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Abstract
Minimum-cost spanning tree problems are well-known problems in the operations
research literature. Some agents, located at different geographical places, want a ser-
vice provided by a common supplier.Agentswill be served through costly connections.
Some part of the literature has focused, mainly, in studying how to allocate the connec-
tion cost among the agents. We review the papers that have addressed the allocation
problem using cooperative game theory.We also relate the rules defined through coop-
erative games with rules defined directly from the problem, either through algorithms
for computing a minimal tree, either through a cone-wise decomposition.

Keywords Minimum-cost spanning tree problems · Cooperative games ·
Algorithms · Core · Shapley value

JEL Classification C71 · D63

1 Introduction

Several problems involving network formation have been studied in operations
research and economics. The operations research literature is more focused in efficient
algorithm designs and computational complexity. The economic literature focuses on
aspects such as cost sharingwithin networks. In this paper, we focus on the cost sharing
aspect. Hence, this review belongs to the well-known literature of cost allocation.

In this paper, we consider minimum-cost spanning tree problems, briefly mcstp. A
group of agents, which are located at different geographical places, want a particular
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service which can only be provided by a common supplier, called the source. Agents
will be served through costly connections. Agents are indifferent between being con-
nected directly or indirectly to the source. There are many situations that can be
modeled in this way. For instance, several towns may draw power from a common
power plant, and hence have to share the cost of the distribution network (Dutta and
Kar 2004). Bergantiños and Lorenzo (2004, 2005, 2008) study a real situation where
villagers had to pay the cost of constructing pipes from their respective houses to a
water supplier. Other examples include communication networks, such as telephone,
Internet, or cable television.

The literature on mcstp starts by defining algorithms for constructing minimal
(cost spanning) trees (mt for short). We can mention, for instance, the papers of
Borůvka (1926), Kruskal (1956), Prim (1957). However, constructing an mt is only
part of the problem. Another important issue is how to allocate the cost associated
with mt among agents. Claus and Kleitman (1973) were the first to address the cost
sharing aspect, and Bird (1976) proposed a rule, now known as the Bird’s rule, through
Prim’s algorithm. Bird (1976) also associated a cooperative game with any mcstp . He
proved that this rule belongs to the core of the cooperative game. Many papers have
followed addressing the cost allocation problem arising from mcstp. Early works and
reviews are due to Aarts (1994), Feltkamp (1995), Curiel (1997), Borm et al. (2001).
Trudeau (2013) reviews some cost sharing rules focusing on two rules (to be addressed
below): the folk rule and theKar’s rule, comparing several axiomatic characterizations.
Trudeau and Vidal-Puga (2019) review the main axiomatic characterizations of the
rules based on the Shapley value in mcstp.

There are two possible ways for defining rules in mcstp. The first way is the direct
approach, which defines rules directly from the structure of the problem. In this review,
we describe rules that are defined through the algorithms for computing themt defined
above (namely Boruvka, Prim, and Kruskal). The idea of such rules is as follows: the
algorithm selects the arc, and the rule decides how to divide its cost between the agents.
Each agent pays the sum of the assigned costs over all selected arcs by the algorithm.

We also review the rules that are defined through a cone-wise decomposition. Each
mcstp can be decomposed as a linear combination of the so called elementary prob-
lems, where each cost is either 0 or 1. The rule states how to divide the cost of each
elementary problem between the agents. Each agent pays the sum of the assigned costs
over all elementary problems.

The second way is an indirect approach through cooperative games. First, we asso-
ciate with each problem a cooperative game. Second, we compute a solution for
cooperative games (Shapley value, core, ...) in the associated cooperative game. Third,
we define the rule in the original problem as the solution applied to the cooperative
game associated with the original problem. This indirect approach is quite standard
and has been considered in many economic problems. Some classical examples are
the airport problem (Littlechild and Owen 1973), where the cost of a runway has to be
divided among different airplanes, and bankruptcy problems (O’Neill 1982; Aumann
andMaschler 1985) where an estate should be divided among several claimants. Other
recent examples are the museum pass problem (Ginsburgh and Zang 2003; Bergan-
tiños and Moreno-Ternero 2015), where the revenue generated by the sale of museum
cards has to be divided among the museums, and the broadcasting problem (Bergan-
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tiños and Moreno-Ternero 2020), where the revenues from broadcasting sport league
events must be divided among the teams. Other examples regarding the Shapley value
are in Algaba et al. (2019).

In this second approach, the most studied case in the literature is the case of private
nodes. It is assumed that, when computing the value of a coalition, agents in such
coalition can use only the nodes of such coalition. However, there are other possible
approaches, as, for example, the case of public nodes, where it is assumed that agents
in a coalition can use nodes outside the coalition.

So far, there have been at least five cooperative games in the literature of mcstp:
the private game, the irreducible game, the optimistic game, the public game, and the
cycle-complete game.

Private game Bird (1976) associates with each mcstp a cooperative game
with transferable utilitywhere theworth of each coalition S is
computed assuming that agents in N \S are not participating.
It is a pessimistic approach because agents in N \ S are
supposed not to cooperate. The private assumption makes
their nodes unavailable.

Irreducible game Given anmcstp (N0, C) ,Bird (1976) defines the irreducible
associated problem (N0, C∗) . The idea is to reduce the costs
of C as much as possible without reducing the cost of the
minimal tree of C . The irreducible game associated with
a mcstp (N0, C) is the private game associated with the
irreducible problem (N0, C∗) .

Optimistic game Bergantiños and Vidal-Puga (2007b) associate with each
mcstp a cooperative gamewith transferable utility where the
cost of each coalition S is computed assuming that agents in
N \ S are already connected. This game is called optimistic
because agents in N \ S are already connected to the source
and agents in S can connect to the source through agents in
N \ S for free.

Public game Bogomolnaia and Moulin (2010) were the first to formally
consider the case where the cost of each coalition S is com-
puted assuming that even though agents in N \ S are not
connected to the source, agents in S can connect to the source
through agents in N \ S by paying the costs of the arcs they
use.

Cycle-complete game Given an mcstp (N0, C) , Trudeau (2012) defines the asso-
ciated cycle-complete problem (N0, C∗∗) . The idea is to
achieve concavity by reducing the costs of C as much as
possible without reducing the cost of any minimal cycle.
The cycle-complete game associated with a mcstp (N0, C)

is the private game associated with the cycle-complete prob-
lem (N0, C∗∗) .

The most studied solutions in the five cooperative games we review are the core
and the Shapley value. Nevertheless, some other solutions, for instance, the nucleolus
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(Schmeidler 1969) and weighted Shapley values (Shapley 1953a; Kalai and Samet
1987), have also been considered. We have tried to be exhaustive and to mention all
papers studying deeply some aspect of the five cooperatives games.

In this survey, we discuss the relation between both approaches. Actually, all the
rules mentioned which are defined through some algorithm or the cone-wise decom-
position are related to some of the cooperative rules. We give two examples. First,
a rule obtained through Kruskal’s algorithm coincides with the Shapley value of the
irreducible game. Second, in the irreducible game, the convex combination of the
payoffs given by rules obtained through Prim’s algorithm coincides with the core.

There also a third approach, which is not discussed in this paper, which is the non-
cooperative approach. Instead of providing a rule for dividing the cost, we provide
a bargaining protocol to the agents. Thus, agents bargain among themselves, follow-
ing such bargaining protocol, how to divide the cost. Papers using this approach in
mcstp are Bergantiños and Lorenzo (2004, 2005, 2008), Moulin and Velez (2013),
Hernández et al. (2016). Other non-cooperative results are part of a relevant research
agenda known as the Nash program for cooperative games. The Nash program arises
fromNash (1953) as a tool to bridge the gap between cooperative and non-cooperative
games by finding non-cooperative procedures yielding cooperative solutions as their
equilibrium payoff allocations (Serrano 2005, 2020). Papers which show how the folk
rule arises in equilibrium following different non-cooperative protocols are Bergan-
tiños and Vidal-Puga (2010), Hougaard and Tvede (2012), Hernández et al. (2020).

The paper is organized as follows. In Sect. 2, we introduce mcstp. In Sect. 3,
we review the rules obtained through algorithms and the cone-wise decomposition.
In Sect. 4, we review the rules obtained through cooperative games and discuss the
relations with the rules defined in Sect. 3. In Sect. 5, we conclude.

2 Preliminaries

In this section, we formally define minimum-cost spanning tree problems.
LetN+ = {1, 2, ...} be the set of possible agents (nodes). We denote by N a general

finite subset of N+, usually assumed to be N = {1, ..., n} .

Given a non-empty, finite subset N ⊂ N+, let �N denote the set of all orders in N .
Given π ∈ �N , let Pre (i, π) denote the set of nodes in N which come before node
i in the order given by π , i.e.,

Pre (i, π) = { j ∈ N | π ( j) < π (i)} .

For notational simplicity, given π ∈ �N and s ∈ N , we denote by πs the unique
node i ∈ N such that π (i) = s. Moreover, given π ∈ �N and S ⊂ N , let πS denote
the order induced by π among agents in S.

For each non-empty, finite N ⊂ N+, let �(N ) = {
x ∈ R

N+ : ∑
i∈N xi = 1

}
.

We consider networks whose nodes are elements of a set N0 = N ∪ {0}, where
N ⊂ N+ is non-empty and finite, and 0 is a special node called the source.

A cost matrix C = (
ci j

)
i, j∈N0

represents the cost of direct link between any pair of
nodes. We assume that ci j = c ji ≥ 0 for each i, j ∈ N0 and cii = 0 for each i ∈ N0.
Since ci j = c ji , we work with undirected arcs, i.e., (i, j) = ( j, i).
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We denote the set of all cost matrices over N as CN . Given C, C ′ ∈ CN , we say
C ≤ C ′ if ci j ≤ c′

i j for all i, j ∈ N0.

A minimum-cost spanning tree problem, briefly an mcstp, is a pair (N0, C) where
N ⊂ N+ is a finite set of agents, 0 is the source, and C ∈ CN is the cost matrix.

Given an mcstp (N0, C), we define the mcstp induced by C for S ⊂ N as (S0, C).
A network g over N0 is a subset of {(i, j) : i, j ∈ N0} .The elements of g are called

arcs.
Given a network g and a pair of nodes i and j , a path from i to j in g is a sequence of

different arcs {(ih−1, ih)}l
h=1 satisfying (ih−1, ih) ∈ g for all h ∈ {1, 2, ..., l}, i = i0,

and j = il . A cycle is a path from i to i in g with i ∈ N0 and at least two different
arcs.

Let GN denote the set of all networks over N0, and let GN
0 denote the set of all

networks where every agent i ∈ N is connected to the source, i.e., there exists a path
from agent i to the source.

Given a network g ∈ GN , let P(g) = {Sk(g)}n(g)
k=1 denote the partition of N0

in connected components induced by g. Formally, P(g) is the only partition of N0
satisfying the following two properties:

1. If i, j ∈ Sk(g), then agent i and agent j are connected in g.

2. If i ∈ Sk(g), j ∈ Sl(g) and k 	= l, then agent i and agent j are not connected in g.

Given a network g ∈ GN and i ∈ N0, let S(P(g), i) denote the set in P(g) to
which agent i belongs to.

Given an mcstp (N0, C) and g ∈ GN , we define the cost associated with g as

c (N0, C, g) =
∑

(i, j)∈g

ci j .

When there is no ambiguity, we write c (g) or c (C, g) instead of c (N0, C, g).
A spanning tree is a network such that for all i ∈ N there is a unique path from

agent i to the source. A minimal tree for (N0, C), briefly an mt , is a spanning tree t∗
over N0 such that

c
(
t∗

) = min
g∈GN

0

c (g) .

It is well known that an mt exists, even though it is not necessarily unique. Borůvka
(1926),Kruskal (1956), Prim (1957) provide algorithms for computing anmt .Given an
mcstp (N0, C) , we denote the cost associated with any mt for (N0, C) as m (N0, C).

Given an mcstp (N0, C) and an mt t∗, Bird (1976) defines the minimal network(
N0, Ct∗

)
associated with t∗ as follows: ct∗

i j = max(k,l)∈g∗
i j

{ckl} , where g∗
i j denotes

the unique path in t∗ from agent i to agent j . It is well known that Ct∗ is independent
from the chosen t∗. Hence, we can define the irreducible form (N0, C∗) of an mcstp

(N0, C) as the minimal network
(

N0, Ct∗
)
associated with any mt t∗.

Given an mcstp (N0, C), Trudeau (2012) defines the cycle-complete network
(N0, C∗∗) as follows: c∗∗

i j = max(k,l)∈g∗∗
i j

{ckl} , where g∗∗
i j denotes the cycle with

minimal cost containing both agent i and agent j . It is clear that c∗∗
i j = ci j whereas

123



78 SERIEs (2021) 12:73–100

(a)

0

1 2

3
12 15

20

4

6 8

(b)

0

1 2

3
12 12

12

4

6 6

(c)

0

1 2

3
12 15

15

4

6 8

Fig. 1 Example of a mcstp a and its irreducible b and cycle-complete c forms

(i, j) belongs to a cycle with minimal cost (among those containing both agent i and
agent j), and hence C∗∗ is independent of the criterion used to choose minimal cycles,
in case there are more than one.

Next example illustrates some of the concepts introduced above.

Example 2.1 Figure 1(a) depicts a minimum-cost spanning tree problem. There are
three agents 1, 2, and 3. The source is denoted by 0. These nodes are represented
by circles, where the connection between them are represented by straight lines.
Numbers by the lines represent the cost of each connection. The minimal tree is
{(0, 1), (1, 2), (1, 3)}. The irreducible form (b) and the cycle-complete network (c)
are also depicted.

A (cost sharing) rule is a function f such that f (N0, C) ∈ R
N and

∑
i∈N fi (N0, C)

= m (N0, C) for eachmcstp (N0, C). As usual, fi (N0, C) represents the cost assigned
to agent i .

3 Rules defined through the problem

In this subsection, we mention some rules of the literature that are defined directly
through the problem, without using cooperative games. We have focused on the rules
that are related to cooperative games, even though cooperative games are not used
in their definition. Hence, we have not been exhaustive. In particular, we mention all
the rules defined through algorithms and are related to some cooperative game rule.
There are rules in the literature defined through algorithms that are not related to any
cooperative game rule.

We first consider rules defined through algorithms for computing an mt . The idea
is as follows. The algorithm selects the arc we construct and the rule decides how the
cost of the selected arc is divided between the agents. Finally, each agent pays the sum
of the costs over the arcs selected by the algorithm.

We also consider rules that are defined through a cone-wise decomposition. The
idea is as follows. We first decompose the original problem as the sum of elementary
problems. We solve these elementary problems. The solution to the original problem
is obtained by adding the solutions to the elementary problems. As in the case of
algorithms, we focus on rules related to some cooperative game rule.
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3.1 Rules defined through Prim’s algorithm

Prim (1957) provides an algorithm for computing aminimal tree. The idea is as follows.
Starting from the source, we sequentially add arcs with the lowest cost and without
introducing cycles.

Formally, we start with S0 = {0} and g0 = ∅.

Stage 1: Take an arc (0, i) such that c0i = min j∈N
{
c0 j

}
. If there are several arcs

satisfying this condition, select any of them. Now, S1 = {0, i} and g1 = {(0, i)}.
Stage p + 1: Assume we have defined S p ⊂ N0 and g p ∈ G N . We now define

S p+1 and g p+1. Take an arc ( j, i) with j ∈ S p and i ∈ N0\S p such that c ji =
mink∈S p,l∈No\S p {ckl}. If there are several arcs satisfying this condition, select any of
them. Now, S p+1 = S p ∪ {i} and g p+1 = g p ∪ {( j, i)}.

This process is completed in n stages. We say that gn is a tree obtained following
Prim’s algorithm. Notice that this algorithm leads to a tree, but it is not always unique.

The Bird’s rule, denoted as B (N0, C) , was introduced by Bird (1976) in mcstp
with a unique mt , and further studied in Granot and Huberman (1981), Feltkamp et al.
(2000), Gómez-Rúa and Vidal-Puga (2011). The idea is the following. Agents connect
sequentially to the source paying their connection cost. Let (N0, C) be an mcstp with
a unique mt, denoted by t∗. Given i ∈ N , let i0 be the first node in the unique path in
t∗ from agent i to the source. Then, for each i ∈ N , we define

Bi (N0, C) = ci0i .

Later on, Dutta andKar (2004) extend this definition for anymcstp as an average of
the trees associated with Prim’s algorithm. Given π ∈ �N , they defined Bπ (N0, C)

as the allocation obtained when applied Prim’s algorithm to (N0, C) and solved the
indifferences by selecting the first agent given by π . Then, they defined

B (N0, C) = 1

n!
∑

π∈�N

Bπ (N0, C) .

Chun and Lee (2012) introduce the family of sequential contributions rules for
mcstp with a unique mt . The connection cost of each agent is paid by this agent and
the agents that connect to the source through this agent. Notice that the Bird’s rule is
a member of this family.

We now introduce this family formally following Chun and Lee (2012). Let t∗ and
i0 be defined as in the case of Bird’s rule. Given i ∈ N , we define the set of followers
of agent i as

F
(
i, t∗

) = {
j ∈ N0 : i belongs to the unique path in t∗ from j to 0

}
.

Besides, we define the set of predecessors of agent i as

P
(
i, t∗

) = {
j ∈ N0 : j belongs to the unique path in t∗ from i to 0

}
.
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An agent i ∈ N is a leaf if F (i, t∗) = ∅ and a first link agent if P (i, t∗) = {0} .

Let Z (C) denote the set of leaves in (N0, C) and Y (C) denote the set of first link
agents in (N0, C) .

Given a set of agents N , a contributions function αN = (
αN

i

)
i∈N is defined as

follows. For each i ∈ N , αN
i is a function from the set of cost matrices with a unique

mt on R satisfying the following conditions.
(i) For each (N0, C) , 0 ≤ αN

i (C) ≤ ci0i .

(i i) For each (N0, C), if i ∈ Z (C) , then αN
i (C) = ci0i .

(i i i) For each (N0, C) and
(
N ′
0, C ′) such that i ∈ N ∩ N ′, if i ∈ F (i, t∗) =

F
(
i, t ′∗

)
and ci0i = c′

i ′0i
, then αN

i (C) = αN ′
i

(
C ′) .

We say that ϕα is the sequential contributions rule with contributions function αN

if, for each (N0, C) ,

ϕα
i (N0, C) = αN

i (C) +
∑

j∈P(i,t∗)

c j0 j − αN
j (C)

|F ( j, t∗)| .

The Dutta–Kar’s rule, denoted as DK (N0, C), was introduced by Dutta and Kar
(2004). It is also defined through Prim’s algorithm. Let (N0, C) be an mcstp with a
uniquemt .Agents connect to the source via Prim’s algorithm, but with a pivotal switch
in the allocation cost at each step. We now introduce it formally following Dutta and
Kar (2004).

Let S0 = {0}, g0 = ∅, and x0 = 0.
Stage 1. Select the unique arc

(
i1, j1

)
such that

ci1 j1 = min
{

ci j : i ∈ A0 and j ∈ N0\A0
}

.

Define,

x1 = max
{

x0, ci1 j1

}
, S1 = S0 ∪

{
j1

}
, and g1 = g0 ∪

{(
i1, j1

)}
.

Stage p + 1. Assume we have defined S p, g p, and x p. Select the unique arc(
i p+1, j p+1

)
such that

ci p+1 j p+1 = min
{
ci j : i ∈ S p and j ∈ N0\S p} .

Define

x p+1=max
{

x p, ci p+1 j p+1
}
, S p+1=S p∪

{
j p+1

}
, and g p+1=g p∪

{(
i p+1, j p+1

)}
.

The algorithm finishes in n stages. For each i ∈ N , there exists an stage p (i) such
that i = j p(i). We define

DKi (N0, C) = min
{

x p(i)−1, ci p(i), j p(i)

}
.
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When there are more than one mt , several arcs
(
i p+1, j p+1

)
could satisfy the

condition. In this case, we define a rule DK π for each π ∈ �N , obtained by selecting
the arc

(
i p+1, j p+1

)
where j p+1 is the first agent given by π .

Dutta and Kar (2004) extend this definition for any mcstp similarly to the Bird’s
rule. Namely,

DK (N0, C) = 1

n!
∑

π∈�N

DK π (N0, C) .

3.2 Rules defined through Kruskal’s algorithm

Kruskal (1956) defines another algorithm for computing an mt . The mt is constructed
by sequentially adding arcs with the lowest cost without introducing cycles.

Formally, we start with A0(C) = {(i, j) | i, j ∈ N0, i 	= j} and g0(C) = ∅.

Stage 1: Take an arc
(
i1(C), j1(C)

) ∈ A0 (C) such that ci1(C) j1(C) =
min(i, j)∈A0(C)

{
ci j

}
. If there are several arcs satisfying this condition, select one

of them. We then update A1 (C) = A0 (C) \ {(
i1(C), j1(C)

)}
, and g1 (C) ={(

i1 (C) , j1 (C)
)}
.

Stage p + 1: Given Ap (C) and g p (C) , consider an arc (i, j) ∈ Ap (C) such that
ci j = min(k,l)∈Ap(C) {ckl} . If there are several arcs satisfying this condition, select
one of them. Two cases are possible:

1. If g p (C) ∪ {(i, j)} has a cycle, then repeat Stage p + 1 with Ap (C) \ {(i, j)}
instead of Ap (C) and the same g p (C).

2. If g p (C) ∪ {(i, j)} has no cycles, then take
(
i p+1 (C) , j p+1 (C)

) = (i, j) ,

Ap+1 (C) = Ap (C) \ {(i, j)}, and g p+1 (C) = g p (C) ∪ {(i, j)}.

This process is completed in |N | stages. Let g|N |(C) be the tree obtained following
Kruskal’s algorithm. This algorithm leads to a tree, which is not always unique. When
no confusion arises, we write Ap, g p, and (i p, j p) instead of Ap(C), g p(C), and
(i p(C), j p(C)).

Norde et al. (2004) present a subtraction algorithm, closely related to Kruskal’s,
for the determination of minimum-cost spanning trees.

Bergantiños et al. (2010, 2011) consider a family of rules through Kruskal’s algo-
rithm. At each step of the algorithm, an arc is added to the network. The cost of the
arc is divided between the agents according to a function � specifying the part of the
cost paid by each agent. Each agent pays the sum of the costs of the arcs selected by
Kruskal’s algorithm.

We now introduce this family formally.
Let P(N0) denote the set of all partitions over N0. Let P = {S0, S1, . . . , Sm} be

a generic element of P(N0) such that 0 ∈ S0. We assume that for all k = 0, . . . , m,

Sk 	= ∅. Given P, P ′ ∈ P(N0), we say that P is 1-finer than P ′ if P ′ is obtained from
P by merging two elements of P .

A sharing function � associates with each pair of partitions
(
P, P ′) , where P is 1-

finer than P ′, a vector �
(
P, P ′) ∈ �(N ) satisfying the path independence condition

(see Bergantiños et al. (2010) for the definition of this condition). For each sharing
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function �, we define the rule f � as follows. Given an mcstp (N0, C) and i ∈ N , we
define

f �

i (N0, C) =
|N |∑

p=1

ci p j p · �i

(
P

(
g p−1

)
, P

(
g p)

)
.

These functions are called Kruskal’s sharing rules. We now consider some rules
and a family of rules in the literature which are members of the family of Kruskal’s
sharing rules.

Obligation rules, introduced by Tijs et al. (2006a), are defined through obligation
functions, that specify the obligation of each agent in each coalition.

An obligation function for N is a map o that assigns to each S ∈ 2N0 \ {∅} a vector
o(S) ∈ R

S satisfying the following three conditions:

• For each S ∈ 2N0 \ {∅} such that 0 /∈ S , o(S) ∈ �(S).

• For each S ∈ 2N0 \ {∅} such that 0 ∈ S, oi (S) = 0 for each i ∈ S.

• For each S, T ∈ 2N0 \ {∅} with S ⊂ T and i ∈ S, oi (S) ≥ oi (T ).

Given an obligation function o, we can define the Kruskal sharing rule f �o
where

for each i ∈ N ,

�i

(
P

(
g p−1

)
, P

(
g p)

)
= oi (S(P(g p−1), i)) − oi (S(P(g p), i)).

Bergantiños et al. (2011) prove that the set of obligation rules is given by

{
f �o

(N0, C) : o is an obligation function
}

.

We now introduce some distinguished elements of the family of obligation rules.
The folk rule, denoted by F (N0, C),wasfirstly considered inFeltkampet al. (1994).

It can be seen as a Kruskal sharing rule where � satisfies the following principles:

• Only agents who benefit directly when adding an arc pay for that arc.
• All agents in the same group pay the same.
• The amount paid by the members of a group G1 is proportional to the number of
agents of the group G2 to whom this group G1 is connected.

Formally, the folk rule corresponds with the obligation function o where for each
S ⊂ N and each i ∈ S,

oi (S) = 1

|S| .

The folk rule is, probably, the most studied rule in this literature. It can be
defined in several ways, different from the Kruskal’s algorithm approach considered
above. Besides, it has also been studied through the axiomatic approach and the non-
cooperative approach. Some papers studying the folk rule are Branzei et al. (2004),
Bergantiños and Vidal-Puga (2009, 2010), Ciftci and Tijs (2009), Bergantiños et al.
(2014), Subiza et al. (2016), Norde (2019), Giménez-Gómez et al. (2020), Hernández
et al. (2020).

123



SERIEs (2021) 12:73–100 83

Optimistic weighted Shapley rules are introduced in Bergantiños and Lorenzo-
Freire (2008b, a). Each agent i has a weight wi > 0. The sharing function � is defined
proportionally to such weights. Formally, for each weight system w = (wi )i∈N , the
optimistic weighted Shapley rule f �ow

is the Kruskal sharing rule associated with the
obligation function o where for each S ⊂ N and each i ∈ S,

oi (S) = wi∑
j∈S w j

.

Pessimistic weighted Shapley rules are introduced in Lorenzo and Lorenzo-Freire
(2009). Each agent i has a weight wi > 0. The sharing function � is defined through
such weights as follows. For each weight system w = (wi )i∈N , the pessimistic
weighted Shapley rule f �pw

is the Kruskal sharing rule associated with the obligation
function o where for each S ⊂ N and each i ∈ S,

oi (S) =
∑

π∈�(S\{i})

s−1∏

j=1

wπ−1( j)
∑ j

k=1 wπ−1(k) + wi

.

3.3 Rules defined through Boruvka’s algorithm

Borůvka (1926) provides an algorithm for computing an mt . Bergantiños and Vidal-
Puga (2011) introduce a rule based on Boruvka’s algorithm. We first provide an
informal definition of Boruvka’s algorithm and the rule associated with it. We start
with an empty network. Besides, each agent is a single component. Then, sequentially,
for each connected component, we add the cheapest arc joining this connected com-
ponent with some agent outside this connected component but without introducing
cycles. The cost of each arc selected by Boruvka’s algorithm is divided among the
agents following three principles. First, each agent only pays the arc selected by the
component it belongs to. Second, all agents pay the same proportion of the arc selected
by the component. Third, the proportion paid should be as large as possible.

We now introduce formally Boruvka’s algorithm and the associated rule following
Bergantiños and Vidal-Puga (2011).

Let π be an order over the set of all arcs. Namely,

π : {(i, j) : i, j ∈ N0, i 	= j} →
{
1, 2, . . . ,

( |N |
2

)}
.

We first introduce the Boruvka’s algorithm associated with the order π .
Stage 1: Let gπ,0 = ∅. Notice that the set of connected components is

{{0} , {1} , . . . , {|N |}}.
Assume we have reached Step s (s = 1, 2, . . . ) and we have defined gπ,s−1.
Stage s: For each connected component T , 0 /∈ T , let

(
iπ,T , jπ,T

) ∈ T × (N0\T )

be the cheapest arc connecting T and N0\T . In case there are more than one possible
arc, we select the one with the lowest position in the order π . We then add this arc to
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the graph, i .e.,

gπ,s = gπ,s−1 ∪
{(

iπ,T , jπ,T
)

: T is a connected component, 0 /∈ T
}

.

Following this algorithm, gπ,s is a graph with no cycles.
If the set of connected components becomes {N0}, then gπ,s is a tree and the process

is over. Otherwise, we move to Step s + 1.
The process finishes in a finite number of steps. The tree obtained by this procedure

is an mt , and we denoted it as tπ . When no confusion arises, we write gs, i T , . . .

instead of gπ,s, iπ,T , . . . , respectively.
We now introduce the rule based on Boruvka’s algorithm.
Let π be some order of the arcs, let (N0, C) be a cost matrix, and let tπ (or simply t)

be the arc selected following Boruvka’s algorithm associated with π. We now define
the rule βπ as follows:

Stage 0. We define a0,π
i = ∅ for all i ∈ N , p0,π = 0, �0,π

i j = 0 for all (i, j) ∈ t ,

A0,π = t , and f 0,πi = 0 for all i ∈ N .

In general, as,π
i , or simply as

i , denotes the arc in t that agent i pays partially in
Stage s; ps,π , or simply ps , denotes the proportion of the cost of the arc that each
agent pays in Stage s; �

s,π
i j , or simply �s

i j , denotes the proportion of the cost of arc
{i, j} already paid in Stage s; As,π , or simply As , denotes the set of non-completely

paid arcs in Stage s, i .e. As =
{
(i, j) ∈ t : �s

i j < 1
}
; f s,π

i , or simply f s
i , denotes the

cost that agent i pays in Stage s, i .e., f s
i = pscas

i
.

We denote A
s = t\As =

{
(i, j) ∈ t : �s

i j = 1
}
. Let Ps be the set of connected

components of N0 associated with A
s
.

Assume that we have defined Stage r for all r < s. We now define Stage s . For
simplicity, we omit reference to the order π .

Given a connected component T ∈ Ps−1, 0 /∈ T , we select the arc
(
i T , j T

)
as in

Boruvka’s algorithm, so that
(
i T , j T

) ∈ t . Moreover, if component T selects
(
i T , j T

)

in Stage s − 1 and
(
i T , j T

)
is not completely paid at the beginning of Stage s, then

component T also selects
(
i T , j T

)
in Stage s.

Given k ∈ T ∈ Ps−1, we define as
k = (

i T , j T
)
. That is, each agent will pay the

cost of the arc selected by Boruvka’s algorithm for the component he belongs to.
For each arc (i, j) ∈ As−1, let N s

i j = {
k ∈ N : as

k = (i, j)
}
be the set of agents

that will pay the cost of arc (i, j). We define

ps = min

⎧
⎨

⎩

1 − �s−1
i j∣∣∣N s

i j

∣∣∣
: (i, j) ∈ As−1, N s

i j 	= ∅
⎫
⎬

⎭
.

Notice that, assuming that all agents must pay the same proportion of the cost for
each arc, ps is the maximum proportion that agents can pay in Stage s.
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For each {i, j} ∈ As−1, we define �s
i j = �s−1

i j +
∣∣∣N s

i j

∣∣∣ ps . Thus, �s
i j ≤ 1 for each

{i, j} ∈ As−1. Moreover, there exists at least one (i, j) ∈ As−1 such that �s
i j = 1.

Thus, As
� As−1 and A

s−1
� A

s
. That is, there are more arcs completely paid.

This process finishes when A
s = t . Since as

i ∈ t for each agent i and each Stage s,

and A
s−1

� A
s
, this process finishes in a finite number of Stages (at most |N |), say

γ .
Moreover, by definition, the process finishes when

∑γ
s=1 ps = 1.

Given an order π of the set of arcs and a cost matrix C , we define the Boruvka’s
rule induced by the order π as

βπ
i (N0, C) =

γ∑

s=1

f s
i for each i ∈ N .

Even this allocation could depend on π, Bergantiños and Vidal-Puga (2011) prove
that, for each order π , βπ coincides with the folk rule.

3.4 Rules defined through a cone-wise decomposition

Norde et al. (2004) prove that everymcstp can bewritten as a nonnegative combination
of the so-called elementary mcstp, in which the costs of the arcs are 0 or 1.

Formally, for each mcstp (N0, C), there exists a family {Cq}m(C)
q=1 of cost matrices

and a family {xq}m(C)
q=1 of nonnegative real numbers satisfying three conditions:

1. C = ∑m(C)
q=1 xqCq .

2. For each q ∈ {1, . . . , m(C)}, there exists a network gq such that cq
i j = 1 if (i, j) ∈

gq and cq
i j = 0 otherwise.

3. Let q ∈ {1, . . . , m(C)} and {i, j, k, l} ⊂ N0. If ci j ≤ ckl , then cq
i j ≤ cq

kl .

Assume we know how a rule R should share the cost in any elementary problem.
Then, we can extend the rule R for elementary problems to any general mcstp by
using the decomposition given by Norde et al. (2004) as follows:

R (N0, C) =
m(C)∑

q=1

xq R
(
N0, Cq)

.

Several authors have followed this approach for defining rules or family of rules.
We mention some of them.

Branzei et al. (2004) proved that the folk rule can be obtained in this way. Given an
elementary problem (N0, Cq) , agents in the same component as the source (and hence
connected to the source through a path of cost 0) pay 0. Agents in any other component
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equally divide the cost of connecting them to the source, which is 1. Formally,

F
(
N0, Cq) =

{ 1
S(P(gq ),i) if 0 /∈ S(P(gq), i)
0 otherwise.

Bergantiños and Lorenzo-Freire (2008b) prove that optimistic weighted Shapley
rules can also be obtained in this way by taking

f �ow (
N0, Cq) =

{
wi∑

j∈S(P(gq ),i) w j
if 0 /∈ S(P(gq), i)

0 otherwise.

Bogomolnaia and Moulin (2010) consider the following family of rules. Given an
elementary problem (N0, Cq) and agent i ∈ N , let δi denote the number of non-null
arcs in Cq containing agent i . For each λ ∈ [0,+∞) ,

Rλ
(
N0, Cq) =

{
λδi

∑
j∈S(P(gq ),i) λ

δ j
if 0 /∈ S(P(gq), i)

0 otherwise

and for λ = +∞

Rλ
(
N0, Cq) =

{
argmax j∈S(P(gq ),i) δ j if 0 /∈ S(P(gq), i)
0 otherwise.

4 Rules defined through cooperative games

We first review some concepts of cooperative games used in this paper. In some cases,
we simply give an informal definition, the notation, and a reference where it is possible
to find the formal definition.

A cooperative game with transferable utility, briefly a T U game, is a pair (N , v)

where v : 2N → R satisfies that v (∅) = 0.
We say that (N , v) is concave if, for all S, T ⊂ N and i ∈ N such that S ⊂ T and

i /∈ T ,
v (S ∪ {i}) − v (S) ≥ v (T ∪ {i}) − v (T ) .

The core is defined as

core (N , v) =
{

x ∈ R
N :

∑

i∈N

xi = v (N ) and
∑

i∈S

xi ≤ v (S) , ∀S ⊂ N

}

.

The Shapley value (Shapley 1953b), denoted as Sh (N , v) , is defined as the average
ofmarginal contributions over all possible orders inwhich agentsmay appear. Namely,
for each i ∈ N ,

Shi (N , v) = 1

|N |!
∑

π∈�(N )

[v (Pre (i, π) ∪ {i}) − v (Pre (i, π))] .
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An alternative to marginal contributions are the reduced marginal contributions
(Vidal-Puga 2004) defined as

sπ
i (v) = vs (N \ Pre(i, π)) − vs (N \ (Pre(i, π) ∪ {i}))

where s =
(

sπ
j (v)

)

j∈Pre(i,π)
and (N \ Pre(i, π), vs) is the reduced game defined as

vs(T ) =
{
0 if T = ∅
maxS⊆Pre(i,π)

{
v(T ∪ S) − ∑

j∈S si

}
otherwise

for all T ⊆ N \ Pre(i, π).

Shapley (1953a) introduced the family of weighted Shapley values for T U games.
Each agent i ∈ N has positive weight wi . These weights are the proportions in which
the players share in unanimity games. Kalai and Samet (1987) further studied this
family. We denote by Shw (N , v) the weighted Shapley value associated with the
weight system w = (wi )i∈N . For each i ∈ N ,

Shw
i (N , v) =

∑

π∈�(N )

pw(π) [v(Pre(π, i) ∪ {i}) − v(Pre(π, i))]

where pw(π) = ∏|N |
j=1

wπ( j)
∑ j

k=1wπ(k)

.

Owen (1977) introduced a value for T U games with a group structure. Agents are
partitioned into different groups. We denote by P such partition. We should divide
v (N ) among the agents taking into account the partition P . Owen (1977) proved that
his value generalizes the Shapley value. We call it the Owen value and denote it as
Ow (N , v, P).

We say that a permutation π ∈ �N is admissible with respect to P if given i, i ′ ∈
Pk ∈ P and j ∈ N with π(i) < π( j) < π(i ′), then j ∈ Pk . We denote by �G

the set of all permutations over N admissible with respect to P . Given (N , v, P) and
i ∈ Pk ∈ P,

Owi (N , v, G) = 1
∣∣�G

∣∣
∑

π∈�G

[v (Pre (i, π) ∪ {i}) − v (Pre (i, π))] .

Weber (1988) introduced themarginalistic values of a cooperative game as general-
izations of the Shapley value.Weber considers that agent i ’s marginal contribution to a
coalition S is weighted by an exogenously specified factor. Let pi be a weight scheme
for agent i ∈ N ,where negativeweights are also allowed. Formally, pi ∈ R

|{S:S⊂N\{i}}|
and

∑
S⊂N\{i} pi (S) = 1.We define the marginalistic value f p associated with a col-

lection of weight schemes p = {
pi

}
i∈N as follows. Given the T U game (N , v) and

i ∈ N ,

f p
i (N , v) =

∑

S⊂N\{i}
pi (S) (v (S ∪ {i}) − v (S)) .
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4.1 The private game

Bird (1976) associated with each mcstp (N0, C) a T U game
(
N , v

p
C

)
where the cost

of each coalition S is computed under the assumption that agents in N \ S are not
available. We call this game private because the nodes in N \ S belong to these agents,
and hence, their participation is needed in order to use their nodes.

Formally, the T U game
(
N , v

p
C

)
associated with each mcstp (N0, C) is defined as

follows. For each coalition S ⊆ N ,

v
p
C (S) = m (S0, C) . (1)

When no confusion arises, we write v p instead of v
p
C .

We compute v p in Example 2.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v p (S) 12 15 20 16 18 23 22

Hence, v p ({2, 3}) is computed using only nodes 2 and 3. Thus, the minimal tree
in the problem ({2, 3}0, C) is {(0, 3), (2, 3)}.

Kobayashi and Okamoto (2014) provide sufficient and necessary conditions for v p

to be a concave game. Moreover, when the costs are restricted to two possible values:
low and high (as in elementary problems), v p is concave if and only if the cycles
formed by arcs of low cost are either adjacent to the source or pairwise adjacent. This
condition can be verified in polynomial time.

Bird (1976) proved that, for each mcstp (N0, C) , the core of v p is non-empty.
Later on, the core was studied by other authors. We mention some other results about
the core.

Theorem 4.1 1. (Bird 1976) For each mcstp (N0, C), the Bird’s rule B (N0, C)

belongs to the core of v p.
2. (Feltkamp et al. 1994) For each mcstp (N0, C), the folk rule F (N0, C) belongs

to the core of v p.
3. (Dutta and Kar 2004) For each mcstp (N0, C), the Dutta–Kar’s rule DK (N0, C)

belongs to the core of v p.
4. (Tijs et al. 2006a) For each mcstp (N0, C), each obligation rule f �o

(N0, C)

belongs to the core of v p.
5. (Bogomolnaia and Moulin 2010) For each mcstp (N0, C) and each λ ∈ [0,+∞),

Rλ (N0, C) belongs to the core of v p.
6. (Trudeau and Vidal-Puga 2017) For each mcstp (N0, C), the core of v p is the

convex hull of the reduced marginal contributions vectors.

Since optimistic weighted Shapley rules are obligation rules (Bergantiños and
Lorenzo-Freire 2008a, b) and pessimistic weighted Shapley rules are also obligation
rules (Lorenzo and Lorenzo-Freire 2009), both belong to the core of v p.
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Moreover, Moretti et al. (2002) study some monotonicity properties of the core of
v p.

Next result applies to mcstp with a unique mt :
Theorem 4.2 (Chun and Lee 2012) The unique sequential contributions rule that
selects a core allocation in the private game v p for each mcstp with a unique mt
is the Bird’s rule.

Next result applies to elementary mcstp:

Theorem 4.3 (Kuipers 1993)

1. For each elementary mcstp, there exists an associated concave elementary graph
game, which has the same core as v p.

2. For each elementary mcstp, its extreme core allocations are marginal allocation
vectors of the game v p.

We now mention, briefly, some single values for mcstp that have been defined
through the game v p.

Granot and Huberman (1981, 1984) study the core and the nucleolus of v p. They
prove that the core and the nucleolus can be obtained as a Cartesian product of the
core and the nucleolus of some subproblems. They also provide efficient algorithms
for the computation of the core and the nucleolus.

Faigle et al. (1998) prove that computing the nucleolus is N P-hard.
Kar (2002) defines a rule as the Shapley value of v p. Namely, for each mcstp

(N0, C), he considers Sh (N , v p) . He obtains an axiomatic characterization of this
value. Ando (2012) proves that computing this Shapley value is N P-hard, even for
elementary games.

Trudeau and Vidal-Puga (2017, 2020) study the permutation-weighted average
of extreme points of the core in elementary cost matrices. Moreover, Trudeau and
Vidal-Puga (2020) provide a necessary condition for the coincidence of these three
values, i.e., the nucleolus, the Shapley value, and the permutation-weighted average
of extreme points of the core of v p.

4.2 The irreducible game

We associate with each mcstp (N0, C) a T U game
(
N , vi

C

)
defined as the private

game associated with the irreducible form (N0, C∗) . Thus, for each coalition S ⊆ N ,

vi
C (S) = m

(
S0, C∗) . (2)

This game was already considered in Bird (1976). When no confusion arises, we
write vi instead of vi

C .

We compute vi in Example 2.1.
Now, vi ({2, 3}) is also computed using only the nodes 2 and 3, but considering C∗

instead of C . Thus, the minimal tree in problem ({2, 3}0 , C∗) is {(0, 3) , (2, 3)} , but
the cost is 18 (instead of 23).
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S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vi (S) 12 12 12 16 18 18 22

Bird (1976) proved that for each mcstp (N0, C) the core of vi (usually called the
irreducible core) is non-empty and it is a subset of the core of v p. Later on, the core
of vi was studied by other authors.

We mention some other results about the irreducible core.

Theorem 4.4 1. (Bird 1976) For each mcstp (N0, C), the irreducible core is the
convex combination of the set of allocations induced by Prim’s algorithm.

2. (Aarts and Driessen 1993) For each mcstp (N0, C), vi is concave.
3. (Bird 1976) For each mcstp (N0, C) , the Bird’s rule B (N0, C) belongs to the

core of vi .
4. (Feltkamp et al. 1994) For each mcstp (N0, C) , the folk rule F (N0, C) belongs

to the core of vi .
5. (Tijs et al. 2006a) For each mcstp (N0, C) , each obligation rule f �o

(N0, C)

belongs to the core of vi .
6. (Tijs et al. 2006b) The core of vi is the largest solution which is efficient, nonneg-

ative, upper-bounded by the stand-alone costs, and cone-wise positive linear.
7. (Bergantiños and Vidal-Puga 2015) For each mcstp (N0, C) , the core of vi coin-

cides with the set of allocation induced by the set of all monotonic rules over the
cost matrix and the set of agents.

Since optimistic weighted Shapley rules are obligation rules (Bergantiños and
Lorenzo-Freire 2008a, b), and pessimistic weighted Shapley rules are also obligation
rules (Lorenzo and Lorenzo-Freire 2009), both belong to the core of vi .

We now consider the Shapley value of vi . We also consider other values of T U
closely related to the Shapley value.

Bergantiños and Vidal-Puga (2007a) define a rule as the Shapley value of vi .
Namely, or each mcstp (N0, C) , they consider Sh

(
N , vi

)
.

Theorem 4.5 1. (Bergantiños and Vidal-Puga 2007a) For each mcstp (N0, C) , the
folk rule of (N0, C) coincides with Sh

(
N , vi

)
.

2. (Bergantiños and Vidal-Puga 2007a) For each mcstp (N0, C) , the Bird’s rule of
(N0, C∗) coincides with Sh

(
N , vi

)
.

3. (Lorenzo and Lorenzo-Freire 2009) The family of pessimistic weighted Shapley
rules coincides with the family of weighted Shapley values of vi .

4. (Bergantiños and Kar 2010) For each mcstp (N0, C) , the set of obligation rules
is a subset of the set of marginalistic values of vi .

A comparative of the Shapley value in the irreducible game (folk solution) and in
the private game (Kar solution) can be found in Trudeau (2014b). Ando and Kato
(2010) prove that the Shapley value in the irreducible game, as well as the egalitarian
solution and the nucleolus, can be computed in time O(|N |2). For irreducible cost
matrices, Trudeau and Vidal-Puga (2020) show that the Shapley value, the nucleolus
and the permutation-weighted average of extreme points of the core of vi coincide.
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Moreover, Bergantiños and Gómez-Rúa (2010, 2015) study the rule given by the
Owen value of vi .

4.3 The optimistic game

As an alternative to Bird’s approach, Bergantiños and Vidal-Puga (2007b) associate
with each mcstp (N0, C) a cooperative game

(
N , vo

C

)
where the worth of each coali-

tion S is computed assuming that agents in N \ S are already connected. We call this
game optimistic because agents in S can connect to the source through agents in N \ S
for free.

Let (N0, C) be an mcstp, and S, T ⊂ N with S ∩ T = ∅. We define the associated
mcstp

(
S0, CT

)
assuming that agents in S have to be connected to the source, agents

in T are already connected, and the agents in S can connect to the source through
agents in T . Formally, cT

i j = ci j for all i, j ∈ S and cT
0i = min j∈T0 c ji for all i ∈ S.

Bergantiños andVidal-Puga (2007b) defined the T U game
(
N , vo

C

)
associated with

each mcstp (N0, C). For each coalition S ⊆ N ,

vo
C (S) = m

(
S0, C N\S

)
. (3)

When no confusion arises, we write vo instead of vo
C .

We compute vo in Example 2.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vo (S) 4 4 6 10 10 10 22

Hence, vo ({2, 3}) is computed assuming that agent 1 is already connected. Thus,
agents 2 and 3 connect to the source through tree {(1, 2) , (1, 3)} , which has a cost of
10.

We say that two mcstp (N0, C) and
(
N0, C ′) are tree-equivalent if there exists a

spanning tree t∗ such that t∗ is an mt for both (N0, C) , and
(
N0, C ′) and ci j = c′

i j
for all (i, j) ∈ t∗.

In the next theorem, we summarize some results obtained for vo.

Theorem 4.6 1. (Bergantiños and Vidal-Puga 2007b) If (N0, C∗) is irreducible, then
v p and vo are dual, i.e.,

v p (S) + vo (N \ S) = m (N0, C)

for all S ⊂ N .

2. (Bergantiños and Vidal-Puga 2007b) If (N0, C) and
(
N0, C ′) are tree-equivalent,

then vo
C = vo

C ′ .
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3. (Bergantiños and Vidal-Puga 2007b) The optimistic game associated with any
mcstp (N , C) coincides with the optimistic game associated with its irreducible
form (N , C∗), i.e., vo

C = vo
C∗ .

In the next theorem, we summarize some results obtained for the Shapley value
(and other related values) of vo.

Theorem 4.7 1. Bergantiños and Vidal-Puga (2007b) For all mcstp (N0, C) ,

Sh
(
N , vo

C

) = Sh
(

N , vi
C

)
= Sh

(
N , vo

C∗
)
.

2. (Bergantiños and Lorenzo-Freire 2008b) The family of optimistic weighted Shapley
rules coincides with the family of weighted Shapley values of vo.

Since Sh (N , vo) = Sh
(
N , vi

)
, and the folk rule coincides with Sh

(
N , vi

)
, the

Shapley value of vo is just another way for obtaining the folk rule.
The family of optimistic weighted Shapley rules is studied from an axiomatic point

of view in Bergantiños and Lorenzo-Freire (2008a).Moreover, Gómez-Rúa andVidal-
Puga (2017) prove that a version of such an optimisticweightedShapley rule is immune
to manipulation by merging or splitting of nodes in a slightly more general model.

4.4 The public game

A natural alternative to the private case is to assume that there are no property rights on
nodes and agents in S can use, paying their cost, the nodes of their neighbors in N \ S
to connect to the source. This approach was first explicitly studied by Bogomolnaia
and Moulin (2010).

We compute vu in Example 2.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vu (S) 12 15 18 16 18 22 22

Now, vu ({2, 3}) is computed assuming that agent 1 is available. Thus, agents 2 and
3 connect to the source through tree {(0, 1) , (1, 2) , (1, 3)} , which has a cost of 22.

The public game has not received much attention in the literature, and it has been
limited to the contrast with the private game (Trudeau 2013; Trudeau and Vidal-Puga
2017, 2019). A possible reason for this lack of attention is that the private game
is more tractable. Notice, for example, that vu(S) = minS⊆T v p(T ), i.e., it requires
muchmore effort to compute vu(S).Moreover, the core allocations of the public game
coincide with the core allocations of the private game with nonnegative cost shares, as
first noted by Bogomolnaia and Moulin (2010) and formally proved by Trudeau and
Vidal-Puga (2017):

Theorem 4.8 (Trudeau and Vidal-Puga 2017) core(N , vu) = core(N , v p) ∩ R
N+ .
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Additionally, the public game associated with the irreducible form of a mcstp
coincides with the private game associated with this irreducible form. Hence, the
irreducible game can be defined from either the private or the public approach.

As a consequence, most of the results for the private game also hold for the public
game. For the sake of completeness, we replicate these results for the public game.
The proof is an immediate consequence of Theorem 4.1 and the nonnegativity of the
rules mentioned in the respective item.

Theorem 4.9 1. For each mcstp (N0, C), the Bird’s rule B (N0, C) belongs to the
core of vu.

2. For each mcstp (N0, C), the folk rule F (N0, C) belongs to the core of vu.
3. For each mcstp (N0, C), the Dutta–Kar’s rule DK (N0, C) belongs to the core of

vu.
4. For each mcstp (N0, C), each obligation rule f �o

(N0, C) belongs to the core of
vu.

5. (Bogomolnaia and Moulin 2010) For each mcstp (N0, C) and each λ ∈ [0,+∞),
Rλ (N0, C) belongs to the core of vu.

6. (Trudeau and Vidal-Puga 2017) For each mcstp (N0, C), the core of vu is the
convex hull of the reduced marginal contributions vectors.

The Shapley value of the public game may not belong to the core. See Trudeau
and Vidal-Puga (2019) for an example of a three-agent problem in which the Shapley
value of the public game lies outside both the core of vu and the core of v p. Since the
folk rule is a core selector, it does not coincide with the Shapley value of the public
game.

Next result applies to mcstp with a unique mt :
Theorem 4.10 The unique sequential contributions rule that selects a core allocation
in the public game vu for each mcstp with a unique mt is the Bird’s rule.

Proof Under Theorem 4.9(1), we know that the Bird rule is a sequential contribution
rule that select a core allocation in the public game. Under Theorem 4.8, the core of
vu is a subset of the core of v p. Hence, any sequential contribution rule that select a
core allocation in the public game does so also in the private game. Under Theorem
4.2, such a rule coincides with the Bird’s rule. ��

Next result applies to elementary mcstp:

Theorem 4.11 (Trudeau and Vidal-Puga 2017) For elementary mcstp problems, the
folk solution is the permutation-weighted average of extreme core allocations of the
game vu .

4.5 The cycle-complete game

The last alternative to be considered is to associate with each mcstp (N0, C) a T U
game

(
N , vc

C

)
defined as the private game associated with the cycle-complete network

(N0, C∗∗) . Thus, for each coalition S ⊆ N ,

vc
C (S) = vi

C∗∗ (S) = m
(
S0, C∗∗) . (4)
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As usual, we write vc instead of vc
C .

This approach was studied by Trudeau (2012).
We compute vc in Example 2.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vc (S) 12 15 15 16 18 23 22

Now, vc ({2, 3}) is again computed using only the nodes 2 and 3, but considering
C∗∗. In this case, there are two minimal trees in problem ({2, 3}0 , C∗∗) , which are
{(0, 3) , (2, 3)} and {(0, 2) , (2, 3)} , both with cost 23.

Theorem 4.12 (Trudeau 2012) The game (N , vc) is concave.

Theorem 4.12 is not tight in the sense that there are concave mcstp which are not
cycle-complete. However, this result is tight if we look only at elementary mcstp.

It is well known that the Shapley value of a concave cost game belongs to its core.
Moreover, it is clear that core(N , vc) ⊆ core(N , v p). Hence, the Shapley value of
(N , vc), which Trudeau (2012) calls cycle-complete solution, belongs to both cores.

Theorem 4.13 (Trudeau 2012) For each mcstp (N0, C) , the cycle-complete solution
belongs to the core of the game vc.

Next result applies to elementary mcstp:

Theorem 4.14 (Trudeau and Vidal-Puga 2017) For elementary problems, the cycle-
complete solution is the permutation-weighted average of extreme core allocations of
the game vc.

A comparative of the Shapley value in the cycle-complete game (cycle-complete
solution) and in the irreducible game (folk solution) can be found in Trudeau (2014a).

4.6 Relation between cores

It is clear from their definition that the cost of the grand coalition in all the games
coincide, i.e., v p(N ) = vi (N ) = vo(N ) = vu(N ) = vc(N ) = m(N0, C), whereas
for each coalition S ⊂ N ,

vo(S) ≤ vi (S) ≤ vu(S) ≤ v p(S)

and
vo(S) ≤ vi (S) ≤ vc(S) ≤ v p(S).

Notice that both vu(S) and vc(S) lie between vi (S) and v p(S). They are not related
though.
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As an implication, we have the following relations:

core(N , vo) ⊆ core(N , vi ) ⊆ core(N , vu) ⊆ core(N , v p)

and
core(N , vo) ⊆ core(N , vi ) ⊆ core(N , vc) ⊆ core(N , v p).

The core of vo is, in general, empty. The rest of the cores are always non-empty.
This implies that any stable cost allocation for vi is stable in all the other games
except vo and that we can always find such an allocation. As a counterpart, focusing
on the core of vi rules out other relevant properties for the private game, such as strict
monotonicity and strict ranking (Trudeau 2012).

5 Conclusions and future research

In this paper, we have reviewed the contribution of cooperative game theory to the
problemof sharing the cost ofmcstp between the agents. This contribution is, however,
far from being closed, as there are numerous natural extensions, many of them deriving
in balanced games, that have not been fully explored yet.

Some examples of extensions with non-empty core that have received some atten-
tion in the literature are the following:

• Minimum-cost spanning tree problemswhere some agents are indifferent (Trudeau
2014c), i.e., they can connect to the source (and get rewarded for it) if it helps others
agents.

• Arborescences (Dutta andMishra 2012; Bahel and Trudeau 2017), where the costs
are not symmetric, i.e., ci j 	= c ji in general.

• Minimum-cost spanning tree problems where the costs are uncertain and repre-
sented by closed intervals (Moretti et al. 2011).

• Minimum-cost spanning tree problems with multiple sources (Bergantiños and
Navarro-Ramos 2019b, a; Bergantiños and Lorenzo 2020; Bergantiños et al. 2020)
where agents want to be connected to several sources.

• Multi-period shorted path problems (Streekstra and Trudeau 2020) generalize
mcstp to several periods, so that the agents should receive from the source different
amount of services in different periods.

Some examples of extensions with empty core are the following:

• Steiner tree problems (Megiddo 1978),where agents can use some special (Steiner)
nodes, if needed, to connect to the source. However, some special cases are always
balanced (Skorin-Kapov 1995), as, for example, when all Steiner nodes belong to
an optimal tree (Skorin-Kapov and Skorin-Kapov 2012).

• Multi-criteria minimum-cost spanning tree games (Fernández et al. 2004), where
the cost of the arcs are vectors instead of numbers. In this extended class of games,
the dominance core (where inequalities apply to at least some dimension) is non-
empty, whereas the preference core (where inequalities apply to all dimensions)
may be empty.
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• Minimum-cost spanning tree problems with revenues (Bergantiños and Lorenzo
2008; Estévez-Fernández and Reijnierse 2014) are games where some agents have
a limited budget, i.e., they connect if their assigned payment is not more than their
connection revenue, or budget. These problems also generalize minimum-cost
spanning tree problems where some agents are indifferent.

• k-Hop minimum-cost spanning tree problems (Bergantiños et al. 2012, 2014),
where no agent can be more than k nodes away from the source.

• Directed acyclic graph games (Sziklai et al. 2016) arise from problems where
some directions are unfeasible, so that the graph is directed, it has no cycles, and
there always exists at least one path from each agent to the source. Moreover,
some nodes are optional (Steiner nodes) and hence these problems also generalize
Steiner tree problems.

• Minimum-cost spanning tree problems with priced nodes (Trudeau and Vidal-
Puga 2017) generalize Steiner tree problems in the sense that each Steiner node
has assigned a price, so that players should pay the price of the nodes they use.

In the other direction, some limited results have been obtained for some relevant
subclasses of mcstp, as, for example, information graph games, which are character-
ized by elementary mcstp. Kuipers (1993) studies the core and Núñez and Vidal-Puga
(2020) study the stable sets (von Neumann and Morgenstern 1944) of these games.
Since stable sets may exist for non-balanced games, this research is also a promising
open field of study in games where the core is empty.
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