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1. Introduction

The electric vehicle (EV) industry has had rapid growth in recent years.

By the end of 2024, the sales of electric vehicles in the United States are pro-

jected to increase nearly fourteen times from 2012 (Brooker and Manager, 2015).

Although the efficiency of batteries used in EV production has also grown signif-

icantly, contributing to energy sustainability on a global scale (Zubi et al., 2018),

the supply chain is still vulnerable to price changes occurring in the upstream

battery raw materials market. In this light, it is worth studying how the volatil-

ity in the relevant commodity market affects the stock returns of individual EV

producers.

Based on previous research for oil and stock returns (Li et al., 2022; Chen

et al., 2019; Xiao and Zhao, 2021; John and Li, 2021), we hypothesize that there

is a jump component in the EV battery raw materials market volatility. Tra-

ditional GARCH models aim to capture smooth volatility, whereas other spec-

ifications should be used to capture the jump component (Janda and Kourilek,

2020). Specifically, we construct the EGARCH-EARJI model, which uses mix-

ture distribution to model the number of jumps occurring between two periods.

Jump intensity and size are not assumed to be constant but rather have time-

varying specifications that improve model fit. Also, we devote substantial care

to the model estimation since many parameters and restrictions on them can

cause the process to explode.

Our estimates of parameters related to jump intensity and size are used to

predict the daily stock returns of individual EV manufacturers. Our results show

both variables might have an effect when introduced into the mean equation of

individual stock returns.

We expand the work of Maheu and McCurdy (2004) by applying a completely

new specification with no restrictions on parameter coefficients to estimate a ver-

sion of the GARCH-ARJI model, which we call EGARCH-EARJI, with daily

data on the EV battery raw materials market. The obtained estimates of jumps

in that returns are used in the models of individual stock returns of EV man-
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ufacturers. In this paper the work of Zhang and Shang (2023) is extended in

the sense that the model estimation process is improved to avoid unnecessary

shortcuts and jumps in the EV battery raw materials market are analyzed rather

than in the oil returns.

The rest of this paper is structured as follows. In the second section, a brief

review of the car manufacturing industry and relevant commodity markets is

provided. In the third section, the methodology and data sources are described.

In the fourth section, the results are presented. The last section concludes.

2. Energy Markets Supply Chain

2.1. Volatility in Energy Markets

Volatility in energy and commodity markets (Lyocsa et al., 2021; Yip et al.,

2020), their interdependence (Hanif et al., 2021), its effects on stock returns

(Baur and Dimpfl, 2018; Hernandez et al., 2022), the relationship between en-

ergy stocks, and the implications of these for portfolio management have been

the objects of many studies. However, despite the increasing adoption of elec-

tric vehicles (EVs) across the globe and policy reforms intended to facilitate and

smooth the transition from internal combustion cars, there is a lack of related

literature studying the stock returns of EV manufacturers.

Analyzing sources of volatility, Lyocsa and Todorova (2021) showed that

market volatility, stock volatility, and industry-level volatility are, in this order,

the most driving factors of the day-ahead stock price volatility of firms in the

Oil, Gas Exploration, and Production sub-industry. For volatility measurement,

Lyocsa et al. (2021) found that while volatility models relying on high-frequency

data are much more accurate for short-term forecasting, volatility models relying

on daily ranges are comparable and, in some cases, even more accurate than their

high-frequency counterparts for medium- and long-term forecasting.

Studying volatility effects on stock returns, Arouri et al. (2011b,a, 2012b)

examined the volatility transmission between oil and stock markets in the Gulf

Cooperation Council (GCC) countries, Europe and the United States at the

sector level and concluded that volatility spillovers between oil and sector stock
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returns are significant. These spillovers are unidirectional from oil markets to

stock markets in Europe and bidirectional in the United States. Spillovers are

also present in emerging markets, as Raza et al. (2016) found that gold and oil

volatilities have a negative impact on stock markets of all emerging economies

in both the short- and long-run, and Aloui et al. (2012) concluded that oil price

risk has a significant effect on emerging markets.

Investigating the effects of one group of energy stocks on another, Janda et al.

(2022) found that past returns of the U.S. renewable energy companies signifi-

cantly influence the current returns of Chinese renewable energy companies and

support the already established findings that the stock returns of clean energy

companies correlate more with technology companies rather than with oil prices.

Baur and Todorova (2018) found evidence of the connectedness of EV stocks to

oil prices. The authors analyzed how much oil price developments impact car

manufacturers and included the U.S. electric car maker Tesla in the analysis.

They hypothesized the positive exposure of Tesla to oil price shocks through the

substitution effect between combustion-engine cars and electric cars. Their re-

sults indicate that Tesla has considerably higher oil price sensitivity than other

companies examined.

2.2. Jumps in Energy Markets

The price of lithium has undergone a significant increase of 265% between

2014 and 2018. The Covid-19 pandemic brought significant changes in the

structure and time-varying patterns of volatility connectedness among precious

metals, energy and stocks (Farid et al., 2021; Shahzad et al., 2021). During the

economic recovery after the Covid-19 pandemic, lithium prices achieved new

record highs (TradingEconomics, 2023). The price volatility of precious metals

and its relationship with returns, economic drivers, and other commodities have

been widely studied (Arouri et al., 2012a; Dinh et al., 2022; Balli et al., 2019;

Kang et al., 2023). We assert that abrupt price changes in the EV battery

raw materials market can be modeled with a class of jump models, which have

already been applied in the literature for oil and stock returns.
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Gronwald (2016) defined the extremely sudden fluctuations in global crude

oil prices caused by international emergencies as oil price jumps. Liu et al.

(2023) concluded that jump dynamics account for a remarkable percentage of

oil price volatility, especially during lower volatility periods. On the other hand,

Dutta et al. (2022) revealed that the conditional expected number of jumps in

oil futures prices increases significantly amid the depression periods. Zhang and

Shang (2023) applied jump models to study oil prices and used the jump inten-

sity estimates to study the stock returns of Chinese automobile manufacturers.

Chan and Maheu (2002) and Maheu and McCurdy (2004) significantly con-

tributed to the literature on jumps in financial time series. They argued that

news about anticipated cash flows and the appropriate discount rate is partic-

ularly relevant for stock prices. Then, instead of relating the volatility of stock

returns to the flow of information to the market directly, they proposed models

of the conditional variance of returns implied by the impact of different types

of news.

Maheu and McCurdy (2004) viewed the latent news process to consist of two

distinct components: normal news and unusual news events. They assumed that

these components have different effects on returns and the expected volatility of

individual stocks. They assumed that normal news innovations cause gradual

changes in the conditional variance of returns, while the second component of the

latent news process leads to infrequent moves in returns, which they referred to

as jumps. Therefore, the news process induces two components in the equation

for returns, which are identified by their volatility dynamics and higher-order

moments.

This framework can be utilized to study jumps in the EV battery raw ma-

terials markets, and the estimates can be used in the models of individual stock

returns of EV producers.
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3. Hypotheses, Methodology and Estimation Procedure

3.1. Hypotheses and Methodology

We investigate these two major hypotheses related to returns and jumps in

the EV supply chain:

1. Jumps in the EV battery raw materials market have varying intensity and

size and explain the volatility in the time series of returns.

2. The intensity of jumps and the mean value of the jump size distribution

in the EV battery raw materials market affect the mean value of EV

manufacturers’ stock returns.

Since the traditional GARCH and EGARCH models cannot describe jumps

in financial time series, we include both smooth movements and jumps in the

model in this paper. Further, we use the log link function to model jump

intensity, which enables relaxing restrictions on parameters and prevents the

estimation process explosion. We call the resulting model the EGARCH-EARJI

model.

For the second hypothesis, this work does not assume any direction of the

relationship since the results of previous studies show their unexpected nature

that is possibly related to the behavior of market participants. It is important

to note that the previously described studies did not investigate the possible

effect of the jump size distribution on the mean value of stock returns.

The detailed setting of the EGARCH-EARJI model is as follows.

rt = u + at (1)

at = ϵ1,t + ϵ2,t (2)

where rt represents the returns of the EV battery raw materials market in period

t. The disturbance term at is divided into two parts. The first component, ϵ1,t,

is intended to capture the normal time-variation of volatility associated with

the predictable decay of the impact from past news innovations to returns. The

second component, ϵ2,t, captures events when significant news occurs that can
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cause an unusual change in returns. The former is assumed to be a standard

EGARCH component:

ϵ1,t =
√
htZt; Zt ∼ NID(0, 1) (3)

log ht = ω0 + α1|zt−1| + α2zt−1 + β log ht−1 (4)

where zt−1 is a standardized residual at time t − 1 and ω0, α1, α2, and β are

parameters to be estimated.

Specifying ϵ2,t refers to the works of Chan and Maheu (2002) and Maheu and

McCurdy (2004). Firstly, information set at time t − 1 consists of the history

of returns Φt−1 = {rt−1, ..., r1}. Also, let Yj,t be jump size where j indicates a

jump’s number. Then, the sum of jump size from one to Nt and its conditional

expectation given the information of the previous period define ϵ2,t:

ϵ2,t = Jt − E[Jt|Φt−1] (5)

Jt =

Nt∑
j=1

Yj,t; Yj,t ∼ NID(θt, δ) (6)

θt = ϑ + ϕat−1 (7)

Thus, the conditional expectation of ϵ2,t is zero and the first moment of the jump

size distribution can respond to the last period’s market unexpected return. This

variant of mean specification follows the work of Zhang and Shang (2023).

Meanwhile, Nt, is a random variable and has a Poisson distribution:

P [Nt|Φt−1] =
e−λtλj

t

j!
, j ∈ N (8)

log λt = λ0 + ρ log λt−1 + γξt−1 (9)

In words, log λt is a logarithm of jump intensity and follows an autoregressive

process. The jump intensity is always positive by construction, so we do not have

any restrictions on parameters. ξt−1 is defined as the change in the conditional

forecast of Nt−1 as the information set is updated:

ξt−1 = E[Nt−1|Φt−1] − E[Nt−2|Φt−1] =

∞∑
j=0

jP [Nt−1 = j|Φt−1] − λt−1 (10)
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That means that for each time t − 1 one has to update its expectations based

on new arrived information in order to use this to estimate λt. P [Nt−1|Φt−1]

is often called filter or posterior probability of the current jump frequency j.

Bayes rule is applied to get a formula:

P [Nt|Φt] =
f(rt|Nt = j,Φt−1)P [Nt = j|Φt−1]

P [rt|Φt−1]
(11)

Using the conditional density of returns given that a number of jumps occur, the

denominator of (11) is obtained through the summation of the numerator term

for j ∈ N. In practice, one cannot sum up till infinity, so the summation has

to be constrained at some reasonable j assuming that the probability of more

jumps than that is zero. Following the work of Maheu and McCurdy (2004),

where they used 20 jumps, the same bound is chosen.

The conditional density of returns given that a number of jumps occur requires

the calculation of the mean and variance of returns given the same condition.

For this, we need to take the expectation of ϵ2,t. In order to do that, the first

two moments of its left-hand side should be calculated. Standard calculations

show that:

E[J i
t |Φt−1] =

∞∑
j=0

E[J i
t |Nt = j,Φt−1] × P [Nt = j|Φt−1], i > 0 (12)

E[ϵ2,t|Nt = j,Φt−1] = E[Jt|Nt = j,Φt−1] − θtλt = θt(j − λt) (13)

V ar(ϵ2,t|Nt = j,Φt−1) = V ar(Jt|Nt = j,Φt−1) = jδ2 (14)

With these calculations at hand, one can integrate out the discrete-valued vari-

able Nt, governing the number of jumps to get the denominator of (11):

P [rt|Φt−1] =

∞∑
j=0

f(rt|Nt = j,Φt−1)P [Nt = j|Φt−1] (15)

f(rt|Nt = j,Φt−1) =
1√

2π(ht + jδ2)
exp

(
− (rt − u + λtθt − jθt)

2

2(ht + jδ2)

)
(16)

Then, the log-likelihood function is:

L(Ψ) =

T∑
t=1

log(P [rt|Φt−1,Ψ]) (17)
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where Ψ is a set of parameters to be estimated. This study adopts the MLE

and emphasizes the model specification adopted, which relaxes restrictions on

parameters compared with other studies.

For the second hypothesis, the estimated jump intensity and size in the EV

battery raw materials market are introduced into EV producers’ stock returns

models. A potential dependence is investigated by means of the Fama-French

three factors (the market risk premium, RM - Rf , a capitalization factor of small

to big firms, SMB, a stock valuation factor of high to low book value stocks,

HML), short-term reversal, REV , momentum, MOM , and the proposed jump

factor. The following six-factor regression model is estimated for the excess

returns Rt of each automobile company:

Rt = α0 + α1(RM,t −Rf,t) + α2SMBt + α3HMLt+

α4REVt + α5MOMt + βJUMPt + ϵt

where (α1, α2, α3, α4, α5) and β are regression coefficients. Based on the results

obtained investigating the first hypothesis, we will consider several specifications

with the jump factor constructed using jump intensity and size independently

as well as their interaction.

3.2. Estimation Procedure

Maheu and McCurdy (2004) asserted that they used Maximum Likelihood

(ML) method for the model estimation. Zhang and Shang (2023) also referred

to ML after they specified the likelihood function. However, the attached code

shows that when estimating parameters for volatility in the oil market, the

authors applied two optimization procedures, working with two likelihood func-

tions instead of the one discussed in the text. Firstly, they used the ”rugarch”

package to estimate the EGARCH model for the smooth volatility component.

Then, they obtained residuals from this model, which they used in another

model to estimate parameters for the jump component. Consequently, param-

eters estimated for smooth and jump parts were obtained under different likeli-

hood functions and could be different if estimated simultaneously.
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In practice, with the ML method, the negative likelihood function is mini-

mized by using an optimizer and specifying the starting values of parameters.

However, the optimizer might fail to find a reasonable solution, as discussed by

Danielsson (2011). The algorithm may not be successful in finding the global

minimum, especially in cases where there are restrictions on parameters to es-

timate or the likelihood function is not well-behaved. The two-step approach

applied by Zhang and Shang (2023) might point out estimation problems en-

countered by the authors. In the model specification used, jump intensity is

assumed to follow somewhat like an autoregressive process with restrictions on

parameters ensuring that jump intensity is positive. However, these restrictions

forbid the parameters to take negative values, which might cause estimation

problems if the negative likelihood has its global minimum there. Hence, it

makes sense to perform the sensitivity analysis on how the results change when

changing starting values of the parameters or to adjust the model specification

to relax restrictions. In our study, we follow the latter path.

4. Data and Empirical Results

4.1. Data description

4.1.1. Electric Vehicles Supply Chain

Baur and Todorova (2018) mentioned that the price of lithium-ion battery

packs for EVs experienced a 65% decline from 2010 until 2016. More recent data

shows battery costs drop 90% from 2010 to 2020 (Neil, 2021). A battery pack

is the single most expensive component in EVs and the primary reason they

typically cost more than traditional vehicles. According to a recent analysis,

the cost of a battery pack for an electric vehicle increased by 6.9% in 2022

compared to the previous year (Mollica and Hiller, 2023). The increase was

mainly attributed to the rising costs of essential components used in the batteries

of most EVs, such as lithium, nickel, and cobalt.

Technological advances affect the production of battery packs. Iron-based

batteries, known as LFP, do not use nickel and cobalt, which are increasingly

supply-constrained and expensive. Experts estimate that iron-based batteries
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now represent nearly a third of all batteries in electric vehicles worldwide, and

that share may continue to grow (Mollica and Hiller, 2023). Specifically, such

batteries now power the majority of EVs in China and are an option on some

Tesla Model 3s in the U.S.

We conclude that the key metal for the EV battery raw materials market

is lithium. However, its prices are not easily available. Even Eikon database

does not contain a sufficiently long history of lithium prices that could be used

to model returns in the EV battery raw materials market. Also, lithium prices

alone may not be enough to investigate the supply chain argument since the

largest lithium producers are located in different parts of the world and can

have special commitments to particular EV manufacturers.

Figure 1: ALB and SQM adjusted prices. Data are downloaded from the Yahoo Finance
database.

We define the EV battery raw materials market more broadly than merely

lithium prices. The largest lithium producers are Albemarle (NYSE: ALB),

Sociedad Quimica y Minera de Chile (NYSE: SQM), and Ganfeng Lithium

(OTC: GNENF). We hypothesize that jumps in their stock returns can affect

the stock returns of EV producers. Since GNENF is traded over the counter and
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Figure 2: ALB and SQM daily returns.

does not have a sufficiently long price history, we apply the EGARCH-EARJI

model on ALB and SQM.

ALB SQM

Mean 0.069 0.076
Median 0.161 0.075

Maximum 12.873 18.800
Minimum −22.203 −18.106
Std.dev 2.660 2.838

Skewness −0.724 −0.394
Kurtosis 9.246 7.524

Jarque-Bera 3552.171 1822.135
Shapiro-Wilk 0.934 0.955

ADF −12.448 −12.921
PP −44.667 −44.315

KPSS 0.065 0.066
Observations 2074 2074

Table 1: The descriptive statistics of ALB and SQM returns with unit root and stationary
tests.

4.1.2. Electric Vehicles Producers

Until the mid of 2010s, the industry was in its infancy, with less than 2

million newly sold electric vehicles in 2015. For 2023, some experts project this

number will be nearly 20 million. This growth in units sold is distributed in

the sense that more EV producers have appeared since 2015. However, many

of them do not leave the traditional car manufacturing business.

We do not restrict our analysis to stocks of those EV manufacturers which
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sell only electric vehicles and do not produce traditional ones. The transition

from fuel-consuming cars is happening gradually, and we hypothesize that jumps

in the EV battery raw materials market can affect the stock returns of those

companies that produce non-EVs as well. Moreover, it will be beneficial to

compare the strength of the effects between the two kinds of companies. The

complete list of companies is presented in Table 2.

Full name Ticker Geography Production

Tesla Inc NASDAQ: TSLA US EVs
Toyota Motor Corp NYSE: TM Japan Mix
Ford Motor Co NYSE: F US Mix
General Motors Co NYSE: GM US Mix
BYD Co. Ltd. OTCMKTS: BYDDF Chinese EVs
Li Auto Inc. NASDAQ: LI Chinese EVs
Rivian Automotive Inc NASDAQ: RIVN US EVs
Lucid Group Inc NASDAQ: LCID US EVs
Nio Inc NYSE: NIO Chinese EVs
Xpeng Inc NYSE: XPEV Chinese EVs
Niu Technologies NASDAQ: NIU Chinese EVs

Table 2: List of EV stocks analyzed in the paper with corresponding names,
tickers, main country of business, and production type.

The time range of the sample for the daily stock prices is every business

day from January 1, 2015, to March 31, 2023 (i.e., 2075 observations). Data on

stocks come from the Yahoo Finance database. All the data on risk factors used

to study stock returns come from the Kenneth French database. The formula

for stock returns is as follows:

rt = 100 × ln

(
pt

pt−1

)
,

where pt is the stock price.

4.2. Empirical Results

4.2.1. Volatility in the EV Battery Raw Materials Market

Table 1 shows the results of the EGARCH-EARJI model fitting. The ben-

efits of the model specification with no restrictions on parameters can be seen
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immediately. ALB has jump intensity with ρ and γ positive, whereas SQM

has negative sensitivities of jump intensity to the previous period components.

Other studies (Maheu and McCurdy, 2004; Zhang and Shang, 2023) used model

specifications that require restrictions forbidding negative sensitivities. Hence,

the flexibility of the EGARCH-EARJI model allows us to get different results

and can improve the model estimation procedure.

parameter ALB SQM

µ 0.068 0.083
(0.048) (0.057)

ω −0.081∗∗∗ −0.107∗∗∗

(0.015) (0.031)
α1 0.087∗∗∗ 0.172∗∗∗

(0.016) (0.031)
α2 −0.015 −0.012

(0.011) (0.015)
β 0.995∗∗∗ 0.964∗∗∗

(0.004) (0.013)
λ0 −0.321∗∗ −3.017∗∗∗

(0.161) (0.551)
ρ 0.803∗∗∗ −0.524∗∗∗

(0.086) (0.155)
γ 1.050∗∗∗ −1.945

(0.263) (1.236)
ϑ −0.689∗∗∗ −0.193

(0.262) (0.365)
ϕ −0.092 0.128

(0.067) (0.169)
δ 3.599∗∗∗ 4.154∗∗∗

(0.366) (0.590)

N 2074 2074

Table 3: The results of the EGARCH-EARJI model fitting on returns of
ALB and SQM. This table presents the estimated parameter coefficients
with corresponding standard errors in parentheses. Note: ***, **, * indi-
cate statistical significance at 1%, 5% and 10%.

We conclude that jumps exist in the EV battery raw materials market and

have time-varying nature since parameters for λ0 and ρ are statistically signif-

icant for both stocks. Different signs of parameter values imply that market
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participants can react differently to news about the EV battery raw materials

market. For SQM, jump intensity is generally lower than for ALB because it

has a more negative value of λ0. Furthermore, for ALB, jump intensity reacts

positively to the unexpected component, ξt. It means that when news affects

ALB in the previous period, it translates into higher volatility in the current

one. For SQM, the parameter for ξt is not statistically significant. Jump in-

tensity tends to stay higher for longer for ALB, whereas it exhibits negative

autocorrelation for SQM. The mean value of jump size, θt, also differs among

stocks, generally being negative for ALB and around zero for SQM.

(a) ALB (b) SQM

Figure 3: The estimated volatility of ALB and SQM with jump component included and
excluded.

Overall, our results show that constituents of the EV battery raw materials

market can have different volatility structures, and the EGARCH-EARJI model

successfully uncovers it. Figure 3 shows the volatility of two stocks with and

without the jump component. For ALB, jumps seem to explain a greater portion

of volatility than for SQM.

These estimates are used for the construction of the jump factor. We assert

that it makes sense to include the mean value of the jump size distribution,

θt, only if its sensitivity to past returns, ϕ, is statistically significant at some

reasonable level. Otherwise, we cannot conclude with some degree of confidence

that the changes in θt are not simple noise, which would contaminate the jump

factor. Hence, when we construct the jump factor based on ALB and SQM

volatility estimates, we select λt only. Further, we note that, for ALB, θt is

generally negative, whereas, for SQM, it is around zero; consequently, jumps in

15



returns tend to be negative for ALB. We will use this fact when analyzing the

sensitivities of EV producers’ stock returns.

4.2.2. Expected Returns of Electric Vehicles Producers

Tables 4 and 5 show the results of the six-factor regression model estimation.

When the jump factor is formed using the jump intensity of ALB, stock

returns of TSLA, BYDDF, LCID, and NIO have an estimate of the jump factor

sensitivity, β, with a negative sign, and it is statistically significant at the 1%

or 5% levels. It means that with increasing λt, the expected return decreases.

We relate the observed direction to the fact that jumps tend to be negative for

ALB. Hence, negative news regarding ALB has mainly unfavorable implications

for companies specializing in EVs. For companies transitioning to EVs, like F

and GM, the effect is on the edge of conventional 5% statistical significance. For

TSLA, we found public information that it gets lithium from ALB (Scheyder,

2022), and the results shed light on how this supply chain manifests itself in

the financial markets. ALB is an American lithium producer with a presence

in China, and the relationship is also found with Chinese EV manufacturers

BYDDF and NIO. For other Chinese companies in the sample, the estimate of

β is not statistically significant, even at the 10% level.
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When the jump factor is formed using the jump intensity of SQM, only stock

returns of F exhibit an estimate of β that is statistically significant at the 5%

level. Interestingly, the sign is positive, meaning expected returns of F increase

with higher jump intensity of SQM. After the period under investigation, SQM

announced a long-term lithium supply agreement with F (Sociedad Quimica y

Minera de Chile, 2023); consequently, SQM was not a part of the supply chain

of F under our sample, and the estimated relationship might be reasonable. In

the future, the relationship might get a negative direction since adverse news

about SQM would affect the supply chain of F.

Overall, the results are that the returns of ALB are prone to jumps in re-

sponse to negative news about the company, and it ripples through the stock

returns of EV producers, affecting them without regard to their geography and

being stronger for companies specializing in EVs. In terms of the statistical

significance of the estimates, the effect on Chinese companies is the most solid.

Jumps in returns of SQM seem to have minimum effect on EV producers. The

results might be interesting for portfolio management if one wants to know how

EV producers are interconnected with lithium manufacturers in case of bad

news for the second.

5. Conclusions

We examined the volatility in the EV battery raw materials market via the

EGARCH-EARJI model and used jump intensity estimated from the model to

explain the daily returns of EV producers through the adjusted Fama-French

model. The EV battery raw materials market was defined through the stock

returns of the largest lithium producers in the world. We choose several EV

producers to explain returns: 6 from China, 5 from the US, and 1 from Japan.

Data regarding the daily prices of all companies were collected from January 1,

2015, to March 31, 2023.

The hypothesis of jumps’ existence in the EV battery raw materials mar-

ket was not rejected. In order to investigate the hypothesis, we presented a

new model specification, that allows for relaxing restrictions on parameters and
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prevents the estimation process explosion. We called the resulting model the

EGARCH-EARJI model. We concluded that jumps exist in the EV battery raw

materials market and have different structures depending on underlying stocks

and time-varying nature.

The hypothesis of a significant effect of jumps on individual EV producers’

stock returns was not rejected completely. Jump intensity seems to affect the

stock returns of EV producers specializing in EVs rather than those producing

non-EVs as well. Moreover, underlying stock returns in the EV battery raw

materials market matter: the jump intensity of only one lithium producer has

an effect. The results are robust to the inclusion of short-term reversal and

momentum risk factors in the adjusted Fama-French model.

Overall, our results show that the EGARCH-EARJI model can be used to

model volatility in supply chains, and one can utilize the model to investigate

how EV producers are interconnected with lithium manufacturers in case of bad

news for the second.
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