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Abstract
Cap and trade mechanisms enjoy increasing importance in environmental legislations
worldwide. One of the important aspects of designing cap and trade mechanisms is
the possibility of authorities to grant emission permits for free. Unlike analyzed in
the seminal contributions on cap and trade systems, in reality free allocations are
not made lump sum, but are updated contingent on firms’ actions, i.e., contingent
on production decisions and contingent on facilities entering the market or retiring
(see IEA, https://www.oecd-ilibrary.org/content/publication/b7d0842b-en, 2020). As
it has already been shown in the literature, such updating yields distorted production
decisions of firms (see e.g., Böhringer and Lange in Eur Econ Rev 49(8):2041–2055,
2005, Mackenzie et al. in Environ Resour Econ 39(3):265–282, 2008, or Damon et
al. in Rev Environ Econ Policy 13(1):23–42, 2019). The impact of updating on firms’
investment and retiring decisions and the resulting technology mix has received much
less attention up to now, however. It is the purpose of the present article to shed light
on this aspect and to study the impact of a cap and trade mechanism not only on firms’
output decisions, but also on their investment incentives in different technologies and
to analyze the optimal design of emission trading systems in such an environment.

Keywords Emissions trading · Free allocation · Investment incentives · Technology
mix
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1 Introduction

Cap and trade mechanisms are one of the centrally important policy tools to achieve
ambitious greenhouse gas reduction targets required in the context of recent climate
agreements (e.g., the 2015 Paris agreement, UNO 2015). In the present article, we
analyze the design of cap and trade mechanisms and their impact on firms’ investment
decisions in different technologies and on their final production decisions. We then
derive the optimal design for ideal market conditions, but also for non-ideal situations
where firms either exercise market power or competition authorities’ decisions are
partially constrained by requirements of political or legislative processes.

Cap and trade mechanisms designed to internalize social cost of pollution enjoy
increasing importance in environmental legislation worldwide. Well-known examples
are given by the European Union Emission Trading System (ETS), the California
Cap-and-Trade programme or the Korea ETS. “As of April 2020, there were 23 emis-
sions trading systems covering around 9% of global emissions” (see IEA 2020). A
very prominent example of a very large planned system is the China national ETS
which is likely to start in 2021.1 An important aspect when introducing cap and trade
mechanisms is the possibility of competition authorities to grant emission permits for
free (see, e.g., ICAP 2020). This apparently allows to crucially facilitate the political
processes leading to the introduction of cap and trade systems. As Convery (2009) in
an early survey on the origins and the development of the EU ETS observes: “The
key quid pro quos to secure industry support in Germany and across the EU were
agreements that allocation would take place at Member State level [...], and that the
allowances would be free.” Very similar observations can also be found in many other
contributions to that issue.2

A one and for all lump sum allocation of permits which is entirely independent
of firms’ actions has a purely distributive impact in case firms take the market price
of emission permits as given. This fundamental insight in principle dates back to
Coase (1960). The design of free allocations in currently active cap and trade systems
typically does not have such lump sum property, but includes explicit or implicit
features of updating (see IEA 2020). Updating of free allocation schemes designed
to consistently adapt to an industry’s dynamic development has an impact on firms’
behavior, however.3 First, it leads to a distortion of the operation of existing production
facilities since for existing cap and trade systems current output and emissions do have
an impact on allocations granted to those facilities in the future. Second, it also has an
impact on firms’ incentives to modify their production facilities through upgrading,

1 See https://www.reuters.com/article/us-china-climatechange-ets-idUSKBN29G083.
2 As, for example, Tietenberg (2006) observes: “free distribution of permits (as opposed to auctioning
them off) seems to be a key ingredient in the successful implementation of emissions trading programs.”
Bovenberg et al. (2008) state: “The compensation issue has come to the fore in recent policy discussions.
For example, several climate change policy bills recently introduced in the U.S. Congress (for example, one
by Senator Jeff Bingaman of New Mexico and another by Senator Dianne Feinstein of California) contain
very specific language stating that affected energy companies should receive just enough compensation to
prevent their equity values from falling.”
3 As Böhringer and Lange (2005) state: “As a case in point, one major policy concern is that [...] the
allocation should account for (major) changes in the activity level of firms. Free allocation schemes must
then abstain from lump-sum transfers and revert to output- or emission-based allocation.”
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retiring and building of new facilities since typically free allocations to some extent
are granted contingent on newly installed or retired facilities.4

The literature which analyzes the impact of updating on firms’ behavior up to now
has focused on the first aspect. That is, those contributions provide very rich insight
on the impact of updating based on past output or emissions on firms’ production
and emission decisions, and they abstract from changed free allocations to a firm
due to changed installed facilities, however. The most prominent contributions in
this context include Moledina et al. (2003), Böhringer and Lange (2005), Rosendahl
(2008),Mackenzie et al. (2008),Harstad andEskeland (2010)), Böhringer et al. (2017),
Qiu et al. (2017), Meunier et al. (2017) or Meunier et al. (2018). Reviewing current
and planned emission trading schemes worldwide reveals, however, that legislations
which provide free emission permits also include elements which update based on
newly installed or retired production facilities (Narassimhan et al. 2018; IEA 2020).5

It is the purpose of the present article to focus on the above-mentioned second aspect
and its impact on the technology mix chosen by firms. To the best of our knowledge,
this is the first article that formally analyzes the impact of updating onfirms’ investment
incentives in an analytical framework.

Usually, production facilities in most industries allow for production during longer
horizons of time. Since demand typically varies over time, it is optimal for firms to
invest in a portfolio of different technologies. Technologies with high investment cost
which allow for production at low marginal cost are installed to run most of the time,
whereas technologies with low investment cost which allow for production at higher
marginal cost cover more infrequent demand periods. Prominent examples of capital-
intensive and long-lasting investments in production facilities and fluctuating demand
due to limited storage possibility are given by, e.g., the production of cement, steel or
electricity (with electricity being the most prominent and well-studied example in this
context). We thus analyze a frameworkwithfluctuating demandwhere (strategic) firms
first determine their technology mix by investing in different production technologies
with different emission intensities. Production facilities allow firms to produce for
a continuum of spot markets subject to fluctuating demand. Production at each spot
market causes emissions, and total emissions at all spot markets are capped by an
emission permit market. We consider the impact of a cap and trade system where
different amounts of free allocations are granted for newly built facilities. After having
established themarket equilibriumboth for firms’ investment and production decisions
and for the emission permit market, we first determine the first best solution as a
benchmark. Analogous to most of the previous literature, if distributional concerns do
not matter, in an ideal market with perfectly competitive firms updating is not optimal

4 Numerical simulations by Neuhoff et al. (2006), Pahle et al. (2011) and more recently by Anouliès (2017)
and Dardati and Saygili (2020) highlight the importance of the proper design of free allocations in this case.
5 IEA (2010): “An important detail of systems using grandfathered allocation is the treatment of companies
that establish new facilities or close down. Current or proposed schemes generally provide new entrants with
the same support as existing facilities. The rationale for this is to avoid investment moving to jurisdictions
without carbon pricing. [...] However, there is an obvious political difficulty in continuing to allocate free
allowances to facilities that have shut down and almost all emissions trading systems require allowances to
be surrendered upon closure.”
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(i.e., no free allocations should be granted to any investment), and the total emission
cap should be set such that the permit price equals to marginal social cost of pollution.

In the main part of the paper, we then analyze the optimal design of a cap and trade
system if the market is not ideal. First, we consider the case that firms behave imper-
fectly competitively when making their investment and their production decisions.
In this case, investment and production are inefficiently low. As we show, measures
undertaken to stimulate investment incentives (such as capacity payments6) have a
very close relationship to free allocations made for newly installed production facil-
ities. In this case, it is optimal to either grant capacity payments or free allocations
in order to stimulate inefficiently low investment incentives. As we show, however,
in a closed system with endogenous permit market, it is not optimal to implement
total investment at first best levels since this would imply an inefficiently high permit
price which excessively depresses spot market output. Our results do thus have direct
implications for the design of capacity markets in the presence of a cap and trade
system.

Second, we analyze the case where the design of the cap and trade mechanism
is subject to political constraints (compare the second paragraph of this section) and
the competition authority has to determine the optimal market design given those
constraints.7 We first analyze how the optimal target on total emissions should be set
if free allocations in all technologies are exogenously fixed. As we find, for moderate
levels of free allocations the target on total emissions should be set such that the
equilibrium permit price is above marginal social cost of pollution. For high levels
of free allocation, for example, in case of full allocation where all permits used by a
certain technology during a compliance period are freely allocated, the total cap on
emissions should be set such that the equilibrium permit price is belowmarginal social
cost of pollution.

We then analyze the case that free allocation only for a specific technology is
exogenously fixed and determine the optimal level of free allocation for the remaining
technology. In order to avoid excessive distortions of the resulting technology mix,
it is typically optimal to grant free allocation for the remaining technology. That is,
the insights obtained from the first best benchmark that free allocations are never
optimal, are no longer true if allocation to one of the technologies is exogenously
fixed. Moreover, if this technology is relatively dirty (as compared to the technology
with exogenously fixed allocation), the level of free allocation should remain below
the exogenously fixed allocation. If on the contrary the remaining technology is rela-
tively clean, the level of free allocation should even be above the exogenously fixed
allocation. Observe that often observed practices of full allocation (see IEA 2020;
ICAP 2020) induce a pattern of free allocation which is completely opposed to those
findings.

6 Compare, for example, capacitymechanisms introduced in liberalized electricitymarkets; for an overview,
see Cramton and Stoft (2008), or Cramton and Ockenfels (2012) or more recently Fabra (2018).
7 Observe that to some extent, this parallels the fundamental approach found in the previous literature:
Böhringer and Lange (2005) provide second best rules if (for political reasons) updating has to be based
on past output, Harstad and Eskeland (2010) analyze market design if governments cannot commit to full
auctioning of permits, and Bovenberg et al. (2005) and Bovenberg et al. (2008) consider the constraint that
firms have to be fully compensated for the regulatory burden.
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Let us finally mention further related strands of the literature. First, several articles
analyze firms’ incentives to adopt cleaner technologies. Those include, for example,
Requate and Unold (2001), Montero (2002) or Requate and Unold (2003), for a survey
of this literature, compare Requate (2005). Whereas all those contribution focus on
the comparison of emission taxes and cap and trade systems, our contribution is the
first one to consider the phenomenon of updating in the context of technology choice.

Second, from a modeling perspective the present paper also contributes to the
literature which analyzes investment decisions in several technologies. For a survey
on this literature, see Crew et al. (1995). Further contributions include Zöttl (2010),
or more recently Grimm et al. (2017). Our article is (to the best of our knowledge) the
first one to introduce an endogenous emission permit market in such a framework, and
to derive the optimal design of a cap and trade mechanism with technology-specific
free allocations both for ideal and imperfect market conditions.

The remainder of the article is structured as follows: Sect. 2 states the model ana-
lyzed throughout this article, and Sect. 3 derives the market equilibrium for a given
cap and trade mechanism. We determine the optimal market design for the benchmark
case of perfect competition in Sect. 4, for the case of imperfect competition in Sect. 5
and for partially constrained cap and trademechanisms in Sect. 6. Section 7 concludes.

2 Themodel

We consider n symmetric firms. Each firm i first has to choose investment in two
different types of production facilities prior to producing output qi (θ) at many con-
secutive spot markets with fluctuating demand. We denote total investment of firm i
in both technologies by x1i and investment in technology 2 by x2i . Observe that in
the framework analyzed, where demand fluctuates over time, it is optimal for firms
to invest into a mix of both technologies. We will consider the case that technology
2 allows cheaper production, but exhibits higher investment cost. Those units have to
run most of the time in order to recover their high investment cost. (This is typically
denoted “baseload–technology.”) Technology 1 has relatively low investment cost,
but produces at high marginal cost. Those units are built in order to serve during peri-
ods of high demand (this is typically denoted “peakload–technology”), but run idle if
demand is low. Inverse demand for the quantity Q(θ) at spot market θ ∈ [θ, θ ] is given
by P(Q(θ), θ). Output produced by the different facilities causes emissions, and all
emissions have to be covered by emission permits. Permits are issued in the context
of a cap and trade mechanism and can be traded at a permit market. The total amount
of permits available is limited, and this induces a market clearing price e for permits.
Firms receive free allocation of permits based on installed capacities, i.e., each firm i
receives the technology-specific amount (A2x2i + A1 (x1i − x2i )) of permits for free,
all remaining permits required for production have to be purchased (can be sold) at
the permit market.8 For the overall timing of our setup, see Fig. 1. Subsequently, we
provide all definitions and assumptions for our setup in detail.

8 We provide a discussion of the relationship of our modeling approach and existing cap and trade systems
when presenting our results, see the last paragraphs of Sects. 3 to 6.
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Fig. 1 Illustration of timing

Investment and production decisions Firms have to choose investment in capacities
for two different technologies, t = 1, 2. Each technology t has constant marginal cost
of investment kt , constant marginal cost of production ct and an emission factor wt

which measures the amount of the pollutant emitted per unit of output. We denote total
investment of firm i in both technologies by x1i and investment in technology 2 by x2i .
For aggregate values, we define Xt = ∑n

i=1 xti .
9 For an illustration of the resulting

marginal cost function, see Fig. 2. We denote by q(θ) = (q1(θ), . . . , qn(θ)) the vector
of spot market outputs of the n firms in demand scenario θ , and by Q(θ) = ∑n

i=1 qi
total spot market output in scenario θ .

Demand Inverse demand for some quantity Q at spot market θ ∈ [θ, θ ] is given by
P(Q, θ). Each spot market has weight f (θ) with corresponding distribution F(θ) =
∫ θ

θ
f (θ)dθ .10 Inverse demand satisfies Pq(Q, θ) < 0, Pθ (Q, θ) ≥ 0, Pqθ (Q, θ) ≥ 0

and Pq(Q, θ) + Pqq(Q, θ)
Q
n < 0 for all Q, θ ∈ R.11

Cap and trade mechanism and social cost of pollution Total emissions produced at
all spot markets θ ∈ [θ, θ̄ ] are given by T . The social cost associated with emissions
is denoted by D(T ). We assume DT (T ) ≥ 0 and DTT (T ) ≥ 0. A cap and trade
mechanism limits total emissions at some level T such that T ≤ T . We denote the
resulting market price for emission permits by e. We make the following assumptions
regarding trade at the permit market, i.e., (i) Emission permit trading is arbitrage-free,
and storage of permits is costless, and (ii) firms are price takers at the permit market.12

Notice, finally, that our formulation allows for technology-specific free allocations
(A1, A2). Free allocations might, for example, depend on the emission intensities
w1, w2 and (or) the usage rates of each technology.

9 Thus, aggregate investment in technology 1 is given by X1 − X2. This at first sight unusual notation
allows for a considerably simplified representation of our results throughout the article.
10 Formally, we treat the frequencies associated with the realizations of θ by making use of a density
and a distribution function. Notice, however, that there is no uncertainty in the framework presented. All
realizations of θ ∈ [θ, θ] indeed realize, with the corresponding frequency f (θ).
11 We denote the derivative of a function g(x, y) with respect to the argument x , by gx (x, y), the second
derivative with respect to that argument by gxx (x, y) and the cross-derivative by gxy(x, y).
12 Since emission trading systems typically encompass larger regions which include several industries, it
seems unlikely that single firms are able to exercise market power on the emission permit market. Within a
specific industry, however, the product market might well be subject to the exercise of market power, and
we thus explicitly include this case in our analysis.
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3 Themarket equilibrium

In this section, we derive the market equilibrium with a cap and trade mechanism, for
the case of perfect and imperfect competition on the product market. To characterize
the market equilibrium for a given cap and trade mechanism (T , A1, A2), we first
determinefirms’ profitsπi , given investments x1, x2 andgiven spotmarket outputq(θ).

πi (x1i , x2i ) =
θB∫

θ

(P(Q, θ)−c2−w2e) qi (θ, x)dF(θ)+
θP∫

θB

(P(X2, θ)−c2−w2e) x2i d F(θ)

+
θP∫

θP

(P(Q, θ) − c1 − w1e) qi (θ, x)dF(θ)+
θ∫

θP

(P(X1, θ)−c1 − w1e) x1i d F(θ)

−
θ∫

θP

((c1+w1e)−(c2+w2e)) x2i d F(θ)−(k2−A2e)x2i −(k1−A1e)(x1i −x2i ). (1)

Note that the permit market affects both the firms’ marginal production cost and
their investment cost. No matter whether permits have been allocated for free or have
to be bought at the permit market, firms face opportunity cost ofwt e when deciding to
produce one unit of output with technology t = 1, 2. This opportunity cost increases
their marginal production cost to ct +wt e, t = 1, 2. Investment cost is affected by the
firms’ anticipation of a free allocation of permits. A free allocation is equivalent to a
subsidy paid upon investment: If each unit of capacity invested is assigned At permits,
investment cost kt is reduced by their value, that is by Ate for t = 1, 2.

The critical spot market scenarios13 θB, θP , θP indicate whether firms produce
either at the capacity bounds x2, x1 (that is, at the vertical pieces of their marginal
cost curves), or on the flat (i.e., unconstrained) parts of their marginal cost curves.
They depend on the intensity of competition at the spot market and are illustrated in
Fig. 2, both for the case of perfect and imperfect competition. For θ ∈ [θ, θB], firms
produce the output at marginal cost c2. For θ ∈ [θB, θP ], firms are constrained by their
investment in the base load technology and produce X2, still at marginal cost c2, and
prices are driven by the demand function. At those demand levels, using the peak load
technology 1 is not yet profitable. Observe that F(θP ) − F(θB) measures the fraction
of time where investment in the base load technology is binding which we will refer to
as constrained base duration. For θ ∈ [θP , θP ], firms produce output at marginal cost
c1, and we denote 1− F(θP ) as peak duration.14 Finally, for all realizations above θP ,
firms are constrained by their total capacity choice X1, and prices are driven exclusively
by the demand function; we denote 1 − F(θP̄ ) as constrained peak duration. In the
subsequent lemma, we characterize the market equilibrium when firms invest in the
base load and in the peak load technology.

13 For the precise definition of those critical spot market scenarios, see Appendix A.
14 The equivalent base duration would be given by 1− F(θ) = 1, it is not explicitly introduced, however.
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Fig. 2 Illustration of the critical spot market scenarios. Left: The case of a perfectly competitive mar-
ket, right: the general case with imperfect competition. In the figure, we denote marginal revenue by
MR(Q, θ) := P(Q, θ) + Pq (Q, θ)

Q
n

Lemma 1 For a given cap and trade mechanism (T , A1, A2), define the total invest-
ment condition �I , the base investment condition �I I and the permit pricing
condition15 �E as follows:

�I :=
∫ θ

θP

[

P(X∗
1, θ) + Pq(X

∗
1, θ)

X∗
1

n
− (c1 + w1e

∗)
]

dF(θ) − (
k1 − A1e

∗)

(2)

�I I :=
∫ θP

θB

[

P(X∗
2, θ) + Pq(X

∗
2, θ)

X∗
2

n
− (c2 + w2e

∗)
]

dF(θ)

+
∫ θ

θP

(c1 − c2) + (w1 − w2)e
∗dF(θ) − (k2 − k1) + (A2 − A1)e

∗ (3)

�E :=
∫ θB

θ

w2Q(e∗, θ)dF(θ) +
∫ θP

θB

w2X
∗
2dF(θ) +

∫ θP

θP

w1Q(e∗, θ)dF(θ)

+
∫ θ

θP

w1X
∗
1dF(θ) −

∫ θ

θP

(w1 − w2)X
∗
2dF(θ) − T (4)

Equilibrium investment X∗
1, X

∗
2 and the equilibrium permit price e∗ simultaneously

solve �I = �I I = �E = 0.

Proof See Appendix A. ��
15 For a positive permit price, we might also obtain the situation, where production for very low demand
realizations is suppressed and positive output is produced only for demand realizations which satisfy θ :
P(0, θ) − C(0, θ) − e > 0. For ease of notation, we disregard this corner solution, which could be easily
included in the entire analysis.
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In the lemma, (2) is the first-order condition that determines total investment. Firms

choose their total investment
X∗
1
n as to equal marginal profits generated by their last

running unit (running at total marginal cost c1 + w1e∗) to the investment cost of
that unit (given by k1 − A1e∗). As already mentioned above, under a cap and trade
mechanism, the value of the permits required for production at the spot market is part
of the firms’ marginal production cost, and the value of free allocations is of firms’
marginal cost of investment.

Now, let us provide some intuition on the determinants of the optimal base load
investment. Since total investment X1 has already been fixed [it is determined by (2)],
the firms’ decision when choosing X2 has to be interpreted as a decision of virtually
replacing units of technology 1 by technology 2. The cost of such virtual replacement
of the marginal unit (given by k2 − k1 − (A2 − A1)e∗) has to equal the extra profits
generated by that unit due to lower marginal production cost. Lower production cost of
one additional unit has two effects: First, for all demand realizations θ ∈ [θB, θP ] one
more unit is produced (that would not have been produced without the replacement);
for θ ∈ [θP , θ ], one more unit can be produced at lower marginal cost c2 + w2e∗
(instead of c1 + w1e∗) due to the replacement. (Compare also Fig. 2.)

Themarket price for permits, e∗, depends on the emission target T set by themarket
designer as well as the technologymix installed by the firms. At the equilibrium permit
price, the market exactly clears, allowing for total emission of T units of the pollutant.
Notice that in expression (4), total emissions are determined by multiplying total
production at all spot markets with the relevant emission factors of the respective
technologies (w1, w2).

Finally, observe that Lemma 1 characterizes the market solution when firms decide
to invest in both technologies, that is, when indeed 0 < X∗

2 < X∗
1 is obtained. First,

whenever the base load technology (k2, c2) is very unattractive,16 then only the peak
load technology (k1, c1) is active. Second, if the base load technology (k2, c2) is always
more attractive17 than the peak load technology (k1, c1), then only technology (k2, c2)
is active in the market equilibrium. Notice that in principle, the case of investment in
a single technology is covered by our framework, it is obtained by eliminating the
possibility to invest in technology 2, and expression (2) then determines investment
in the single technology. To keep the notational burden limited, however, we do not
explicitly include those corner solution in the exposition of the paper, but opted to
focus on all those cases when firms indeed choose to investment in both technologies.

To conclude the discussion of Lemma 1, let us already at this point mention
the relevance of endogenously modeling the emission permit market as compared
to the case which assumes an exogenously fixed price for pollution. Observe that
for a constant emission price, equilibrium investment under imperfect competition

differs from that obtained under perfect competition by the terms
∫ θ

θP
Pq(X1, θ) X1

n

and
∫ θP
θB

Pq(X2, θ) X2
n dF(θ), respectively. This corresponds to the difference between

scarcity prices andmarginal scarcity profits. Since those terms are negative (and profits
concave given our assumptions), investment incentives under imperfect competition

16 That is expression (3) yields X∗
2 ≤ 0.

17 That is expressions (3) and (2) yield X∗
2 ≥ X∗

1 .
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are lower than under perfect competition. That is, in the absence of an explicit mar-
ket for emission permits (when pollution is, for example, taxed at some fixed level
e0) subsidies for investment (for example, by granting free tax vouchers A1 > 0
and A2 > A1, respectively) which exactly compensate for those differences would
induce optimal investment incentives. Since the emission price is endogenous in our
framework, however, we will obtain a different result (compare Theorem 2).

Before we now discuss existence of the market equilibrium, we introduce the fol-
lowing definitions which will simplify the subsequent analysis and allow for a more
intuitive discussion of our results:

Definition 1

(i) We denote the impact of increased total investment on total emissions (for fixed
e) by AE

1 := ∂�E
∂X∗

1
= (

1 − F(θP̄ )
)
w1, observe AE

1 > 0. This allows to state the

impact of changed emission price e∗ on the equilibrium condition �I as follows
∂�I
∂e∗ = A1 − AE

1 .
(ii) We denote the impact of increased base load investment on total emissions (for

fixed e) by AE
2 := ∂�E

∂X∗
2

= (
1 − F(θB̄)

)
w2 − (

1 − F(θP )
)
w1. This allows to

state the impact of changed emission price e∗ on the equilibrium condition �I I as

follows ∂�I I
∂e∗ = A2 − A1− AE

2 . We furthermore denotewE
2 := 1−F(θP )

1−F(θB̄ )
w1 (which

implies AE
2 > 0 if and only if w2 > wE

2 ) and wL
2 := F(θP )−F(θP )

1−F(θB̄ )
w1 (which

implies AE
1 + AE

2 > 0 if and only if w2 > wL
2 ).

(iii) We denote the impact of changed X1 on the equilibrium condition �I by �I1 :=
∂�I
∂X∗

1
, the impact of changed X2 on the equilibrium condition�I I by�I I2 := ∂�I I

∂X∗
2
,

and the impact of changed e on the equilibrium condition �E by �Ee := ∂�E
∂e∗ .

Observe that those three expressions are negative.

Observe18 that AE
1 = (

1 − F(θP̄ )
)
w1 determines the total amount of additionally

necessary permits resulting from an additionally invested unit of total capacity (for-
mally given by the partial derivative of total emission with respect to X1, i.e.,

∂�E
∂X1

).
An increase of the permit price e now has two opposing effects on total investment
incentives: On the one hand, investment incentives are reduced by the amount AE

1 ; on
the other hand, they increase by A1 due to the increased value of free allocations.

A similar reasoning is obtained for investment incentives in the base load tech-
nology. AE

2 determines the total amount of additionally necessary permits resulting
from the replacement of one unit of the peak technology with one unit of the base
technology (formally given by the partial derivative of total emission with respect to
X2, i.e.,

∂�E
∂X2

). An increase of the permit price e has two opposing effects on total

investment incentives: On the one hand, they are reduced by the amount AE
2 ; on the

other hand, they increase by (A2 − A1) due to the increased value of free allocations.
Notice that AE

1 ≥ 0, whereas AE
2 can also become negative. That is, an increased

level of total investment X∗
1 always implies additionally necessary emission permits.

An increased level of base investment X∗
2 does only imply additionally necessary

18 Notice that the statements of Definition 1 and the subsequent discussion exclusively refer to partial
derivatives. In equilibrium, total emissions do not change since they are capped at T .
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emission permits if the base technology is “dirtier” than the peak technology. Inter-
estingly, the cutoff point is obtained for w2 = wE

2 < w1 since an increased level of
X∗
2 leads to increased emissions for θ ∈ [θP , θ ] if w2 > w2, but also leads to one unit

of additional output for the demand levels θ ∈ [θB, θP ].
As already argued, Lemma 1 only characterizes the market equilibrium by estab-

lishing necessary conditions. In the subsequent lemma, we now want to establish
second-order conditions for the existence of the market equilibrium.

Lemma 2 (Second-order conditions)

• Lemma 1 characterizes the market equilibrium if

(a)
(
A1 − AE

1

)
AE
1 − �I1�Ee < 0, (b)

(
A2 − A1 − AE

2

)
AE
2 − �I I2�Ee < 0

(c)
((

A1 − AE
1

)
AE
1 − �I1�Ee

) ((
A2 − A1 − AE

2

)
AE
2 − �I I2�Ee

)

>
(
A1 − AE

1

)
AE
1

(
A2 − A1 − AE

2

)
AE
2

• If the levels of free allocation satisfy
(
A1 − AE

1

)
AE
1 ≤ 0and

(
A2 − A1 − AE

2

)
AE
2 ≤

0, then condition (i) is satisfied.
• Define by Alim

1 the highest A1 yielding
(
A1 − AE

1

)
AE
1 − �I1�Ee ≤ 0; define by

Alim
2 the highest A2 yielding

(
A2 − AE

1 − AE
2

) (
AE
1 + AE

2

)−(�I1 + �I I2) �Ee ≤
0. The second-order conditions (i) cannot be satisfied if either A1 ≥ Alim

1 or
A2 ≥ Alim

1 .

Proof See Appendix B. ��
Part (i) of the lemmaestablishes the standard second-order conditionswhichguaran-

tee negative semi-definiteness of the Hessian matrix of firms’ optimization problems.
It allows the usual application of the implicit function theorem in order to conduct
an analysis of comparative statics for the equilibrium characterized in Lemma 1. In
part (ii), we establish conditions when those second-order conditions are satisfied and
part (iii) provides an upper bound on the levels of free allocation such that higher
allocations always violate those second-order conditions.

Notice that for the case of a monopolistic or a perfectly competitive market, the
second-order conditions established in Lemma 2(i) guarantee that there exists a unique
market equilibrium which is characterized by Lemma 1. For the case of oligopoly,
when firms behave strategically, also asymmetric equilibria might arise, however. Let
us explicitly mention at this point that in this case, our analysis focuses on symmetric
investment decisions only.

After having established the market equilibrium, we now determine the impact of
changing the parameters of the cap and trade mechanism (A1, A2, T ) in an analysis
of comparative statics. If the second-order conditions specified in Lemma 2 (i) are
satisfied, we obtain the following results:

Lemma 3 (Comparative statics of the market equilibrium)
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Fig. 3 Results of comparative statics in the degree of free allocation. Left: For the degree of free allocation
to the base load technology A2, right: for the degree of free allocation to the peak load technology A1.

For the case of linear demand, we obtain, left: Across1 (w1=0, w2=w) = 1−F(θP )

1−F(θB )
F(θB )w, Across1 (w1=

w − wE
2 , w2=wE

2 ) = wE
2 , Alim1 (w1=w,w2=0) = (

1 − F(θP )
)
w and right: Atotal2 (w1=0, w2=w) =

(

1 − 1−F(θP )

1−F(θB )
F(θB )

)

w, Across2 (w1=w − wS
2 , w2=wS

2 ) = wE
2

(i) Higher free allocation for the base load technology A2 always yields higher
investment in the base load technology (i.e., dX2

dA2
> 0). We furthermore obtain

dX1
dA2

< 0 if and only if
(
A1 − AE

1

)
AE
2 < 0. Define Across

1 as the highest A1 yield-

ing
(
A1 − AE

1

)
AE
2 ≤ �Ee�I1 − (

A1 − AE
1

)
AE
1 , we obtain

dX∗
2

dA2
<

dX∗
1

dA2
if and

only if
(
w2 > wE

2

)
and A1 ∈ (Across

1 , Alim
1 ).

(ii) Higher free allocation for the peak load technology A1 always yields higher invest-
ment in the peak load technology (i.e., dX1

dA1
> dX2

dA1
). Define by Atotal

2 the highest A2

which yields
(
A2 − AE

1 − AE
2

)
AE
2 − �I I2�Ee ≤ 0 and by Across

2 the highest A2

which yields
(
A2 − AE

1 − AE
2

)
AE
1 − �I1�Ee ≤ 0. There exists a unique wS

2 with

wE
2 < wS

2 ≤ w1 such that
dX∗

1
dA1

< 0 if and only ifw2 > wS
2 and A2 ∈ (Atotal

2 , Alim
2 ).

Furthermore, we obtain
dX∗

2
dA1

> 0 if and only if w2 < wS
2 and A2 ∈ (Across

2 , Alim
2 ).

(iii) For a change of the total emission cap T , we obtain
dX∗

1
dT > 0 if and only if

(
A1 < AE

1

)
, and we furthermore obtain

dX∗
2

dT > 0 if and only if (A2 − A1 < AE
2 ).

Proof See Appendix C. ��
As we establish in the lemma, an increase of the free allocation A2 in the base load

technology always leads to increased base load investment [i.e.,
dX∗

2
dA2

> 0, see point
(i)], and an increase of the free allocation A1 in the peak load technology always leads

to increased investment in the peak load technology [i.e.,
dX∗

1
dA1

>
dX∗

2
dA1

, see point (ii)].
The impact of such changes on the remaining investment decisions ismore ambiguous.
In the subsequent paragraphs, we briefly sketch the central trade-offs, and a complete
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proof is only provided in the appendix, however. First, consider a variation of the
free allocation A2 and determine its impact on the system of equilibrium conditions
established in Lemma 1. The total differential yields:19

d�I

dA2
= �I1

dX∗
1

dA2
+ �Ie

de∗

dA2
= 0 (5)

d�I I

dA2
= �I I2

dX∗
2

dA2
+ �IIe

de∗

dA2
+ ∂�I I

∂A2
= 0 (6)

d�E

dA2
= �E1

dX∗
1

dA2
+ �E2

dX∗
2

dA2
+ �Ee

de∗

dA2
= 0 (7)

In order to directly evaluate the impact of the changed emission price de∗
dA2

on the
equilibrium conditions for total investment and investment in the base load technology,

we solve expression (7) for de∗
dA2

= �E1−�Ee

dX∗
1

dA2
+ �E2−�Ee

dX∗
2

dA2
and plug into expression (5)

which yields:

d�I

dA2
=
(

�I1 + �Ie
�E1

−�Ee

)
dX∗

1

dA2
+
(

�Ie
�E2

−�Ee

)
dX∗

2

dA2
= 0

⇔
(
−�Ee�I1 +

(
A1 − AE

1

)
AE
1

) dX∗
1

dA2
+
((

A1 − AE
1

)
AE
2

) dX∗
2

dA2
= 0 (8)

Observe that the coefficient on the expression
dX∗

1
dA2

determines the total impact of
changed X∗

1 on the equilibrium condition �I . This is given by the direct impact
(i.e., �I1) and the indirect impact which takes into account the impact of changed
X∗
1 on the emission price and its feedback on the equilibrium condition �I (i.e.,

�Ie
�E1−�Ee

= 1
−�Ee

(
A1 − AE

1

)
AE
1 ). Observe that the total impact of changed X∗

1 on
the equilibrium condition �I is negative if the second-order conditions established in

Lemma 2(i) are to be satisfied. This directly illustrates why
dX∗

2
dA2

cannot drop to zero.
Furthermore, observe that the total impact of changed X∗

2 on the equilibrium con-
dition �I is only indirect, since �I does not directly depend on X2. That is, we only
have to take into account the impact of increased X∗

2 on the emission price e∗ and its
feedback on the equilibrium condition �I . According to Definition 1, an increase of
X2 leads to an increased equilibrium emission price if AE

2 > 0 (i.e., for w2 > wE
2 ,

we obtain a decreased equilibrium emission price if AE
2 < 0, i.e., for w2 < wE

2 ). The
impact of an increased emission price on the equilibrium condition�I depends on the
degree of free allocation A1. Whenever A1 < AE

1 (i.e., ∂�I
∂e∗ < 0, compare Definition

1), an increased emission price leads to a decrease of firms’ total investment activity
X∗
1 . In this case, the reduction of scarcity rents (obtainedwhen total capacity is binding)

caused by the increased emission price dominates the increased value associated with
the permits granted for free. The reverse holds true for a high level of free allocation,
i.e., A1 > AE

1 where an increased emission price leads to increased total investment

19 For a better traceability of our computations, we denote the partial derivatives ∂�I
∂e∗ = �Ie,

∂�I I
∂e∗ = �IIe,

∂�E
∂X∗

1
= �E1 and ∂�E

∂X∗
2

= �E2; in a second step, we make use of AE
1 and AE

2 introduced in Definition 1.

123



294 SERIEs (2021) 12:281–327

X∗
1 .Whenever the impact of increased investment X∗

2 yields a decreased emission price
which is obtained for cleaner base load technologies (for AE

2 < 0, i.e., w2 < wE
2 ),

we obtain the opposite results. In sum,
dX∗

1
dA2

> 0 if and only if
(
A1 − AE

1

)
AE
2 > 0, as

stated in the theorem.
Finally, expression (8) also provides the intuition when

dX∗
1

dA2
≥ dX∗

2
dA2

is obtained
(i.e., also investment in the peak load technology increases). To this end, observe that
dX∗

1
dA2

= dX∗
2

dA2
if and only if in expression (8), the total impact of changed X∗

1 is precisely
of the same size as the total impact of changed X∗

2 , but of opposite sign. As shown in
the theorem, this is only obtained if the increase of investment in the base technology
leads to an increase of the emission price (for AE

2 > 0, i.e., w2 > wE
2 ) and if this

increase has a sufficiently positive impact on the equilibrium condition �I , i.e., for
allocation A1 sufficiently big (for A1 > Across

1 > AE
1 ). All those results are illustrated

in the left graph of Fig. 3.
Likewise, we can analyze the impact of changing A1, as established in Theorem

3(ii). Analogous to expressions (19) (20) and (21),we can determine the total derivative
and solve for de∗

dA1
. After plugging in, we obtain for d�I

dA1
+ d�I I

dA1
(observe ∂�I

∂A1
=

− ∂�I I
∂A1

= e):

d�I

dA1
+ d�I I

dA1
=
(

�I1 + �Ie
�E1

−�Ee
+ �IIe

�E1

−�Ee

)
dX∗

1

dA1

+
(

�I I2 + �IIe
�E2

−�Ee
+ �Ie

�E2

−�Ee

)
dX∗

2

dA1
= 0

⇔
(
−�Ee�I1 +

(
A2 − AE

1 − AE
2

)
AE
1

) dX∗
1

dA1

+
(
−�Ee�I I2 +

(
A2 − AE

1 − AE
2

)
AE
2

) dX∗
2

dA1
= 0 (9)

Analogous to above the coefficients on the expressions
dX∗

2
dA1

and
dX∗

1
dA1

, determine the
impact of changed investment X∗

1 or X∗
2 on both equilibrium conditions. The sum of

both coefficients is strictly negative if second-order conditions are not to be violated
[compare Lemma 2(iii)]. This directly illustrates why dX2

dA1
cannot reach the level of

dX1
dA1

. (In other words, increased free allocation A1 cannot leave investment in the peak
load technology unchanged.)

Furthermore, as we show, for small A2 both coefficients are negative (thus,
dX∗

1
dA1

and
dX∗

2
dA1

have opposite signs); since
dX∗

1
dA1

>
dX∗

2
dA1

, this implies
dX∗

2
dA1

< 0. Observe that the

coefficient of the expression
dX∗

1
dA1

is increasing in A2, and the coefficient of expression
dX∗

1
dA1

is increasing in A2 if AE
2 > 0 (i.e., w2 > wE

2 ). That is, for A2 high enough
the coefficients become nonnegative, leading to altered monotonicity behavior. As we
show in the theorem, we can establish a relative level of dirtiness wS

2 (with wS
2 ≥ wE

2
and wS

2 = wE
2 in the case of linear demand) which separates the cases when either

of the coefficients becomes zero for higher levels of A2. (Remember the sum of
both coefficients has to be negative in order to satisfy the second-order conditions,
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see above.) Whenever the coefficient of
dX∗

1
dA1

is equal to zero, expression (9) directly

implies
dX∗

2
dA1

= 0 and vice versa, as stated in the theorem.
Finally, in Theorem 3(iii) we provide the results of comparative statics with respect

to the parameter T . For an intuition of those results, observe first of all that an increase
of the total emission cap T leads to a reduction of the equilibrium permit price. This in
turn induces increased total investment X∗

1 if [similar to the intuition for part (i)] the
increase of scarcity rents (which is obtained due to lower emission price) dominates
the decreased value of the emission permits granted for free, i.e., A1 < AE

1 . The
opposite result is obtained for A1 > AE

1 . Similarly, the reduced emission price induces
increased investment in the base load technology X∗

2 if the total impact of reduced
emission price on the base load investment condition is negative, i.e., if and only if
A2 < A1 + AE

2 (i.e., �IIe < 0). If we denote total emissions which obtain in the
absence of any environmental policy by T̄ , then lowering the cap on total emissions
T below T̄ corresponds to the introduction of a cap and trade mechanism.

Discussion and policy implications: Let us conclude this section by briefly dis-
cussing policy implications of our results. Many existing and planned cap and trade
systems worldwide do grant free allocations; in most cases, we observe updating
which also considers market entry of new capacities or retirements (IEA 2020). In
those cases, investment in production facilities receives free allocations based on their
expected technology-specific needs (see IEA 2020; ICAP 2020). Moreover, however,
updating in many cases additionally includes components which grant free allocations
based on past output choices. This induces additional distortions, both on investment
and output choices, since firms’ decisions anticipate free allocations received in later
compliance periods. Unlike previous contributions (compare, for example, Böhringer
and Lange 2005;Mackenzie et al. 2008, or Damon et al. 2019), we are able to explicitly
analyze the impact of free allocations on investment incentives. To keep our analy-
sis tractable, however, we refrain from considering several compliance periods in a
dynamic setup. For an interpretation of our analytical results in the context of cap
and trade systems which grant free allocations based on past output and additionally
grant free allocations to newly built facilities, a careful calibration of the parameters
(A1, A2) of our setup is required to reasonably approximate real-world incentives for
ourmodel.20 An interesting reference case is obtainedwhen free allocations are granted
such as to cover all emissions caused by a certain installation. In our framework, we
define this by Afull

1 and Afull
2 . Observe Afull

1 ∈ [1 − (F(θP ))w1, 1 − (F(θP ))w1] and
Afull
2 ∈ [1 − (F(θB))w2, w2].
In the context of our formal results, for an allocation scheme (Afull

1 , Afull
2 )we obtain

increased total investment and increased base load investment when introducing the

20 An immediate calibration of the parameters (A1, A2) and (Afull1 , Afull2 ) of our setup is possible if free
allocations are explicitly granted contingent on installed capacities. An example for such allocation rule is
given, for example, by the two initial phases of theEUETS (2005–2012) for the electricity sector. In this case,
free allocations have been determined by a technology-specific emission factor which measures average
emissions per unit of electricity produced (0.365 tCO2/MWh for gaseous fuels and 0.750 tCO2/MWh for
solid and liquid fuels) multiplied by a pre-established technology-specific average usage. For open cycle
gas turbines, e.g., in Germany, the average usage has been established at 0.11 (i.e., 1000h per year), for
coal and combined cycle gas turbines, it was given by 0.86 (i.e., 7500h per year), and for lignite plants, it
was given by 0.94 (i.e., 8250h per year), see Appendices 3 and 4 of German-Parliament (2007).
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trading system (i.e., the emission cap is lowered below T̄ in our framework). To see this,
first, observe that Afull

1 > AE
1 which according to Lemma 3 (iii) leads to an increase

of X∗
1 . Second, observe that Afull

2 − Afull
1 > AE

2 (since Afull
2 > (1 − F(θB))w2

and Afull
1 < (1 − F(θP ))w1) which according to Lemma 3 (iii) leads to increased

investment in the base load technology.
To apply the findings of Lemma 3(i), consider the example of an electricity market

with lignite or coal-fired plants as a representative base load technology and open cycle
gas turbines as a representative peak load technology. Since open cycle gas turbines
have lower emission factors, we obtain w2 > w1, which directly implies w2 > wE

2
(compare Definition 1). Since furthermore Afull

1 > AE
1 , as established above, we can

directly conclude that an increase (decrease) of the free allocation A2 not only would
yield increased base load investment but also an increased (decreased) emission price
and increased (decreased) total investment.

After having analyzed the market equilibrium which is obtained in the presence of
an emission trading system and derived its properties of comparative statics, we now
proceed to the main part of this article and analyze the optimal design of a cap and
trade mechanism.

4 Optimal market design under perfect competition

In this section, we determine the optimal cap and trade mechanism.We first determine
the first best solution as a benchmark, which is obtained for the case of a perfectly
competitive market when a regulator can freely choose all parameters (A1, A2, T ) of
the cap and trade mechanism (see Theorem 1). We then analyze several market imper-
fections and solve for the corresponding second best solutions. We first determine the
optimal cap and trade mechanism which should be chosen for an imperfectly com-
petitive market (see Sect. 5). We then analyze the case when competition authorities
cannot freely choose all parameters (A1, A2, T ) of the cap and trade mechanism but
only a subset of them (see Sect. 6). In order to answer all those questions, we first
determine total welfare generated in a market with some cap and trade mechanism
(A1, A2, T ):

W (A1, A2, T ) =
θB∫

θ

[∫ Q∗

0
(P(Y , θ)−c2) YdY

]

dF(θ)+
θP∫

θB

[∫ X∗
2

0

(
P(X∗

2 , θ)−c2
)
YdY

]

dF(θ)

θP∫

θP

[∫ Q∗

0
(P(Y , θ)−c1) YdY

]

dF(θ)+
θ∫

θP

[∫ X∗
1

0

(
P(X∗

1 , θ)−c1
)
YdY

]

dF(θ)

−
θ∫

θP

(c1 − c2)X
∗
2dF(θ) − k2X

∗
2 − k1(X

∗
1 − X∗

2) − D(T ). (10)

Observe that welfare does not directly depend on the parameters (A1, A2, T ) chosen
for the cap and trade mechanism, but only indirectly through the implied investment
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and production decisions X∗
1, X

∗
2 and Q∗. In order to maintain presentability of the

results, we relegated all computations to appendix and directly characterize the optimal
cap and trade mechanism in the subsequent lemma.

Lemma 4 The optimal cap and trade mechanism solves the following conditions:

(i) WA1 := dX∗
1

dA1
�I + dX∗

2

dA1
�I I = 0

(i i) WA2 := dX∗
1

dA2
�I + dX∗

2

dA2
�I I = 0

(i i i) WT := dX∗
1

dT
�I + dX∗

2

dT
�I I − DT (T ) + e∗ + �

n
= 0.

The expressions �I and �I I determine the total impact of changed X∗
1 and changed

X∗
2 , respectively, on total welfare. They are defined as follows:

�I :=
∫ θ

θP

−Pq X∗
1

n
dF(θ) − A1e

∗ − �

n
AE
1

�I I :=
∫ θP

θB

−Pq X∗
2

n
dF(θ) − (A2 − A1)e

∗ − �

n
AE
2 .

The term �
n :=

∫ θB
θ

dQ∗
de∗

(
−Pq

Q∗
n

)
dF(θ)+∫ θP

θP
dQ∗
de∗

(
−Pq

Q∗
n

)
dF(θ)

∫ θB
θ

(
dQ∗
de∗ w2

)
dF(θ)+∫ θP

θP

(
dQ∗
de∗ w1

)
dF(θ)

> 0 determines the

impact of changed emissions on welfare for those spot markets where investment
is not binding.

Proof See Appendix D. ��
We now provide some intuition for the conditions which characterize an optimal

cap and trade mechanism.We first consider the optimal choice of the free allocation to
the peak load technology given by A1. Observe that the optimality conditions (i) and
(ii) express the impact of changed free allocation on total welfare exclusively through
the channel of changed investment in the base load technology X∗

2 and changed total
investment X∗

1 . The total impact of changed investment on total welfare is denoted
by �I and �I I , and this total impact can be broken down into three components
corresponding to the three summands of �I and �I I , respectively.

First, observe that at all those spot markets where total investment is binding (i.e.,
for θ ∈ [θB, θP ] and θ ∈ [θP , θ ], respectively), imperfectly competitive investment
behavior induces too low investment incentives, and an increase of investment X∗

2 or
X∗
1 leads to increased welfare given by the markup −Pq

X
n . Second, free allocation

A1 > 0 or (A2−A1) > 0 induces too high investment incentives, and thus, an increase
of investment would lead to a reduction of welfare given by the monetary value of the
free allocation (i.e., A1e∗ and (A2 − A1)e∗). Notice that in a world with exogenously
fixed emission price e∗, the optimal level of free allocation should be chosen such as to
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balance those two effects.21 Since the emission price is endogenous in our analysis, an
additional term is obtained. An increase of investment dX∗

1 or dX
∗
2 leads to increased

emissions of dX∗
1 A

E
1 and dX∗

2 A
E
2 at those spot markets where investment is binding.

Since total emissions are capped by T , however, this necessarily has to imply an
equivalent reduction of emissions at those spotmarketswhere investment is not binding
(i.e., for θ ∈ [θ, θB] or θ ∈ [θP , θP ]). Since production decisions are also imperfectly
competitive, a reduction of output leads to reduced welfare generated at those spot
markets. This impact is quantified by the term �

n defined in the lemma. That is, taking
into account the endogenous nature of the emission price leads to a lower degree
of optimal free allocation A1 than suggested by an analysis with exogenously fixed
emission price.

The impact of a changed emission cap T on total welfare has a similar structure
than the impact of changed free allocations. Analogous to above, a changed emission
cap leads to changed investment incentives, and the impact of changed investment
incentives on welfare is given by the terms �I and �I I which have already been
discussed above. As we will see later on in Theorems 1 and 2, if the levels of free
allocation are chosen optimally such as to obtain �I = �I I = 0, those terms will not
be relevant for the optimal choice of the emission cap. If the levels of free allocation
are not chosen optimally, however, they have to be considered when determining the
optimal level of the emission cap T (compare Theorems 3, 4, 5 and 6).

Apart from having an impact on investment incentives, a changed emission cap T
leads to changed welfare also through several other channels. First, most apparently
an increased emission cap leads to increased emissions which reduce welfare by the
marginal social cost of pollution DT . Second, observe that on the other hand, an
increased emission cap leads to a welfare increase since it implies a reduced emission
price which allows for increased output. The welfare increase at each spot market
is given by the changed output multiplied by the difference between marginal cost
as perceived by the firms and true marginal cost, i.e., dQ(wi e∗), for i = 1, 2. Put
differently, however, this corresponds to the changed pollution at each spot market
multiplied by the emission price e∗, and the change in welfare at all spot markets then
is simply given by the total change of emissions multiplied by the emission price, i.e.,
dT e∗. As we will see in the subsequent Theorem 1, for a perfectly competitive market
the optimal cap and trade mechanism only balances those two effects and equates
the marginal social cost of pollution to the emission price (i.e., e∗ = DT ).22 Third,
observe that an increased emission cap T leads to a reduced emission price. This
allows to reduce the welfare loss obtained due to imperfect competition at those spot
markets where investment is not binding and output too low. Notice that the impact of
changed emissions on welfare at those spot markets where investment is not binding
has already been discussed above, it is given by �

n .

21 That is, the monetary subsidy A1e
∗, for example, should then equate to the integral of the markups over

all relevant spot markets. The intuition for this result in some sense parallels the quite well known insight
obtained for a simple static model where a monopolist can be induced to produce first best output if he
obtains a subsidy corresponding to his markup.
22 This parallels the fundamental trade-off obtained in a simple static model where a Pigou tax should just
equal to the marginal social damage of pollution.
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Based on the findings of Lemma 4 as the first best benchmark, we can now directly
establish the optimal cap and trade mechanism which is obtained for a perfectly com-
petitive market

Theorem 1 (Optimal market design, first best benchmark)Under perfect competition,
the optimal market design satisfies

(i) A∗
1 = 0 (i i) A∗

2 = 0 (i i i) T ∗ : e∗ = DT (T ).

Proof See Appendix E. ��
Discussion and policy implications:The theoremdemonstrates that in a competitive

market (i.e., n → ∞), where all aspects of the cap and trade system (here: parameters
A1, A2 and T ) can be freely chosen by authorities, full auctioning is unambiguously
optimal (i.e., no free allocations should be granted) and the emission target T should be
set such that the equilibrium permit price equals marginal social cost of environmental
damage. That is, as already discussed above, the optimal cap and trade mechanism
balances welfare losses due to foregone production at all spot markets given by e∗ with
the marginal social cost of pollution given by DT . In case of the EU-ETS, for example,
in the early phases I and II (2005–2012) free allocations have been granted to all sectors
including the electricity sector. One important reason has apparently been of political
nature allowing for industry support when introducing the cap and trade system (see,
e.g., Convery 2009). For the electricity sector, this has been changed since the start of
phase III (2013), since then no free allocations have granted to electricity producers23.
This seems to be perfectly in line with the results obtained in Theorem 1. Observe,
however, that the theorem requires all aspects of the cap and trade mechanism to be
set optimally, including the total amount T of permits issued by authorities. Likely,
also this total amount T of emissions is subject to political constraints which require
the emission price e to remain within certain limits (likely below the socially ideal
level). Let us mention already at this point, however, that we are able to derive the
optimal design also in case of an exogenously fixed overall emissions cap T which is
not optimally chosen. As we show later on in Theorem 3, also in this case it is optimal
to fully auction permits without granting any free allocations. Thus, the elimination of
free allocations in the electricity sector in the EU-ETS since 2013 is perfectly in line
with our results, provided we can assume that producing firms interacts in a perfectly
competitive way (for the relaxation of this assumption, see the subsequent section).

In the subsequent two sections, we now consider market imperfections which make
an attainment of the first best outcome impossible. First, we analyze the case of imper-
fectly competitive markets (see Sect. 5). Apart from imperfect competition, another
source of market imperfection arises when authorities cannot freely choose all param-
eters (A1, A2, T ) of the cap and trade mechanism, but only a subset. Such situations
arise, for example, when the level of free allocation for (some of) the different tech-
nologies or the total emission cap is exogenously fixed due to political arrangements
or lobbing of firms and the competition authority can only determine the remaining
parameters (see Sect. 6).

23 There are exceptions for those member states with a GDP below 60% of the average, see IEA (2020).
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5 Optimal market design under imperfect competition

After having determined the first best benchmark (Theorem 1), we now analyze the
case of an imperfectly competitive market. Under imperfect competition, investment
incentives are generally too low (compare Sect. 3). One of the usually proposed mea-
sures to overcome problems of under-investment is given by capacity payments which
are assigned in capacity markets.24 Notice that the fundamental impact of a capacity
payment is equivalent to that of free allocations in our framework. That is, in our
framework it is equivalent if a monetary payment St or free allocations of value Ate∗
for t = 1, 2 are granted to a firm per unit of investment. In total, those measures lead
to a reduction of marginal cost of investment by Ate∗ + St . Thus, the optimal design
of both instruments is closely related. In the present section, we want to shed light on
this interdependence and determine the optimal design of capacity payments and of
the cap and trade system.

Theorem 2 (Optimal Market Design under Imperfect Competition) Under imperfect
competition, the optimal market design satisfies

(i) A∗
1e

∗ + S∗
1 =

∫ θ

θP

(−Pq X∗
1

n

)

dF(θ) − �

n
AE
1

(i i) A∗
2e

∗ + S∗
2 =

∫ θP

θB

(−Pq X∗
2

n

)

dF(θ) +
∫ θ

θP

(−Pq X∗
1

n

)

dF(θ) − �

n

(
AE
1 + AE

2

)

(i i i) T ∗ : e∗ = DT (T ) − �

n
.

Now, assume that Pqθ = 0. We then obtain A∗
1e

∗ + S∗
1 > 0. For w2 ≤ wE

2 , we obtain
A∗
2e

∗ + S∗
2 > A∗

1e
∗ + S∗

1 ; for w2 > wE
2 , we can obtain A∗

2e
∗ + S∗

2 = 0.

Proof See Appendix E. ��
The optimal levels of total free allocations and capacity payments A∗

t e
∗ + S∗

t under
imperfect competition are thus typically different from zero, a striking difference to the
result obtained under perfect competition (see Theorem 1). The fundamental reason
why this is the case follows directly from the insights provided by Lemma 1 and the
subsequent discussion of the results: Imperfectly competitive firms not only exercise
market power at the spot markets, but also choose their capacity to optimally benefit
from scarcity prices, implying reduced investment incentives.

As already discussed in the text following Lemma 1 (compare the last paragraph
which discusses Lemma 1), for an exogenously fixed price for pollution (e.g., a
Pigouvian tax at some fixed level e∗) optimal investment incentives are obtained by
subsidizing investment such as to precisely compensate for the difference between
scarcity rents and marginal scarcity profits. To stick as close as possible to our nota-
tion, such subsidy could be made by assigning the amounts A1 and A2 of free tax

24 For a survey on those capacity markets, compare, for example, Cramton and Stoft (2008), Cramton and
Ockenfels (2012), or Fabra (2018).
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vouchers to each unit invested in either of the technologies. Equivalently, such sub-
sidy could also be realized by appropriately chosen levels of capacity payments St ,
for t = 1, 2. Formally, for an exogenous emission price the total amount of subsidies
Ate∗ + St is given by expressions (i) and (ii) of Theorem 2 by setting � = 0. (Notice
that for exogenously fixed permit price, we have � = 0.) Those would be the levels
of capacity payments granted by an optimal capacity market which disregards the
endogenous nature of the emission permit price.

However, if the emission permit price is not exogenous but changes with firms’
investment incentives (indeed � > 0), those levels of capacity payments are not opti-
mal, as we show. Positive free allocation leads to increased investment incentives,
which (through an increased emission price) can lead to reduced output (and thus
pollution) at those spot market where investment is not binding. The terms including
the expression �

n take this welfare loss into account. This leads to a reduced level of
the optimal degree of free allocation. As we show in the theorem, under imperfect
competition the degree of free allocation for the peak load technology is always pos-
itive, i.e., A∗

1e
∗ + S∗

1 > 0. For the optimal allocation for the base load technology,
ambiguous results are obtained. If the base load technology is less emission intensive
than the peak load technology (i.e., w2 ≤ w1), increased investment in the base load
technology leads to reduced emissions and thus allows for more output at spot markets
where investment is not binding. As we show, this always implies that the base load
technology should receive more total subsidies than the peak load technology, i.e.,
A∗
2e

∗ + S∗
2 > A∗

1e
∗ + S∗

1 . On the other hand, if the base load technology is more
emission intensive than the peak load technology (w2 > w1, i.e., an increase of base
load investment leads to increased emission price), then it might be optimal to grant
less, i.e., A∗

2e
∗ + S∗

2 < A∗
1e

∗ + S∗
1 or even A∗

2e
∗ + S∗

2 < 0, as we show.
Finally, consider the optimal choice of the total emission cap T for the case of

imperfect competition. A brief look at the optimality condition (iii) established in
Lemma 4 reveals that the impact of a changed emission cap on investment decisions
can be neglected since the levels of free allocation are determined optimally (such
as to obtain �I = �I I = 0). What matters, however, is the fact that an increased
emission cap leads to a reduced emission price which in turn allows to reduce the
welfare loss induced by imperfectly competitive production decisions at those spot
markets where investment is not binding (given by �

n ). As a result, the optimal cap on
total emissions is chosen such as to yield an emission price below the marginal social
cost of pollution.

Discussion and policy implications: Based on our results, we can draw several
important conclusions for the debate on the design of cap and trade mechanisms. First
of all, policymakers should be very aware of the close relationship of capacity markets
and cap and trade systems which update based on installed production facilities. Most
importantly, as we show, the optimal capacity payments have to be fundamentally
different for markets with exogenous emission price (e.g., for an emission tax) than
for markets with endogenous price (as for a cap and trade system). Disregarding those
aspects when designing capacity payments for a market with a cap and trade system
will lead to flawed market outcomes.

Furthermore, policy makers might be able to exploit this strongly interdependent
nature of capacity payments and free allocations, especially if there are rigidities
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present in either of the instruments. On the one hand, those rigidities might be present
for the cap and trade system when free allocations have to be granted to enhance
political support (compare our discussion in Sect. 1). In this case, optimal capacity
payments should be designed such as to grant a total level of subsidies specified by
our optimality conditions. On the other hand, the introduction of capacity markets to
address problems of under-investment might be desirable, but politically infeasible
for certain markets or industries. In such case, appropriately designed levels of free
allocations might at least partially overcome this inefficiency. Our results established
in Theorem 2 characterize the optimal policy choice for all those cases.

6 Optimal design of a partially constrained cap and trademechanism

In Theorems 1 and 2, we determined the optimal design of a cap and trade mechanism
when all its parameters (A1, A2, T ) can be freely chosen by the competition author-
ity. We first analyzed the case of a perfectly competitive market, which yields the first
best benchmark (Theorem 1) and then the case of imperfect competition (Theorem
2). Another source of market imperfection, apart from imperfect competition, arises
when the competition authorities cannot freely choose all parameters (A1, A2, T ) of
the cap and trade mechanism. Such rigidities might be due to political constraints and
arrangements or due to lobbing of firms. As already discussed extensively in the intro-
duction of this article, free allocations have been key to guarantee the political support
necessary to introduce cap and trade systems, compare Convery (2009), Tietenberg
(2006), Bovenberg et al. (2008) or, for example, Grubb and Neuhoff (2006)25. It is the
purpose of the present section to analyze how a competition authority should optimally
design a cap and trade mechanism if it can determine only a subset of the parameters
of the cap and trade mechanism, whereas the remaining parameters are exogenously
fixed due to the above discussed problems.

Theorem 3 determines the optimal degree of free allocations for the case of exoge-
nously fixed level of the total emission cap T . In Theorems 4, 5 and 6, we determine the
optimal degree of free allocation to the remaining technologies and the corresponding
level of the optimal total emission cap T . Observe that our results obtained in Lemma
4 in principle would allow for a detailed analysis of those questions both for the cases
of perfect and imperfect competition. In order to limit the notational burden in the
present paper, we restrict ourselves to the case of perfect competition, however. In this
case, the optimality conditions determined in Lemma 4 read as follows

WA1 := dX∗
1

dA1
(−A1) e

∗ + dX∗
2

dA1
(A1 − A2) e

∗ = 0 (11)

WA2 := dX∗
1

dA2
(−A1) e

∗ + dX∗
2

dA2
(A1 − A2) e

∗ = 0 (12)

25 “Due in part to the sheer scale of the EU ETS, governments are subject to intense lobbying relating to
the distributional impact of the scheme, and are constrained by this and by concerns about the impact of
the system on industrial competitiveness. Few academics understand the real difficulties that policy-makers
face when confronted with economically important industries claiming that government policy risks putting
them at a disadvantage relative to competitors.”
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WT := dX∗
1

dT
(−A1) e

∗ + dX∗
2

dT
(A1 − A2) e

∗ − DT (T ) + e∗ = 0. (13)

We first analyze the case of an exogenously fixed level of the cap on total emissions
T , and an example might be a situation where politicians are willing to introduce a cap
and trade mechanism, but are reluctant to induce too severe (even though optimal from
an overall welfare point of view) distortions on the economy. The above optimality
conditions directly reveal that in a perfectly competitive market, no free allocations
should be granted to firms, independently of the level of the emission cap.26 This is
summarized in Theorem 3.

Theorem 3 (Optimal design for fixed emission cap T ) For any exogenously fixed total
emission cap T , it is optimal to choose the levels of free allocation A∗

1 = A∗
2 = 0.

That is, the result obtained in the first best benchmark (Theorem 1) where no free
allocation has been found to be optimal is also obtained if the total emission cap is
not set at an optimal level. This seems to be perfectly in line with the abandonment of
free allocations for the electricity sector in most member states in the context of the
EU-ETS since 2013. For a more detailed discussion of the policy implications, see the
discussion following Theorem 2. Observe that the reverse does not hold as we show
in the subsequent theorem, however.

Theorem 4 (Optimal design for fixed allocations A1 and A2) Suppose the initial allo-
cations A1 and A2 are fixed exogenously. Define

�0(A1, A2) := (A1 − AE
1 )A1�I1 + (A2 − A1 − AE

2 )(A2 − A1)�I I2. (14)

The optimal emission cap T ∗ has to be set such as to satisfy e∗ = DT (T ∗) for
�0(A1, A2) = 0, e∗ > DT (T ∗) for �0(A1, A2) > 0, and e∗ < DT (T ∗) for
�0(A1, A2) < 0.

Proof See Appendix F. ��
That is, for levels of free allocation A1, A2 which are not set optimally the optimal

cap on emissions T typically does not implement an emission price e∗ equal to the
social cost of pollution DT . To get an intuition for the result, note first that the cap T
on total emissions governs the price for emission certificates e∗ which in turn influ-
ences both investment decisions and unconstrained production decisions at those spot
markets where investment is not binding. Optimal production decisions are induced
by an emission price equal to the social cost of pollution. This is only overall optimal
in case of optimal investment incentives.

Now, first observe that in case of positive free allocations (as considered in the
theorem), investment incentives are distorted, however. That is, for A1 > 0 invest-
ment incentives in the peak load technology are too high; for A2 > A1 (A2 < A1),
investment incentives in the base load technology are too high (low). A distortion of
the emission price can then be suited to at least partially adjust investment incentives.

26 The results of Theorem 3 for the case of imperfect competition are obtained analogously, and the optimal
levels of free allocation are given by conditions (i) and (ii) established in Theorem 2.
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Fig. 4 Choosing the optimal T ∗ for exogenously fixed initial allocations A1 and A2. Left: for relatively
dirty base technology, i.e., w2 > wE

2 , right: for relatively clean base technology, i.e., w2 < wE
2

Second, observe that the impact of a changed emission cap T on investment incen-
tives already has been derived in Lemma 3 (iii) and was discussed in the subsequent
text. As established there, a higher emission cap T (implying a lower emission price e∗)
leads to increased investment in the peak load technology X∗

1 if and only if A1 < AE
1 ,

and it leads to increased investment in the base load technology X∗
2 if and only if

A2 < A1 + AE
2 .

Intuitively, Theorem 4 formally joins those two effects; that is, whenever the levels
of free allocation A1, A2 are such as to induce over investment, the total cap on
emissions should be set such as to induce an emission price which leads to a reduction
of investment incentives and vice versa. All those findings are illustrated graphically
in Fig. 4.

Consider the case A2 = A1 > 0, where all technologies get the same amount of
free allocations (the 45-degree line of Fig. 4). In the light of the above discussion,
this implies first of all that investment incentives in the base load technology are
undistorted (since A2 = A1) and investment incentives in the peak load technology
are too high. For A1 < AE

1 , investment incentives are reduced for a higher emission
price; for A1 > AE

1 , they are reduced for a lower emission price. Next, consider the
case A2 = A1 + AE

2 . In this case, a changed emission price e∗ has no impact on
investment in the base load technology, and analogous to above, the optimal cap T is
thus designed exclusively such as to reduce the too high investment incentives in the
peak load technology (i.e., for A1 < AE

1 , we have e
∗ > DT and vice versa).27

27 Observe that an analogous reasoning is obtained for the case A1 = 0 when only investment incentives
in the base load technology are distorted and the case A1 = AE

1 when a changed emission price has no
impact on investment in the peak load technology and only distortions of base load investment are to be
adjusted by the total emission cap.
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Fig. 5 Left: Choosing the optimal A∗
2 for exogenously fixed initial allocation A1. Right: Choosing the

optimal A∗
1 for exogenously fixed initial allocation A2

Discussion and policy implications: We conclude the discussion of Theorem 4 by
applying our findings to the above discussed policy of full allocation (Afull

1 , Afull
2 ) as

already introduced at the end of Sect. 3. Remember that we derived the following
properties for the levels of full allocation: Afull

1 > AE
1 and Afull

2 > Afull
1 + AE

2 . As
already discussed, if we consider either lignite or coal-fired plants as the representative
base load technology and open cycle gas turbines as the representative peak load
technology, we also obtain Afull

2 > Afull
1 . For our framework, we thus obtain that the

optimal cap on total emissions has to be set such that the equilibrium permit price is
lower than the social cost of pollution, i.e., e∗ < DT .

In the subsequent Theorem 5, we consider the case that only the allocation for
the peak load technology A1 is exogenously fixed, and allocation for the base load
technology A2 and the total emission cap T can be determined optimally, however.

Theorem 5 (Optimal design for fixed allocation A1) Suppose the allocation for the
peak technology A1 is exogenously fixed. The optimal allocation for the base tech-

nology then solves A∗
2 = dX∗

2/dA2−dX∗
1/dA2

dX∗
2/dA2

A1. More specifically, we obtain (see left

graph of Fig. 5)

⎧
⎨

⎩

A∗
2 = 0 i f (Across

1 ≤ A1 < Alim
1 )

0 < A∗
2 < A1 i f

(
(0 < A1 < AE

1 ) & (w2 < wE
2 )
)
OR

(
(AE

1 < A1 < Across
1 ) & (w2 > wE

2 )
)

A1 < A∗
2 i f

(
(AE

1 < A1 < Across
1 ) & (w2 < wE

2 )
)
OR

(
(0 < A1 < AE

1 ) & (w2 > wE
2 )
)
.

The optimal cap T ∗ is such that e∗ > DT if A1 < AE
1 and e∗ < DT if A1 > AE

1 .

Proof See Appendix G. ��
Observe that the optimality condition for A2 as stated in the theorem is obtained

directly by rearranging expression (12). To derive the properties of the optimal degree
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of allocation for the base load technology A∗
2 as stated in the theorem,we can nowmake

use of the properties of comparative statics derived in Lemma 3(i). Most importantly,

as established there, we always obtain
dX∗

2
dA2

> 0.We thus obtain A∗
2 > A1 if and only if

dX∗
1

dA2
< 0. Since we only consider nonnegative levels of free allocation, we furthermore

obtain A∗
2 = 0 whenever 0 <

dX∗
2

dA2
<

dX∗
1

dA2
. All those results of comparative statics have

been derived in Lemma 3 and have been discussed subsequently in Sect. 3. Figures
3 and 5 do thus in principle look identical; observe, however, that Fig. 3 exclusively
states results of comparative statics, whereas Fig. 5 illustrates the properties of the
optimal allocation A∗

2 by making use of the previously obtained findings.
The intuition for the optimal level of free allocation T ∗ in principle goes along

the same lines as the one provided for the findings of Theorem F. As compared
to the first best benchmark, for positive allocation A1 investment incentives in the
peak load technology are too high. Whenever A1 < AE

1 , we obtain �Ie < 0 which
implies that a higher emission price e∗ allows to reduce investment incentives in the
peak load technology. Observe furthermore that investment incentives in the base load
technology as induced by A∗

2 are either too high or too low (i.e., A∗
2 > A1 forw2 > wE

2
and vice versa). As we show in the theorem, it is optimal to set the total cap such as
to obtain an emission price e∗ > DT which induce reduced investment incentives in
the peak load technology whenever A1 < AC

1 . Observe that for A1 = AC
1 , we obtain

A∗
2 = A1 = AC

1 which implies undistorted investment incentives in the base load
technology; in this case, we thus obtain e∗ = DT . The reverse holds true for the case
A1 > AC

1 where the optimal emission cap T ∗ has to be set to obtain e∗ < DT which
induces reduced investment incentives in the peak load technology.

In the subsequent Theorem 6, we consider the case that allocation for the peak load
technology A2 is exogenously fixed, and allocation for the base load technology A2
and the total emission cap T is determined optimally.

Theorem 6 (Optimal design for fixed allocation A2) Suppose the allocation for the
base technology A2 is exogenously fixed. The optimal allocation for the peak technol-

ogy then solves A∗
1 = dX∗

2/dA1

dX∗
2/dA1−dX∗

1/dA1
A2. More specifically (see right graph of Fig.

5)

⎧
⎨

⎩

A∗
1 = 0 i f (Across

2 ≤ A2 < Alim
2 )

0 < A∗
1 < A2 i f

(
(0 < A2 < Across

2 ) & (w2 < wS
2 )
)
OR

(
(0 < A2 < Atotal

2 ) & (w2 > wS
2 )
)

A2 < A∗
1 i f (Atotal

2 < A2 < Alim
2 ).

Define Aem
2 := AE

1 + AE
2 . We obtain Aem

2 < Atotal
2 and Aem

2 < Across
2 . The optimal

cap T ∗ is such that e∗ < DT if A2 < Aem
2 and e∗ > DT if A2 > Aem

2 .

Proof See Appendix H. ��
Observe that the optimality condition for A1 as stated in the theorem is obtained

directly by rearranging expression (11). To derive the properties of the optimal degree
of allocation for the peak load technology A∗

1 as stated in the theorem,we can nowmake
use of the properties of comparative statics derived in Lemma 3(ii). Most importantly,

123



SERIEs (2021) 12:281–327 307

as established there, we always obtain
dX∗

1
dA1

>
dX∗

2
dA1

. Sincewe only consider nonnegative

levels of free allocation, we obtain A∗
1 > 0whenever

dX∗
2

dA1
< 0. Furthermore, we obtain

A∗
1 > A2 whenever

dX∗
2

dA1
<

dX∗
1

dA1
< 0.

Let us finally provide some intuition for the optimal cap on total emissions T . First
of all, observe that for A2 < Atotal

2 and A2 < Across
2 , we always obtain 0 < A∗

1 < A2
which implies that investment incentives both in the base load and the peak load
technology are too high as compared to the first best benchmark. For low levels of
allocation to the base load technology (i.e., A2 < A∗

1(A2) + AE
2 ), we obtain �IIe < 0

which makes it optimal to induce an emission price e∗ > DT to lower investment
incentives for both technologies.28 Observe that for A2 = A∗

1(A2) + AE
2 , we obtain

�IIe = 0, and a distortion of the emission price above (or below) social cost of
pollution has no impact on investment incentives in the base load technology.However,
investment incentives in the peak load technology are too high (since A∗

1 > 0). Since
�Ie < 0, the distortion of the emission price above social cost of pollution is thus
still suited to reduce investment incentives in the peak load technology. In total, the
theorem thus balances increased investment incentives in the base load technology
with reduced investment incentives in the peak load technology. The cutoff is reached
where �IIe + �Ie = 0 which implies A2 = AE

1 + AE
2 = Aem

2 . That is for A2 < Aem
2 ,

it is optimal to set an emission cap T ∗ which induces e∗ > DT and for A2 > Aem
2 ,

the optimal cap T ∗ induces e∗ < DT .29 All those results are illustrated in Fig. 5.
Discussion and policy implications:We conclude the discussion of Theorems 5 and

6 by applying our findings to the above discussed policy of full allocation (Afull
1 , Afull

2 )

which served as the main illustrating example throughout this article:
First, consider the case of Theorem 5, where the allocation A1 for the peak tech-

nology is exogenously fixed. As already shown, under full allocation we obtain
Afull
1 ∈ [AE

1 , (1 − F(θP ))w1]. For the case of a completely clean base load tech-
nology (that is w2 = 0, in the context of electricity markets this would be the case for
nuclear power plants, for example) under the current rules such technology would not
obtain any permits. As our results directly show, however, such technology should be
granted more free allocations than the peak technology, i.e., A∗

2 > Afull
1 . Moreover,

the total emission cap T ∗ should be chosen such as to implement e∗ < DT in order
to dampen excessive investment incentives induced by those levels of free allocation.

Next, consider the case of Theorem 6 where the allocation A2 for the base technol-
ogy is exogenously fixed. The optimal level of free allocation for the peak technology
has to be strictly positive if the peak technology is less emission intense than the base
technology. In particular, if the peak technology is completely clean (that isw1 = 0, in
the context of electricity markets this would be the case for small biogas-fired engines
or turbines for example), under full free allocation this technology would not receive
any free permits. As our results directly show, however, such technology should be
granted a positive amount of free permits. Unlike in the case discussed in the pre-

28 Observe that for AE
2 < 0, this range is degenerated at zero.

29 For A2 > Across2 , only investment incentives in the base load technology are distorted; since Across2 >

Aem2 , the optimal cap then clearly has to implement e∗ > DT . For A2 > Atotal2 , the optimal A∗
1(A2) > A2

is so large that the optimal cap also has to implement e∗ > DT , as we show.
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ceding paragraph, however, the level of free allocation for the peak load technology
should remain below the exogenously fixed level of free allocation for the base load
technology. The reason for this difference lies in the fact that free allocations A2
for the base load technology only have an impact on the resulting technology mix,
and free allocations A1 to the peak load technology have an impact on the resulting
technology mix and on firms’ total investment activity. For exogenously fixed A2,
the optimal level of A∗

1 is thus more moderate since it also leads to distorted total
investment decisions. Finally, notice for the optimal cap on total emissions: Since
Aem
2 < (1 − F(θB))w2 < Afull

2 (compare Definition 1 and the last paragraph of Sect.
3), we can directly conclude that the total cap on emission has to be chosen such as to
implement e∗ < DT in order to dampen excessive investment incentives induced by
those levels of free allocation.

In sum, if one of the technologies is granted an exogenously fixed level of free allo-
cation (e.g., due to lobbying), then the optimal pattern of allocations to the remaining
technology is completely different from the one that is obtained under full allocation.
Furthermore, for high levels of free allocation, the cap on total emissions should be
chosen such as to induce an emission permit price which is below marginal social cost
of pollution in order to reduce the distortions on the resulting technology mix.

7 Conclusion

Tradeable pollution permits are an increasingly important policy tool in environmental
legislation worldwide. The possibility to freely allocate permits provides an important
possibility to share the regulatory burden. This seems to significantly enhance the
political support for recently introduced legislations (see, for example, Tietenberg
2006; Bovenberg et al. 2008, or Convery (2009)). Since free allocations typically are
subject to implicit or explicit updating, the allocation of permits has an impact on
firms’ decisions: First, updating of free allocations on the one hand has an impact on
firms’ operation of existing production facilities if they believe that current output or
emissions do have an impact on allowances granted in future periods. Second, updating
will also have an impact on firms’ incentives to modify their production facilities.
The first aspect has already been intensively analyzed in the literature (compare, for
example, Böhringer and Lange 2005; Mackenzie et al. 2008; Böhringer et al. 2017, or
Meunier et al. 2018).

All those contributions focus on the impact of free allocations with updating on out-
put decisions and abstract from investment decisions. However, free allocations with
updating also have a direct impact on firms’ investment incentives which determine
production capacities and the technology mix in the long run. It has been the purpose
of the present article to analyze its impact on firms’ investment decisions and to derive
the optimal cap and trade mechanism in such an environment.

In the present article, we have thus analyzed an analytical framework with tradeable
permits and a cap on total emissions. Potentially strategically acting firms have been
able to invest into production facilities (with different emission intensities)which allow
for production for a longer horizon of time. After establishing the market equilibrium
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and the resulting technology mix, we have analyzed the optimal design of the cap and
trade mechanism.

As a benchmark, we established the first best solution which is obtained for an ideal
market.We then have derived the optimal design of the cap and trade system for a series
of market imperfections. First, we have analyzed the case of strategic investment and
production decisions in an imperfectly competitive market. This allowed to highlight
the close interdependency ofmechanisms to overcome low investment incentives (such
as, for example, capacity markets, compare Fabra 2018) and cap and trade systems:
If the endogenous nature of emission prices in the presence of a cap and trade system
is disregarded, too high investment incentives are induced by such mechanisms.

We then have analyzed the case that the competition authority cannot freely choose
all parameters of the cap and trade system due to restrictions imposed by the political
processes. The optimal choice of the remaining parameters differs substantially from
that observed for the first best benchmark. Our result showed, for example, that if
a certain technology receives free allocations, it is typically optimal to grant free
allocations also to the other technology. Interestingly, those free allocations granted to
the other technology should be higher in case this technology is less emission intensive.
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A Proof of Lemma 1

Note that given our assumptions on demand and cost, existence of spot market equi-
librium at each demand scenario θ is ensured for the case of perfect and imperfect
competition. We denote by q∗

i (θ, x) spot market output of firm i in scenario θ , given
investments x = (x11, . . . , x1n, x21, . . . , x2n). Remember, X1 and X2 denote industry
investment in either technology and Q∗(θ) industry output at each spot market θ , and
it is given as follows:

Q∗ =

⎧
⎪⎪⎨

⎪⎪⎩

Q : P(Q, θ) + Pq(Q, θ)
Q
n − c2 − w2e∗ = 0 i f θ ∈ [θ, θB]

X2 i f θ ∈ [θB, θP ]
Q : P(Q, θ) + Pq(Q, θ)

Q
n − c1 − w1e∗ = 0 i f θ ∈ [θP , θP ]

X1 i f θ ∈ [θP , θ ]
(15)

The critical spot market scenarios are defined as follows:

θB : P(X2, θB) + Pq(X2, θB)
1

n
− c2 − w2e

∗ = 0
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θP : P(X2, θP ) + Pq(X2, θP )
1

n
− c1 − w1e

∗ = 0

θP : P(X1, θP ) + Pq(X1, θP )
1

n
− c1 − w1e

∗ = 0

That is, at spot market θB investment X2 in the base load technology (c2, k2) starts
to be binding, at θP , firms start to produce with the peak load technology (c1, k1) and
at θP , the total capacity bound X1 is met. The first-order conditions stated in Lemma
(1) are obtained when equating expressions (16), (17) and (18) to zero. Notice that the
case solution for the case perfect competition is obtained as the special case where
n → ∞.

We first derive the first-order conditions for optimal investment decisions. Note that
although in equilibrium at different demand realizations θ firm i might sometimes
produce an unconstrained equilibrium quantity and sometimes is constrained by its
choice x1i or x2i , equilibrium profit of firm i is continuous in θ . Thus, by Leibniz’
rule, the first derivatives of the profit function are given as follows:

dπi

dx1i
=
∫ θ

θP

[

P(X1, θ) + Pq(X1, θ)
X1

n
− (c1 + w1e)

]

dF(θ) − (k1 − A1e)

(16)

dπi

dx2i
=
∫ θP

θB

[

P(X2, θ) + Pq(X2, θ)
X2

n
− (c2 + w2e)

]

dF(θ)

+
∫ θ

θP

(c1 − c2) + (w1 − w2)edF(θ) − (k2 − A2e) + (k1 − A1e) (17)

In the market solution, the emission price e has to be such as to equate the following
expression to zero:

∫ θB

θ

w2Q
∗dF(θ) +

∫ θP

θB

w2X2dF(θ) +
∫ θP

θP

w1Q
∗dF(θ)

+
∫ θ

θP

w1X1dF(θ) −
∫ θ

θP

(w1 − w2)X2dF(θ) − T (18)

which are the conditions �I , �I I and �E as given in the lemma.
Let us directly at this point determine all partial derivatives of the equilibrium

system characterized in the lemma. The partial derivatives of �I (expression (16)),
�I I (expression (17)) and �E (expression (18)) read as follows:

∂�I

∂X∗
1

= �I1 =
∫ θ̄

θP̄

Pq
(
X∗
1, θ

) n + 1

n
+ Pqq

(
X∗
1, θ

) X∗
1

n
dF(θ) < 0

∂�I I

∂X∗
2

= �I I2 =
∫ θP

θB̄

Pq
(
X∗
2, θ

) n + 1

n
+ Pqq

(
X∗
2, θ

) X∗
2

n
dF(θ) < 0
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∂�E

∂e
= �Ee =

∫ θB̄

θ

w2
2

Pq(Q∗, θ) n+1
n + Pqq(Q∗, θ)

Q∗
n

dF(θ)

+
∫ θP̄

θP

w2
1

Pq(Q∗, θ) n+1
n + Pqq(Q∗, θ)

Q∗
n

dF(θ) < 0

∂�E

∂X∗
1

=�E1=(1−F(θP )
)
w1= AE

1 >0
∂�I

∂e
=�Ie= A1−(1−F(θP̄ ))w1= A1−AE

1

∂�E

∂X∗
2

= �E2 = (1 − F(θB̄))w2 − (1 − F(θP))w1 = AE
2

∂�I I

∂e
= �IIe = A2 − A1 − (1 − F(θB̄))w2 + (1 − F(θP ))w1 = A2 − A1 − AE

2

∂�I

∂A1
= e

∂�I I

∂A1
= −e

∂�I I

∂A2
= e

∂�E

∂T
= −1.

B Proof of Lemma 2

Part (i) To derive the second-order conditions established in Lemma 2, first observe
that differentiation of the permit pricing condition �E with respect to X1 and slight
rearranging yields de∗

dX1
= �E1−�Ee

. Plugging into the derivatives of �I and �I I and

replacing for AE
1 and AE

2 as introduced in Definition 1 yield:

d�I

dX1
= �I1 + �Ie

�E1

−�Ee
= �I1 + (A1 − AE

1 )
AE
1

−�Ee

d�I I

dX1
= �IIe

�E1

−�Ee
= (A2 − A1 − AE

2 )
AE
1

−�Ee

Likewise, we obtain

d�I

dX2
= �Ie

�E2

−�Ee
= (A1 − AE

1 )
AE
2

−�Ee

d�I I

dX1
= �I I2 + �IIe

�E2

−�Ee
= �I I2 + (A2 − A1 − AE

2 )
AE
2

−�Ee

The matrix H =
(
d�I /dX1 d�I /dX2
d�I I /dX1 d�I I /dX2

)

is negative definite if and only if condi-

tions (a), (b) and (c) established in Lemma 2 (i) are satisfied. To save on notation, we
introduce C := det(H); observe that C ≥ 0 if H is negative definite [compare (c) in
Lemma 2 (i)].

Part (ii) Since �I1 < 0, �I I2 < 0 and �Ee < 0 (see Appendix A), the conditions
provided in Lemma 2 (ii) are sufficient to guarantee negative definiteness of the matrix
H .
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Part (iii) To see why this is true, just observe that for A1 > Alim
1 , condition (a)

established in Lemma 2(i) will be violated. The condition defining Alim
2 is given by

the sum of conditions (a) and (b) of Lemma 2(i); for A1 > Alim
1 , at least one of those

two conditions will be violated.

C Proof of Lemma 3

C.1 Preliminaries: comparative statics

The differentials for
dX∗

1
dA1

,
dX∗

1
dA2

,
dX∗

1
dT and

dX∗
2

dA1
,
dX∗

2
dA2

,
dX∗

2
dT are obtained by applying the

implicit function theorem to the equilibrium conditions established in Lemma 1. The
total derivative of this equations system with respect to the parameter A1 yields:

�I : �I1
dX∗

1

dA1
+ �Ie

de∗

dA1
+ ∂�I

∂A1
≡ 0 (19)

�I I : �I I2
dX∗

2

dA1
+ �IIe

de∗

dA1
+ ∂�I I

∂A1
≡ 0 (20)

�E : �E1
dX∗

1

dA1
+ �E2

dX∗
2

dA1
+ �Ee

de∗

dA1
+ ∂�E

∂A1
≡ 0 (21)

In order to derive an explicit formulation for
dX∗

1
dA1

, we solve expression (21) for de∗
dA1

and expression (20) for
dX∗

2
dA1

. Plugging into expression (19) yields:

⎛

⎝
(

�I1 + �Ie
�E1

−�Ee

)

−
(

�Ie
�E2

−�Ee

)
(
�IIe

�E1−�Ee

)

(
�I I2 + �IIe

�E2−�Ee

)

⎞

⎠
dX∗

1

dA1

+∂�I

∂A1
−

(
�Ie

�E2−�Ee

)
∂�I I
∂A1

(
�I I2 + �IIe

�E2−�Ee

) = 0

By making use of the definition of the variable C (compare Appendix B), we can
rearrange this expression and obtain:

dX∗
1

dA1
= (−1)

∂�I
∂A1

(
�I I2 + �IIe

�E2−�Ee

)
− ∂�I I

∂A1

(
�Ie

�E2−�Ee

)

C

=
(
(A2 − AE

1 − AE
2 )AE

2 − �I I2�Ee

) −e

−�EeC
(22)

Likewise, to obtain an explicit formulation for
dX∗

2
dA1

, we analogously solve expres-

sion (21) for de∗
dA1

and expression (19) for
dX∗

2
dA1

. Plugging into expression (20) and
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solving for
dX∗

2
dA1

yield:

dX∗
2

dA1
= (−1)

∂�I I
∂A1

(
�I1 + �Ie

�E1−�Ee

)
− ∂�I

∂A1

(
�IIe

�E1−�Ee

)

C

=
(
(A2 − AE

1 − AE
2 )AE

1 − �I1�Ee

) e

−�EeC
(23)

Analogously, we obtain:

dX∗
1

dA2
=
(
(A1 − AE

1 )AE
2

) e

−�EeC

dX∗
2

dA2
=
(
(A1 − AE

1 )AE
1 − �I1�Ee

) −e

−�EeC
dX∗

1

dT
=
(
A1 − AE

1

) �I I2

−�EeC

dX∗
2

dT
=
(
A2 − A1 − AE

2

) �I1

−�EeC
(24)

C.2 Proof of Lemma 3(i)

First, we define

�lim
1 (A1) := �I1 + �Ie

�E1

−�Ee

=
∫ θ

θP

Pq(X
∗
1, θ)dF(θ)

+ (A1 − AE
1 )AE

1
∫ θB
θ

w2
2−Pq (Q∗,θ)

dF(θ) + ∫ θP
θP

w2
1−Pq (Q∗,θ)

dF(θ)

. (25)

Observe that the second-order sufficient conditions for existence of the market equi-
librium specified in 2(i) require �lim

1 (A1) < 0. Since �lim
1 (A1) is increasing in A1, we

can define a unique Alim
1 which solves �lim

1 (Alim
1 ) = 0 and conclude that

dX∗
2

dA2
> 0 for

all A1 < Alim
1 .

Second, we define

�total
1 (A1) := �Ie

�E2

−�Ee
=

(
A1 − AE

1

)
AE
2

∫ θB
θ

w2
2−Pq (Q∗,θ)

dF(θ) + ∫ θP
θP

w2
1−Pq (Q∗,θ)

dF(θ)

(26)

This allows us to rewrite
dX∗

1
dA2

as established in expression (24) as follows:

dX∗
1

dA2
= �total

1 (A1)
e∗

C
(27)
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We finally show that AE
1 < Alim

1 . To see this, observe that �lim
1 (AE

1 ) = �I1 < 0.
Since �lim

1 (A1) is increasing in A1, we necessarily obtain Alim
1 > AE

1 .
Third, we define

�cross
1 (A1) := �I1 + �Ie

�E1

−�Ee
+ �Ie

�E2

−�Ee

=
∫ θ

θP

Pq(X
∗
1, θ)dF(θ) +

(
A1 − AE

1

) (
AE
1 + AE

2

)

∫ θB
θ

w2
2−Pq (Q∗,θ)

dF(θ) + ∫ θP
θP

w2
1−Pq (Q∗,θ)

dF(θ)

Observe that
dX∗

2
dA2

<
dX∗

1
dA2

if and only if �cross
1 (A1) > 0 (compare expression (24)).

We define the locus where �cross
1 (A1) = 0 by Across

1 .
We now compare the critical allocation Across

1 relative to the critical values Alim
1

and AE
1 :

• For w2 > wE
2 , we can establish the following ranking: AE

1 < Across
1 < Alim

1 .
To show thefirst inequality, observe that for all A1 ≤ AE

1 ,weobtain�total
1 (A1) ≤ 0.

As shown above, we also obtain �lim
1 (A1) ≤ 0, which implies �cross

1 (A1) =
�lim
1 (A1) + �total

1 (A1) ≤ 0. This directly implies, however, that Across
1 cannot be

in the interval [0, AE
1 ].

To show the second inequality, observe that for A1 > AE
1 , we have�total

1 (A1) > 0.
Whenever�cross

1 (A1) = �lim
1 (A1)+�total

1 (A1) = 0,wemust thus have�lim
1 (A1) <

0. Since �lim
1 (A1) is strictly increasing in A1, this implies Alim

1 > Across
1 .

• For w2 < wE
2 , we establish that �cross

1 (A1) < 0 (i.e., A∗
1 > 0) for all

A1 ∈ (0, Alim
1 ].

First, observe that for A1 > AE
1 we obtain �total

1 (A1) < 0 which implies that
�cross
1 (A1) = �lim

1 (A1) + �total
1 (A1) < 0 for A1 ∈ [AE

1 , Alim
1 ].

Second, observe that for A1 ≤ AE
1 and

(
(1 − F(θB))w2 − (F(θP ) − F(θP ))w1

)
>

0, we obtain �cross
1 (A1) < 0.

Third, observe that for A1 ≤ AE
1 and

(
(1 − F(θB))w2 − (F(θP) − F(θP ))w1

)
<

0, �cross
1 (A1) is maximized for A1 = 0. Expression (28) then reads as follows:

�cross
1 (0) =

∫ θ

θP

Pq(X
∗
1, θ)dF(θ)

+− (1 − F(θP )
)
w1
(
(1 − F(θB))w2 − (F(θP) − F(θP ))w1

)

∫ θB
θ

w2
2−Pq (Q∗,θ)

dF(θ) + ∫ θP
θP

w2
1−Pq (Q∗,θ)

dF(θ)

which can be guaranteed to be negative if Pqq ≤ 0 and Pqθ ≥ 0. Without those
additional assumptions, it might happen that A∗

1 = 0 in the region where A1 ≤ AE
1

and
(
(1 − F(θB))w2 − (F(θP ) − F(θP ))w1

)
< 0.
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C.3 Proof of Lemma 3(ii)

First, we define

�lim
2 (A2) :=

(

�I I2 + �I1 + (�IIe + �Ie)
�E2 + �E1

−�Ee

)

. (28)

In order to precisely define Alim
2 , first observe that �E2 +�E1 = AE

1 + AE
2 (compare

Definition 1), we thus have to consider the following two cases:

• For the case w2 > wL
2 (i.e., AE

1 + AE
2 > 0), �lim

2 is strictly increasing in A2, and
we can define a unique Alim

2 which solves �lim
2 (Alim

2 ) = 0
• For the case w2 ≤ wL

2 (i.e., AE
1 + AE

2 ≤ 0), �lim
2 (A2) is non-increasing in A2, and

it is thus minimized for A2 = 0 which yields

�lim
2 = �I I2 + �I1 +

(
A2 − (AE

1 + AE
2 )
) AE

1 + AE
2

−�Ee
< 0.

That is, �lim
2 (A1) < 0 for all A2 ≥ 0. For ease of notation, we thus define

Alim
2 = ∞ in this case.

We now determine
dX∗

2
dA1

− dX∗
2

dA1
as given by expressions (22) and (22). After plugging

in for ∂�I
∂A1

= e∗ and ∂�I I
∂A1

= −e∗ (compare Appendix A), we obtain for
dX∗

1
dA1

− dX∗
2

dA1
:

((

�I I2 + �IIe
�E2

−�Ee

)

+
(

�Ie
�E2

−�Ee

)

+
(

�I1 + �Ie
�E1

−�Ee

)

+
(

�IIe
�E1

−�Ee

)) −e∗

C

= −e∗

C
�lim
2 (A2)

Since �lim
2 (A2) < 0 as established above, we conclude that

dX∗
1

dA1
>

dX∗
2

dA1
for all A2 ∈

[0, Alim
2 ].

Second, we define

�total
2 (A2) :=

((

�I I2 + �IIe
�E2

−�Ee

)

+
(

�Ie
�E2

−�Ee

))

=
(

�I I2 +
(
A2 − AE

1 − AE
2

) AE
2

−�Ee

)

(29)

• For w2 > wE
2 (i.e., AE

2 > 0, see Definition 1), �total
2 (A2) is strictly increasing in

A2. Since �total
2 (0) < 0, we can thus define a unique Atotal

2 > 0 which satisfies
�total
2 (Atotal

2 ) = 0.
• For the casew2 ≤ wE

2 (i.e., AE
2 ≤ 0, see Definition 1),�total

2 (A2) is non-increasing
in A2. Observe that in this case, �total

2 is maximized for (A2 = 0, w2 = 0) which
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yields:

�total
2 (0) =

(

�I I2 +
(
A2 − AE

1 − AE
2

) AE
2

−�Ee

)

< 0. (30)

That is, for A2 ≥ 0 we obtain �total
2 (A2) < 0. For ease of notation we thus define

Atotal
2 := ∞ whenever w2 ≤ wE

2 .

Observe now that we can rewrite
dX∗

1
dA1

[established in expression (23)] in terms of�total
2

which yields:

dX∗
1

dA1
= �total

2 (A2)
−e∗

C
(31)

Third, we define

�cross
2 (A2) :=

(

�I1 + �Ie
�E1

−�Ee

)

+
(

�IIe
�E1

−�Ee

)

= �I1 +
(
A2 − AE

1 − AE
2

) AE
1

−�Ee

(32)

We now rewrite
dX∗

2
dA1

as established in expression (23) in terms of �cross
2 which yields:

dX∗
2

dA1
= �cross

2 (A2)
e∗

C
(33)

Observe that �cross
2 is strictly increasing in A2 (see Appendix A). Since �cross

2 (0) < 0,
we can thus define a unique Across

2 > 0 which satisfies �cross
2 (Across

2 ) = 0:

Across
2 = AE

1 + AE
2 + �I1�Ee

AE
1

(34)

Finally, we compare the different critical values: Alim
2 , Atotal

2 , and Across
2 . We have to

consider the following three cases:

• For w2 ≤ wL
2 : In this case, we obtain �lim

2 (A2) < 0 and �total
2 (A2) < 0 for all

A2 ≥ 0. Thus, Across
2 provides the only critical level of initial allocation (remember

we defined Alim
2 = ∞ and Atotal

2 = ∞), and we thus obtain Across
2 < Alim

2 .
• ForwL

2 < w2 ≤ wE
2 : In this case, we obtain�total

2 (A2) < 0 for all A2 ≥ 0 (remem-
ber we defined Atotal

2 = ∞). Observe, furthermore, that �lim
2 (A2) = �total

2 (A2) +
�cross
2 (A2) for all A2. This directly implies, however, that �cross

2 (Alim
2 ) > 0 and

thus Across
2 < Alim

2 .
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• For w2 ≥ wE
2 , we evaluate �total

2 (Across
2 ) which yields [compare expressions (29)

and (34)]:

�total
2 (Across

2 ) = �I I2 − �I1
AE
2

AE
1

= P2
q

(
F(θP ) − F(θB)

)

−P1
q

(1 − F(θB))w2 − (1 − F(θP ))w1

w1
(35)

Observe that we denote by P1
q the average slope of demand for those demand

levels where total investment is binding and by P2
q the average slope of demand

for those demand levels where base load investment is binding, i.e.:

(i) P1
q :=

∫ θ

θP

Pq(X
∗
1, θ)dF(θ)

1 − F(θP )
(i i) P2

q :=

∫ θP

θB

Pq(X
∗
2, θ)dF(θ)

F(θP ) − F(θB)

(36)

Rearranging this yields:

�total
2 (Across

2 ) = −P1
q (1 − F(θB))

w1

⎛

⎜
⎜
⎝w2 −

⎛

⎜
⎜
⎝

(1 − F(θP )) + (F(θP ) − F(θB))
P2
q

P1
q

1 − F(θB)

⎞

⎟
⎟
⎠w1

⎞

⎟
⎟
⎠

(37)

Now, define

wS
2 :=

(1 − F(θP )) + (F(θP ) − F(θB))
P2
q

P1
q

1 − F(θB)
w1 (38)

Observe that wE
2 < wS

2 ≤ w1 since F(θP ) − F(θB) > 0 and 0 <
P2
q

P1
q

≤ 1;

notice that for P2
q = P1

q (e.g., for Pqq = Pqθ = 0), we obtain wS
2 = w1.

Furthermore, for w2 > wS
2 we obtain �total

2 (Across
2 ) > 0 and for w2 < wS

2 , we
obtain �total

2 (Across
2 ) < 0. Since �lim

2 (A2) = �total
2 (A2) + �cross

2 (A2), for all A2
we obtain:

0 < Atotal
2 < Alim

2 < Across
2 if w2 > wS

2
0 < Atotal

2 = Alim
2 = Across

2 if w2 = wS
2

0 < Across
2 < Alim

2 < Atotal
2 if wE

2 < w2 < wS
2

(39)
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C.4 Proof of Lemma 3(iii)

Observe that we have derived
dX∗

1
dT and

dX∗
2

dT in expression (24). The statements of
Lemma 3(iii) follow directly since �I1 < 0, �I I2 < 0 and �Ee < 0 (see Definition
1).

D Proof of Lemma 4

To derive the optimal design of the cap and trade mechanism (A1, A2, T ), we first dif-
ferentiate welfare as given by expression (10) with respect to each of those parameters.
We obtain for dW

dA1
:

dW

dA1
=
∫ θB

θ

dQ∗

dA1

[
P(Q∗, θ) − c2

]
dF(θ) +

∫ θP

θP

dQ∗

dA1

[
P(Q∗, θ) − c1

]
dF(θ)

+dX∗
2

dA1

[∫ θP

θB

[
P(X∗

2, θ) − c2
]
dF(θ) +

∫ θ

θP

(c1 − c2)dF(θ) − (k2 − k1)

]

+dX∗
1

dA1

[∫ θ

θP

[
P(X∗

1, θ) − c1
]
dF(θ) − k1

]

We can now plug in the equilibrium conditions for firms’ investment choices given
by expressions (2) and (3), and we can plug in the optimality conditions for the
unconstrained spot markets whenever investment is not binding. 30 This yields:

dW

dA1
=
∫ θB

θ

dQ∗

dA1

[

−Pq
Q∗

n
+ w2e

]

dF(θ) +
∫ θP

θP

dQ∗

dA1

[

−Pq
Q∗

n
+ w1e

]

dF(θ)

dX∗
2

dA1

[∫ θP

θB

[

−Pq
X∗
2

n
+ w2e

]

dF(θ) +
∫ θ

θP

(w2 − w1)edF(θ) − (A2 − A1)e

]

+dX∗
1

dA1

[∫ θ

θP

[−Pq + w1e
]
dF(θ) − A1e

]

This can be further simplified by making use of the derivative of the permit pricing
given by expression 4 with respect to A1 (i.e.,

�E
A1

). This allows to eliminate all terms
containing the emission factorsw1 andw2 from the above expression (shown explicitly
in expression (41)). We thus obtain

dW

dA1
=
∫ θB

θ

dQ∗

dA1

[

−Pq
Q∗

n

]

dF(θ) +
∫ θP

θP

dQ∗

dA1

[

−Pq
Q∗

n

]

dF(θ)

30 That is for spot markets θ ∈ [θ, θB ] ∪ [θP , θP ]; in those cases, the optimality conditions are simply

given by P(Q∗, θ) + Pq
Q∗
n − ci − wi e

∗ = 0, for i = 1, 2.
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dX∗
2

dA1

[∫ θP

θB

[

−Pq
X∗
2

n

]

dF(θ) − (A2 − A1)e

]

+dX∗
1

dA1

[∫ θ

θP

[

−Pq
X∗
1

n

]

dF(θ) − A1e

]

(40)

In order to show why indeed expression (40) is obtained, we now differentiate the
permit pricing condition �E (compare Lemma 1) with respect to A1, and this yields

−
∫ θB

θ

w2
dQ∗

dA1
dF(θ) −

∫ θP

θP

w1
dQ∗

dA1
dF(θ)

= dX∗
2

dA1

[∫ θP

θB

w2dF(θ) +
∫ θ

θP

(w2 − w1)dF(θ)

]

+ dX∗
1

dA1

[∫ θ

θP

w1dF(θ)

]

.

(41)

Now, observe that dQ∗
dA1

= dQ∗
de∗ de∗

dA∗
1
, since unconstrained spot market output does not

directly depend on the degree of free allocation A1. By multiplying expression (41)
with � (as defined in the lemma), we obtain:

(∫ θB

θ

dQ∗

de∗

[

−Pq
Q∗

n

]

dF(θ) +
∫ θP

θP

dQ∗

de∗

[

−Pq
Q∗

n

]

dF(θ)

)
de∗

dA1

= −�

n

(
dX∗

2

dA1
AE
2 + dX∗

1

dA1
AE
1

)

(42)

We can now plug expression (42) into expression (40), which yields

dW

dA1
= −�

n

(
dX∗

2

dA1
AE
2 + dX∗

1

dA1
AE
1

)

+dX∗
2

dA1

[∫ θP

θB

(

−Pq
X∗
2

n

)

dF(θ) − (A2 − A1)e

]

+dX∗
1

dA1

[∫ θ

θP

(

−Pq
X∗
1

n

)

dF(θ) − A1e

]

Rearranging finally yields

dW

dA1
= dX∗

2

dA1

[∫ θP

θB

(

−Pq
X∗
2

n

)

dF(θ) − (A2 − A1)e − �

n
AE
2

]

+dX∗
1

dA1

[∫ θ

θP

(

−Pq
X∗
1

n

)

dF(θ) − A1e − �

n
AE
1

]
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which corresponds exactly to the expression for dW
dA1

stated in the lemma. The very

same steps yield dW
dA2

= dX∗
1

dA2
�I + dX∗

2
dA2

�I I , as stated in the lemma.

We finally determine dW
dT . Analogous to expression (40), we obtain:

dW

dT
= dX∗

2

dT

[∫ θP

θB

[

−Pq
X∗
2

n

]

dF(θ) − (A2 − A1)e

]

+dX∗
1

dT

[∫ θ

θP

[

−Pq
X∗
1

n

]

dF(θ) − A1e

]

∫ θB

θ

dQ∗

dT

[

−Pq
Q∗

n

]

dF(θ) +
∫ θP

θP

dQ∗

dT

[

−Pq
Q∗

n

]

dF(θ) + e∗ − DT (T )

(43)

which is obtained since all terms containing the emission factorsw1 andw2 integrate to
1.Why this is the case becomes clear when differentiating the permit pricing condition
�E with respect to T :

−
∫ θB

θ

w2
dQ∗

dT
dF(θ) −

∫ θP

θP

w1
dQ∗

dT
dF(θ)

= dX∗
2

dT
AE
2 + dX∗

1

dT
AE
1 − 1.

Now, observe that dQ∗
dT = dQ∗

de∗ de∗
dT since unconstrained spot market output does not

directly depend on the total emission cap T . By multiplying expression (44) with �
n ,

we obtain:

(∫ θB

θ

dQ∗

de∗

[

−Pq
Q∗

n

]

dF(θ) +
∫ θP

θP

dQ∗

de∗

[

−Pq
Q∗

n

]

dF(θ)

)
de∗

dT

= −�

n

(
dX∗

2

dT
AE
2 + dX∗

1

dT
AE
1 − 1

)

(44)

We can now plug expression (44) into expression (43) which yields after rearranging:

dW

dT
= dX∗

2

dT

[∫ θP

θB

(

−Pq
X∗
2

n

)

dF(θ) − (A2 − A1)e − �

n
AE
2

]

+dX∗
1

dT

[∫ θ

θP

(

−Pq
X∗
1

n

)

dF(θ) − A1e − �

n
AE
1

]

+ �

n
+ e∗ − DT (T )

which corresponds exactly to the expression for dW
dT stated in the lemma.
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E Proof of Theorems 1 and 2

The optimality conditions established in Lemma 4 are satisfied if the following con-
ditions hold:

�I =
∫ θ

θP

−Pq X∗
1

n
dF(θ) − A1e

∗ − �

n
AE
1 = 0

�I I =
∫ θP

θB

−Pq X∗
2

n
dF(θ) − (A2 − A1)e

∗ − �

n
AE
2 = 0

e∗ = DT (T ) − �

n
.

The case of perfect competition as analyzed in Theorem 1 is obtained for n− >

in f t y. Observe that elimination of all terms involving the number of firms n in the
denominator in the above conditions yields the characterization of the first best solution
stated in Theorem 1. In order to obtain the solution obtained for the case of imperfect
competition as established in Theorem 2, we solve the first two conditions for the
levels of free allocation A1 and A2.

F Proof of Theorem 4

The optimality condition for T has been derived in Lemma 4 (iii). After plugging
in the results of comparative statics for dX1

dT and dX2
dT derived in expression (24), we

obtain:

e∗ − DT =
(

(A2 − A1)e�IIe
�I1

−�Ee C
+ A1e�Ie

�I I2

−�Ee C

)

(45)

We nowmake use of the notation introduced in Definition 1 which allows us to rewrite
expression (45) as follows:

e∗ − DT =
(
(A2 − A1 − AE

2 )(A2 − A1)�I I2 + (A1 − AE
1 )A1�I1

) e∗

−�Ee C
(46)

Notice that e∗
−�Ee C

> 0 as established inAppendixA. The remainder of the right-hand
side of expression (46) states�0(A1, A2), as defined in expression (14). The expression
e∗ − DT (T ) and �0 do thus exhibit the same sign which proofs the theorem.

G Proof of Theorem 5

As a first step, we determine the properties of the optimal allocation A∗
2. Observe that

the optimality condition A∗
2 = dX∗

2/dA2−dX∗
1/dA2

dX∗
2/dA2

A1 stated in the theorem directly is
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obtained by rearranging expression (12). In Lemma 3 (i), we have established
dX∗

2
dA2

> 0

for all A1 < Alim
1 . We thus obtain A∗

2 > A1 if and only if
dX∗

1
dA2

< 0. Furthermore, we

obtain A∗
2 = 0 if

dX∗
2

dA2
<

dX∗
1

dA2
since we only consider nonnegative levels of free allo-

cation. By making use of the properties of comparative statics established in Lemma
3 (i), we directly obtain the properties of A∗

2 as stated in the theorem.

As a second step, we determine the optimal emission cap T ∗. The optimality condition
for T ∗ has been derived in expression (13) and yields after substituting for A∗

2:

e∗ − DT = dX∗
1

dT A1e − dX2

dT A1e

[
dX1/dA2

dX2/dA2

]

.

After substituting for dX1
dT , dX2

dT , dX1
dA2

, and dX2
dA2

[expression (24)], this reads as follows:

e∗ − DT =
⎛

⎝(�I I2�Ie) − (�I1�IIe)

⎡

⎣

(
−�Ie

�E2
�Ee

)

−
(
�I1 − �Ie

�E1
�Ee

)

⎤

⎦

⎞

⎠ A1e

−�Ee C

Rearranging and plugging in for �Ie (compare Appendix A), we obtain:

e∗ − DT =
(
AE
1 − A1

)
(
�I1

(
�IIe

�E2−�Ee

)
+ �I I2

(
�I1 + �Ie

�E1−�Ee

))
A1e

(
�I1 + �Ie

�E1−�Ee

)
�Ee C

(47)

Observe that for A1 < Alim
1 , the sign of the right-hand side of expression (47) is

entirely determined by the expression (AE
1 − A1), the remainder of expression (47) is

strictly positive since
(
�I1 + �Ie

�E1−�Ee

)
< 0 and

(
�IIe

�E2−�Ee

)
< 0 (as shown further

below in step three).
Finally, notice that expression (47) has been derived without nonnegativity con-

straint on A∗
2. As shown above, however, for w2 > wE

2 and A1 ∈ [AE
1 , Alim

1 ], we
obtain A∗

2 = 0 [instead of a negative value as resulting in the computations leading
to expression (47)]. In this case, the optimality condition given by expression (13) is
simplified as follows:

e∗ − DT =
(
dX∗

1

dT − dX2

dT

)

A1e = (�I I2�Ie − �I1�IIe)
A1e

−�Ee C
< 0 (48)

The inequality is obtained since �Ie > 0 and �IIe < 0 for w2 > wE
2 and

A1 ∈ [AE
1 , Alim

1 ] (compare Appendix A). We thus summarize the results obtained
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in expressions (47) and (54) as follows:

⎧
⎨

⎩

e∗ > DT if A1 < AE
1

e∗ = DT if A1 = AE
1

e∗ < DT if A1 > AE
1

(49)

As a third step, wefinally show that the second-order conditions established inLemma

2 (i) are indeed satisfied for all A1 ∈ [0, Alim
1 ], A∗

2. Since
(
�I1 + �Ie

�E1−�Ee

)
< 0 for

A1 < Alim
1 , we just need to show that

(
�IIe

�E2−�Ee

)
< 0 for A1 < Alim

1 . Notice first

that we can rewrite �IIe (compare Appendix A) and thus obtain:

�IIe
�E2

−�Ee
= (

A∗
2 − A1 − �E2

) �E2

−�Ee
(50)

Furthermore, we obtain for (A∗
2 − A1) [compare expressions (12) and (24)]:

(A∗
2 − A1) = −

dX1
dA2
dX2
dA2

A1 =
(
�Ie

�E2−�Ee

)
A1

(
�I1 + �Ie

�E1−�Ee

)

Plugging in allows us to rewrite expression (50) as follows:

�IIe
�E2

−�Ee
= (�E2)

2
(
�I1 + �Ie

�E1−�Ee

)
(−�Ee)

(

�Ie
A1

−�Ee
−
(

�I1 + �Ie
�E1

−�Ee

))

Substituting for �Ie = A1 − AE
1 and �E1 = AE

1 (see Appendix A) then yields:

�IIe
�E2

−�Ee
= (�E2)

2
(
�I1 + �Ie

�E1−�Ee

)
(�Ee)

(

�I1 − (A1 − AE
1 )2

−�Ee

)

< 0

We can thus conclude that the second-order conditions established in Lemma 2 (i)
are satisfied if and only if A1 < Alim

1 [Notice that the “only if” part follows directly
from Lemma 2 (iii)].

H Proof of Theorem 6

As a first step, we determine the properties of the optimal allocation A∗
1. Observe

that the optimality condition A∗
1 = dX∗

2/dA1

dX∗
2/dA1−dX∗

1/dA1
A2 stated in the theorem directly

is obtained by rearranging expression (11). In Lemma 3 (ii), we have established
dX∗

1
dA1

>
dX∗

2
dA1

for all A2 < Alim
2 . We thus obtain A∗

1 > 0 if and only if
dX∗

2/dA1
<

0.

Furthermore, we obtain A∗
1 > A2 if and only if

dX∗
2

dA1
<

dX∗
1

dA1
< 0. By making use of
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the properties of comparative statics established in Lemma 3 (ii), we directly obtain
the properties of A∗

1 as stated in the theorem.
As a second step, we determine the optimal emission cap T ∗. The optimality condition
for T ∗ has been derived in expression (13) and yields after substituting for A∗

1 (compare
the first step above):

e∗ − DT = dX2

dT
(
A2 − A∗

1

)
e∗ + dX∗

1

dT A∗
1e

∗ = dX2

dT

dX1
dA1

A2e∗
dX1
dA1

− dX2
dA1

+dX∗
1

dT
− dX2

dA1
A2e∗

dX1
dA1

− dX2
dA1

We can now plug in for dX1
dA1

and dX2
dA1

as derived in expressions (22) and (23) and for
dX1
dT and dX2

dT as derived in expressions (24) which yields:

e∗ − DT = (−1) A2 (e∗)2
(
dX1
dA1

− dX2
dA1

)
(−�Ee)C2

((�Ie�I I2)

[(

�I1 + �Ie
�E1

−�Ee

)

+
(

�IIe
�E1

−�Ee

)]

+ (�IIe�I1)

[(

�I I2 + �IIe
�E2

−�Ee

)

+
(

�Ie
�E2

−�Ee

)])

= (�Ie + �IIe)
(−1) A2 (e∗)2

(
dX1
dA1

− dX2
dA1

)
(−�Ee)C

(51)

Now, define:

�em
2 (A2) := �Ie + �IIe = A2 − (AE

1 + AE
2 ). (52)

Observe that �em
2 (Aem

2 ) = 0. Furthermore, notice that Aem
2 < 0 for w2 < wL

2 , that
is, �em

2 (A2) > 0 for all A2 ≥ 0 whenever w2 < wL
2 . In order to compare Aem

2 to the
previously established critical levels of initial allocation, we make the following two
observations:

�total
2 (Aem

2 ) = �I I2 < 0 and �cross
2 (Aem

2 ) = �I1 < 0

This allows to directly conclude that Aem
2 < Atotal

2 and Aem
2 < Across

2 .
Bymakinguse of the newly introduced�em

2 ,we can rewrite expression (51) as follows:

e∗ − DT = −�em
2 (A2)

A2e∗
(
dX1
dA1

− dX2
dA1

)
(−�Ee)C

(53)
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Finally, notice that expression (53) has been derived without nonnegativity con-
straint on A∗

1. As shown in step one of the present proof, however, for w2 < wS
2 and

A2 ∈ [Across
2 , Alim

2 ] we obtain A∗
1 = 0 [instead of a negative value as resulting in the

computations leading to expression (53)]. In this case, the optimality condition given
by expression (13) is simplified as follows:

e∗ − DT = dX∗
2

dT
A2e

∗ = �I1�IIe

−�Ee C
A2e

∗ = dX∗
2

dT
A2e

∗ =
(
A2 − A1 − AE

2

) �I1 A2e∗

−�Ee C
< 0

(54)

Observe that the above inequality is satisfied since A2 ≥ A1 + AE
2 whenever Across

2 ≤
A2 ≤ Alim

2 [compare expression (34); remember that A1 = A∗
1 = 0 in the case

considered].
We can thus establish the following results for the optimal cap on total emissions:

⎧
⎨

⎩

e∗ > DT if A2 < Aem
2

e∗ = DT if A2 = Aem
2

e∗ < DT if A2 > Aem
2

(55)

As a third step, wefinally show that the second-order conditions established inLemma
2(i) are indeed satisfied for all A2 ∈ [0, Alim

2 ], A∗
1. Remember we obtained for A∗

1:

A∗
1 = �cross

2

�lim
2

A2 = �cross
2

�cross
2 + �total

2

A2

In order to verify the second-order conditions established in Lemma 2(i) (a), (b), and
(c), we now separately analyze the following cases:

• First, observe that

�IIe
�E2

−�Ee
= (A2 − A1 − �E2)

�E2

−�Ee
=
(

�total
2

�lim
2

A2 − �E2

)
�E2

−�Ee
(56)

– For w2 < wE
2 (i.e., �E2 < 0), expression (56) is negative since �total

2 < 0 and
�lim
2 < 0 if A2 < Alim

2 and w2 < wE
2 (compare Appendix C).

– For w2 > wE
2 (i.e., �E2 > 0) and Atotal

2 ≤ A2 ≤ Alim
2 , expression (56) is

negative since �total
2 ≥ 0 and �lim

2 < 0.

Whenever expression (56) is negative, this directly implies that condition (b) is
satisfied. Since, furthermore, A2 < Alim

2 , also conditions (a) and (c) are satisfied.
• Second, for Across

2 ≤ A2 ≤ Alim
2 we obtain A∗

1 = 0 (compare step one of the
present proof). We thus directly obtain:

�Ie
�E1

−�Ee
= −AE

1
�E1

−�Ee
< 0 (57)
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This directly implies that condition (a) is satisfied. Since, furthermore, A2 < Alim
2 ,

also conditions (b) and (c) are satisfied.
• Third, for w2 > wE

2 (i.e., �E2 > 0) and 0 ≤ A2 ≤ min(Atotal
2 , Across

2 )

– Whenever A2 < A1 + AE
2 (i.e., �IIe < 0), we directly obtain �IIe

�E2−�Ee
< 0.

This directly implies that condition (b) is satisfied. Since, furthermore, A2 <

Alim
2 , also conditions (a) and (c) are satisfied.

– Whenever A2 ≥ A1 + AE
2 (i.e., �IIe ≥ 0), then �IIe

�E1−�Ee
> 0. Since �cross

2 <

0, in the region considered this directly implies that condition (a) is satisfied.
Since, furthermore, A2 < Alim

2 , also condition (b) is satisfied. Finally, since
conditions (a) and (b) are satisfied and�cross

2 < 0 and�total
2 < 0, also condition

(c) is satisfied.

We can thus conclude that the second-order conditions as established in Lemma 2(i)
are satisfied for all 0 ≤ A2 ≤ Alim

2 .
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