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Abstract
This survey presents in a historical way the main contributions to the hardcore theory
of aggregative games and the applications of this model to several fields of economics,
other social sciences and engineering.

Keywords Aggregative · Games · Quasi-competitiveness · Shocks

JEL Classification C7 · L1 · L2

1 Introduction

A game is aggregative when, for any player, payoffs depend on her own action and
an aggregate that encapsulates all interactions in the game. Usually, this aggregate is
taken to be the sum of the strategies of all players or, when the number of players is
variable, the average of this sum.

The assumption that all interactions are channeled through a single number is,
perhaps, a little bit extreme. In a society or in amarket, I interact closelywithmy friends
and relatives or with a small number of firms and somehow on a more anonymous way
with the rest of the society.1 The theory of aggregative games focus on anonymous
interactions. This brings an enormous simplification to the players involved in the game
and to the analyst using game theory as a tool: As a player, to takemy optimal decision,
I just need to forecast the value of the aggregate and how this aggregate changes with

1 For a discussion of this point, see our comments in Sect. 6.
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Table 1 .

ai a Ui (ai , a) a = f (a1, ..an)

Trade Unions Wages Inflation Payoffs Un. Inflation f(wages)

Pollution Output Pollution Profit Pollution Output

Contribution Inputs Pub. Good U. Function Prod.Pub. Good

Ppal-Agent id Output id Prod. Output

Pref Revelation Message Social State id Social Rule

Tragedy Comm. Inputs Environ. Profits Damage Function

Oligopoly Output Price id Inverse Demand

Technolog comp Effort Technology id Tech Production

my actions (of course, I should also know my preferences). As an analyst, to predict
the consequences of a shift in a parameter, I do not need to disentangle the effects on
this or that strategy. It suffices to focus on the aggregate. This aggregate may be an
official statistic or belief that is used by every player.

It turned out that some models that economists have been using for a long time
have this aggregative structure, see Table 1. So we have an additional payoff: a result
obtained in the realm of aggregative games can be applied to models in different fields
of economics. This point will be expanded and make more precise in Sect. 6.

The rest of the paper goes as follows. Section 2 spells the model. Section 3 presents
the first results obtained in this framework. Section 4 presents the key contributions
made in 1993–1994, while Sect. 5 describes the development of this area before
we attain the boundary of our present knowledge. Section 6 presents some recent
contributions dealing with extensions and applications both old and new. We end with
a section suggesting future avenues of research.

2 Preliminaries

There are n players with actions ai ∈ Ai ⊆ R+ i = 1, 2, . . . n. Let a = ∑n
j=1 a j

be the aggregate of all players’ actions and a−i = a − ai . Preferences over actions
are represented by a payoff function Ui = Ui (ai , a). An alternative representation is
obtained by writing payoffs as a function of ai and a−i sinceUi (ai , a) = Ui (ai , a−i +
ai ) = Vi (ai , a−i ) say.2 An important fact is that two-person games are aggregative.3

Many of the results presented here are generalizable to an aggregate�(a) introducing
suitable concavity and monotonicity assumptions on �() Corchón (1994, p. 154).
Generalizations to multidimensional action spaces are harder, see, e.g., Okuguchi

2 When the aggregate is represented by a general function g(a−i ), this equivalence no longer holds, [see
Jensen (2010, p. 48)].
3 In social choice, some results for models with two agents and more than two agents are different. And
in statistics and differential equations the cases of two and more than two dimensions often yield different
results, see Corchón (2009), comments to Theorem 7. See also González-Maestre 2000 for this discrepancy
in a IO model.
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and Szidarovszky. (1990) for the case of oligopolistic firms and Jensen (2010).4 Let
a = (a1, a2, . . . an) be a list of actions and a−i = (a1, a2, . . . ai−1, ai+1, . . . an) be a
list of actions of all playersminus i . Note that vectors are denoted in bold to distinguish
them from the sum, a.

Our main tool will be the notion of a Nash equilibrium (NE) in a normal form game
in which actions are strategies. Recall that in a NE each player chooses her strategy
having forecasted correctly the strategies chosen by others. Actions corresponding to a
NE are denoted by a∗ = (a∗

1 , a
∗
2 , . . . a

∗
n). For the time being, let us stick to the classical

assumptions of continuity of payoffs in actions, strict concavity in own’s actions and
convexity and compactness of action sets to guarantee the existence of NE, see, e.g.,
Friedman (1977, pp. 152–154).5 This proof uses the concept of Best Reply defined as
the actions that maximize a player’s payoff given the actions of all other players. It is
denoted by Bi (a−i ). Under strict concavity, the collection of functions {Bi (a−i )}ni=1
maps continuously ×n

j=1A j into ×n
j=1A j and the fixed point, whose existence is

guaranteed by Brouwer fixed point theorem, is a NE.
Throughout these notes, we will assume differentiability and, as a simplification

device, interiority. In a NE, first-order condition (FOC in the sequel) of payoff maxi-
mization for player i is

∂Ui (a∗
i , a

∗)
∂ai

+ ∂Ui (a∗
i , a

∗)
∂a

= 0 (1)

since da/dai = 1. Let us denote the left hand side of (1) as Ti (a∗
i , a

∗). Differentiating
(1), we derive the slope of the best reply

dBi (a∗−i )

da−i
=

∂Ti (ai ,a)
∂a

−
(

∂Ti (ai ,a)
∂ai

+ ∂Ti (ai ,a)
∂a

) . (2)

If second-order conditions of payoff maximization hold with strict inequality, the
denominator of (2) is positive and the sign of the best reply is determined by the sign
of the numerator which is

∂Ti (a∗
i , a

∗)
∂ai

= ∂2Ui (a∗
i , a

∗)
∂ai∂a

+ ∂2Ui (a∗
i , a

∗)
∂a2

since da/da−i = 1.6

We end this section noting that when payoffs can be written as gi (ai )h(a), aggrega-
tive games are potential games, i.e., games in which some NE (not always all NE) can
be found by maximizing a single function called the potential function, see Monderer

4 A simple case of two dimensional aggregates is presented in Sect. 5, see also Nocke and Schutz (2018).
Dickson (2017) and Cornes et al. (2019).
5 Friedman uses the more general assumption of quasi-concavity of payoffs in own’s action.
6 In more technical term, profits are a Morse function, i.e., a smooth function with non-degenerate critical
points (Christensen 2019, footnote 26).
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and Shapley (1996). 7 This is useful because in potential games a pure strategyNE exist
without any convexity or quasi-concavity assumptions. It also implies convergence of
best-reply dynamics under some additional assumptions. In our case, the potential is
h(a)�n

i=1gi (ai ). FOC is

h(a)
dgi (ai )

dai
� j �=i g j (ai ) + dh(a)

da
�n

i=1gi (ai ) = 0

So if in a NE all gi ()’s are positive, we obtain

h(a)
dgi (ai )

dai
+ dh(a)

da
gi (ai ) = 0

which are FOC of the maximization of gi (ai )h(a). See Jensen (2010) for a careful
analysis of the relationship between potential and aggregative games and Cheung and
Lahkar (2018) for the study of large population aggregative games as potential games.

3 In the beginning

Aggregative games have been known to economists, at least, from the Cournot con-
tribution Cournot (1838). The first person to use the concept of aggregative games
was Reinhard Selten in a 1970 monograph written in German. Subsection 9.2 in the
monograph is entitled “The Class of aggregative (aggregierbaren) strategic games”
(p. 150). In Section 9.3 “Existence of a best equilibrium,” he proves the existence of a
NE. He was the first to realize that the aggregative structure simplifies the computation
of a NE. From FOC of payoff maximization, he derives a mapping ai = Ri (a) and
adding up over individuals he obtains

a =
n∑

i=1

Ri (a) ≡ R(a), (3)

say. Fixed points of (3) are NE.8 Then, this fixed point a is plugged into the mappings
Ri () to find individual actions.9

The second paper I am aware of, to deal with aggregative games is by Dubey et al.
(1980). This paper was written at the time in which big steps forward were made

7 An example of multiplicative separability of payoffs in ai and a is an oligopoly with inverse demand
f (a) and linear costs.
8 This idea was independently discovered by Okuguchi (1993), see Sect. 3.
9 If all actions are positive, we are done. But when this procedure yields a negative individual action, we
eliminate this agent and check that the new fixed point yields nonnegative actions for all the remaining
agents. And if so, check that zero is the best reply for the agent left in the cold. If there are several agents
whose actions are negative, we have to choose the agent who is more likely to be inactive. For instance in
oligopoly, firms with higher costs or a bit demand are good candidates to produce zero in a NE. And repeat
the procedure until you get nonnegative actions for all agents.
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in implementation theory. For the benefit of the reader, a brief recap of this theory
follows.

Suppose agents have utility functions defined on net trades in markets for a finite
number of goods. Let zi be the vector of net trades of agent i . The dimension of
zi is the number of goods. Preferences of i over net trades are representable by a
utility function ui (zi ).10 Each agent sends a message from a message space Mi . And
“the center” (aka the planner, the designer,…) awards a net trade to i depending of
the messages sent by all agents m, so zi = fi (m). The functions { fi ()}ni=1, called
outcome functions, choose net trades that for each commodity are non-positive to
respect feasibility. ( fi (), Mi )

n
i=1 is called a mechanism. Plugging fi () into ui () we

obtain ui ( fi (m)) which can be written as Ui (m) so we have a game in normal form.
The idea is to choose a mechanism such that “equilibrium” messages yield allocations
that are desirable, e.g., Pareto efficient, individually rational, etc.

We are familiar with a concept that yields allocations with these properties, namely
Walrasian equilibrium. The problem of Walrasian equilibrium is that requires a fic-
titious auctioneer calling equilibrium prices. At some point, one of the creators of
implementation, Leo Hurwicz asked, why do not swap the auctioneer for the center?
Of course, we do not want a very complicated message space or an outcome function
that is beyond comprehension for agents like me struggling with my income tax file.
Suppose that we want a message space which mimics a market with messages inter-
preted as prices and quantities. Schmeidler (1980) presented such a mechanism. Now
to avoid each agent looking at a myriad of individually set prices and quantities, we
would like this game to be aggregative. This is the question addressed in the Dubey–
Mas–Colell–Shubik paper.11 And the answer is that aggregative games are unlikely
to yield Pareto efficient NE when the number of agents is finite. Let us see why in a
very simple model.

Under suitable concavity conditions, Pareto efficiency is found by choosing actions
that maximize

∑n
i=1 αiUi (ai , a). FOC are

αi

(
∂Ui (ai , a)

∂ai
+ ∂Ui (ai , a)

∂a

)

+
n∑

j �=i

α j
∂Uj (ai , a)

∂a
= 0, i = 1, 2, . . . , n. (4)

According to (1), in a NE the first two terms are zero. To ease notation let r j =
α j∂Uj (a∗

i , a
∗)/∂a. Subtracting the FOC for agent 2 to FOCof agent 1,we get r1−r2 =

0 and repeating this procedure for agents 3 and 2, etc., we get r1 = r2 = · · · rn
and (4) implies that all these derivatives are zero. But this means that if payoffs are
concave on a, a∗ is the common maximizer of the utility of all agents, a very unlikely
event with a finite number of agents.12 The result obtained by Dubey et alia is a
generalization of the previous argument to multidimensional action spaces that are

10 This is a model in which consumptions, xi , have been converted into net trades zi = xi − wi where
wi is the vector of initial endowments of i . The utility function of i is vi (xi ) = vi (zi +wi ) = ui (zi ), say.
11 They motivate the aggregation axiom saying that “…we would argue that it reflects well the aggregate
nature of the impact of demand and supply in organized markets.” (p. 346).
12 “…but for coincidental cases, no (NE) allocation will be efficient” (Dubey et al., p. 351).
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not necessarily Euclidean.13 This result is called by Martimort and Stole (2012) the
principle of aggregate concurrence (where concurrence means assent, this principle
was already used by Lindahl) meaning that, in a NE, all agents must agree on the
level of the aggregate. It is a kind of invariance property that plays an important role
in some impossibility results obtained when designing optimal incentive-compatible
mechanisms.

The last part of Dubey et alia deals with a large game with a continuum of agents.
Now the effect of i ′s action on a is negligible “naturally”. Therefore, each agent
maximizes payoffs disregarding the strategies taken by the rest. Does it sound familiar?
Yes, the resulting allocation is Walrasian relative to the set of markets that are open .
This proviso is essential because if all my potential suppliers insist in prices that make
preferable for me to consume my initial endowments, there is no way I can activate
markets to fulfill its trading role so any price is good for me. The same for everybody,
so a situation in which some (may be all) markets are inactive is indeed a possible
outcome of a NE.14

Unfortunately, later work showed that the assumption of differentiability is crucial
for NE to be not efficient. Dubey (1982) presented a Bertrand-type of competition
model in which, NE yields Walrasian allocations for all markets that are open.15

Corchón and Wilkie (1996) presented a mechanism with an aggregative structure
yielding cost-share equilibrium allocations (a generalization of Lindahl equilibrium,
also Pareto efficient) mimicking market rules. A simplified version follows. Let pi be
the Lindahl price of a public good denoted by y. The net consumption of the private
good for player i is zi . The public good is produced under constant returns with a cost
cy. Feasibility requires that the sum of net contributions −zi add up to cy. A Lindahl
equilibrium is a feasible allocation and a list of personalized prices { p̄i , z̄i , ȳ}ni=1 such
that (z̄i , ȳ) maximizes ui (zi , y) over p̄i y = −zi and y maximizes

∑n
i=1 p̄i y − cy.

Now consider the following mechanism. Let ai = (qi , yi ) where qi is interpreted as
the personalized price proposed by agent i and yi is the incremental value of the public
good proposed by this agent. The outcome function is the following:

If
n∑

i=1
qi ≥ c, then y =

n∑

i=1
yi and zi = −qi

n∑

i=1
yi . y = 0 and zi = 0 otherwise.

The outcome function says that if the sum of intended contributions covers pro-
duction costs, any agent can have as much public good as she likes (the aggregate
concurrence principle mentioned before). But if production costs are not covered,
sorry, there is no public good. Clearly qi = p̄i , i = 1, 2, . . . n,

∑n
i=1 yi = ȳ is a Nash

equilibrium because any attempt to free ride paying a price below p̄i will be contested
by zero production of the public good. And to suggest a larger personalized price has
no effect on y but on a smaller net trade of zi . The mechanism is discontinuous, but it
can be amended to be continuous, but not differentiable, at cost of some complications,
see Corchón and Wilkie (1996) Sect. 4 for details.

13 It is easy to check that the argument provided above, works for multidimensional actions.
14 Attaining Walrasian allocations requires a more complex mechanism. Hammond (1979) proved that, in
large economies, only Walrasian allocations are incentive compatible and Pareto efficient.
15 Beviá et al. (2003) showed that this result holds in games in which coalitions can form and the relevant
equilibrium notion is strong equilibrium.
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4 Taking off

In 1993, Koji Okuguchi published a paper (accepted for publication in July 1992)
that analyzed in “three Cournot models…. the effect of an increase in the number of
firms,…effects of a change in a tax rate…(and) the aggregate provision of a pure public
good”. Let f (a) be the inverse demand function and ci (ai ) be the cost function of
firm i where actions are interpreted as outputs. Profits are f (a)ai − ci (ai ). Assuming
interiority, FOC of profit maximization is

d f (a)

da
ai + f (a) − dci (ai )

dai
= 0 (5)

Okuguchi considers an assumption introduced by Frank Hahn (1962) to study the
stability of Cournot equilibrium, namely16

d f (a)

da
+ ai

d2 f (a)

da2
< 0 (6)

d f (a)

da
<

d2ci (ai )

da2i
. (7)

(6) and (7) say that the left hand of FOC (the marginal profit) is decreasing in a, being
ai constant and decreasing in ai , given a. SOC of profit maximization holds because
the total effect of ai on marginal profits is decreasing in ai . Applying the implicit
function theorem, we obtain the individual output as a function of aggregate output
and again adding over firms we get a continuous mapping of a over a [(R() in (3)]
which has a fixed point. Moreover, this fixed point is unique because R() is decreasing
(see Okuguchi (2013) for an extension to a model with private and public firms).
This fact allows Okuguchi to show that the entry of a new firm increases aggregate
output because it shifts R() upward and decreases outputs of incumbent firms because
a and ai must go in opposite directions to maintain FOC. This result is called Quasi-
Competitiveness of Cournot Equilibrium. The same argument shows that an excise tax
decreases both individual and aggregate output. A similar procedure is applied to a
model of voluntary contributions (ai ) to a public good (a). Here, under the assumption
that leisure and the public good are not substitutes, ai and a go in opposite directions
and entry increases the quantity of the public good.

InKukushkin (1994), produced an existence theoremon aggregative games thatwas
published next year. He proved that as long as best replies have a decreasing selection
and a closed graph, there is a fixed point which is a NE of the aggregative game.
With respect to the classical conditions in Kakutani’s fixed point theorem, convex-
valuedness is dispensed with entirely.17 Let us see why. The correspondence in Fig. 1
depicts the best reply of player 1 (and the 45 degree line that will be used later). Now,
can you draw a decreasing best reply for player 2 such that it does not intersect the

16 The proof ofHahnwas shown to be incorrect byAl-Nowaihi andLevine (1985). Okuguchi andYamazaki
(2008, 2014) provided a correct proof.
17 This theorem generalizes a result by Novshek (1985) that only applied to Cournot equilibrium.
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Fig. 1 Existence of equilibrium without convex-valuedness

best reply of player 1? For instance, suppose that B2(0) = 0.8. For larger values of
a1 B2() must remain below B1() or jump. Suppose the former. But between a1 = 0.7
and a1 = 0.9 no matter how many jumps best replies must cross. The same argument
works for a jumpy best reply.

But wait, if best replies admit a decreasing selection, the composition of these two
selections must be increasing. And Tarski fixed point theorem makes sure that a fixed
point exists (Vives 1990). The beauty ofKukushkin theorem is that it extends this result
to aggregative games with more than two players with decreasing best replies. The
latter requirement does not assure the existence of a fixed point in general games.18

My own contribution, sent to Mathematical Social Sciences in January 1993 and
published in 1994 was an outgrow of my Ph.D. dissertation Corchón (1986).19 A first
version of my dissertation got a revise and resubmit and my examiners, David Ulph
and John Moore insisted that my first chapter was a lukewarm, superficial survey of
the literature on IO and that I should try something more ambitious. So in the revised
version I “provide a general structure in which specific problems can be discussed”
(p. 2 of my dissertation). I had in mind that some people refer to IO as “Industrial
Disorganization” and this was my bit effort to correct this state of affairs. This chapter
was left dormant until I got some spare time during a visiting to the ISI, Delhi, in
January 1992 to put up something more polished.20 I was aware that I was dealing
with a whole class of games, see Table 1 taken from my 1994 paper. It is notorious
the absence there of contests a subfield that did not exist back then.21

18 For instance, suppose that best replies of players 2 and 3 are a2 = 1 − a3, a3 = 1 − a1. Thus, in any
fixed point a2 = a1 which is the dashed line in Fig. 1 that does not intersect B1().
19 See acknowledgments in p. 163 of my paper.
20 The paper was summarily rejected by several major journals. The final version was written during my
sabbatical at Harvard in 1994. The editor of MSS, then Hervé Moulin, and a referee provided unusually
constructive and telling comments.
21 Watts (1996) added another application, Surplus Sharing. And Okuguchi (2000) considered Oligopsony.
See Sects. 5 and 6 for more recent applications.
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From the analytical side, I introduced a generalization of the Hahn conditions that
I termed “strong concavity” (SC) and that it says the following:

SC. For all agents, marginal payoffs—the left hand side of Eq. (1)—Ti () are strictly
decreasing in ai given a and strictly decreasing in a, given ai .22

A first consequence of SC is that the SOC of payoff maximization is fulfilled
because marginal payoffs are decreasing in ai . So SC is a concavity condition. It is
strong because a weaker condition saying that the marginal payoff is just decreasing
in ai , given a−i would suffice for this purpose. A second consequence is that for any
agent ai and a must go in opposite directions to maintain the equality in (1), i.e., ai
and a−i are strategic substitutes in the terminology of Bulow et al. (1985). A third
consequence is that the slope of the best reply is negative and larger than −1. This
easily follows from (2) which we recall here,

dai
da−i

=
∂Ti (ai ,a)

∂a

−
(

∂Ti (ai ,a)
∂ai

+ ∂Ti (ai ,a)
∂a

) . (8)

From SC, the denominator of (8) is positive, so a simple contradiction argument shows
the third consequence mentioned above namely, that best replies are contractions. And
a well-known result says that these type of functions have, at most, a single fixed point,
so NE is unique.23

Now let us deal with the quasi-competitiveness. In Fig. 2, I picture the FOC of an
incumbent firm. Suppose that before entry a = 2 and ai = .4. Suppose entry decreases
a. But then all ai must increase to maintain FOC and since a is the sum of all ai (now
augmented by the output of the entrant) this is impossible. Thus, a increases and the
action of all incumbents must decrease.24

Note that the additive structure of a allows to incorporate easily new entrants.
To deal with how payoffs of incumbents react to entry, we need to assume that

payoffs are strictly decreasing in a. Thus, an increase in the strategy of any player j
other than i decreases the payoffs of i . In line with the terminology used in consump-
tion theory, we will refer to this assumption as strategies are substitutes.25 Under
this assumption, the increase of a−i due to entry causes a decrease in payoffs and
overwhelms any possible new choice of ai (a kind of envelope theorem).

Next, the paper considers the impact of shifts in marginal payoffs on equilibrium
actions, called shocks. This shock might affect only one player—idiosyncratic—or all
players—generalized. An example of the former is a technological improvement or a

22 The extension of this condition to multidimensional strategy spaces is given in Gale and Nikaido (1965).
23 Folmer and von Mouche (2004) generalized this uniqueness result.
24 See Corchón (1994) for formal proofs that take care of the possibility that some FOCs hold with
inequality.
25 Do not confuse “strategies are substitutes” with strategic substitution that refers to the slope of best
reply. Strategies are substitutes refers to the payoff function and is fulfilled in the Cournot model where a is
total output and an increase in this variable decreases the market price which decreases profits in turn. It is
also fulfilled in contests where an increase in the effort of player j decreases the probability that i obtains
the prize. However, this assumption is not fulfilled in the case of price competition because an increase
in the prices charged by competitors increases the payoff of firm i . Also, it does not hold in the case of
contribution games in which a is the level of the public good which is assumed to be liked by the players.
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Fig. 2 First order condition of payoff maximization of an agent
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Fig. 3 Effects of a shock on the first order condition

shift in demand or in the price of a factor that only affects a firm. An example of the
later is a demand shift affecting all firms.

Under SC, when a shock lifts marginal payoffs upward, a cannot decrease: In
Fig. 3, we picture marginal payoffs before (solid) and after (dash) the shock. If a
decreases after the shock, all players affected (like in Fig. 3) or unaffected by it (like
in Fig. 2) increase their actions, so a must increase.When the shock is idiosyncratic all
unaffected players decrease their actions (Fig. 2 again). If the shock affects payoffs in
the same direction, given actions, they also increase in the NE after the shock. Finally,
the paper presents counterexamples of all these results when SC is violated.

With the benefit of hindsight, it seems that the methods developed in my paper
can tackle a more general shift. Let K be a subset of the set of players N . A shift
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concerning K is a shift that affects only to players in K . When K is a singleton we
have an idiosyncratic shock and when K = N , we have a generalized shock. The two
previous results would be subsumed in the following. “A shift concerning K affects a
in the same direction of the shift and increases the actions and payoffs of agents in K
and decreases actions and payoffs of agents outside K ′′.

5 Desert crossing and some applications

I continued with my research agenda by writing a book (1996) in which aggregative
games were presented as the glue unifying the diverse fields of industrial organization.
This approach also takes care of the fact that firms are not necessarily profitmaximizers.
Other motives like sales, market share, environmental concern, workers or consumers
welfare, etc., have been presented by the relevant literature as legitimate goals. The
presentation and writing of this book were very influenced by a book by Jim Friedman
(1977). The first edition sold out its meagre first edition, and the book was reedited
in hard cover in 2001.

During the nineties and the early twenty-first century, research on aggregative games
was kept to a minimum. We now show three applications that were done and I am
aware of: Oligopolistic competition with price setting firms, mechanism design and
evolutionary equilibrium. Let us consider these applications in turn.

Firstly, d’Aspremont et al. (1991) provided a rationale for Cournot competition
when firms can set prices and quantities. 26 Assume that the market price p is a
function of individual prices sent by firms q = (q1, q2, . . . , qn), so p = Ψ (q). The
function Ψ () encapsulates either the working of the market or some kind of collusive
device used by the oligopolist to achieve a common market price. Also, it can be
thought of an outcome function in a mechanism. In addition to these individual prices,
firms can set outputs denoted as before by (a1, a2, . . . , an) but in a way that they do not
exceed demand (D ) at themarket price represented by the demand function D = D(p)
where D() is assumed to be strictly decreasing. Thus, a ≡ ∑n

j=1 a j ≤ D(Ψ (q)). This
inequality can be written with equality when p exceeds the marginal cost dci (ai )/dai
of all firms because an increase in production increases profits. In this case, payoffs
for firm i are

pai − ci (ai ) = Ψ (q)

⎛

⎝D(Ψ (q)) −
∑

j �=i

a j

⎞

⎠ − ci

⎛

⎝D(Ψ (q)) −
∑

j �=i

a j

⎞

⎠ .

The game is aggregative because payoffs depend on the aggregatesΨ (q) and
∑

j �=i a j .
FOC of profit maximization is

∂Ψ (q)

∂qi

⎛

⎝D(Ψ (q) −
∑

j �=i

a j )

⎞

⎠ + Ψ (q)
dD

dp

∂Ψ (q)

∂qi
− dci (ai )

dai

dD

dp

∂Ψ (q)

∂qi
= 0.

26 Although they did not cast their model in an aggregative game framework, we will see in a moment
that their model is indeed such a game.
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Taking into account that
∑n

i=1 a j = D(Ψ (q)) and if Ψ () is responsive to individual
prices, i.e., ∂Ψ (q)/∂qi �= 0, the previous equation simplifies to

ai + Ψ (q)
dD

dp
− dci (ai )

dai

dD

dp
= 0. (9)

The inverse demand function, denoted as p = f (a), exists because demand is strictly
decreasing. Thus, dD/dp = 1/(d f /da) and (9) yields

ai
d f (a)

da
+ p − dci (ai )

dai
= 0

which are FOC of a Cournot equilibrium, see (5). This argument provides an argument
for the use of Cournot equilibrium even if firms are setting prices.

The second application provides a kind of Gibbard–Satterthwaite theorem on the
impossibility of achieving truthful revelation (Chichilnisky and Heal 1997). Let now
utilities be a strictly concave function of a public good y ∈ R+ alone. The outcome
function is y = f (m)withmessages denoted bym also inRn .Messages are interpreted
as statements about own preferences, encapsulated in a single number. The function
that determines the aggregate, f (), is a social choice function, i.e., the desired level
of the public good as a function of preferences reported by players. In a NE

dUi (y)

dy

∂ f (m)

∂mi
= 0

so either dUi (y)/dy = 0, i.e., y is the most preferred level of the public good (and this
agent is a dictator) or ∂ f (m)/∂mi = 0 the social choice function is locally constant
for this agent. If we do not want dictators, the function must be locally constant for
all agents and this is hardly compatible with Pareto efficiency.

Finally, consider a static evolutionary framework. One would expect that agents
having more payoffs reproduce faster than those that have smaller payoffs, so even-
tually they will take the field. And strategies that yield larger payoffs are likely to be
copied. Schaffer (1988), using a symmetric homogeneous oligopoly model, showed
that the output yielding higher profits among firms is the one that maximizes profits
taking aggregate output as given. Since aggregate output and market price are in a
one-to-one relationship, this is no less than price-taking behavior. The reason is that
when the market price is common for all firms, those behaving as price-takers earn
more profits than any other firm using a different strategy. Formally, firm i obtains
larger profits than any other firm, say j , in the market, i.e.,

f (a)ai − c(ai ) ≥ f (a)a j − c(a j ).

Since this inequality should hold for any possible output of competitors, firm i is max-
imizing payoffs taking the market price as given. Possajennikov (2003) and Schipper
(2003) generalized this result to aggregative games showing that aggregate-taking
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behavior yields larger payoffs. Formally, if firm i obtains larger payoffs than any other
firm, say j , and any other action a j ,

U (ai , a) ≥ U (a j , a).

This result was generalized and expanded by Alós-Ferrer and Ania (2005). 27 See
Sect. 6.7 for further developments in this area.

It is noteworthy that evolutionary considerations push agents to behave as if they
were in a large game as discussed in Sect. 3 and Sect. 6.6.

6 The big bang

In the last ten years, we have seen an explosion in the quantity of papers devoted to
aggregative games. At present, there are 1.170 results in Google Scholar for “aggrega-
tive games” with 719 in the last five years.

In this section, I indicate some new developments that either delve into the existing
theory or expand the range of application of these games to uncharted territory. I leave
aside important topics like contests, cooperative production or imperfectly competitive
models that merit a separate treatment.28

6.1 Basic theory

The theory developed so far can be extended to tackle a wider set of situations. Two
issues merit a special concern. (1) Under which conditions a game can be written
as an aggregative game? (2) How to obtain comparative static results beyond the SC
assumption. Let us take these two points in turn.

Cornes and Harley (2012) point out that games that are not aggregative at first
glance can be converted into an aggregative game by cunning substitutions, see also
Jensen (2010, pp. 48–49). For instance, in contests, the following payoffs are used

πi = φi (ai )
∑n

j=1 φ j (a j )
V − ai .

The function φi () is the absolute impact of the actions of i in the contest. And the
ratio of φ’s is the relative impact which equals the probability that i wins a prize of
value V . ai is the cost of this action. Payoffs are expected revenue minus costs. φi ’s
are assumed to be strictly increasing, i.e., the more effort, the more impact. Setting
yi = φi (ai ) we obtain

27 They also present two new applications of aggregative games, a Diamond searchmodel and a generalized
stag-hunt model.
28 For recent surveys on contests, see Corchón and Serena (2018) and Fu and Wu (2019). For cooperative
production, see the recent survey of Beviá and Corchón (2018). For a recent entry on imperfect competition,
see the Special Issue of Mathematical Social Sciences (2020).
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πi = yi
∑n

j=1 y j
V − φ−1

i (yi )

which is aggregative.29 Cornes and Harley generalize this observation to payoff func-
tions ui (ai , t(a)) where t(a) = H−1(

∑n
j=1 φ j (a j )) and φi ’s are strictly increasing

by setting new variables yi = φi (ai ), so payoffs are now

ui
(
φ−1
i

(
yi

)
, H−1(

n∑

j=1

y j
)) = vi

(
yi ,

n∑

j=1

y j
)
,

say. They show that this functional form is not only sufficient to convert this game into
an aggregative one, it is also necessary (when n > 2, again!) for the existence of an
additive aggregator. The proof uses a replacement correspondence that is reminiscent
of the “cumulative reaction correspondence” introduced in the studyofCournotmodels
by McManus (1962) and McManus (1964).

Acemoglu and Jensen (2013) were the first to venture beyond the realm of aggrega-
tive games with a unique and stable NE. First, they consider aggregative games with
strategic substitutes. They prove four main results:

1. (Comparative statics of a generalized shock). A shock that hits the aggregator (a
special case of a generalized shock) leads to a decrease in the smallest and largest
equilibrium aggregates.

2. (Quasi-competitiveness) The entry of an additional player leads to a decrease in
the smallest and largest aggregates of the existing players in a NE.

3. (Comparative statics of idiosyncratic shocks). A positive idiosyncratic shock to
player i leads to an increase in the smallest and largest equilibrium strategies for
player i , and to a decrease in the associated aggregates of the remaining players.

4. If, in addition, payoffs functions are monotonic in a−i , a positive idiosyncratic
shock causes the payoffs of the affected player to go in the direction of the shock
and the payoffs of at least another player to go in the opposite direction.

In the second part of the paper, they present an alternative to strategic substitution
which they call “local solvability” which says that the effect of ai on marginal payoffs
is not zero when evaluated at FOC (i.e., payoffs are a Morse function, see footnote 5).
And prove results akin to 1–4 above.

Christensen (2019) extends the SC condition to one that he calls Dixit–Corchón.
Under strategic complements, this condition reads

∂Ti
∂ai

≤ −n
∂Ti
∂a

.

where recall that Ti is marginal profits, i.e., the left hand side of (1). If all players
are identical, this condition guarantees that Selten’s function has a slope less than one
which guarantees a unique fixed point.

29 Actually, it is a Cournot model with an inverse demand with elasticity one and cost function φ−1
i ().
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Under strategic substitution, he assumes that payoffs are a Morse function, so
second-order conditions of payoff maximization hold with a strict inequality and we
are left with

∂Ti
∂ai

≤ 0.

so the numerator of (2) is positive.

6.2 Extensions of the basic theory

Free entry in aggregative models was studied by Corchón and Fradera (2002). They
show that SC suffices to prove the existence of a free entry equilibriumwhenplayers are
identical. But SC is not enough to obtain the result that a generalized shock increases a
in equilibrium. They provide an example in which demand increases but is also made
more elastic. This intensifies competition in such a way that fewer firms find entry
profitable and, as a result, industry supply is reduced. Under an additional assumption
that precludes the previous example, they show the required result. Okumura (2015)
proves existence of a free entry equilibrium with heterogeneous firms using SC.

Nocke and Schutz (2018) present a model of price setting multiproduct firms. They
introduce and micro-foundate a class of demand functions like

Di = F(pi )

H( p)
.

The values of H(), denoted by H represent the aggregate. These demands satisfy inde-
pendence of irrelevant alternatives in the sense that Di/Dj only depends on pi and
p j . This class generalizes constant elasticity of substitution (CES) and multinomial
logit demand functions. Clearly, the game is aggregative because profits of any firm
depend on rivals’ prices only through the industry-level aggregator H . Profit maxi-
mizing prices yield demands that, properly inverted, are encapsulated into a function
Γ (H). Candidates for equilibrium must solve H = Γ (H) which yields demand and
in turn prices. This is reminiscent of Selten’s procedure explained in Sect. 3.

Anderson et al. (2020) work out a model with quasi-linear preferences and hetero-
geneous firms. They consider the demands and utility functions for which Bertrand
and Cournot differentiated product oligopoly games are aggregative. They character-
ize the Bertrand andCournot gameswhere consumerwelfare depends on the aggregate
variable only. For example, in Bertrand games, when demand functions satisfy inde-
pendence of irrelevant alternatives, as defined previously, the indirect utility function
is additively separable, the corresponding game is aggregative and consumer welfare
depends only on the aggregate. Their analysis shows that aggregative games can be
used to obtain positive as well as normative properties of equilibria in asymmetric
oligopoly models. They derive results for asymmetric oligopoly both in the short run
and long run. The analysis carries to demand functions with quality as an argument.
They summarize their findings by a sentence that sounds like music to my ears: “The
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results elucidate aggregative games as a unifying principle in the literature on merger
analysis, privatization, Stackelberg leadership, and cost shocks” (id. p. 470).

6.3 Other micro-models

Dickson (2013) studies the effects of entry into a single market strategic game in
which both sellers and buyers interact strategically. The model goes back to Shapley
and Shubik (1977). In this model, goods are traded against “money” in trading posts.
The price of a good in terms of the numeraire is determined by the ratio of the amount
of the numeraire brought at each post, to the quantity of goods offered for sale at that
post. Dickson shows that themarket is quasi-competitive, i.e., when a new seller enters
the market, the price falls and trade increases. However, existing sellers’ payoffs may
increase under some conditions on the elasticities of supply and demand because the
entry of a new firmmaymovemarket equilibrium to a zone where demand expands far
and away. This is akin to the pointmade in Sect. 6.2 about the effects of entry. Similarly,
the entry of additional buyers increases equilibrium price, but further assumptions are
needed to prove that existing buyers’ payoffs decrease.

Dickson (2017) studies the case of several aggregates. Agents inside each aggregate
(group) behaves like in the one aggregate model because they take as given other
aggregates. To prove the existence of a NE for the whole game, he introduces an
additional condition that says the marginal payoff of each group member is influenced
by the actions of another group in the same direction.

Rota-Graziosi (2015) considers a model of tax competition among jurisdictions.
He shows that an increase in the number of tax-competing jurisdictions decreases tax
rates and tax revenues and improves the net return of capital. These results correspond
to the quasi-competitiveness in a market mentioned above.

Folmer and von Mouche (2002) use aggregative games to analyze NE and Pareto
efficient allocations in the acid rain game in which countries contribute (ai ) to the
transnational pollution (a). In a later and more general contribution Folmer and von
Mouche (2015), they show that uniqueness of NE depends on the differentiability of
the damage functionmapping individual pollution to social cost of aggregate pollution.

Finally, aggregative games have “invaded” the field of cooperative games. Stam-
atopoulos (2020) shows that the SC assumption plus other conditions implies the
existence of a γ−core. And Quartieri and Ryusuke (2015) prove that, under strate-
gic substitutability, the set of NE, the set of coalition-proof NE under strong Pareto
dominance and the set of NE that are not strongly Pareto dominated by other NE are
equivalent.

6.4 Macroeconomics

An early literature provided micro-foundations to macroeconomic models, specially
of Keynesian flavor. Favorite models were those of monopolistic competition with a
representative consumer yielding constant elasticity demands, see the surveys of Sil-
vestre (1993) and Costa andDixon (2011) for details. Thesemodels use an aggregative
structure. It seems to me that many of the important insights obtained in this literature,
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like existence of unemployment and the effects of fiscal policy, could be reworked
in terms of an aggregative game in which profits depend on the own price and an
aggregate of all prices.

Acemoglu and Jensen (2015) present a stochastic dynamic general equilibrium
model that uses some of the methods developed in their 2013 paper (see Sect. 6.1)
to a framework akin to study long run macroeconomic questions. They assume that
payoffs are supermodular and the graph of the constraint set is a convex sublattice.
As they remark, “Economically, this means that the current decision is increasing
in the last period’s decision, e.g., higher past savings will increase current savings”.
An idiosyncratic shock increases the aggregate in the least and greatest equilibrium
aggregates and causes a first-order stochastic dominance increase in the distribution
of the least and greatest stationary equilibrium strategies of the agent hit by the shock.

Chakrabarti and Lahkar (2018) present a dynamic macro-model where, every now
and then, the economy is hit by exogenous technological shocks. A positive shock
yields a quick boom in payoffs, which is unsustainable as agents increase aggregate
input to the inefficient equilibrium level. Aggregate payoff, therefore, declines. Thus,
a sequence of exogenous shocks yields a sustained pattern of growth and a sequence
of booms and busts.

6.5 Engineering

Very often, engineersworkwith shared computing systems inwhich there is a degree of
congestion, captured by a. Besides the standard worries of game theorists on existence
and comparative statics, engineers are keen on providing algorithms computing the
NE in networks in polynomial time. The literature is large, and we just review two
contributions. The interest reader can consult the survey of Jensen (2018) Section 7.2
for further literature on this topic.

Shi et al. (2020) study the use of a shared/buy-in computing system for research
projects which consists of two items. A shared resource that all agents can use for
free and buy-in computing nodes in which priority access is given to owners of those
nodes, but excess idle capacity is made accessible to other users. They show that the
corresponding game has a unique NE that can be computed in polynomial time. This
NE is globally stable according with best response dynamics. They also show that
each player can compute its best response in a simple manner.

As we saw before, NE of aggregative games is seldom efficient. In the parlance
of engineers, this is the price of anarchy. Barreto et al. (2019) venture in the field of
mechanism design by providing a mechanism with a one-dimensional strategy space
whose NE is efficient but, according to the Gibbard–Satterthwaite theorem, not budget
balanced. The mechanism is close to the one presented by Clarke in 1970. A more
thorough investigation would be needed here because the theory of mechanism design
has run a lot of mileage since Clarke’s mechanism was presented (see Corchón (2009)
for an exposition of later results).

123



66 SERIEs (2021) 12:49–71

6.6 Large games

Aswe saw inSect. 3, these are gameswith a large number of players.As a consequence,
the aggregate, a/n vanishes. Jensen (2018) section 7.1 provides a survey for this topic,
so we will focus on contributions written after this survey was published.

Liu et al. (2020) provide additional examples of aggregative games outside the
realm of economics: population dynamics, traffic analysis, communications network
control and electrical system management. They take advantage of the convexifying
effects of a large number of players, first noticed in economics by Aumann (1964).30

Instead of using the continuum model, they use a result due to Shapley and Folkman
which, roughly speaking, says that, under some conditions, the sum of a large number
of sets is approximately convex.31 In Liu et alia model, agents minimize the cost of
using a facility ci (ai , a/n). In a large game, the term a/n vanish so in a NE for each
agent a∗

i is a best reply to the average term
∑n

j=1 a
∗
j /n. The fixed point of best replies,

whose existence is not guaranteed, is a NE. They use the Shapley–Folkman theorem
to quantify the best approximation to the fixed point and provide an algorithm for a
subclass of aggregative games that converges in polynomial time.

Lahkar and Mukherjee (2020) present a mechanism yielding an aggregative game
which implements the unique efficient level of the public good. The trick is that the
transfer to agent i is her announcement about her cost function times the marginal
utility of the public good for the whole population. Since the economy is large, the
amount of public good does not depend on the announcement of any agent. FOC of
payoff maximization equalizes marginal utility of the public good for the population to
themarginal cost sowhen shemaximizes, she has no incentive tomisreport because the
only consequence of thatwould be that shewould end upwith less transfer. I conjecture
that this mechanism can be of interest to engineers, see the previous subsection. In a
subsequent contribution Lahkar andMukherjee (2021), both authors consider the case
of externalities.

6.7 Evolution

In this subsection, we review some contributions that single out the optimal behavior
from the point of view of survival in the long run.

Sethi and Somanathan (2001) consider a model with individuals matched in small
subgroups in which they interact strategically. Suppose that the population is initially
composed entirely of self-regarding and altruistic individuals. Clearly, self-regarding
types obtain larger payoffs and, eventually, take the field. But the authors show that this
population can be successfully invaded by individuals with preferences which place
negative weight on the payoffs of materialists and positive weight on the payoffs of

30 Aumann uses a theorem due to Richter that states that the integral of a set valued correspondence is
convex valued, see Aumann (1965).
31 Arrow and Hahn (1971), pp. 396–399 and chapter 7 provide an exposition of the application of this
theorem to competitive equilibrium.
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sufficiently altruistic individuals. These “intelligent spiteful” agents help to maintain
cooperation in small groups by being mean with the mean and kind with the kind.32

Lahkar (2019) shows that, in large games, the self-regarding type enjoys fitness
dominance under any type distribution. Hence, in a wide class of evolutionary dynam-
ics, all non-individualistic types are eliminated.

The last two papers are related to a point raised by Coase (1976) on the two fun-
damental books written by Adam Smith, The Theory of Moral Sentiments and The
Wealth of Nations. In the first book, Smith distinguishes between two type of sen-
timents: benevolence and self-interest. He notes that societies with a small number
of individuals, like families or tribes, can be organized by relying on benevolence
(supplemented with the mechanism proposed by Sethi and Somanathan (1996)). But
large societies cannot rely on benevolence because even if you are prepared to give all
your wealth to the poor people in the world, this would hardly change the luck of the
underdogs. Successful large societies have to organized on self-interest. This provides
a nice introduction to the topics covered in Smith’ second book.

But what if self-interest fails? Well, in this case human-made design must take the
floor. This approach is akin towhat happens inmedical scienceswhere healthy individ-
uals (perfect markets) should not be given any treatment, but man-made medicines or
procedures (mechanisms designed by us) must be used with sick individuals. Lahkar
andMukherjee (2019) present a transfer scheme to correct freemarket outcomeswhose
NE achieve an efficient state in a large population public goods game. They apply a
transfer scheme to each agent equal to the externality in the game. The externality
adjusted game is a potential game with a unique NE, which is the efficient state of
the original game. And best response dynamic for such aggregative potential games
converges to the efficient allocation.

See Jensen (2018) Section 7.4 for additional results on this topic.

6.8 Sociology

It appears that some social sciences are converging to create the powerful social science
that once was dreamt by early economists. Political science and history are using game
theory without apologies. Only sociology remains a little bit aloof despite the big push
provided by the work of Gary Becker. But relief is on the way. A generation of young
economists is uncovering the relationship between social values and the economy.33

And aggregative games can be helpful by interpreting a as measure of the impersonal
social forces and ai as the efforts done by individuals.

In this vein, Haagsma and van Mouche (2010) analyze a game where each player’s
payoff depends on his action and his social status, which is given by his rank in
the actions distribution. They find that if intrinsic concerns are sufficiently important
relative to status concerns, individual equilibrium actions diverge. But if status con-
cerns are relatively important, individual actions in NE converge to a common point.

32 In a Sethi and Somanathan (1996) paper, both authors proposed a similar mechanism to solve the tragedy
of the commons.
33 As an example, a recent paper by Masera and Rosenberg (2020) explains the change in the attitudes
about slavery in Antebellum USA as a consequence of the expansion of territories in southern USA.
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More importantly, status seeking is not always socially inefficient. When players are
sufficiently heterogeneous, there is a unique NE that is Pareto efficient.

7 To boldly go where no one has gone before!

In the previous sections, I showed that aggregative games are workable and that they
tackle a large range of applications. The beauty of these games is that they cover a lot
of mileage with a parsimonious model. And the best is yet to come! As social sciences
get closer and closer, game theory looks as one of the two models that economists can
offer to make sense of the increasing quantity and quality of available data (the other
model is general equilibrium). And when strategic interaction needs to be understood,
Occam’s razor may drive some models to the realm of aggregative games. And, by
the way, Nash equilibrium has been used throughout this survey without a word about
possible alternatives. But an interesting line of research would be to apply the insights
obtained by behavioral economics to aggregative games and derive the corresponding
comparative static results in this framework.

Let me remark that aggregative games are perhaps too bold a simplification of
strategic interactions. We live in families, departments, rings of friends, market niches
in which in addition to my action and “the world” we care about the actions of the
close ones.34 This suggests the following model. Suppose that each player, i , lives
in a certain group—or island—denoted by the set Ni . She cares about the actions
of the people in this group (including her’s), denoted by the vector ai and the state
of the world a. The companions in the group could be friends or fierce competitors
as it happens under oligopoly or in contests. Thus, if Ni = {i, j, k}, ai is the vector
(ai , a j , ak). The model of aggregative games is a special case when Ni = {i}. Now
Ui can be written as Ui (ai , a). I will call this game Aggregative with Islands (AwI).
A further extension would be to consider that information about agents outside own’s
group is incomplete.

I do not know if the AwI model would be workable or not but, to me, captures
better the interactions that are likely to arise in small groups. As an example, suppose
that all individuals inside each group are identical and NE symmetric inside each
group. In this case, in any NE all terms in ai are identical say ai . Since we are only
comparing NE, there is no harm in writing Ui (ai , a) = Vi (ai , a), say, so we are
back to an aggregative game. And we can apply the machinery developed in previous
sections. For instance, now the part of the SC assumption relating ai uncovers the
movement of all agents inside the island. It means that if all firms/contestants in an
island increase their output/effort but a is kept constant, the marginal payoff of these
agents shifts downward. This example is, admittedly, too simplistic. For instance, if
an agent belongs to two islands, it requires that these two islands are populated by
identical individuals. So this is just a start to more involved conditions allowing us
to uncover the structure of AwI games. Also, it is not clear that agents inside the
island would play a NE against other agents there. The notion of Kantian equilibrium

34 Jackson and Rogers (2005) find that in a model of network formation, “nodes together with highly
clustered link structures necessarily emerge for a wide set of parameters”.
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(relative to the island) may be a worthy behavioral alternative (Roemer 2019). We
have a long and exciting trip in front of us. Bon voyage!
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