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Experiences in Artificial Stock Markets

Gregor Lenhard∗
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Abstract

Recent survey evidence suggests that investors form beliefs about future stock returns

by predominantly extrapolating their own experience: They overweight returns they

have personally experienced while underweighting returns from earlier years and con-

sequently expect high (low) stock market returns when they observe bullish (bearish)

markets in their lifespan. Such events are difficult to reconcile with the existing mod-

els. This paper introduces a simple agent-based model for simulating artificial stock

markets in which mean-variance optimizing investors have heterogeneous beliefs about

future capital gains to form their expectations. Using this framework, I successfully

reproduce various stylized facts from the empirical finance literature, such as underdi-

versification, the predictive power of the price-dividend ratio, and the autocorrelation

of price changes. The experimental findings show that the most realistic market scenar-

ios are produced when agents have a bias for recent returns. The study also established

a link between underdiversification of investor portfolios and personal experiences.
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1 Introduction

Research on the dynamics of aggregate asset prices has aimed to explain various empirical

phenomena. These include the findings on the predictability of stock market returns through

the aggregate dividend-price ratio (Campbell and Shiller, 1988), the inefficiency of house-

hold decisions (Calvet et al., 2009), and other stylized facts like autocorrelation, fat tails,

or volatility clustering of asset returns (Cutler et al., 1991). Both conventional and behav-

ioral models have sought to reconcile these observations. When it comes to heterogenous

simulation models, there is extensive research on the impact of different trading strategies

or the fraction of different trader types on the dynamics of aggregated asset prices. In these

models, agents usually take the same data as input to form their expectations. However,

studies on the impact of individual experiences of agents on subsequent market outcomes,

are rather sparse.

This work provides a novel agent-based model (ABM) approach to explore the role of

personal experiences with regard to emerging aggregated asset prices. the model aims to

explicitly include the age, as well as a weighting scheme for experienced returns, and observe

the consistency of this market with hypotheses from the literature above. The results show

that markets populated with agents who have a stronger bias toward recent returns are

more similar to various stylized facts, particularly regarding the predictive power of the

dividend-price ratio and the inefficiency (underdiversification) of agent portfolios.

This study aims to contribute to the literature on behavioral finance. Motivated by the

psychological evidence of Tversky and Kahneman (1973) on the role of personal experiences

and availability bias, Malmendier and Nagel (2011) find that individual risk-taking behavior

is closely related to age and personally experienced returns. For instance, individuals who

have experienced higher stock market returns were more willing to participate in the stock

market, had a higher willingness to take financial risk, and, conditional on participating,

invested a higher proportion of their assets in stocks. They also show that individuals

are strongly influenced by more recent data, which has an even stronger sensitivity in the
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case of younger individuals. In a similar work, Malmendier and Nagel (2016) show that

individuals also form their beliefs about future inflation based on an age-dependent updating

of expectations, where young individuals update their expectations more strongly than older

individuals, with a more extended data series accumulated in their lifetime. They argue that

agents put more weight on realizations during their lifetimes than on other historical data.

Both their studies suggest that the average consumer’s microeconomic risk-taking behavior

affects the macro risk-taking, and hence aggregated asset prices.

I also extend the broader literature on artificial stock markets, heterogeneous agent mod-

els (HAMs), and ABMs (e.g., Brock and Hommes (1998) and LeBaron (2002)). These mod-

els were evolved to better understand heterogeneous beliefs and behavioral decision-making,

which may change over time in financial markets. They view stock market dynamics as a re-

sult of interactions between heterogeneous traders with different behavioral rules and trading

strategies. An important aspect of these models is the endogenous price mechanism and the

expectation feedback. Agents’ decisions are based on predictions of endogenous variables,

whose actual values are determined by collective expectations, leading to a co-evolution of

beliefs and asset prices over time. HAMs can replicate market fluctuations and provide a

deeper understanding of dynamic forces that drive macro outcomes. Notable developments

in this area were summarized in Hommes (2006), LeBaron (2006), Chiarella et al. (2009),

Hommes and Wagener (2009), Lux (2009), Westerhoff et al. (2009), Chiarella et al. (2013),

and Hommes (2013). HAMs are closely related to agent-based models (ABMs), which are

more computationally-oriented and allow for a larger number of interacting agents in a net-

work structure. ABMs can be very powerful for simulating and observing macro structure

outcomes based on microstructure behavior.

The rest of this paper is structured the following way: The next section provides an intro-

duction to the model and its vital characteristics, including a metric for the agents’ individual

experience, the asset market, its participants, and the market clearing mechanism. Section

3 outlines the experimental design, the fixed parameters, and the flexible hyperparameters
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selected to showcase the model’s capabilities. Section 4 summarizes the experimental results

and reconciles various well-known stylized facts. Lastly, Section 5 concludes this work and

gives a glimpse into future research.

2 Methodology

I consider a discrete-time multi-asset financial market where two groups of individuals,

chartists and fundamentalists, interact to determine the prices of assets and wealth. Each

agent allocates their wealth between three risky assets and one risk-free asset by maximizing

myopic expected utility in every period. The key characteristic of this framework is the

heterogeneity of the acting agents, who have divergent beliefs about the price change in the

next period depending on their age and type. Chartists follow trend extrapolation, while

fundamentalists anticipate a return to the fundamental price. Younger agents consider a

shorter time window when forming their expectations. Additionally, the optimal demand

for the risky asset by investors is influenced by wealth as a consequence of Constant Rela-

tive Risk Aversion (CRRA) utility. The market price is determined by a Walrasian market

clearing mechanism that adjusts market prices based on excess demand.

2.1 Agents’ experience

Agents use their personal experience to determine their expectations on important measures

such as returns, dividends, and volatility. They achieve this by using a weighted average

function, as explained in Malmendier and Nagel (2011). This function assigns different

weights to experiences from the distant past and the recent past. Consider N agents denoted

by i = 1, 2, .., Nf , Nf + 1, .., N where Nf is the number of fundamentalists, N is the total

number of traders and the difference N −Nf = Nc represents the number of chartists. Let

t be the discrete-time indicator t = 1, 2, .., T . Specifically, each individual i at time t uses a
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Figure 1: Weighting functions for different values of λ for a 50-year-old individual.

personal weighted average function, which is

wi,t(k, λ) =
(agei,t − k)λ∑agei,t−1

k=1 (agei,t − k)λ
, (1)

where the weights wi,t go back to the birth year and depend on the age of the individual

agei,t, the numbers of years k that have passed, and a parameter λ which controls the shape

of the weighting function. The parameter λ plays an important role in this model. As shown

in Figure 1, the weight function decays geometrically for λ > 0 (concave for λ < 1 and

convex for λ > 1), increases for λ < 0, and for λ = 0, the weights remain constant, resulting

in a simple average. According to the study conducted by Malmendier and Nagel (2011), λ

typically has a non-negative value, implying that agents will give recent observations at least

the same weight as very distant ones. Empirically, they find a higher weighting of recent

returns with a value of about λ = 1.325. However, depending on the observed variable, this

is subject to some variation.
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2.2 Asset market

I consider an investment universe where agents can invest in two types of assets. The first

is a risk-free asset with a perfectly elastic supply and a constant interest rate r in each

time step that is exogenously given. This could be interpreted as a risk-free government

bond or a bank account. The second type are three risky assets indexed by j = 1, 2, 3. Let

Pt =
[
P1,t, P2,t, P3,t

]⊤
be the 3 × 1 column vector of risky asset prices at time t, which will

be determined endogenously within the model. Each asset has a constant dividend stream

Dt =
[
D1,t, D2,t, D3,t

]⊤
, which is modeled as an arithmetic Brownian Motion. Asset j’s

change in dividend level is described as

dDj,t = µj · dt+ σj · dωj,t, (2)

where ωj,t is a Wiener process, µj controls the expected dividend changes and σj its standard

deviation. Both parameters µj and σj are constant over time but can be different for each

asset. Let rt =
[
r1,t, r2,t, r3,t,

]⊤
be the vector of risky asset rate of returns, given by

rt =
Pt +Dt

Pt−1

− 1, (3)

that consists of capital gains and dividend yields. Note that in (3) the fraction represents an

element-wise division of each component of the vectors in the nominator and denominator.

This approach of element-wise vector division is consistently applied to all vector fractions

presented throughout this paper.Further, let

yt =
Pt

Pt−1

and ρt =
Dt

Pt−1

− 1

(4)

be the capital gains and dividend yields, respectively, then rt = yt + ρt. Traders’ wealth is

described by the scalar Wi,t and changes depending on the sum of returns of the held assets,
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that is

Wi,t+1 −Wi,t = r
(
1− x⊤

i,t1
)
Wi,t +Wi,tx

⊤
i,trt, (5)

where xi,t is the 3 × 1 vector that describes the wealth proportion invested in each risky

asset by individual i at time t. In this study, the sum of invested wealth proportion cannot

exceed one (∥xi,t∥1 ≤ 1), and short selling is permitted.

At every time step, investors follow a myopic mean-variance optimizer approach to decide

the amount they want to invest in different assets. They do this by maximizing a CRRA

(power) utility function. This function is defined by

ui,t(Wi,t+1) =


1− γ

(
W
1−γ

) 1
γ−1

(γ ̸= 1),

ln(W ) (γ = 1).

(6)

where ui represents this agent’s utility and γ is the parameter of relative risk aversion which

is the same for all agents. The formula for the maximization of an individual investor’s i

expected utility is given by

max
x

Ei,t

(
ui,t(Wi,t+1)

)
, (7)

where Ei,t refers to the expectations formed by agent i condititional on his information up to

time t. Suppose Ei,t

[
rt+1

]
and Ωi,t denote the conditional expectation and covariance matrix

of returns on a risky asset in time t + 1. The optimal solution for portfolio weight demand

is generally given by

xi,t =
∥∥∥1
γ
Ω−1

i,t

(
Ei,t(rt+1)− r

)∥∥∥
1
, (8)

where Ei,t(rt+1)−r represents the vector of expected excess returns. The exact derivation for

these conditional expectations differs depending on the type of trader and will be explained

in the next section.
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2.3 Fundamentalists

Fundamentalists are denoted by (f) and assume that risky assets have a fundamental value

P⋆
t =

[
P ⋆
1,t, P

⋆
2,t, P

⋆
3,t

]⊤
, which they valuate according to the Gordon Growth Model. Knowing

that

P ⋆
j,t ≡

∞∑
τ=1

E(f)
i,t (Dj,t+τ )

(1 + c)τ
(9)

and that the expected dividend yield in t+ 1 is given by

E(f)
i,t (Dj,t+1) = (1 + µj)Dj,t (10)

one can obtain

P ⋆
j,t =

(1 + µj)Dj,t

c− µj

, (11)

where µj is the dividend growth rate and c the cost of equity capital. To estimate the

return expectations of fundamentalists, I use an assumption proposed by He and Li (2007).

Fundamentalists acknowledge the existence of traders who follow strategies different from

theirs. They realize that in the short run, the stock price might deviate from its fundamental

market value. However, they also assume that in the long run, it will eventually return to

its fundamental price. Therefore, fundamentalists calculate their expectations by adding a

fundamental asset price return component r⋆t to a mean reversion drift component towards

the fundamental price P⋆
t . This is expressed as:

E(f)
i,t (rt+1) =E(f)

i,t (r
⋆
t+1) + α

(P⋆
t −Pt

P⋆
t

)
,

where E(f)
i,t (r

⋆
t+1) =

agei,t−1∑
k=1

wi,t(k, λ)r
⋆
t−k,

and r⋆t =
P⋆

t +Dt

P⋆
t−1

.

(12)

This is very similar to the expression used in Chiarella et al. (2013), but it incorporates

personal experiences by using the weighting parameter wi,t, defined in (1), instead of the real
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fundamental return. The coefficient α > 0 represents the mean reversion coefficient, which

indicates how quickly they assume prices to return to the fundamental value. Intuitively,

fundamentalists believe that if a risky asset is overvalued, then the expected return will have

a negative sign, and vice versa with respect to the fundamental price.

Additionally, strictly following Chiarella et al. (2013), it is assumed that fundamentalists

have constant beliefs about the covariance matrix of returns.

Ω(f) = Ω0,

with Ω0 = diag(σ1, σ2, σ3),

(13)

where σj is the same as in the data-generating process for the dividends, which they are

aware of.

2.4 Chartists

Chartists represented by (c) do not know the fundamental value, and expect future returns

to follow the same trend as their past experiences. According to Malmendier and Nagel

(2011), experienced asset returns for chartists are defined as

E(c)
i,t (rt+1) =

agei,t−1∑
k=1

wi,t(k, λ)rt−k, (14)

where rt−k refers to the vector of returns in t − k and wi,t is also defined as in (1). This

specification captures the extrapolative behavior of the chartists, who expect returns to

continue similarly as in the past. Again note that only returns that agent i experienced up

to her personal age are considered in (14). The variance-covariance matrix of chartists is

given by

Ωc,t = κ

agei,t−1∑
k=1

wi,t(k, λ)
(
rt−k − E(c)

i,t (rt+1)
)(

rt−k − E(c)
i,t (rt+1)

)⊤
,

κ =
1

1−
∑agei,t−1

k=1 w2
i,t(k, λ)

,

(15)
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where E(c)
i,t (rt+1) is the vector of expected returns from (14), and the weights used are the

same as described in (1) and denoted by wi,t. The correction term κ ensures unbiasedness,

which reduces to the traditional (unbiased) sample covariance matrix if all weights are equal.

For a comprehensive understanding, refer to Galassi et al. (2021) for details. Agents with

positive values of λ give a higher weight to recent disturbances. Agents do not remember

returns and disturbances that occurred before their birth.

2.5 Market clearing

Various mechanisms are used in the literature for clearing the market. Some prominent

examples are: Forming a price via consensus belief given the average expectation of agents

(Chiarella et al., 2013); a price impact function which determines how much the price changes

depending on excess demand (Westerhoff et al., 2009); a central order matching mechanism,

where traders set bids and asks, and post market or limit orders (Chiarella and Iori, 2002).

Choosing a mechanism is a trade-off between its realism and the complexity of the mech-

anism. It also depends on other model features, such as the ability of agents to express a

demand for asset shares. Consensus belief, for instance, is rather simple as it only requires a

weighted average of the agents’ price expectations. On the other hand, double-auctioneering

requires exact demands for asset shares at different prices. Additionally, depending on the

model purpose, some market clearing mechanisms might be more useful than others.

For this study, the Walrasian auctioneering mechanism is used, which also is a common

method in the ABM literature to achieve market clearing (Brock and Hommes, 1998; Stanek

and Kukacka, 2018). The decision to implement this market-clearing mechanism is motivated

by twofold reasons. Firstly by the market microstructure behavior of the model, which has

been tested in previous experiments. For example, reconsidering the expectation formula of

fundamentalists in (12), one can see that fundamentalists can easily have negative return

expectations if they think the asset is overvalued and have the urge to sell. After a correction

of the price, they might have positive return expectations and trade in the other direction.
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Depending on the market clearing mechanism, this can lead to price disturbances. Using

a Walrasian auctioneer always requires a counterparty in order for a trade to occur. A

subtler second reason for doing this is to bypass the choice regarding the precise form of a

price impact function and its relationship to liquidity. As argued by e.g. Westerhoff (2004),

estimating such a function can often be difficult. The exact mechanism of the Walrasian

auctioneer is described as follows.

In this scenario, every agent solves an optimization problem as described in (8). They

treat the market-clearing price in that period as a parameter. An investor’s demand for

asset shares can be calculated based on her portfolio weight demand, current wealth, and

the current market price. More specifically, it is

zi,t =
Wi,t−1xi,t

Pt

, (16)

where zi,t denotes the vector of demand for asset shares. Again note that division is per-

formed element-wise. The auctioneer determines the excess demand at that price and has

to adjust it such that
Nf∑
i=1

zi,t +
N∑

i=Nf+1

zi,t = M (17)

where
∑

i zi,t is a 3 × 1 vector that aggregates the demand of each investor for the risky

assets, while M denotes the total number of outstanding stocks in the market. This equation

essentially represents the market clearing condition, which implies that at any given time,

the sum of stocks held by all agents must be equal to the total available stocks in the market,

i.e., M. Solving this equation is equivalent to finding the root of

Nf∑
i=1

zi,t +
N∑

i=Nf+1

zi,t −M = 0, (18)

which can be solved numerically. An intuitive way to explain this would be to imagine an

auctioneer who keeps announcing prices until a price is found where the excess demand is
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zero. This means that the total demand of agents who are willing to buy that stock is equal

to the total supply of sellers. As an initial guess of the iterative root finding procedure, I

take the last clearing price Pt−1. Once the new clearing price is determined, the wealth of

investors is adjusted according to

Wi,t =
(
1− x⊤

i,t1
)
Wi,t−1(1 + r) +Wi,t−1x

⊤
i,t

(
Pt +Dt

Pi,t−1

)
. (19)

3 Experimental design

This section presents the experimental design strategy and the model parameters selected

for analyzing the model framework. The idea is to investigate the impact of personal expe-

riences on emerging stock market properties. In order to do so, the following experimental

design has been developed: I apply fixed values to most of the parameters presented in the

previous sections based on empirical observations or evidence from the literature. Due to the

complexity, nonlinear interactions, and emergent properties of ABMs, a sensitivity analysis

will be performed, where two key factors (hyperparameters) are varied in order to better un-

derstand the system’s response. For each hyperparameter combination, I use the same seed

for the initialization of stochastic random numbers. This critically concerns the dividend

process of (2), which is the basis of the fundamentalist’s valuation. Using the same seed

makes all simulations of different hyperparameter combinations comparable to one another

since they all stem from the same stream of dividends and only differ in the behavior of the

acting agents. The described procedure is repeated , each time with a different seed.

To give an overview, all parameters are listed in Table 1. They are divided into three

categories of fixed parameters: Simulation, market, and agent-specific. For this simulation

study, weekly time steps will be used, and each year will consist of 52 weeks. A single

simulation will run for 50 years, so T = 52 · 50 = 2600 periods. The chosen values for

the dividend growth rate µj, its standard deviation σj, and the risk-free rate r will be

11



Parameter Description Value
Simulation Parameters

1/∆t Periods per year 52 (weekly)
T Simulation length 2600 weeks

Dividend schedule 13 weeks (quarterly)
Annualized Market Parameters

µ1, µ2, µ3 Dividend growth rates 0.030, 0.025, 0.020
σ1, σ2, σ3 Dividend standard deviations 0.15, 0.10, 0.07

r Risk-free rate 0.025
c Cost of capital 0.065

Population Parameters
Nf Number of fundamentalists 10
Nc Number of chartists 10
γ Risk aversion 1.5
α Mean reversion parameter 1/52∑
iWi,0 Initial cash 2000

Ages [15, 20, 25, 30, 35,
40, 45, 50, 55, 60]

Sensitivity Parameters
θ Age distribution [equal, old, young]

→ Figure 2
λ Experience weighting [0.0, 0.5, 1.0, 1.5, 2.5]

Table 1: Parameter values for the experiment

annualized by dividing by 52 and
√
52, respectively. Dividends are cumulated and paid out

on a quarterly basis. A quarter year is indexed by q and consists of 52/4 = 13 weeks. There

will be 10 fundamentalists (Nf = 10) and 10 chartists (Nc = 10) with the same risk aversion

parameter of γ = 1.5, which is a typical value for simulations of this kind. Agents will differ

from each other by their age, ranging from 15 to 60. On average, these 20 agents will start

with an initial cash amount of 100 (in total 2000), which may individually vary depending

on the agent’s proportion in the market. Investors with a higher proportion get more cash

and therefore have a higher price impact. In this model framework you could also interpret

it as having more agents of that type.

Turning to the flexible hyperparameters that vary in the sensitivity analysis, three dif-

ferent age distributions θ are presented in Figure 2, θ = equal, θ = old, and θ = young.

Different scenarios are depicted through the age distribution of the agents. For instance,
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Figure 2: Age distribution θ for the different scenarios

the young scenario includes more younger individuals, particularly those aged 15 to 30. In

contrast, the old scenario is populated by predominantly older agents, peaking at ages 55

and 60. The other scenario equal exhibits a perfectly equal distributed mass. It is important

to note that agents in the simulation are not assumed to get older. This decision was

made to observe market behavior with a fixed age structure over the medium and long term.

Introducing aging, mortality, and replacement of agents would introduce confounding factors

and disrupt the intended scenarios.

The second variable hyperparameter is the weighting parameter of Malmendier and Nagel

(2011), λ, which controls the shape of the weighting function that agents use to form their

expectations. This function is described in (1) and shown in Figure 1. It ranges from λ = 0.0,

so a perfectly flat weighting function and indicating the classic sample average, to λ = 2.5.

The latter indicates a steep geometrically decaying function that puts a strong weight on

recent returns.

All computations are performed in Python 3.10.8. Numerical computations use NumPy

1.24.1 (Harris et al., 2020), and most results were created using pandas 1.5.3 (The pandas

development team, 2022). Econometric OLS estimations in Section 4 are performed in

statsmodels 0.13.5 (Seabold and Perktold, 2010). The Walrasian auctioneering mechanism

was implemented using a root finding optimizer of the SciPy 1.10.0 (Virtanen et al., 2020)

toolbox. More specifically, I used the ‘hybr’ argument, which is a combination of the Powell

hybrid method and a numerical Jacobian approximation with a tolerance of 10−5, which was

13
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Figure 3: Example simulation for a normal age distribution and λ = 0.0
Notes: The figure shows weekly prices (top left) and returns (bottom right) of the three simulated assets
over a simulation period of T = 2600 (50 years). The agents’ asset holdings zi,t for each asset is shown in
the three right panels.

lowered to 10−4 and 10−3 if the optimizer did not converge.

An example of the simulation outcome is illustrated in Figure 3. The time series of

prices suggests that there can be phases when fundamental prices (lighter colored) and

actual market prices (solid colored) can drift apart for quite some time. The returns indicate

clusters of volatility. Based on the chart, it can be observed that chartists are more consistent

in their stock positions, while fundamentalists can be more variable in their behavior. This

can be attributed to their approach to building expectations. Chartists can depend on many

years of past data, while fundamentalists strongly rely on the current fundamental value.

The term ‘Market Maker’ indicates a long or short position, in rare cases, when the root

finder does not converge during the market clearing.
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4 Results

The findings of this paper are divided into four subsections that test multiple aspects of the

model and compare them to the facts of empirical data. The first subsection discusses the

predictive power of the price-dividend ratio. The second subsection investigates if the model

is able to reproduce underdiversification of agent portfolios. The last two sections compare

the autocorrelation of dividend-price ratios and market returns to the behavior in actual

data. For brevity, I adopt a concise notation for the dividend-price ratio, representing it as

Dt/Pt ≡ DPt.

4.1 Predictive power of the dividend-price ratio

One important principle of stock markets is that the dividend-price ratio predicts future re-

turns with a positive sign, and its predictive power is stronger over longer horizons (Campbell

and Shiller, 1988). In this study, I aim to investigate whether this simulation can produce

results that demonstrate the ability of the dividend-price ratio to predict future returns,

especially at longer horizons. It will be particularly interesting to observe this for different

population hyperparameters.

A more useful and structured way to express this evidence, suggested by Cochrane (2011),

is to use log values to highlight the present value identity of three univariate regressions: A

regression of future returns on the dividend-price ratio, a regression of future dividend growth

on the dividend-price ratio, and a regression of the future dividend-price ratio on the current

dividend-price ratio. Empirically, in the long run, the coefficients of these three regressions,

b
(q)
r , b

(q)
d , and b

(q)
dp roughly hold

1 ≈ b(q)r − b
(q)
d + b

(q)
dp . (20)

Moreover, in the long run, the three coefficients are roughly 1,0 and 0, respectively, meaning

that the dividend-price ratio shall forecast future returns, not its own growth and not its own

future value. This forecasting property has the following intuition. A sequence of positive
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dividend cash flows leads to a higher valuation of the fundamentalist’s stock price valuation.

This momentum is enforced by chartists, who follow the positive trend and increase their

demand for the asset which, in turn, pushes up the stock price. This chain of events leads

to an overvaluation and lowers the current dividend-price ratio. Subsequent price changes

are low on average. Price changes are therefore forecastable with a positive sign.

The performed regression of quarterly market returns over time t to time t + q on the

dividend-price ratio is
q∑

j=1

rt+j = a+ b(q)r · dpt + ϵrt+q,

q∑
j=1

∆dt+j = a+ b
(q)
d · dpt + ϵdt+q,

dpt+q = a+ b
(q)
dp · dpt + ϵdpt+q,

(21)

where dpt = log(DPt), rt = log(Rt), and dt = log(Dt) are the log values of the markets’

dividend-price ratio, the value-weighted market return, and the sum of all market dividends,

respectively.
∑q

j=1 rt+j and
∑q

j=1∆dt+j are the cumulative sums from t to t+q of the return

price differences and the dividends. These regressions are prone to autocorrelation of the

residuals up to and including q−1 observations which is mechanically caused by the overlap.

To address this, I report heteroskedasticity and autocorrelation consistent (HAC) standard

error estimators of Newey and West (1987) for all regressions when significance levels are

shown. The focus of this analysis is on the results of the first equation of (21), describing

the predictability of returns. To draw a full picture of the results, additional results can be

found in the Appendix B.

Table 2 displays this univariate regression result pairwise for all hyperparameter combi-

nations and over several quarterly horizons. Each column shows different experienced return

values (λ) from 0.0, indicating an equal weighting of all past returns, to 2.5, indicating a

strong consideration of recent returns. The rows have two dimensions, showing the differ-

ent age distributions as presented in Figure 2, and the quarterly lag-length q for the OLS

regression, namely a quarter of a year (q = 1), one year (q = 4), two years (q = 8), three
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Table 2: Predictive power of log dividends on future returns

λ 0.0 0.5 1.0 1.5 2.5
θ q

equal

1 0.588*** 0.572*** 0.556*** 0.541*** 0.515***
4 0.617*** 0.618*** 0.614*** 0.609*** 0.599***
8 0.67*** 0.696*** 0.713*** 0.725*** 0.739***
12 0.672*** 0.733*** 0.778*** 0.812*** 0.859***
16 0.642*** 0.733*** 0.803*** 0.858*** 0.937***

old

1 0.608*** 0.596*** 0.582*** 0.568*** 0.543***
4 0.62*** 0.625*** 0.623*** 0.62*** 0.61***
8 0.644*** 0.675*** 0.695*** 0.708*** 0.724***
12 0.612*** 0.675*** 0.722*** 0.758*** 0.81***
16 0.556*** 0.643*** 0.714*** 0.771*** 0.855***

young

1 0.546*** 0.533*** 0.517*** 0.502*** 0.476***
4 0.593*** 0.597*** 0.593*** 0.588*** 0.578***
8 0.676*** 0.703*** 0.72*** 0.73*** 0.743***
12 0.714*** 0.777*** 0.822*** 0.855*** 0.898***
16 0.716*** 0.811*** 0.882*** 0.936*** 1.009***

Notes: The table reports the coefficients b
(q)
r for univarate regressions of stock

price changes from time t to time t + q (in quarters),
∑q

j=1 rt+j = a + b
(q)
r ·

dpt + ϵrt+q. Asterisks indicate the significance level of b
(q)
r . ***, ** and * denote

significance at the 0.01, 0.05 and 0.1 level, respectively.
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years (q = 12), and four years (q = 16).

Two clear observations can be made from Table 2. Firstly, for short terms, stock return

predictability decreases as λ increases, while it increases for long horizons. For instance,

in the equal age distribution, the predictability of returns drops from 0.588 to 0.515 for

q = 1, whereas it grows from 0.642 to 0.937 for q = 16. This pattern is evident across all

age distributions. Secondly, stock markets with older populations have better predictability

of stock returns in the short run, while markets with younger populations show higher

predictability for longer horizons. By comparing different rows in Table 2, we can see that

for q = 1, the old (young) scenario reports coefficients ranging from 0.543 (0.476) to 0.608

(0.546), whereas for q = 16, the same coefficients range from 0.556 (0.716) to 0.855 (1.009).

Younger markets have the lowest b
(q)
r coefficient in the short run and the highest b coefficient

in the long run compared to any other scenario.

The results find that when older agents engage in the market, the predictability of longer

horizons becomes weaker. This is because their expectations are more persistent, and it

takes longer to correct an overvaluation. Similarly, a higher value of the λ parameter leads

to a quicker correction. These results are consistent with Barberis et al. (2015), who utilize

a general parameter to manage the strength of recent sentiment considerations of agents.

4.2 Underdiversification

The study of Calvet et al. (2007) investigates the risk characteristics of agents using Swedish

household data. They identify two main sources of inefficiency: Underdiversification (‘down’)

and non-participation (‘out’). The aim of this simulation is to provide insights into the

possible sources of underdiversification, as highlighted by the authors who demonstrate a

significant variation in household portfolios across different households, measured by the

Sharpe ratio. This variation is lucidly presented in Figure 2 of Calvet et al. (2007, p. 726).

To examine the characteristics of the agents’ portfolio mean-variance properties, I ran-

domly sample time points t from the simulation and obtain the portfolio weights of all
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chartists, denoted by x
(c)
i,t . To reduce clutter in notation, I omit the indices and use x. Using

the realized returns of each simulation, I estimate the first and second moments, namely the

mean µ̂ and covariance matrix Ω̂. The excess returns are annualized and calculated over the

risk-free rate, which was set to r = 2.5% in the experiment. The individual agent portfolio

mean and variance is calculated using via ri,t = xT µ̂− r and σ2
i,t = x⊤Ω̂x, respectively. The

market portfolio returns rm and variance σ2
r is calculated using the Sharpe ratio optimal

portfolio weights x⋆ obtained through (8). This procedure is repeated for each simulation

seed used in the experiment.

I report an example of this procedure for one simulation seed in Figure 4, where agent

portfolios are in the mean-standard deviation plane. The plot shows the result of one simu-

lation seed and presents all the hyperparameter combinations separately. The figure clearly

demonstrates the impact of the λ-parameter on the observations. For lower values of λ, the

scatter plots show the points to be closer to each other. However, for increasing values of

λ, the points start to disperse further from each other. Upon comparing the scatter plots

row-wise, there difference between them is minor but visible.

To gain a better understanding of how agents diversify their portfolios, Table 3 sum-

marizes those results for all simulated runs of the experiment. I use the same quantitative

assessment as Calvet et al. (2007) to assess the losses that agents incur due to suboptimal

diversification. This method involves calculating the relative Sharpe ratio loss (RSRL) by

comparing an individual’s Sharpe ratio to a benchmark, which, in this case, is the market

portfolio. The RSRL measures the loss that arises from imperfect diversification. It is given

by

RSRLi = 1− Si

Sm

, (22)

where Si is the agents’ Sharpe ratio obtained from ri and σi. Sm is the Sharpe ratio of

the market portfolio. As a reminder, Sm is calculated separately for each simulation seed.

The columns of Table 3 show several percentiles as well as the mean of all RSRLi that were

obtained from all agent portfolios during the experiment. The rows indicate all combinations
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Figure 4: Example scatterplot of agent portfolios
Notes: The graph shows multiple scatter plots that illustrate the mean and standard deviation of agent stock
portfolio returns. Rows indicate the age distribution of a population (θ), and columns indicate the weighting
parameter λ. The graph shows all chartists that come from the same randomly chosen 20 points in time of
one simulation seed.
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Table 3: Diversification loss RSRL

percentile mean 25th 50th 75th 95th 99th
θ λ

equal

0.0 0.057 0.006 0.019 0.069 0.247 0.368
0.5 0.051 0.005 0.016 0.057 0.233 0.372
1.0 0.052 0.005 0.018 0.057 0.232 0.393
1.5 0.055 0.007 0.021 0.06 0.241 0.421
2.5 0.066 0.009 0.027 0.071 0.287 0.501

old

0.0 0.057 0.006 0.019 0.07 0.25 0.369
0.5 0.052 0.005 0.016 0.058 0.238 0.378
1.0 0.053 0.005 0.018 0.058 0.237 0.395
1.5 0.056 0.007 0.021 0.061 0.246 0.429
2.5 0.067 0.01 0.028 0.072 0.289 0.506

young

0.0 0.056 0.005 0.019 0.067 0.243 0.366
0.5 0.05 0.005 0.016 0.057 0.228 0.364
1.0 0.051 0.005 0.018 0.055 0.229 0.392
1.5 0.054 0.007 0.02 0.058 0.238 0.415
2.5 0.064 0.009 0.027 0.069 0.28 0.508

Notes: The table shows the mean as well as the 25th, 50th, 75th, 95th, and
99th percentile of the relative Sharpe ratio loss (RSRL) for the different age
distributions and λ parameters.

of age distributions and λ-values.

The results show that agents are generally well diversified with a mean diversification

loss between 5% and 7%, independent of the hyperparameter setting. Even at the 75th

percentile, the diversification loss only increases slightly. Similar to the findings in Calvet

et al. (2007), it is only a minority that is severely underdiversified. Looking at the 95th

and 99th percentile, the RSRL reaches levels of 24% up to almost 50%. As observed in

scatterplots of Figure 4, where an increase in λ was aligned with the dispersion of agent

portfolios, the under-diversification also increases in λ at every percentile. This pattern

makes sense because high values of λ indicate a bias for very recent asset returns, which may

not be representative of the overall data-generating process.

Turning to the question of whether having more data leads to better diversification. Com-

paring young and old agents, it appears that having more data is not always best. Younger
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agents tend to perform better when we look at the diversification loss at different percentiles.

For instance, at the 75th percentile, the diversification loss of old agents ranges from 5.9%

to 7.3%, while young agents experience a loss ranging from 5.7% to 6.9%. Although the

difference is minor, it is noticeable across different hyperparameter combinations. Another

visible pattern is that the RSRL loss is U-shaped for increasing values of λ between the 25th

and 75th percentile of the diversification loss distributions. Within each hyperparameter

combination, the RSRL is lowest for medium values of λ at around 0.5 to 1.5. These findings

imply that having a slight preference for recent data results in better portfolio diversification,

as measured by a lower diversification loss. Therefore, having more data, as in the case of the

old age distribution, does not necessarily improve portfolio diversification in this artificial

economy.

4.3 Autocorrelation of dividend-price ratios

Whether the behavior of price-dividend ratios in this economic simulation is similar to what

is observed in empirical data will be investigated next. Studies have shown that the auto-

correlation of these ratios is high at short lags and decreases to zero at longer lags (Barberis

et al., 2015). To analyze this, the partial autocorrelation parameters ϕq,q are calculated at

the same lags as in subsection 4.1 through multiple regressions. More specifically

DPt = ϕ0,1 + ϕ1,1DPt−1 + ϵ1t,

DPt = ϕ0,4 + ϕ1,4DPt−1 + ...+ ϕ4,4DPt−4 + ϵ4t,

...

DPt = ϕ0,16 + ϕ1,16DPt−1 + ...+ ϕ16,16DPt−16 + ϵ16t,

(23)

where q indicates the quarters of dividend streams and ϕq,q is the autocorrelation parameter

of DPt at lag q. Table 4 reports the resulting partial autocorrelation parameters for the

market’s dividend-price ratio for different hyperparameter combinations. It shows that the
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Table 4: Autocorrelation parameter ϕq,q of DPt

λ 0.0 0.5 1.0 1.5 2.5
θ q

equal

1 0.499 0.508 0.518 0.528 0.534
4 0.182 0.18 0.177 0.173 0.165
8 0.087 0.082 0.075 0.068 0.06
12 0.055 0.047 0.04 0.035 0.027
16 0.018 0.012 0.007 0.004 0.001

old

1 0.465 0.477 0.491 0.502 0.52
4 0.179 0.179 0.178 0.176 0.172
8 0.09 0.088 0.084 0.079 0.07
12 0.06 0.056 0.051 0.046 0.036
16 0.021 0.018 0.014 0.011 0.005

young

1 0.533 0.536 0.543 0.523 0.527
4 0.185 0.179 0.174 0.161 0.142
8 0.082 0.075 0.066 0.036 0.05
12 0.046 0.038 0.031 0.026 0.007
16 0.011 0.004 0.0 -0.001 0.002

Notes: The table reports the value of the partial autocor-
relation of DPt and DPt−q at different lags, denoted by
q = 1, 4, 8, 12, 16 (in quarters) for several value pairs of the
age distribution parameter θ and the weighting parameter λ.
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Table 5: Autocorrelation parameter ϕl,l of Rt

λ 0.0 0.5 1.0 1.5 2.5
θ l

equal

1 -0.199 -0.195 -0.19 -0.186 -0.17
4 -0.006 -0.005 -0.005 -0.005 -0.003
8 -0.013 -0.013 -0.012 -0.012 -0.015
12 0.007 0.007 0.008 0.009 0.008
16 -0.005 -0.005 -0.005 -0.005 -0.005

old

1 -0.203 -0.199 -0.196 -0.192 -0.186
4 -0.006 -0.006 -0.005 -0.005 -0.004
8 -0.013 -0.013 -0.013 -0.012 -0.012
12 0.006 0.007 0.007 0.008 0.009
16 -0.005 -0.005 -0.005 -0.005 -0.006

young

1 -0.195 -0.19 -0.184 -0.168 -0.157
4 -0.006 -0.005 -0.004 -0.003 -0.004
8 -0.013 -0.012 -0.012 -0.016 -0.02
12 0.007 0.008 0.009 0.008 0.004
16 -0.005 -0.005 -0.005 -0.008 -0.007

Notes: The table reports the value of the partial autocorrelation
of the market returns Rt and Rt−l at different lags, denoted by
l = 1, 4, 8, 12, 16 (in weeks) for several value pairs of the age
distribution parameter θ and the weighting parameter λ.

model is capable of reproducing the mentioned empirical facts with high autocorrelations at

lag q = 1 and a steep decline for higher lags. It can be seen that even though it is rather

minor, the decline is slower for the older population. This is due to the fact that expectations

are more persistent for most agents in this population.

4.4 Autocorrelation of market returns

Empirical observations also show that stock market returns are positively autocorrelated

at shorter lags and weakly negatively at longer lags (Cutler et al., 1991). To verify this

behavior, a procedure similar to the previous one is employed in the model, but this time

using weekly partial autocorrelations, denoted by ϕl,l. Multiple regressions are run at lags
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l = 1, 4, 8, 12, 16, those are

Rt = ϕ0,1 + ϕ1,1Rt−1 + ϵ1t,

Rt = ϕ0,4 + ϕ1,4Rt−1 + ...+ ϕ4,4Rt−4 + ϵ4t,

...

Rt = ϕ0,16 + ϕ1,16Rt−1 + ...+ ϕ16,16Rt−16 + ϵ16t,

(24)

where l stands for the weeks, so that is lags of one week, one month, two months, three

months, and four months. The value of ϕl,l is the autocorrelation parameter of Rt at lag l.

The results of Table 5 report the results of these regressions. Most returns are negatively

correlated, with a stronger value at lag l = 1. This effect is more pronounced in cases where

agents are older and when λ is lower.

At longer lags, this economy exhibits similar patterns to the data. Positive price changes

have a weak negative impact on predicting somewhat distant price changes. This can be

explained intuitively. Positive return shocks are amplified by the behavior of chartists who

cause stock prices to rise even further. However, when stock markets are overvalued, the

subsequent long-term price changes are generally low, on average. The same applies in

reverse.

However, in the short run, the results in Table 5 exhibit a rather different picture to the

empirical evidence. Even though this might come as a surprise, there is an explanation for

this behavior. Suppose again there is a positive shock on the fundamental stock price due

to positive dividend news in the market at time t. This news is first traded by the funda-

mentalists as laid out in (12), who push the price in t+ 1. Since most market participants,

especially older ones with a low λ value, consider a much longer time series for their market

expectations, this trend gets corrected to some extent in the very short run (i.e., at t + 2).

Therefore, by design at lag l = 1, a price shock caused by fundamentalists predicts a negative

correction induced by chartists.1

1As pointed out by Barberis et al. (2015), some earlier models in the literature do indeed show positive
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5 Conclusion

The study introduced an agent-based simulation of an artificial stock market, where two

distinct types of traders determine the prices of multiple risky assets. The model incorporates

agent heterogeneity in terms of age structure and a personal bias towards considering recently

experienced returns. By applying a sensitivity analysis to the model, the study aimed to gain

a deeper understanding of how individual risk-taking behavior impacts emerging aggregated

asset prices.

The results show that the model is able to replicate most of the well-known stylized

facts of financial markets, such as the predictive power of the price-dividend ratio and the

inefficiency (underdiversification) of agent portfolios. The study also confirms the findings of

Malmendier and Nagel (2011, 2016), demonstrating that market outcomes are particularly

close to empirical data when agents overweight returns from their recent personal experiences.

It has been shown that in those scenarios, the market returns are most predictable in the

long run. Some stylized facts become even more evident when simulating a young population

of agents. Although the reasons for the underdiversification of investors’ portfolios can have

multiple causes, it has been highlighted that personal experiences can be one source of that.

It was also interesting to see that in the presented setting of chartists and fundamentalists,

the chartists were more consistent in their behavior than the fundamentalists. In many ways,

therefore, the model offers a new perspective on these market phenomena.

The model is also prone to some limitations. While it is possible to reproduce the

long-term autocorrelation of asset returns, as observed in the empirical data, the short-

term autocorrelation was limited due to the model’s design. Other limitations have created

opportunities for future research. For instance, the study conducted by Calvet et al. (2007)

tested for additional behavioral biases, such as non-participation or financial illiteracy, which

could additionally help explain the inefficiency of agent portfolios. One way to incorporate

autocorrelations at lag 1, e.g. Barberis and Shleifer (2003). In these models, extrapolator’s asset demand at
time t depends on the lagged price change from t − 2 to time t − 1 instead of t − 1 to t. A positive price
shock in t− 1 enters extrapolator’s expectation only at time t, and leads to positive autocorrelation.
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this into simulations like ours is through stronger interactions between agents e.g. through a

switching mechanism of types – an approach commonly used in ABM literature. This area

is a subject for future research.
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A Appendix: Time series of a simulation example
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Figure 5: Example simulation with burn-in period
Notes: The figure shows weekly prices (top) and returns (bottom) of the three simulated assets over a burn-in
period of 3120 weeks (60 years) and a simulation period of T = 2600 (50 years). Lighter lines indicate the
fundamental price, while solid lines represent the actual market price.

Figure 5 is an extension to Figure 3. The vertical black line in the graph indicates the

start of the actual simulation after the burn-in period (60 years). It is evident from the graph

that the burn-in period is very smooth since it is governed by the data-generating process as

described in (2). After that, agents trade according to the previously described Walrasian

market mechanism, which leads to a more (clustered) volatile market with fat tails.
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B Appendix: Additional OLS results

The following two tables show additional OLS results, namely a regression of future dividend

growth
∑q

j=1 ∆dt+j on the dividend-price ratio and a regression of the future dividend-price

ratio dpt+q on the current dividend-price ratio. The exact procedure follows (21).

Table 6: Predictive power of log dividends for future dividend growth

λ 0.0 0.5 1.0 1.5 2.5
θ q

equal

1 0.131*** 0.126*** 0.12*** 0.114*** 0.103***
4 0.128*** 0.133*** 0.133*** 0.129*** 0.119***
8 0.131** 0.155*** 0.168*** 0.173*** 0.172***
12 0.077 0.128* 0.161** 0.181** 0.199***
16 -0.013 0.062 0.116 0.153* 0.194**

old

1 0.134*** 0.132*** 0.128*** 0.123*** 0.114***
4 0.118*** 0.128*** 0.132*** 0.132*** 0.129***
8 0.097 0.128** 0.148** 0.161*** 0.172***
12 0.015 0.072 0.114 0.144* 0.179**
16 -0.099 -0.02 0.043 0.089 0.15*

young

1 0.122*** 0.116*** 0.109*** 0.102*** 0.089***
4 0.131*** 0.133*** 0.128*** 0.121*** 0.104***
8 0.157*** 0.174*** 0.179*** 0.177*** 0.162***
12 0.132* 0.173** 0.196*** 0.207*** 0.206***
16 0.067 0.135 0.178** 0.204*** 0.223***

Notes: The table reports the coefficients b
(q)
d for univarate regressions of stock price changes from time t to

time t+ q (in quarters),
∑q

j=1 ∆dt+j = a+ b
(q)
d · dpt + ϵdt+q. Asterisks indicate the significance level of b

(q)
d .

***, ** and * denote significance at the 0.01, 0.05 and 0.1 level, respectively.

31



Table 7: Predictive power of log dividends for future dividends

λ 0.0 0.5 1.0 1.5 2.5
θ q

equal

1 0.553*** 0.564*** 0.574*** 0.584*** 0.598***
4 0.552*** 0.557*** 0.561*** 0.563*** 0.563***
8 0.541*** 0.539*** 0.535*** 0.53*** 0.514***
12 0.524*** 0.514*** 0.502*** 0.487*** 0.455***
16 0.499*** 0.483*** 0.465*** 0.445*** 0.402***

old

1 0.536*** 0.545*** 0.556*** 0.566*** 0.582***
4 0.539*** 0.544*** 0.55*** 0.555*** 0.561***
8 0.531*** 0.532*** 0.534*** 0.534*** 0.529***
12 0.52*** 0.515*** 0.511*** 0.504*** 0.487***
16 0.498*** 0.49*** 0.481*** 0.471*** 0.446***

young

1 0.586*** 0.594*** 0.602*** 0.611*** 0.623***
4 0.581*** 0.58*** 0.579*** 0.577*** 0.57***
8 0.564*** 0.553*** 0.541*** 0.528*** 0.5***
12 0.54*** 0.518*** 0.494*** 0.469*** 0.421***
16 0.509*** 0.479*** 0.447*** 0.415*** 0.353***

Notes: The table reports the coefficients b
(q)
dp for univarate regressions of stock price changes from time t to

time t+ q (in quarters), dpt+q = a+ b
(q)
dp · dpt + ϵdpt+q. Asterisks indicate the significance level of b

(q)
dp . ***, **

and * denote significance at the 0.01, 0.05 and 0.1 level, respectively.
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