaa(k,aSB)
for all a ∈ (aSB, aFB). By applying Corollary 5,

we get the result. 
�
A less (more) restrictive condition is sufficient for a positive (negative) relationship

between loss efficiency and ability under multiplicative separability of the marginal
COE than under additive separability as the following Corollaries state.

Corollary 11 Let us suppose that Assumption 1 holds and suppose that the marginal
COE function is multiplicatively separable. For any given ability level, if the marginal
COE is log-concave (log-convex) in effort on (aSB, aFB) then the efficiency loss
increases (decreases) with ability.

Proof Assume that the marginal COE satisfies Assumption 1 and it is of the form
va(k, a) = g(k) fa(a). Then,

(
va(k, aFB) − va(k, aSB)

vaa(k, aSB)

)
−

(
vk(k, aFB) − vk(k, aSB)

vak(k, aSB)

)

=
(

fa(aFB) − fa(aSB)

faa(aSB)

)
−

(
f (aFB) − f (aSB)

fa(aSB)

)

As a result, by Eq. (17), we have that:

∂L

∂k
= g′(k) fa(aSB)

∫ aFB

aSB

(
faa(a)

faa(aSB)
− fa(a)

fa(aSB)

)
da (20)
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By definition, if the marginal COE is log-concave in a for all a ∈ (aSB, aFB), then
va(k,a)
vaa(k,a)

= fa(a)
faa(a)

is increasing in a for a ∈ (aSB, aFB). Thus, fa(a)
faa(a)

≥ fa(aSB)

faa(aSB)
for all

a ∈ (aSB, aFB) implies faa(a)

faa(aSB)
≤ fa(a)

fa(aSB)
for all a ∈ (aSB, aFB), and hence, ∂L

∂k ≤ 0.

Analogously, if the marginal COE is log-convex in a for all a ∈ (aSB, aFB) then
va(k,a)
vaa(k,a)

= fa(a)
faa(a)

is decreasing in a for a ∈ (aSB, aFB). Thus, fa(a)
faa(a)

≤ fa(aSB)

faa(aSB)
for all

a ∈ (aSB, aFB) implies faa(a)

faa(aSB)
≥ fa(a)

fa(aSB)
for all a ∈ (aSB, aFB), and hence, ∂L

∂k ≥ 0.

�

If the marginal COE function is additively separable then vak(k, a)/vaa(k, a) is of
the form g′(k)/ faa(a). Therefore, the convexity/concavity of the marginal COE on
the interval (aSB, aFB) determines the sign of the relationship by Corollaries 4 and 12.
Corollary 12 follows directly from Proposition 3 as well since the function vk(a, k) is
linearly increasing in effort for all parameter values if the marginal COE function is
additively separable.

Corollary 12 Let us suppose that Assumption 1 holds and suppose that the marginal
COE function is additively separable. For any given ability level, if the marginal COE
is convex in effort on (aSB, aFB), then the efficiency loss decreases with ability, whereas
if it is linear in effort on (aSB, aFB), then the efficiency loss does not vary with ability.

Proof If the marginal COE is additively separable, then vk is linear in effort. The lin-

earity of vk in effort implies vk (k,aFB)−vk (k,aSB)

vak (k,aSB)
= aFB−aSB. If va is also linear in effort

for all a ∈ (aSB, aFB), then va(k,aFB)−va(k,aSB)

vaa(k,aSB)
= aFB − aSB = vk (aFB,k)−vk (aSB,k)

vak (k,aSB)
. By

applying Eq. (17), we get that ∂L
∂k = 0. If va is convex in effort for all a ∈ (aSB, aFB),

then va(k,aFB)−va(k,aSB)

vaa(k,aSB)
≥ aFB − aSB = vk (k,aFB)−vk (k,aSB)

vak (k,aSB)
. By applying Eq. (17), we

get that ∂L
∂k ≥ 0. 
�
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