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Abstract
We present a dynamic model of competition in the media industry in which behavioral
media outlets compete for the publication of scoops, and both the publication of scoops
and their veracity determine an outlet’s future audience. We study the dynamics of the
audiences of outlets and how those dynamics relate to two issues: howharsh a society is
with the publication of false stories, and how similar media outlets are in their editorial
standards for quality. For the case of a duopoly, we show that there is only one stable
stationary state. In that equilibrium, the two outlets coexist and which one leads the
market (the low-standard outlet or the high-standard outlet) depends on a combination
of the two issues mentioned above. We then use numerical simulations to analyze the
general case with more than two outlets. The numerical results corroborate most of
the analytical insights gained for the duopoly case. We also use numerical simulations
to draw up predictions on the number of outlets that will survive in the industry in the
long run.

Keywords Media industry · Competition · Editorial standard · Stochastic dynamics ·
Deterministic dynamics
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1 Introduction

Casual evidence suggests important differences in the quality of journalism from one
country to another. The traditional press is one example to look at. Among other
possible differences, a striking one is the coexistence of countries where high-quality
newspapers have large readerships with others where high-circulation newspapers
have surprisingly low editorial standards. The cases of the USA and Spain, where
quantity aspects (newspaper circulation) and quality aspects (accuracy of information
and trustworthiness) go hand in hand, are thus in sharp contrast to the case of the UK,
where the newspapers that lead the market in terms of circulation, The Sun and The
Daily Mail, are far down the ranking in terms of trust and accuracy of news. That
ranking is led by The Times and The Guardian.1

Differences in quantity and quality go beyond country-specific issues and can be
foundwhen different media sectors from the same region are compared. An example is
the proliferation of fake news, a phenomenon that affects many spheres and sectors of
the media industry but is especially severe and important on social media and online
information platforms. How can these differences be explained? What determines
which media outlets are more successful in a society?

This paper proposes a model of competition for audience that serves to draw pre-
dictions as to the fundamental aspects that determine what type of media outlets lead a
market. In our opinion, this question requires a dynamic approach, because the accu-
racy of a story printed today may well affect an outlet’s future audience. Our objective
is to determine what ingredients can play a role in explaining the differences observed
in the real world. We acknowledge that the problem is complex and that many vari-
ables may be involved. For example, issues such as press penetration in different social
classes, ideological considerations, and prices, which are not considered in this paper,
may have major effects. In this sense, the present paper should be seen as an attempt
to identify some initial general properties of the problem.

Our contribution is to pin down the importance of two variables in explaining the
dynamics: On the one hand, the consumers’ discomfort with fake news, i.e., how harsh
consumers are with the publication of false stories, and on the other hand the nature
of competition between media outlets, i.e., whether they are homogeneous in their
editorial standards for quality and thus compete for the same stories, or differ and
offer different products.

In this paper, we use two approaches to characterize the dynamics of the market.
On the one hand, we use a mean-field approach to find analytical solutions for the
long-term average state of a duopoly media market. On the other hand, we numeri-

1 For Spain, see the “Digital NewsReport 2017,” byReuters Institute, which identifiesEl País andEl Mundo
as the leading newspapers (in terms of both circulation and trustworthiness). For the USA, see Mitchell and
Weisel (2014) and Agility PR, according to which USA Today, Wall Street Journal and New York Times are
the leading newspapers (again, in terms of both circulation and trustworthiness). For the UK, see Newman
(2017) and PRWeek/OnePoll.
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cally follow the stochastic dynamics of a market with several media outlets.2 These
approaches are not standard in the literature of media economics. In this respect, our
simple model could serve as a guideline for future analyses of other, more complex
economic systems.

The model is as follows. We consider a media industry with N non-strategic media
outlets and a finite but large enough time horizon. At each step in time, referred
to as a day, one scoop is released. We assume that each scoop can be published
by only one media outlet. Media outlets compete for scoops according to a rule that
determines the probability of an outlet receiving a scoop at a given step in time. The rule
establishes that this probability is an increasing function of the outlet’s audience on that
particular day.3 Scoops contain information on a relevant variable and the information
contained can be ex-ante more or less accurate. We refer to the ex-ante accuracy of
the information as the quality of the scoop. We assume that the quality is i.i.d. across
periods and that each scoop is either true or false with a probability proportional to its
quality. Media outlets are characterized by their own editorial standards for quality,
which establish the minimum quality that each outlet requires from a scoop in order
to publish it. We consider that the editorial standards of outlets are exogenously given
and invariant throughout the dynamics. We further consider that an outlet’s editorial
standard determines the behavior of that outlet in that it prescribes that the outlet will
publish the scoop when it is of sufficiently high quality and will reject it otherwise.4

A scoop that is published is referred to as a story. After publication, consumers learn
whether the story is true or false. If no story is published, consumers learn nothing.
The behavior of an outlet at a time step, namely whether it publishes a story or not
and whether the story is true or false, affects that outlet’s future audience and hence
its probability of receiving the next day’s scoop.

We analyze the dynamics of the audiences of the outlets and the frequency of scoop
publication (referred to as their share of the news). Our objective is to understand the
effect on the dynamics of two issues: The valuation of news by consumers and the
market dispersion. To that end, we take two complementary approaches: first we pro-
pose a mean-field analysis that substitutes the stochastic dynamics by a deterministic
one.5 In particular, at each time step we substitute the random assignation of a scoop
to an outlet by its expected value. This simplification enables us to obtain analytical

2 Wepoint out that there aremanyopenquestions related to the dynamics of the dissemination of information
in a society. Most of these dynamic systems cannot be fully examined in analytical terms. In such cases,
numerical simulations are the only reliable alternative way to study their dynamics.
3 The formulation of this rule is supported by anecdotal evidence, such as the Lewinsky and bin Laden’s
death stories. In these examples, the scoops were first received by renowned media outlets (Newsweek and
The New Yorker, respectively), and it was only after these outlets refused to publish them that the stories
were passed on to less influential outlets (Drudge Report and The London Review of Books, respectively).
See Andina-Díaz and García-Martínez (2018) for a detailed discussion of both stories.
4 In Appendix A, we discuss a one-shot game with rational agents that micro-founds this behavioral
assumption.
5 Mean-field analysis is an approach commonly used in statistical physics and epidemiology that approxi-
mates the dynamics of a system by its expected motion. In economics, it was introduced only at the turn of
this century, but in the last ten years its use has increased rapidly. We refer readers to the pioneering study
by López-Pintado (2006, 2008) and Jackson and Rogers (2007) that use the mean-field approach to study
the diffusion of a certain behavior in a social network. More recent examples of the use of this technique in
economic literature are Lelarge (2012) and Kreindler and Young (2013).
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results for the case of two media outlets. Second, we perform numerical simulations
on the stochastic dynamics and obtain predictions for the general case with more than
two outlets.6

Our analytical results for the mean-field approach with two outlets show that there
are two stationary states: one in which the two outlets coexist, i.e., they both receive
positive audiences and shares of the news, and one in which only the outlet with the
lower editorial standard is active in the market, i.e., the high-standard outlet ends up
with zero audience and zero share of the news. We also study the stability of these two
solutions and find that the stationary state in which the outlets coexist is the only stable
one. The results that follow therefore focus on this last case.We then studywhatmarket
features determine which outlet receives a higher audience and/or a higher share of the
news. We show that whether it is the low-standard outlet or the high-standard outlet
depends on a combination of the two issues described above. In particular, we obtain
that when the punishment for publishing false stories is not very high the low-standard
outlet always has more audience. In this case, that outlet also has the higher share of
the news. In this sense, our results predict that societies that are especially generous
with outlets that break news and do not penalize them when their stories are shown to
be false will have media industries dominated by outlets with low editorial standards.
However, when the cost of publishing a false story is sufficiently high and the outlets
are similar enough in their editorial standards, the high-standard outlet may lead the
market (in terms of both audience and share of the news). It requires the media outlets
to be sufficiently homogeneous. Otherwise, the high-standard outlet may be the leader
in audience but the low-standard one will always have a higher share of the news.

Regarding the stochastic dynamics, the results of the numerical simulations show
that most of the insights gained in the mean-field approach with two outlets are robust
to the consideration of more outlets. We also use numerical simulations to obtain
predictions that cannot be inferred from themean-field approach, such as predictions as
to howmany outletswill survive in the industry in the long run and their characteristics.
We find that the harsher consumers are with the publication of false stories and/or the
more similar the editorial standards of the media outlets are, the more outlets will
survive in the long run. By contrast, when consumers like consuming news and do
not care whether printed stories are true or false and/or when outlets are very different
in their vetting processes for stories, the results suggest that only a small number of
outlets endure in the long run.

This work is related to the literature on the economics of the media, an extensive
area of literature that has grown rapidly in the last twenty years. The first papers in this
literature were mostly interested in analyzing the effects of the media on economic
policies and outcomes. See Besley and Burgess (2001), Djankov et al. (2003), Ström-
berg (2004b). A second generation of papers studied whether news provision was
biased (Groseclose and Milyo 2005; Egorov et al. 2009 and Larcinese et al. 2011) and
what the determinants of the biases were (Strömberg 2004a;Mullainathan and Shleifer
2005; Gentzkow and Shapiro 2006; Baron 2006; Petrova 2008; Ellman and Germano

6 The use of numerical simulations is also becoming increasingly common in economic literature. Examples
are Harrington (1999), Vega-Redondo et al. (2005), Chen and Huang (2008), Casari (2008) and Arifovic
et al. (2015), all with a micro-focus. In macroeconomic analysis, its use is very common, e.g., in the analysis
of dynamic stochastic general equilibrium models.
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2009). At the same time, a different group of researchers focused their attention on
the study of the media as a two-sided market. See Rochet and Tirole (2003), Anderson
(2006), Doyle (2013). Currently, research on the economics of the media is extremely
varied, but there is a tendency toward analyzing online news markets (Yang and Chyi
2011; Halberstam and Knight 2016; Germano and Sobbrio 2017) and their effects on
political outcomes (Allcott and Gentzkow 2017; Boxell et al. 2017; Campante et al.
2018), collective action (Acemoglu et al. 2017; Little 2016; Enikolopov et al. 2016,
2017) and more generally, social outcomes (Gentzkow and Shapiro 2011; Quattro-
ciocchhi et al. 2014; Bakshy et al. 2015).

Our contribution to this literature is to present a new approach to the study of com-
petition and audience in the media industry. Previous research shows that competition
can reduce the quality of news (Zaller 1999; Cagé 2014), can induce outlets to ideolog-
ically differentiate from competitors (Gentzkow et al. 2014) and can lead them to bias
the news in an attempt to product-differentiate (Anand et al. 2007). It has also been
shown that competition can reduce the possibility of media capture by the government
(Besley and Prat 2006), increase media self-censorship on issues sensitive to advertis-
ers (Germano and Meier 2013), and increase giving and volunteering (Adena 2016).
In contrast to previous research, our interest lies not in the effects of competition but
in its determinants, from a long-run perspective. To the best of our knowledge, this is
new in the literature.

The rest of the paper is organized as follows. In Sect. 2, we propose a stochastic
dynamic model of competition and audience in the media industry consisting of N
recursive equations that account for changes in audience in a market with N outlets. In
Sect. 3, we substitute the stochastic dynamics by a deterministic dynamics and analyze
the resulting mean-field model for the case of two media outlets. This simplification
enables us to obtain analytical solutions for the audiences of outlets and study the
stability of the stationary states. In Sect. 4, we perform numerical simulations to
study the stochastic dynamics with two, five, and ten media outlets. Finally, Sect. 5
concludes. The paper also contains Appendices, which are organized as follows. In
Appendix A, we propose and analyze a one-shot model with rational agents that helps
us show the rationale behind the behavioral assumptions that we make in Sect. 2. In
Appendix B, we present results which are complementary to the stochastic dynamics
analyzed in Sect. 4. Finally, Appendix C contains the proofs.

2 Themodel

We consider a market for news with N media outlets and a mass of consumers. All
the agents in the model, i.e., media outlets and consumers, are non-strategic and take
decisions according to behavioral rules. Appendix A presents a model with rational
agents that micro-founds the behavioral assumptions made in this section.

Each t ∈ T = {1, 2, . . .} represents a time step which, without loss of generality,
we identify with a day. For the sake of simplicity, two states of the world are assumed.
At each time t , the state of the world is ω(t) ∈ �, with� representing the set of states.
We assume that ω is distributed according to a known distribution function. At each
time t , there is a binary signal s(t) on the state of the world. We refer to the signal s(t)
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as the scoop at time t . Let μ be the probability that a scoop is true, i.e., the quality of
the scoop. We consider μ to be a random variable distributed according to a uniform
distribution function in [0, 1]. The realization of the random variable at t is denoted
by μ(t), where μ(t) = P(s(t) = j |ω(t) = j).

Each media outlet i ∈ {1, 2, . . . , N } is characterized by a threshold μi ∈ [0, 1],
which sets a lower bound on the quality of a scoop required by outlet i in order to
publish it.We refer toμi as the editorial standard of outlet i .Without loss of generality,
we order media outlets according to their editorial standards, so that 0 ≤ μ1 < μ2 <

. . . < μN ≤ 1 and assume that an outlet’s editorial standard is invariant over time.
This is a reasonable assumption if it is considered that an outlet’s editorial standard
and editorial line constitute a kind of moral or ethical charter that a media outlet abides
by once they have been adopted.

Conditionally on anoutlet having received a scoop, thresholdμi determineswhether
outlet i publishes it or not. More precisely, we consider that if μ(t) > μi outlet i
publishes the scoop and suppresses it otherwise. The optimality of this decision rule
is analyzed in Appendix A. We denote by ai (t) ∈ {0, 1} the action of outlet i at time t ,
where ai (t) = 1 when the outlet reports the scoop and ai (t) = 0 otherwise. A scoop
that is printed/published is referred to as a story.

We assume that at every t , if a story is published consumers immediately learn the
value of the random variable ω(t) with probability 1, whereas if no story is published
there is no learning.7 Thus, after a report, consumers always receive information that
is valuable for assessing the accuracy of a story, which enables them to reward/punish
a media outlet according to its behavior and the consumers’ valuation of the news. In
this respect, we consider that consumers reward the publication of a story and punish
the publication of a false story. The model in Appendix A proposes a rationale for this
behavior. For the sake of simplicity, let α ∈ (0, 1) be the punishment imposed by the
consumers on an outlet that publishes a false story and let 1 − α be the reward for
an outlet that obtains a story and publishes it. Thus, α measures the relative weight
of the punishment. Hence, the higher α is, the greater the discomfort of consumers
with fake news is, then the harsher the punishment by consumers for the publication
of false stories (in relative terms).8

The reward/punishment may be expected to have a positive/negative impact on an
outlet’s reputation, market share, and/or audience. Although the intensity of the impact
may differ from one of these points to another, it is reasonable to consider that they
will all move in the same direction. For the sake of specificity, we focus our attention
here on the evolution of one of these values: The audiences of outlets. Let Ai (t)
denote the audience of media outlet i at date t , and let ˜Ai (t) = Ai (t)

∑N
j=1 A j (t)

∈ [0, 1],

7 A more natural assumption would be to consider that consumers do not immediately learn the accuracy
of a story but rather takes a number of periods to do so. Based on numerical simulations showing that the
results do not change with the introduction of a delay, we have stuck to the simplest formulation.
8 The reward to an outlet for publishing a scoop is not necessarily negatively correlated with the punishment
parameter α. In fact, consumers might be both avid for stories and strongly concerned about false news, i.e.,
they may give high rewards and punishments. In order to reduce the number of parameters in the model,
we assume that the reward is given by 1 − α and focus on the relative weight of these two concepts. This
enables us to compare the numerical results that we obtain in Sect. 4 with the relatively simple analytical
solutions that we get in Sect. 3 and thus show how our approach to the market dynamics works.
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with
∑N

i=1
˜Ai (t) = 1, be outlet i’s normalized audience. With a focus on normalized

audiences, note that ˜Ai (t + 1) should belong to the interval [˜Ai (t), 1] after outlet i
publishes a story. This is so when ˜Ai (t + 1) = ˜Ai (t) + (1 − α)(1 − ˜Ai (t)). This
illustrates the reward that an outlet receives for publishing a story. However, if the
story is false, consumers impose a punishment on the outlet that reduces its audience
by α˜Ai (t). Putting the reward and the punishment together, we have the following
recursive equation:

Ai (t + 1) = ˜Ai (t) + Φ
[

(1 − α)(1 − ˜Ai (t))Ia − α˜Ai (t)Is �=ω

]

, (1)

whereΦ > 0 is a parameter thatmodulates the change in an outlet’s audience due to the
publication of a single scoop, and Ia and Is �=ω are the following indicator functions:9

Ia =
{

1 if ai (t) = 1,
0 otherwise,

and Is �=ω =
{

1 if ai (t) = 1 and s(t) �= ω(t),
0 otherwise.

Finally, the dynamic equation can bewritten either in terms of the audience [Eq. (2)]
or the normalized audience [Eq. (3)], which are equivalent. For simplicity, in the
analysis we use Eq. (2).

Ai (t + 1) = Ai (t)
∑N

j=1 A j (t)

+Φ

[

(1 − α)

(

1 − Ai (t)
∑N

j=1 A j (t)

)

Ia − α
Ai (t)

∑N
j=1 A j (t)

Is �=ω

]

, (2)

˜Ai (t + 1) =
˜Ai (t) + Φ

[

(1 − α)(1 − ˜Ai (t))Ia − α˜Ai (t)Is �=ω

]

∑N
j=1

(

˜A j (t) + Φ
[

(1 − α)(1 − ˜A j (t))Ia − α˜A j (t)Is �=ω

]) . (3)

Note that the rule above considers that variations in an outlet’s audience are pro-
portional to the outlet’s previous normalized audience ˜A(t). In particular, it implies
that the higher an outlet’s audience at t , the smaller the gain from publishing a scoop
and the higher the cost of being shown to have printed a false story. On the other
hand, the smaller an outlet’s audience, the greater the gain from breaking news and
the smaller the cost of publishing a false story. We consider this property to give an
accurate picture of the functioning of the real-world media industry.

We assume that an outlet’s audience at t affects the probability of it receiving a scoop
at that time step. The idea is tomodel a situation in which outlets with higher audiences
are more able to capture scoops than smaller ones. This is a reasonable assumption if
we consider that outlets with larger market shares have larger newsrooms and are thus
more likely to uncover events. Let pi (μ(t)) denote the probability of outlet i receiving
a scoop of quality μ(t) at time t . Remember that there is one scoop per day and that
only one media outlet can publish it. We assume that probability pi (μ(t)) is given by:

9 The effect of parameter Φ on the results is discussed in Appendix B. If we were to consider that different
scoops have different impacts on a society, we could assume that at each time step t the scoop released has
an impact Φt that is a random variable from a known distribution function.
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pi (μ(t)) = θi (t)Ai (t)
∑N

k=1 θk(t)Ak(t)
, (4)

where

θi (t) =
{

1 if μi ≤ μ(t)
0 if μi > μ(t).

(5)

Note that the process above determines that given a scoop of quality μ(t), only
media outlets with editorial standards lower than μ(t) are active recipients of the
scoop, i.e., have a positive probability of receiving it. Note also that because the
publication strategy of any outlet, say i , is to publish a scoop whenever μ(t) > μi , the
specification above determines that any media outlet that receives a scoop publishes
it. This simple modeling approach should be seen as a reduced form of a more general
mechanism consisting of the following: (i) At all t , any outlet has a positive probability
of receiving the scoop; (ii) the probability of an outlet receiving a scoop is the same
as its normalized audience; (iii) on receiving a scoop, the outlet decides whether to
publish it or not; and (iv) if the outlet chooses to publish it, the mechanism at t stops;
however, if the outlet rejects it, the process of assigning the scoop starts again, with
the outlet that rejected the scoop being taken out of the pool and the rest of the outlets
now having probabilities of receiving the scoop that are equal to each outlet’s new
normalized audience.10 Note that the outcome of this more general mechanism is
equivalent to that under the simpler form, where scoops are offered directly to those
outlets that are willing to publish them. For the sake of simplicity, we stick to the
proposed formulation.

Finally, note also that the above process determines a division of the scoop’s quality
space [0, 1] into different intervals, according towhich competition for a scoop is softer
or tougher. In particular, ceteris paribus N , the lower the quality μ(t), the softer the
competition, as only outlets with low editorial standards are willing to publish it.When
μ(t) < μ1, no outlet wants to publish the scoop. On the other hand, the higher μ(t),
the tougher the competition, as more outlets are willing to publish it. Note also that
the degree of competition for scoops depends on how similar or different the editorial
standards of themedia outlets are. In particular, themore similar the editorial standards
are, the tougher the competition is. In contrast, the more different the media outlets
are, the softer the competition in the market for scoops is.

Themodel described considers a stochastic sequence of scoops and N media outlets
that repeatedly interact over time, with interactions determining the dynamics of the
outlets’ audiences. This process defines a system of N stochastic recursive equations,
which is analyzed in Sect. 4. Prior to this, in Sect. 3 we study a mean-field approach to
the problem that allows us to study the average dynamics, characterize the stationary
states, study the stability and perform a comparative static exercise for the case of an
industry with two media outlets.

10 This mechanism finds support in the real-world examples of the Lewinsky scandal and the story of bin
Laden’s death. See footnote 3.
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3 Themean-field dynamics

This section considers a mean-field approach to the problem. It makes the following
simplification: We substitute the stochastic dynamics described in Eq. (2) by a deter-
ministic dynamics. In particular, for every t and outlet i , we substitute the random
variables Ia and Is �=w by their expected values Fi,news and Fi,false:

Ai (t + 1) = Ai (t)
∑N

j=1 A j (t)
+

[

(1 − α)

(

1 − Ai (t)
∑N

j=1 A j (t)

)

Fi,news(t)

−α
Ai (t)

∑N
j=1 A j (t)

Fi,false(t)

]

. (6)

Note that the dynamics above makes Φ = 1. This is without loss of generality.11

Since the quality of a scoop μ(t) is assumed to be a random variable uniformly
distributed in [0,1], the expected value of the random variable Ia is:

Fi,news(t) =
∫ μi+1

μi

pi,i (t)dμ

+
∫ μi+2

μi+1

pi,i+1(t)dμ + · · · +
∫ μN

μN−1

pi,N−1(t)dμ +
∫ 1

μN

pi,N (t)dμ,

where pi,k(t) = Ai (t)
∑k

l=1 Al (t)
is the probability of outlet i receiving a scoop of quality

μk ≤ μ ≤ μk+1 at time t . Note that Fi,news represents the fraction of news published
by i in stationary conditions (out of the total number of news items received by the
outlets). Note also that

∑N
i=1 Fi,news(t) = 1 − μ1, since a fraction μ1 of stories does

not meet the minimum quality for publication by any outlet.
Let μN+1 = 1. This fraction can thus be rewritten as:12

Fi,news(t) =
N

∑

k=i

∫ μk+1

μk

pi,k(t)dμ. (7)

Additionally, since the probability of a scoop being true is proportional to its quality
μ, the expected value Fi,true(t) of outlet i publishing a true story at t is:

Fi,true(t) =
N

∑

k=i

∫ μk+1

μk

μpi,k(t)dμ. (8)

11 As observed in Appendix B, the stationary state solution does not depend on Φ, which only affects the
amplitude of the fluctuations around the solution. In particular, the higher Φ is, the greater the fluctuations
are. Hence, by considering Φ = 1 we analyze the stability of the system under adverse conditions.
12 Note that given (4), the expression in (7) can also be written as Fi,news(t) = ∫ 1

μi
pi (μ(t))dμ.
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Therefore,

Fi,false(t) = Fi,news(t) − Fi,true(t) (9)

is the expected value of the random variable Is �=w and represents the fraction of the
stories published by i at t that are false.

3.1 Two outlets

Nextwe restrict the analysis to the case of twomedia outlets. This simplification allows
us to obtain analytical results and identify some general properties of the system that
we subsequently test with numerical simulations in the stochastic dynamics.

Let 1 and 2 denote the two media outlets, and consider μ1 < μ2. In the following,
we refer to outlet 1 as the low-standard outlet and to outlet 2 as the high-standard
one. We start by analyzing the average participation of an outlet on the distribution of
scoops and how it relates to the audiences and editorial standards of the two outlets.13

Let ˜A1 = A1
A1+A2

denote the normalized audience of the low-standard outlet, where
A1 and A2 are any arbitrary values. From (7) we have:

F1,news = (μ2 − μ1) + ˜A1(1 − μ2),

F2,news = (1 − ˜A1)(1 − μ2).

Figure 1 represents expressions F1,news and F2,news as a function of ˜A1. Note that
F1,news is increasing in ˜A1 and F2,news is decreasing in ˜A1. Additionally, note that if
1 − μ2 > μ2 − μ1 the two functions cross at AF = 1

2 − μ2−μ1
2(1−μ2)

, with AF ∈ (0, 1
2 ).

Otherwise, F1,news is always above F2,news, i.e., AF ≤ 0. Because the latter requires
μ2 − μ1 > 1 − μ2, or equivalently μ2 >

1+μ1
2 , we observe that if μ1 and μ2 are

different enough the low-standard outlet will always receive a higher share of the news.
By contrast, ifμ2 <

1+μ1
2 , which requiresμ2 andμ1 not to be very different, there are

values of ˜A1 for which the high-standard outlet receives a higher share of the news.
This is the case when 0 < ˜A1 < AF .

Figure 1 also shows three regions delimited by the values of ˜A1 for which F1,news =
F2,news on the one hand, and A1 = A2 on the other hand. Note that by definition the
latter occurs when ˜A1 = 1/2. Accordingly, Region I corresponds to values 1

2 < ˜A1 ≤
1, for which A1 > A2 and F1,news > F2,news. That is, in that region the low-standard
outlet leads themarket in terms of both audience and news share. Region II corresponds
to values AF < ˜A1 < 1

2 , for which A2 > A1 and F1,news > F2,news. That is, in that
region the low-standard outlet receives a higher share of the news but the high-standard
outlet has a higher audience. Finally, Region III corresponds to values 0 ≤ ˜A1 < AF ,
for which A2 > A1 and F2,news > F1,news. Note that in contrast to previous regions,
this region does not always exist, as AF may be smaller than zero. When it does exist,
it represents a situation in which the high-standard outlet leads the market in terms of
both audience and news share.

13 We focus on average participation, so there is no reference to time t .
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Fig. 1 We represent the share of
the news of outlets 1 and 2. The
red line corresponds to the
fraction of news published by
the low-standard outlet (with
μ1 = 0.2) and the blue line to
the fraction of news published
by the high-standard outlet (with
μ2 = 0.4). The vertical lines at
AF (value of ˜A1 such that
F1,news = F2,news) and at 1/2
(value of ˜A1 such that A1 = A2)
delimit Regions I, II, and III
described in the text

0

1

0 AF 1/2 1

A
~

1

μ1=0.20,  μ2=0.40

F 1,news

F
2,news

III II I

μ2−μ1

1−μ2

1−μ1

The analysis above determines the general conditions underwhich outlet i publishes
more stories than outlet j , with i, j ∈ {1, 2}, i �= j . It also determines the way in
which the fraction of news published by an outlet relates to that outlet’s audience.
This analysis reveals that in general it is the low-standard outlet that publishes more
scoops. Interestingly, this situation can occur for any pair of editorial standards, i.e.,
independently of whethermedia outlets are similar in their vetting processes for stories
or not. By contrast, for the high-standard outlet to receive and publish a higher share
of the news the market needs to be homogenous enough.

Next, we move into the analysis of the equilibrium of the mean-field dynamics. The
stationary condition of the dynamics is �Ai (t) = Ai (t +1)− Ai (t) = 0 in Eq. (6). In
the case of a media industry with two outlets, this defines a system of two equations.
The pairs (A∗

1, A∗
2) that satisfy the system are the equilibrium values. Next proposition

presents the result.

Proposition 1 The system has two stationary states.

1. In the first one, A∗
2 = 0. This stationary state is unstable.

2. In the second one, 0 < A∗
1 < 1 and 0 < A∗

2 < 1. This stationary state is
asymptotically stable.

Proposition 1 states that the systemhas two stationary states and that only the second
one is stable. To see the intuition for this, note that if an outlet reaches zero audience
at a time t , it will have no ability to attract further scoops (unless it is the low-standard
outlet, in which case it receives and publishes all the scoops whose quality lies within
the interval (μ1, μ2)) so it will remain with zero audience forever. Accordingly, there
is a stationary state in which A∗

2 = 0. However, if we perturb the dynamics and assign
a scoop to this outlet, its audience will eventually increase. Accordingly, we say that
this stationary state is unstable.

Figure 2 presents the phase diagram of the system (left panel) and the vector field
(right panel) for a particular case of the parameter values, in particular α = 0.5,
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Fig. 2 The left panel represents the phase diagram of the system. The red line corresponds to the pairs
(A1, A2) such that �A1(t) = 0. The blue lines to the pairs (A1, A2) such that �A2(t) = 0. When
�A2(t) = 0 for all A1, in the stationary state A∗

2 = 0. When �A2(t) = 0 defines a decreasing function in
A1, in the stationary state 0 < A∗

1 < 1 and 0 < A∗
2 < 1. In this case, the intersection of the described line

with the red line defines four regions: A, B, C and D. The arrows in each region indicate the direction of
a change in the outlets’ audiences. The right panel represents the vector field. In both panels, we consider
α = 0.5, μ1 = 0.4 and μ2 = 0.5

μ1 = 0.4 andμ2 = 0.5. The left panel shows the pairs (A1, A2) such that�A1(t) = 0
(in red) and �A2(t) = 0 (in blue). As observed, there are two stationary states: In the
first one A∗

2 = 0. In the second one 0 < A∗
1 < 1 and 0 < A∗

2 < 1. See Appendix C for
the explicit expressions of A∗

1 and A∗
2.
14 The right panel presents a graphic analysis

of the stability of the system. As observed, only the stationary state with 0 < A∗
1 < 1

and 0 < A∗
2 < 1 is stable.

The rest of the analysis focuses on the stable stationary state. We next seek to
establish the conditions onα,μ1 andμ2 forwhich the stable stationary values (˜A∗

1,
˜A∗
2)

belong to each of the regions described, i.e., Regions I, II, and III. This is done in
Propositions 2 and 3 and the discussion that follows.

First we show the existence of threshold α̂A, which delimits Region I from Regions
II and III. In this sense, threshold α̂A establisheswhich outlet receives a higher audience
in equilibrium.

Proposition 2 There is a threshold α̂A = 2
4−(μ1+μ2)

such that in the stable stationary

state ˜A∗
2 ≥ ˜A∗

1 if and only if α ≥ α̂A, and ˜A∗
1 > ˜A∗

2 otherwise.

Proposition 2 says that when societies are harsh enough with the publication of
false stories, in equilibrium the outlet that obtains a higher audience will be the high-
standard one. Otherwise, it will be the low-standard outlet. Note that since α̂A > 1/2,
if α ≤ 1/2 it is always the case that ˜A∗

1 > ˜A∗
2. That is, if the cost of publishing false

stories is smaller than the reward for publishing a story, then the outlet with greater
audience will always be the low-standard one, no matter whether outlets are similar in

14 In Appendix C we give the expressions for the normalized audiences ˜A∗
1 and

˜A∗
2. The values for A∗

1 and
A∗
2 are obtained by substituting ˜A∗

1 and ˜A∗
2 in Eq. (6).

123



SERIEs (2019) 10:175–206 187

their vetting processes for stories or are very different. Lastly, note that α̂A is increasing
inμ1+μ2, so ifμ1 andμ2 are small enough there are values of α for which ˜A∗

2 > ˜A∗
1.

Note also that the higher the editorial standards of the outlets are, the harsher a society
must be for the high-standard outlet to end up with a higher audience.

The next proposition shows that there is a threshold α̂F such that together with an
additional condition on the outlets’ editorial standards, Region III is delimited both
from Regions I and II. In other words, these conditions establish which outlet receives
and publishes a higher share of the news.

Proposition 3 There is a threshold α̂F = 4−4μ2

5−μ2
1−6μ2+2μ1μ2

such that in the stable

stationary state F∗
2,news ≥ F∗

1,news if and only if α ≥ α̂F and μ2 <
1+μ1
2 , and

F∗
1,news > F∗

2,news otherwise.

Proposition 3 states that for punishment values higher than the threshold, if the
editorial standards of the two outlets are not very different, in equilibrium the high-
standard outlet receives and publishes a higher share of the news than the low-standard
outlet. Note that α̂F is decreasing in both μ1 and μ2, thus α̂F > 4/5 always. Hence,
if α ≤ 4/5 then F∗

1,news > F∗
2,news always, independently of the outlets’ editorial

standards. That is, unless society is harsh enough with the publication of false stories,
the outlet receiving and publishing a higher share of the news will always be the
low-standard one.

Now, we put together the results from Propositions 2 and 3 and determine the
equilibrium size of Regions I, II, and III and the values of α for which the stable
stationary values (˜A∗

1,
˜A∗
2) belong to each of the regions. To that end, observe that given

a pair (μ1, μ2), the equilibrium value ˜A∗
1 is decreasing in α, with ˜A∗

1(α = 1) ≥ 0 and
˜A∗
1(α = 0) ≤ 1. Let Alow = ˜A∗

1(α = 1) denote the lower limit and Aup = ˜A∗
1(α = 0)

denote the upper limit.15 Figure 3 below represents these ideas in two cases. In the left
panel, we consider μ1 = 0.2 and μ2 = 0.4; in the right panel, we consider μ1 = 0.4
and μ2 = 0.6. The colored strips indicate the range of values of the audiences for
which the equilibrium of the system belongs to Regions I, II, and III. Note that together
with values AF and ˜A∗

1 = 1/2, thresholds Alow and Aup fully characterize Regions I,
II, and III in equilibrium.16

Lastly, we conduct the exercise for the editorial standards. This is done in Fig. 4,
where we determine the equilibrium size of Regions I, II, and III and the values of μ1
and μ2 for which the stable stationary values (˜A∗

1,
˜A∗
2) belong to each region. Since

˜A∗
1 > ˜A∗

2 ∀α ≤ 1/2, and F∗
1,news > F∗

2,news ∀α ≤ 4/5, we only consider values of α

higher than 1/2. We observe that the higher α is, the higher the region is in which the
high-standard outlet receives a higher audience in equilibrium than the low-standard
outlet. Note that this occurs in both Regions II and III. To see why, note that from
Proposition 2 it is known that ˜A∗

2 ≥ ˜A∗
1 if and only if α ≥ 2

4−(μ1+μ2)
. This condition

can be rewritten as μ1 + μ2 ≤ 4 − 2
α
. Hence, the greater the punishment, the higher

15 It can be shown that at Alow, it is always the case that F1,false = F2,false.
16 Substituting we obtain Alow = ˜A∗

1(α = 1) = 1 − (1−μ1)
2

2(1−μ2)
2 if μ2 < 1 − 1−μ1√

2
, otherwise Alow = 0.

We also obtain Aup = ˜A∗
1(α = 0) = 1+μ1−2μ2+

√

1−6μ1+μ2
1+4(1+μ1)μ2−4μ2

2
4−4μ2

, with 1/2 < Aup < 1.
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Fig. 3 We represent Regions I, II, and III in equilibrium. The left panel considers μ1 = 0.2 and μ2 = 0.4;
the right panel considers μ1 = 0.4 and μ2 = 0.6. In each panel, the red line corresponds to the fraction of
news published by the low-standard outlet and the blue line to the fraction of news published by the high-
standard outlet. The orange and cyan lines correspond to the fraction of false stories published by the low
and the high-standard outlet, respectively. The black curve gives the value of parameter α that is required
to reach a particular equilibrium audience ˜A∗

1. The vertical lines at Alow, AF , 1/2 and Aup determine the
equilibrium size of Regions I, II, and III. The left boundary Alow corresponds to the case with no reward,
i.e., ˜A∗

1(α = 1); the right boundary Aup to the case with no punishment, i.e., ˜A∗
1(α = 0). Note that at Alow,

the fraction of false stories published in equilibrium by the two outlets is the same

the pair of values (μ1, μ2) for which ˜A∗
2 ≥ ˜A∗

1. Similarly, we observe that the higher
α is, the higher the region is in which the high-standard outlet receives and publishes a
higher share of the news. This occurs only inRegion III. Lastly, we observe that Region
III is never the whole region. In fact, when α = 1 there are pairs (μ1, μ2) for which
˜A∗
2 > ˜A∗

1 but F∗
1,news > F∗

2,news. This is the case when the two outlets have relatively
different editorial standards. Accordingly, ourmodel predicts that low-standard outlets
will receive and publish a greater share of the news whenever the media industry is
made up of very different media outlets.

4 The stochastic dynamics

In this section, we discuss some of the results obtained when we consider the stochas-
tic dynamics described in Eq. (2). The analysis of the stochastic dynamics has two
purposes: On the one hand to check the robustness of the mean-field results to the
consideration of a stochastic dynamics with a number N of media outlets. The idea
is to study whether the relationship between audience, consumers’ valuation of news
and market dispersion found previously holds in the present case. Figures 7 and 8
in Appendix B show that it does for most of the insights. For the sake of concise-
ness, these results are relegated to the Appendix. The second purpose of the stochastic
dynamics analysis is to draw up new predictions on the dynamics of the system when
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Fig. 4 We represent Regions I, II, and III in equilibrium as a function of the pairs (μ1, μ2) satisfying
μ1 < μ2, for different values of parameter α. In blue we represent the pairs (μ1, μ2) for which ˜A∗

1 = ˜A∗
2

and F∗
1,news = F∗

2,news (color figure online)

there are more than two outlets. A relevant question here is what characteristics of the
media industry make it more likely that a higher number of outlets will endure in the
long run. Figures 5 and 6 below present results along this line. In these figures, we
consider Φ = 1/10, which represents a situation in which the public needs less than a
year to build a quasi-stationary opinion about a media outlet and at the same time the
publication of a single scoop can have a substantial impact on an outlet’s audience.17

See Appendix B for a discussion of the effect of Φ on the results.
Figure 5 represents the final audiences of a media industry with N = 5 after a

20-year period, for a representative combination of μ1, . . . , μ5 and α. The top, center
and bottom panels show high, intermediate and low punishments, respectively. Each
vertical line—connecting five dots— corresponds to a single simulation, where the
lowest dot corresponds to μ1 and the highest to μ5. The color of a dot represents the
final audience of the outlet, as indicated in the palette. Finally, the crosses indicate
outlets that loose all their audience and go out of business. The first result that can
be observed is that when α is high there is a positive correlation between an outlet’s
editorial standard and its final audience. By contrast, when α is low the correlation is
negative. The second (and new) result is that there are configurations of parameters for
which the dynamics drive some outlets out of the market.18 A look at Fig. 5 suggests

17 Note that when Φ = 1/10, an outlet with an audience of ˜A = 0.9 that publishes one false story reduces
its audience by about 10% when α ∼ 1. Similarly, an outlet with an audience of ˜A = 0.1 that publishes a
true scoop almost doubles its audience when α 
 1.
18 Technically, this requires an outlet (say i) to reach zero audience Ai = 0 at some time t . In this case,
that outlet no longer receives scoops so from then onwards it is out of business [unless it is the outlet with
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Fig. 5 We represent the audiences of N = 5 outlets after 20years of evolution for different combinations of
the editorial standards of the outlets. The top, center and bottom panels show the audiences when α = 0.9,
α = 0.5, and α = 0.2, respectively. Each vertical line—connecting five dots—corresponds to a single
simulation, where the lowest dot corresponds to μ1 and the highest dot to μ5. The color of a dot represents
the final audience of the outlet, as indicated in the palette. The simulations shown are a small sample of
all possible μi combinations, with i = 1, . . . , 5. The value of μ1 increases from left to right to facilitate
the presentation. The crosses indicate the outlets that lost all their audience and went out of business (color
figure online)

that consumers’ valuation of news and market dispersion may both affect the degree
of competition in the long run. Figure 6 explores this question in more detail.

Figure 6 represents the probability that m ≤ N outlets will survive in the industry
in the long run. The left and center panels represent the probability that m ≤ N outlets
will survive as a function of α. It considers N = 5 (left panel) and N = 10 (center
panel). For each value of α (α = 0.05, 0.1, 0.15, . . . 1), we perform twenty thousand
simulations with random editorial standards and random initial audiences, and we
run them for the equivalent of 20 years. Two results are worth mentioning. First, the
probability of more outlets surviving in the long run seems to be positively correlated
with parameter α. Hence, the more harshly consumers punish the publication of false
stories, the more outlets survive in the long run. Second, for a given α, the number of
outlets m that survive presents a low dispersion and an inverted U -shaped form, with
dispersion being higher when α ∼ 0.5 and lower when α ∼ 0 and α ∼ 1.

Footnote 18 continued
the lowest editorial standard, in which case it always publishes the scoops within the interval (μ1, μ2)].
Note that in the mean-field approach, we also obtain this result, i.e., ˜A∗

2 = 0, but show that this stationary
state is unstable.
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Fig. 6 The left and center panels represent the probability that m ≤ N media outlets will survive in the
long run as a function of α. The left panel considers N = 5 and the center panel N = 10. The label by
each curve indicates the number of surviving outlets. The right panel represents the probability that m ≤ N
outlets will survive in the long run as a function of the standard deviation σμ of the editorial standards. We
consider N = 10 and α = 0.7

The right panel represents the probability that m ≤ N outlets will survive in the
long run as a function of the market dispersion. We define the market dispersion as the

standard deviation σμ of the N outlets’ editorial standards, i.e., σμ =
√

∑N
i=1(μi −〈μ〉)2

N .
We considerα = 0.7, 10 outlets and run a representative sample of allμi combinations,
with i = 1, . . . , 10, two hundred and fifty thousand times. On average, we find that the
number of outlets that survive in the industry in the long run increases as the standard
deviation of the outlets’ editorial standards decreases. Hence, the more homogeneous
outlets are, the tougher the competition in the industry will be in the long run.19

5 Conclusion

This paper presents a dynamic model of competition for audience in the market for
scoops. Our main contribution is to pin down two important variables to explain the
dynamics: The consumers’ valuation of news and the composition of the market. We
obtain that the harsher consumers are with the publication of false stories, the more
likely it is that high-standard media outlets receive higher equilibrium audiences. In
contrast, when consumers are especially generous with outlets that break news and
do not penalize them when their stories are shown to be false, our prediction is that
the market will be dominated (in terms of both audience and share of the news) by
low-standard outlets. Regarding the composition of the market, we obtain that only if
media outlets are similar enough in their editorial standards for quality, it is possible
that high-standard outlets publish a higher share of the news. Otherwise, it will be the
low-standard outlets that lead the market.

19 Additional simulations show that though small values of σμ may occur for a variety of mean values 〈μ〉,
those with high values of 〈μ〉 ensure competition (m ∼ M) and the publication of truthful information.
Nevertheless, note that small values of σμ and high values of 〈μ〉 imply high values ofμ1, so the counterpart
is that a substantial fraction of true stories remains unpublished. In this sense, societies that discourage the
operation of outlets with very low editorial standards and that harshly punish the publication of false stories
will enjoy high levels of competition and low levels of false stories in the long run. These results are available
from the authors upon request.
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Although moving from theory to the real world is always difficult, we consider
that our results help explain the great heterogeneity that characterizes the traditional
press all over the world. Coming back to the examples discussed in Introduction, we
propose an argument to explain why countries such as the USA and Spain show a
positive correlation between newspapers’ editorial standards, audiences (circulation)
and share of the news, whereas countries such as the UK have a negative correlation.
The argument relies on the consumers’ valuation of news and builds on the idea that
the average consumer of a newspaper in the UK is quite different from the average
consumer of a newspaper in the US or Spain. The reason is the strength of the tabloid
press in the UK and the distinctive features of its readership.20 Based on this, can
the average UK newspaper reader be described as more lenient with the publication
of false stories and/or a more eager consumer of scoops than the average reader in
the US or Spain? It is difficult and possibly controversial to argue so, but if we agree
on this point then the result follows.21 Namely, we have an argument to explain why
countries with harsh consumers and homogeneous media industries (such as the US
and Spain) have media outlets with high-quality standards, whereas countries such as
the UK, where consumers are more lenient and the industry is more heterogeneous,
show the opposite features.22

Beyond the traditional press, we believe that our model also sheds light on the use
of social media as a source of information, the lack of fact-checking and editorial
judgment that characterize social media platforms, and the subsequent proliferation
of fake news. In line with the discussion above, our work contributes to this debate by
highlighting the importance of consumers’ behavior in monitoring fake news. In par-
ticular, it suggests that as long as consumers continue rewarding the mere publication
of news (with shares, likes, comments and such) and not penalizing the publication of
false stories, there is little to be done in this respect.

Our analysis also draws up predictions as to how many outlets will survive in
the media industry in the long run. In this respect, our results show that the harsher
consumers are and/or the more homogeneous outlets are, the more outlets will survive
in the long run. Otherwise, the dynamics will drive outlets out of the industry, thus
reducing competition over time.

To some extent, the results on the reward/punishment scheme and the number of
outlets operating in the market in the long run are related to Duverger’s Law, which
describes a nexus between electoral systems and the number of parties in a political
system. More precisely, Duverger’s Law states that a plurality rule tends to favor a
two-party system, whereas proportional representation tends to favor a multi-party
system. In our view, the determinants of this result are similar to those of our case.
Namely, high rewards lead to inequalities and the emergence of large-scale players

20 According to a study by ACORN, which classifies consumers according to their social status and shows
an outline of their preferences, tabloids are mostly read by individuals in difficult circumstances, say
low skilled workers and/or unemployed people. See The Consumer Classification, 2014. See also the
YouGovProfile tool, an app developed by YouGov, for more information on the audience profiles of USA
and UK newspapers.
21 Note that the existence of a vigorous tabloid press can be seen as supporting our argument.
22 Note that the existence of the tabloid press makes the UK newspaper industry much more heterogeneous
(in terms of editorial standards) than the media industry in other countries.
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and so erode competition, whereas low rewards leave room for more players and foster
competition for longer. In our view, this conclusion extends beyond the current setup
and can help explain other relevant empirical phenomena.

This study makes a number of assumptions. First, we consider media outlets and
consumers that behave according to predetermined behavioral rules. Although the
model that we present in Appendix A seeks to show the rationale behind these assump-
tions, we consider it an interesting, though complex, exercise, to analyze the long run
outcomes of a dynamic model with strategic agents. Other assumptions in the model
include the absence of ideological aspects and prices. These assumptions greatly sim-
plify the analysis, as they limit the number of variables that may affect the probability
of receiving a scoop. A more general model that seeks to relax these assumptions
should carefully reformulate this rule. We consider this an interesting issue for future
research.

Compliance with ethical standards

Conflict of interest The authors have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Appendix: Micro-foundations of themodel

In themain body of the paper, agentsmake decisions based on behavioral assumptions.
The assumptions that we make with respect to the behavior of media outlets are that
(i) a media outlet which does not receive a scoop never publishes a story; and (ii) a
media outlet which receives a scoop publishes it only if it is of sufficiently high quality,
i.e., meets the outlet’s editorial standard. With respect to consumers, we assume that
consumers reward media outlets that publish stories and punish those outlets that are
shown to have printed false stories.

Theobjective of this section is to show the rationale behind these behavioral assump-
tions, i.e., to show that these behaviors can be optimal for strategic agents. In this sense,
there are two questions of interest: The first is to study whether a strategic media out-
let can find it optimal to behave as described by the behavioral rule. The second
is to understand what kind of consumer preferences lead to the consumer behavior
described.

The model and the results in our previous paper Andina-Díaz and García-Martínez
(2018) (hereafter referred to as AG) provide an answer to these questions. It shows
that the behavioral assumptions of the present paper are equilibrium strategies of the
strategic agents of the one-shot game in AG. Hence, in the discussion that follows we
describe themain ideas of that paper that help us rationalize the behavioral assumptions
made in the present work. To that end, it suffices to focus on the monopoly case
analyzed in AG, which considers a media outlet and a mass of consumers who are
uncertain about the type of the outlet, i.e., whether it is a good or a normal type. The
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media outlet seeks to build a reputation for being good. The idea is that media outlets
which are perceived as good by consumers receive higher audience/circulation levels;
hence, the objective of maximizing audience (as in the present paper) and the objective
of maximizing reputation for being good (as in AG) go hand in hand.

There is underlying uncertainty as to the state of the world, and the role of themedia
outlet (which is better informed on the state than consumers) is to inform consumers
about the state. Consumers value information. One possible reason is that consumers
have to make an investment decision and the better the information that they hold,
the more accurate the investment decision (and hence the higher the expected return
from the investment) will be. We consider that the good type media outlet receives
a perfectly informative signal and that the normal type receives an imperfect but
informative signal. Consumers do not know the type of the media outlet but have a
prior on the media outlet being a good type. The media outlet receives a signal and
chooses a report. There are two signals, one indicating that there is a scoop and the
other indicating that there is no scoop; there are two possible reports, to publish a scoop
and not to publish a scoop. In line with the assumption in the present paper, in AG we
assume that when the media outlet publishes a scoop, consumers (can) learn the state
of the world; however, when the media outlet does not publish a scoop consumers do
not learn the state. We say that in this case there is no feedback. Consumers observe
the media outlet’s report and the possible feedback about the state and, based on that
information, update their belief about the media outlet’s type.

Having described the main ingredients of the model, we are now in position to
present the results that micro-found the behavioral assumptions of the present paper.
With respect to our first question, Proposition 1 in AG shows that, in the equilibrium
of the game, a normal media outlet that does not receive a scoop never publishes a
story and that a normal media outlet that receives a scoop publishes it (with positive
probability) only if the scoop is of a certain quality, i.e., it is above the threshold that
marks the outlet’s editorial standard.23 Note that this is precisely what the behavioral
assumption in the present paper prescribes for the behavior of media outlets.24

With respect to our second question, the model in AG considers consumers who
value information. Next, we note that considering this consumer preferences suffices
to engender an equilibrium behavior that supports the behavioral assumption made in
the present work, which implicitly defines the market share updating rule described
in Eq. (1). To see this, note that according to the description of the model in AG there
are four possible situations under which a consumer updates his belief about the type
of the media outlet: (i) The outlet does not publish a scoop and there is no feedback;
(ii) the outlet publishes a scoop and there is no feedback; (iii) the outlet publishes a
scoop, there is feedback and consumers learn that the story is true; and iv) the outlet
publishes a scoop, there is feedback and consumers learn that the story is false. It can
easily be proved that unless a media outlet publishes a false scoop, in the equilibrium
of AG, Bayesian consumers assign a higher probability to the outlet being good after

23 In equilibrium, a good type always follows its signal. That is, if the outlet does not receive a scoop it
never publishes a story, and if it receives a scoop it always publishes a story.
24 For this equilibrium to exist in AG, we only need rational consumers who update beliefs and who
consider that there are media outlets of good type.
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the publication of a scoop than after the non-publication of a scoop.25 This means
that the expected payoff of an outlet is higher in case (ii) or case (iii) than in case (i).
This result micro-founds the assumption in the present work that consumers reward
the publication of stories. Additionally, it can also be proved that in equilibrium the
probability that Bayesian consumers assign to the outlet being good in case iv) is
smaller than in case (ii) or in case (iii).26 This result micro-founds the assumption in
the present work that consumers penalize the publication of false stories.

Lastly, we discuss the rationale behind the weight α that we use to refer to the
punishment for publishing a false story. The question is how to micro-found the fact
of α taking higher or lower values. We argue that the belief of consumers about the
type of the media outlet is key to the answer. To see this, note that the analysis in AG
shows that the higher the consumers’ belief that the outlet is a good type, the stricter
the outlet will be with the publication of a scoop, i.e., the higher the outlet’s editorial
standard will be. The reason is that great expectations about the type of an outlet
impose a harsh punishment on the outlet in case of failure. This leads the outlet to be
stricter with its vetting process for stories, which results in higher editorial standards.
In this sense, a situation with a high α illustrates a society where consumers have high
expectations on the functioning of the media industry and hence one in which errors
are harshly punished. By contrast, a situation with a low α illustrates a society where
consumers do not expect a lot from the media industry and hence one in which the
cost of an error is negligible.

B Appendix: Additional results on the stochastic dynamics

In this section, we present additional results on the stochastic dynamics described in
Eq. (2). The results refer to the cases with N = 2 and N > 2 media outlets.

Our objective here is to test the predictions of the mean-field analysis under
a stochastic dynamics. Note that by construction, the asymptotic behavior of the
stochastic dynamics may be expected to consists of a stochastic fluctuation around
the equilibrium mean-field values ˜A∗

i . Hereafter we refer to this fluctuating asymp-
totic behavior as the quasi-stationary state. Our results show that the time that it takes
to reach the quasi-stationary state and the amplitude of the fluctuations around the
mean-field equilibrium crucially depend on parameter Φ, which controls the impact
of the publication of a single scoop on the audience of the outlets. In fact, note that Φ
represents how much society rewards and punishes the publication of true and false
stories via variations in audience. As expected, the amplitude of the fluctuations is
proportional to Φ, whereas the characteristic time taken to reach the quasi-stationary
state is inversely proportional to Φ.

Now we consider the results. Figure 7 shows the dynamics over a 20-year period
of an industry with N = 2 media outlets, with editorial standards μ1 = 0.3 (in red)
and μ2 = 0.5 (in blue). The top panels consider a society with α = 0.95, and the

25 The result follows from the fact that, in equilibrium, the good type media outlet is more likely to publish
a scoop than the normal type.
26 This result follows from the fact that, in equilibrium, the good type media outlet never publishes a false
story.
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bottom panels a society with α = 0.2.27 The effect of Φ on the dynamics of the
audience of an outlet is observed in the top-left and bottom-left panels of the figure.
The left panels represent the evolution of the outlets’ audiences, ˜A1(t) and ˜A2(t). Each
panel represents four curves (two for each outlet). The curves with large fluctuations
correspond to the casewithΦ = 1/10,whereas the smooth ones correspond to the case
with Φ = 1/200. The (stable) stationary states of the mean-field model are indicated
with the two starred dots at the last time step, t = 20. As stated, the quasi-stationary
states fluctuate around the stable stationary states of the mean-field approach. It can
be observed that in the top panel it takes about 20 years to reach the quasi-stationary
state whenΦ = 1/200, whereas ifΦ = 1/10 the stories published during the first few
months suffice for this state to be reached. Note that the amplitude of the stochastic
fluctuations is greater when Φ = 1/10 than when Φ = 1/200. In the latter case,
the quasi-stationary state closely matches the stable stationary state (˜A∗

1,˜A
∗
2). In the

bottom panel convergence is faster. The reason is twofold: The initial audience figures
are closer to (˜A∗

1,˜A
∗
2) and the punishment parameter α is small.28 Finally, a comparison

of the top and the bottom panels reveals that when the punishment for publishing false
stories is high (top panel) the high-standard outlet obtains more audience, whereas
when the punishment is low (bottom panel), it is the other way round. This is the same
result that we obtained in the mean-field approach.

The center panels show the evolution of the fraction of scoops published by each
outlet, F1,market and F2,market. We define Fi,market = 〈Fi,news〉/〈Fnews〉 as the average
fraction of scoops published by outlet i over the previous 100 days. A comparison of
the top and the bottom panels shows that when α is low (bottom panel) the market is
dominated by the low-standard outlet. By contrast, when the punishment is high (top
panel) the market is dominated by the high-standard outlet. Again, this is in line with
the results in the mean-field dynamics.

The right panels show the relationship between the audience of an outlet 〈˜Ai 〉 and
the fraction of false stories published by it, defined as pi,false = 〈Fi,false〉/〈Fi,news〉.
Again, both 〈˜Ai 〉 and pi,false are calculated as average values over the previous 100
days. The results show that when the punishment is high (top panel), the probability
of the outlet with the higher audience publishing false stories is low. The opposite
occurs when the punishment is low (bottom panel). This is because in the latter case
it is the low-standard outlet that obtains more audience. Note that the total number of
false stories published in the industry depends only on μ1, but the way in which they
are distributed between the outlets also depends on α and μ2.

The results for N > 2 show similar patterns. They are shown in Fig. 8, which
considers N = 5. Again, the top panels consider α = 0.95 and the bottom panels
α = 0.2. The editorial standards of the five media outlets are 0.15, 0.30, 0.45, 0.60,
and 0.75, represented in red, blue, magenta, orange, and green, respectively. As in the
case with two outlets, when the punishment is high (top panels), audience is observed
to be positively correlated with editorial standards and the opposite occurs when the
punishment is low. The result for the fraction of scoops published by an outlet is also

27 All the panels in the figure consider the same initial conditions, which we chose far from the equilibrium
values.
28 From Eq. (2), note that the average change in an outlet’s audience due to the publication of a scoop
decreases in α.
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Fig. 7 We represent a media industry with N = 2 and editorial standards μ1 = 0.3 (red) and μ2 = 0.5
(blue) over a 20-year period. The top panels correspond to a situation with a high punishment (α = 0.95),
and the bottom panels to a situation with a low punishment (α = 0.2). The left panels show the evolution
of the two outlets’ audiences. The curves with large fluctuations correspond to the case Φ = 1/10, and the
smooth ones to the case Φ = 1/200. The center panels show the evolution of the two fraction of news of
the two outlets, averaged during the previous 100 days. The right panels show the relationship between the
audience of an outlet and the fraction of false stories published by it, averaged during the previous 100days
(color figure online)

in line with those with N = 2. Namely, the higher the punishment, the smaller the
power of the outlets with low standards. However, note that when N = 5, the outlets
with low editorial standards continue to lead the market, even if the punishment is
high.

C Appendix: Proofs

We first present the expression for the normalized equilibrium audiences ˜A∗
1 and ˜A∗

2.
FromEq. (6), writing the expression in terms of the normalized audience ˜A1 = A1

A1+A2
,

we obtain:

˜A∗
1 = 2 − αμ2

1 + 2αμ2
2 − α + 2μ1 − 4μ2 +

√

(

2 − αμ2
1 + 2αμ2

2 − α + 2μ1 − 4μ2
)2 + 16(α − 1)(μ2 − 1)(αμ2 + α − 2)(μ1 − μ2)

4(μ2 − 1)(αμ2 + α − 2)
,

˜A∗
2 = 1 − ˜A∗

1 .

The rest of the Appendix contains the proofs.
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Fig. 8 Same as Fig. 7 but for five media outlets with editorial standards μ1 = 0.15, μ2 = 0.3, μ3 = 0.45,
μ4 = 0.6 andμ5 = 0.75, represented in red, blue, magenta, orange, and green, respectively. The top panels
consider α = 0.95 and the bottom panels α = 0.2 (color figure online)

Proof of Proposition 1 Equation (6) can be rewritten as:

A1(t + 1) = f1(A1(t), A2(t)),

A2(t + 1) = f2(A1(t), A2(t)),

where fi : [0, 1] × [0, 1]\{(0, 0)} −→ [0, 1] for i = 1, 2.
After some algebra, we can obtain the explicit functions from expression (6). Using

(7), (8) and (9), they are:

f1 (A1, A2) = α
(

1 − μ2
2

)

A2
1

2(A1 + A2)2
+

(1 − μ2)A1

(

1 − α − A(1)
A1+A2

)

A1 + A2

+α
(

μ2
2 − μ2

1

)

A1

2(A1 + A2)
+ (μ2 − μ1)

(

1 − α − A1

A1 + A2

)

+ A1

A1 + A2
,

f2 (A1, A2) = α
(

1 − μ2
2

)

A2
2

2(A1 + A2)2
+

(1 − μ2)A2

(

−α − A2
A1+A2

+ 1
)

A1 + A2
+ A2

A1 + A2
.

Let us define

F̄1(A1, A2) = f1 (A1, A2) − A1,

F̄2(A1, A2) = f2 (A1, A2) − A2.
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Note that the sign of F̄i determines whether Ai increases, decreases or remains
constant in the next period. After some algebra we get:

F̄1(A1, A2)

= − 2A3
1 + A1

(

α(μ1 − 1)2 + 4A2 − 2
) + A1 A2(α((μ1 − 4)μ1 − (μ2 − 2)μ2 + 2) + 2(μ1 + A2 − 2)) − 2(α − 1)A2(μ1 − μ2)

2(A1 + A2)2
,

F̄2(A1, A2) = −A2

(

2A2
1 + 2A1(−αμ2 + α + μ2 + 2A2 − 2) + A2

(

α(μ2 − 1)2 + 2(A2 − 1)
))

2(A1 + A2)2
.

From F̄2, it follows that if A2 = 0, then F̄2(A1, A2) = 0.

Remark 1 Let’s define the function A2 = g3(A1) as g3(A1) = 0. Thus F̄2(A1, g3(A1))

= 0.

Note that the sing of F̄1 and F̄2 are given by the sign of their numerators. Let:

F1(A1, A2) = −2A3
1 − A2

1

(

α(1 − μ1)
2

+4A2 − 2) − A1A2(α((μ1 − 4)μ1

−(μ2 − 2)μ2 + 2) + 2(μ1 + A2 − 2))

+2(α − 1)A2
2(μ1 − μ2),

F2(A1, A2) = −
(

2A2
1 + 2A1(−αμ2 + α + μ2 + 2A2 − 2)

+A2

(

α(μ2 − 1)2 + 2(A2 − 1)
))

.

Next, Lemma 1 shows that there is a function g1(A1) such that F1(A1, g1(A1)) = 0
and Lemma 2 shows that there is a function g2(A1) such that F2(A1, g2(A1)) = 0.

Lemma 1 The equation F1(A1, A2) = 0 defines a strictly decreasing function A2 =
g1(A1) such that for all A2 ∈ (0, 1), g−1

1 (A2) ∈ (0, 1).

Proof The roots of equation F1(A1, A2) = 0 are too complex to work with. Hence,
we take a different approach.

First, we solve the equation F1(A0
1, A2 = 0) = 0.

There is only one solution and it is: A0
1 = 1− 1

2α
(

1 + μ2
1 − 2μ1

)

, with 0 < A0
1 < 1.

Therefore, if there is a function A2 = g1(A1), then g1(A0
1) = 0. In addition, F1(A1 =

1, A2 = 0) = −2 + (

α(1 − μ1)
2 − 2

)

< 0. The following remark summarizes this
result.

Remark 2 Let A0
1 = 1− 1

2α
(

1 + μ2
1 − 2μ1

) ∈ (0, 1). Then F1(A1 ≥ A0
1, A2 = 0) ≤

0.

Second, we show that equation F1(A1
1, A2 = 1) = 0 has only one solution.

To see this, note that F1(A1, A2 = 1) is concave in A1, as
∂2 F1(A1

1,A2=1)

∂ A2
1

=
−2α (1 − μ1)

2 − 12A1 − 4 < 0. In addition,

F1(A1 = 0, A2 = 1) = 2(1 − α)(μ2 − μ1) > 0 and,

F1(A1 = 1, A2 = 1) = −2 (1 − μ2) − α
(

3 − μ2
2

)

−4 (αμ2 − (2α − 1) μ1) − 2αμ2
1 < 0.
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Therefore, there is a unique A1
1 such that F1(A1

1, A2 = 1) = 0. Consequently, if
there is a function A2 = g1(A1), then g1(A1

1) = 1. The following remark summarizes
this result.

Remark 3 There is A1
1 ∈ (0, 1), such that F1(A1 ≥ A1

1, A2 = 1) ≤ 0.

Let Â1 = (μ2 − μ1) (1 − α). The following result relates thresholds A0
1, A1

1 and
Â1, showing that if A1 < Â1 then F1(A1, A2) is convex in A2 (it is concave if
A1 > Â1).

Claim 1 It holds that 0 < Â1 < A1
1 < A0

1 < 1.

Proof First, note that ∂2F1(A1,A2)

∂ A2
2

= −4A1 + 4(μ2 − μ1)(1 − α) ≥ 0 if A1 ≤
(μ2 − μ1)(1 − α). Let Â1 = (μ2 − μ1) (1 − α) .

Second, note that since

F1(A1 = A0
1, A2 = 1) = −1

2
α2(μ1 − 1)2

(

μ2
1 + (μ2 − 2)μ2

)

+α
(

μ3
1 + μ1 + μ2

2 − 4μ2 + 1
)

− 4μ1 + 2μ2 − 2 < 0,

from Remark 3 it follows that A1
1 < A0

1.
Third, note that since F1(A1 = Â1, A2 = 1) = (1−α)(μ2−μ1)(4−2(1−α)2(μ2−

μ1)
2−(1−α)(μ2−μ1) (α(1−μ1)

2+2)−α((μ1−4)μ1−(μ2−2)μ2+2)−2μ1) > 0,
from Remark 3 it follows that Â1 < A1

1. ��

Therefore, it is possible to divide the set A1 × A2 = [0, 1] × [0, 1]\{(0, 0)} into
four areas and study the function F1(A1, A2) in each of them. This is done next:

1. Area 1= {(A1, A2) such that A1 < Â1, A2 ∈ (0, 1)}.
Note that F1(A1, A2) is continuous and convex in A2. Additionally, since Â1 < A1

1,
F1(A1 < Â1, A2 = 1) > 0 and F1(A1 < Â1, A2 = 0) > 0. See Remark 3 and

Claim 1. Consequently, if ∂ F1(A1,A2)
∂ A2

∣

∣

∣

A2=0
< 0, then F1(A1, A2) is always greater

than zero in this area. It is straightforward to show that
∂ F1(A1,A2)

∂ A2
|A2=0 = (

4αμ1 − 2μ1 − 2α − 2αμ2 − αμ2
1 + αμ2

2 + 4 − 4A1
)

A1 >

0 if A1 < Â1 = (μ2 − μ1) (1 − α). Consequently, F1(A1, A2) is always greater than
zero in this area.

2. Area 2= {(A1, A2) such that Â1 < A1 < A1
1, A2 ∈ (0, 1)}.

Note that F1(A1, A2) is continuous and concave in A2. In addition F1(A1 <

A1
1, A2 = 1) > 0 and F1(A1 < A1

1, A2 = 0) > 0. See Remark 3. Consequently
F1(A1, A2) is always greater than zero in this area.

3. Area 3= {(A1, A2) such that A0
1 < A1 < 1, A2 ∈ (0, 1)}.
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In this area, F1(A1, A2) is continuous and concave in A2. In addition F1(A1 >

A0
1, A2 = 1) < 0 and F1(A1 > A0

1, A2 = 0) < 0. See Remark 2. Consequently, if
∂ F1(A1,A2)

∂ A2
|A2=0 < 0 for any A1 ∈ (

A0
1, 1

)

, then necessarily F1(A1, A2) < 0. Note

that ∂ F1(A1,A2)
∂ A2

|A2=0 = A1
(

4αμ1 − 2μ1 − 2α − 2αμ2 − αμ2
1 + αμ2

2 + 4 − 4A1
) =

A1
(

4
((

1 − 1
2α(1 − 2μ1 + 1

2μ
2
1 + μ2 − 1

2μ
2
2)

) − A1
) − 2μ1

)

> 0 if A1 > A0
1 =

1 − 1
2α

(

1 + μ2
1 − 2μ1

)

.

An analysis of Areas 1, 2, and 3 reveals that if the function A2 = g1(A1) such that
F1(A1, A2) = 0 exists, then it has to be defined in A1

1 < A1 < A0
1. Next, we study

Area 4.

4. Area 4= {(A1, A2) such that A1
1 < A1 < A0

1, A2 ∈ (0, 1)}.
First, we show that this function exists in the interval A1 ∈ (

A0
1, A1

1

)

, and second
that it is decreasing and continuous.

Note that we have already shown that F1(A1, A2) is continuous and concave in A2
in area 4. In addition, in this area, F1(A1, A2 = 1) < 0 and F1(A1, A2 = 0) > 0. See
Remarks 2, 3 and Claim 1. Consequently, for any A1 ∈ (

A0
1, A1

1

)

, it exists a single Ā2

such that F1(A1, A2 = Ā2) = 0, F1(A1, A2 < Ā2) > 0 and F1(A1, A2 > Ā2) < 0.
Therefore, the function A2 = g1(A1) such that F1(A1, A2) = 0 exists.

To prove that this function is continuous and decreasing, it suffices to prove that
for any A2 ∈ (0, 1), there is always a unique Ā1 such that F1(A1 < Ā1, A2) > 0,
F1(A1 = Ā1, A2) = 0 and F1(A1 > Ā1, A2) < 0. First, note that F1(A1, A2) is a
third degree polynomial, continuous and differentiable in A1, with

F1(A1 = 0, A2) = 2(1 − α)A2
2(μ2 − μ1) > 0,

F1(A1 = 1, A2) = −α(1 − μ1)
2 − 2A2

2(1 + (1 − α)(μ1 − μ2))

−A2

(

α
(

2 + 2μ2 − 4μ1 − μ2
2 + μ2

1

)

+ 2μ1

)

< 0. (10)

Therefore, it exists at least one real root, so the function is continuous. Next we
show that there is only one root. Hence, the function must be decreasing.

Note that since F1(A1 = 0, A2) > 0, F1(A1 = 1, A2) < 0 and F1 is a continuous
third degree polynomial, there could be either a single root or three roots in the interval
A1 ∈ (0, 1) for any given A2. If there were three roots, then

∂ F1(A1,A2)
∂ A1

= 0 twice.

Since ∂ F1(A1,A2)
∂ A1

= −6A2
1 − 2A1

(

α(μ1 − 1)2 + 4A2 − 2
) − A2(α((μ1 − 4)μ1 −

(μ2 − 2)μ2 + 2) + 2(μ1 + A2 − 2)) = 0, with roots

−2
(

α(1−μ1)
2+4A2−2

)±
√

4
(

(α(1−μ1)2−2)
2+4A2

2+2A2(α(μ1(μ1+4)−3μ2(2−μ2)−2)−6μ1+4)
)

12 , it
can be shown that
−2

(

α(1−μ1)
2+4A2−2

)+
√

4
(

(α(1−μ1)2−2)
2+4A2

2+2A2(α(μ1(μ1+4)−3μ2(2−μ2)−2)−6μ1+4)
)

12
< 0.

Consequently, the derivative is zero only once. Thus, there can only be one root. ��
Lemma 2 The equation F2(A1, A2) = 0 defines a strictly decreasing function A2 =
g2(A1) such that for all A1 ∈ (0, 1), g2(A1) ∈ (0, 1).
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Proof

F2(A1, A2) = − (2A1 + 2A1(−αμ2 + α + μ2 + 2A2 − 2)

+A2

(

α(μ2 − 1)2 + 2(A2 − 1)
))

= 0.

The equation is a second degree polynomial in A1 with two roots:

−1

4

(

α(1 − μ2)
2 − 2 + 4A1

)

±1

4

√

(

α(1 − μ2)2 − 2
)2 + 8(μ2 − 1)A1(αμ2 + α − 2).

One of the roots is always negative, so the other root has to be the function g2(A1):

g2(A1) = −1

4

(

α(1 − μ2)
2 − 2 + 4A1

)

+1

4

√

(

α(1 − μ2)2 − 2
)2 + 8(μ2 − 1)A1(αμ2 + α − 2).

It satisfies g2(A1 = 0) = − 1
2

(

α(1 − μ2)
2 − 2

)

, with 1
2 < g2(A1 = 0) < 1,

g2(A1 = 1) = − 1
4

(

α(1 − μ2)
2 + 2

)

+ 1
4

√

(

α(1 − μ2)2 − 2
)2 + 8(μ2 − 1)(αμ2 + α − 2), with 0 < g2(A1 = 1) < 1,

and ∂g2
∂ A1

= (μ2−1)(αμ2+α−2)
√

(α(μ2−1)2−2)
2+8(μ2−1)A1(αμ2+α−2)

− 1 < 0. ��

Summarizing, the function g3(A1) is a horizontal line at A2 = 0, and both g1(A1)

and g2(A1) are strictly decreasing continuous functions satisfying the requirement
that for all A2 ∈ (0, 1), g−1

1 (A2) ∈ (0, 1) and for all A2 ∈ (0, 1), g2(A1) ∈ (0, 1).
It therefore follows that g1(A1) and g2(A1) always cross once, defining the “inner”
stationary state. Moreover, g1(A1) and g3(A1) also cross once at the horizontal line
A2 = 0, defining the “edge” stationary state. See the left panel of Fig. 2.

These functions divide the space A1 × A2 = [0, 1] × [0, 1]\{(0, 0)} into four
regions. It is straightforward to determine the sign of functions F1 and F2 in those
regions and to obtain the phase diagram. See the left panel of Fig. 2. It follows that
the “edge” stationary state in which A2 = 0 is unstable. However, any point on the
line A2 = 0 converges to this edge stationary state. The following lemma states the
stability of the “inner” stationary state.

Lemma 3 The inner stationary state is globally stable in A1 × A2 = [0, 1]× (0, 1].29

Proof Two preliminary results are needed:

Claim 2 If A2(t) < (>) g2 (A1(t)), then A2(t + 1) < (>) g2 (A1(t)).

29 It is globally stable with the exception of the line on which A2 = 0. On this line, the dynamics converge
to the edge stationary state.
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Proof Weprove the claimwith “<” (the proofwith “>” is analogous).Note that for any
point below the function g2(A1), in the next period A2 increases since F̄2(A1, A2) > 0
below g2(A1). Claim 2 implies that in one period the increase in the vertical direction
never crosses the function g2(A1).30 This claim is equivalent to proving that for any
Ā1 ∈ (0, 1) and A2 < g2( Ā1), f2( Ā1, A2) < g2( Ā1). We prove this.

First, note that f2 (A1, A2 = 0) = 0, and
∂ f2(A1,A2)

∂ A2
= A1

(A1+A2)
3 ((2 − α) A1 + (A2 − A1) μ2 + αμ2 (A1 + A2 (1 − μ2)))

> 0. Because of Lemma 2, for any Ā1 ∈ (0, 1) there is a unique Ā2 such that
Ā2 = g1( Ā1); consequently, f2

(

Ā1, Ā2
) = Ā2. As f2 is increasing in A2 and

f2 (A1, A2 = 0) = 0, then for all A2 = (

0, Ā2
)

, f2
(

Ā1, A2
)

< Ā2. ��
Claim 3 If A1(t) < (>) g−1

1 (A2(t)), then A1(t + 1) < (>) g−1
1 (A2(t)).

Proof We prove the claim with “<” (the proof with “>” is analogous). Note that
for any point to the left of function g1(A1), in the next period A1 increases since
F̄1(A1, A2) > 0. Claim 2 implies that the increase in the horizontal direction never
crosses function g1(A1). This claim is equivalent to proving that for any Ā2 ∈ (0, 1)
and for any A1 < g−1

1

(

Ā2
)

, f1(A1, Ā2) < g−1
1

(

Ā2
)

.

First note that f1 (A1 = 0, A2) > 0 and ∂ f1(A1,A2)
∂ A1

= A2
((

2μ1−αμ2
1+2αμ2−αμ2

2

)

A1+
(

α
(

μ2
2−μ2

1

)+2(2−α)(1−μ2)+2μ1
)

A2
)

2(A1+A2)
3 > 0.

Because of Lemma 1, for any Ā2 ∈ (0, 1) there is a unique Ā1 such that
Ā2 = g1( Ā1); consequently f1

(

Ā1, Ā2
) = Ā1. As f1 is increasing in A1 and

f2 (A1, A2 = 0) > 0, then for all A1 = (

0, Ā1
)

, f1
(

A1, Ā2
)

< Ā1. ��
As mentioned above, there are always four regions in A1 × A2 = [0, 1] × (0, 1].

See the left panel of Fig. 2. Now consider any initial point A(t ′) = (A1(t ′), A2(t ′))
belonging to Region A. We show that the system always converges to the inner sta-
tionary state. Note that as this region is to the left of g1 (A1) and below g2 (A1),
A1(t ′) < A1(t ′ +1) and A′

2(t) < A2(t ′ +1), i.e., A(t ′ +1) is to the right of and above
A(t ′). This implies that in time, provided that the system stays in Region A, in each
period the outlets’ audiences come closer to Region B, C, D or to the inner stationary
state. Eventually, only four scenarios could occur:

1. For any t > t ′, the audiences remain in Region A. In this case, given the phase
diagram, they necessarily converge to the inner stationary state.

2. At a certain t ′′ > t ′, audiences jump to Region B. In this case, they will remain
in Region B for any t > t ′′. First note that in this Region A1(t ′′) < A1(t ′′ + 1)
and A2(t ′) > A2(t ′′ + 1), i.e., A(t ′′ + 1) is to the right and below of A(t ′′). Note
that both g1 (A1) and g2 (A1) are strictly decreasing; thus, by Claims 2 and 3, an
outlet’s audience can never jump out of this region for any t > t ′′. Consequently,
in this case audiences necessarily converge to the inner stationary state.

3. At a certain t ′′ > t ′, audiences jump to Region C. This case is analogous to case
2; hence, audiences remain in Region C for any t > t ′′ and eventually converge to
the inner stationary state.

30 Note that this does not imply that in the next period the dynamics will not jump over g2(A1). It fact,
this can occur because A1 changes and g2(A1) is decreasing.
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4. At a certain t ′′ > t ′, audiences jump toRegionD. In this case, the audiences at t ′′−1
are in Region A, and at t ′′ they are in Region D. Let A∗

1 be the audience of outlet
1 in the inner stationary state. Necessarily

∣

∣A1(t ′′ − 1) − A∗
1

∣

∣ >
∣

∣A1(t ′′) − A∗
1

∣

∣,
because of Claims 2 and 3. In this region, the argument used in Region A can be
applied. Therefore, audiences will converge to the inner stationary state given that
if they jump from Region A to D and vice versa they will come closer to the inner
stationary state in each period and will eventually converge.

The same logic applies to the study of the dynamics for an initial point in any of the
other four regions. ��
Proof of Proposition 2 F1(A1, A2) = −2A3

1 − A2
1

(

α(1 − μ1)
2 + 4A2 − 2

)

− A1A2(α((μ1−4)μ1− (μ2−2)μ2+2)+2(μ1+ A2−2))+2(α−1)A2
2(μ1−μ2).

Operating,
F2(A1, A2) = −(2A2

1 + 2A1(−αμ2 + α + μ2 + 2A2 − 2) + A2(α(μ2 − 1)2 +
2(A2 − 1))).

Setting A1 = A2 = A and solving the equation system {F1 = 0, F2 = 0} for A and
α, we obtain that the solutions are α = − 2

μ1+μ2−4 and A1 = A2 = 1
4

(μ1−3)(μ2−3)
4−(μ1+μ2)

.

We define α̂A = − 2
μ1+μ2−4 . ��

Proof of Proposition 3 Since F1,news = μ2 − μ1 + (1−μ2)A1
A1+A2

and F2,news = (1−μ2)A2
A1+A2

,

F1,news ≤ F2,news if and only if A1 ≤ A2
(1+μ1−2μ2)

1−μ1
.

Next, we substitute A1 = A2
(1+μ1−2μ2)

1−μ1
in the following two equations:

F1(A1, A2) = −2A3
1−A2

1

(

α(1 − μ1)
2 + 4A2 − 2

)−A1A2(α((μ1−4)μ1−(μ2−
2)μ2 + 2) + 2(μ1 + A2 − 2)) + 2(α − 1)A2

2(μ1 − μ2) = 0. Operating,
F2(A1, A2) = −(2A2

1 + 2A1(−αμ2 + α + μ2 + 2A2 − 2) + A2(α(μ2 − 1)2 +
2(A2 − 1))) = 0.

Solving the system for A2 and α, we obtain α = 4(1−μ2)

5−μ2
1−6μ2+2μ2μ1

, which is always

greater than zero. However, it is smaller than one if and only if μ1 > 2μ2 − 1. ��
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