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Abstract: 
Business and distribution strategy planning are usually carried out in a sequence. A 
company first devises a business plan and then a distribution strategy able to 
accommodate it. The separation in planning can lead to a sub-optimal decision. We 
propose a method of how to concurrently plan both strategies, using a Bayesian 
network. We present three modifications of our concurrent optimization model 
which are based on different optimization objectives - distribution strategy costs 
minimization, revenue maximization, and profit maximization. The derivation of all 
model modifications and the collection process of the required inputs are described 
in detail. The presented model is tested on a business case of the company Pilsner 
Urquell, a world-renowned brewery based in Pilsen, Czechia. Using the company’s 
historical data from 01/2017 – 12/2017, we design the cost-optimum distribution 
strategy in the Czech market for the years 2018 - 2020. Our results are then 
compared with the real company development over the same period. With our 
model, we show that the company could have selected a more cost-effective 
distribution strategy in 2017. 
 
JEL: C02, C11, C62 
Keywords: Bayesian Networks, Business plan, Concurrent planning, Concurrent 
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1 Introduction

Business and distribution planning is usually carried out separately or in a sequence, de-

spite having an enormous impact on a company’s development (Zegordi and Beheshti Nia,

2009). Typically, a company first devises a business plan, and only in reaction, it develops

a distribution strategy to accommodate it. The separation in planning can occur due to

the senior department managers acting in their own self-interest rather than the com-

pany’s as a whole (Mckinnon, 2017). However, such a practice can lead to a sub-optimal

decision because the two crucial company processes are inherently dependent. Therefore,

it is desirable to conduct the planning in both domains concurrently. Concurrent plan-

ning would allow firms to devise more suitable strategies, increase logistics efficiency, and

reduce the overall environmental impact. In this paper, we formulate a hypothesis that

business and distribution strategy planning should be conducted concurrently. We then

present an optimization method to conduct planning in both domains concurrently and

empirically validate it on the business case of Pilsner Urquell. The findings provided by

our model suggest that the company could have adopted a long-term distribution strat-

egy that is more cost-effective, potentially resulting in a 5.8% decrease in the distribution

network operating costs. These results indicate that companies could benefit from concur-

rently planning their business and distribution strategies. The concurrent optimization

model outlined in this study can serve as a foundation for future research in this area or

be adapted to address a variety of other research questions.

In our work, we use Bayesian networks (Jensen and Nielsen, 2007; Kjaerulff and Mad-

sen, 2013) as the underlining probabilistic model. The strength of the presented approach

lies in its robustness toward the choice of business and distribution planning methods.

Historically, many different approaches toward business planning have been developed

which rely on past information or the expert prediction of future development, which

are more prevalent (Gordon and Stover 2003, R. Huss and J. Honton 1987). Similarly,



different approaches can be taken to devise distribution strategies to accommodate the

business scenarios envisioned in the business plan (Mangiaracina et al., 2015). To apply

the presented method, any business and distribution strategy planning methods can be

utilized as long as the outputs of the business planning process are transferable to the

Bayesian network framework. Furthermore, it must be possible to evaluate the busi-

ness scenarios in different distribution network setups. The freedom of choice regarding

the planning of the underlying processes is a significant advantage of the presented ap-

proach, which enables broad applicability to a wide range of scientific problems. The

above-mentioned model features are demonstrated in a Pilsner Urquell (PU) business

case study, where the Concurrent Optimization Model (COM) is applied. Furthermore,

the model is used to demonstrate that long-term strategic planning is more efficient than

consecutive short-term planning.

The article is structured as follows. In Section 2, we provide the background for the

processes of business and distribution planning. Furthermore, we highlight the recent

applications of the Bayesian networks in supply chain management-related topics. Next,

we proceed to establish our notation for the Concurrent Optimization Model in Section

3. We develop the model itself, the main contribution of this article, in Section 4. The

model is then implemented in Section 5 on a business case of Pilsner Urquell where we

use it to plan an optimum long-term distribution strategy. We also provide reasoning

on how the Covid-19 pandemic affected the results obtained from our model. The last

Section 6 provides an overview and a potential for further research.

2 Literature Review

This paper is the first one to propose concurrent planning of the business and distribution

strategies. To our knowledge, this problem has not been defined in any historical publi-

cation. However, the areas of business and distribution planning are broadly covered and



an overview of the most important findings from these fields is provided in this chapter.

Furthermore, the underlining probabilistic model of our solution, the Bayesian networks

are introduced, as well as their historical and contemporary applications in supply-chain-

related topics.

Every company engages in a form of business planning. A business plan can be defined

as a written document that summarizes and analyzes the company and lays out concrete

projections for future development (McKeever, 2011). It serves as a roadmap depicting

how to reach the business goals. A business must be able to adapt to unforeseeable

events to survive continually. A carefully designed business plan can be a powerful tool

to help manage these external challenges. Due to the inherent unpredictability of the

exact future development, firms commonly utilize some form of scenario planning. The

methods most frequently debated in the literature are Trend-Impact Analysis (Gordon

and Stover, 1976), Cross-Impact Analysis (Gordon and Stover, 2003) and Intuitive Logics

(R. Huss and J. Honton, 1987). These approaches usually rely on expert opinion more

than historical data. However, during the business planning phase, the planners often

omit the limitations of their internal logistics including the distribution network.

Through a distribution network of a company, the product is transported from the

company’s production or storage facilities to the customer’s premises. The objective of a

distribution network design is to plan the most cost-efficient manner of product movement

through the whole supply chain (Ambrosino and Grazia Scutellà, 2005). To stress the

importance, Ballou (2001) estimated that through an efficient distribution network and

effective facility management, the operation costs can be decreased by up to 15%. Cus-

tomer satisfaction is also directly impacted by the quality of deliveries in terms of on-time

precision and quality of delivery (Chopra, 2003). The customer experience consequently

affects the number of future sales. Due to an immense amount of network alternatives,

the planning process is an extraordinarily complex task requiring a methodical approach.

The process can be split into three phases (Mangiaracina et al., 2015). Foremost, the sce-



nario alternatives are generated and qualitatively assessed. This phase aims to filter out

the unfeasible scenarios and obtain a short list of applicable ones. Those are evaluated in

the second phase using quantitative criteria. The best alternative is hence selected based

on both qualitative and quantitative criteria. The selected scenario is then perfected to

the best specific configuration in the third phase (Mangiaracina et al., 2015). Distribu-

tion network design belongs to a class of optimization problems where the objective is

to appoint the best route to transport goods from the origin of supply to the demand

points while minimizing the costs (Ambrosino and Grazia Scutellà, 2005). The complex-

ity of the optimization problem grows exponentially with each new parameter included

in the task (Zarandi and Saghiri, 2002). Bacchetti et al. (2021) achieved an effective and

computationally efficient solution to a mixed integer linear programming model for a real

case of optimum distribution strategy choice. Suryawanshi and Dutta (2021) in their pa-

per address a distribution planning problem of perishable products under disruption and

demand stochasticity. They develop a mixed integer linear programming model to make

strategic and operational decisions under uncertainty. They conclude that losses due to

disruptions can, for example, be minimized by proactive planning, and local backups of

foreign suppliers.

Bayesian networks are commonly used in various supply chain management areas,

such as risk management (Garvey et al., 2015; Hosseini and Ivanov, 2020), supplier se-

lection (Hosseini and Barker, 2016; Hosseini et al., 2019) or in the recently emerged field

of predictive maintenance (Xia et al., 2022; Sahu and Palei, 2020). Garvey et al. (2015)

introduced a framework to measure risk propagation in the supply network. Utilizing

Bayesian networks allowed them to capture the interconnectivity of different risks and

the specifics of each supply chain network. The work addresses the issue of supply chain

disruptions when an adverse event can negatively impact not only a single firm but also

other parts of the supply chain. Further, in the field of the supply chain, Hosseini and

Barker (2016) utilize a Bayesian network to quantify the suitability of different suppli-



ers based on various primary, environmental, and resilience criteria. In agreement with

Garvey et al. (2015), the resilience criterion notably emerged as a crucial one due to the

supply chain’s sensitivity to disruptions. Their approach allows them to include quan-

titative criteria and expert evidence and comprehensively present available information.

The topic of supply-side resilience specifically has been resonating recently. In their re-

cent work, Sharma et al. (2022) developed and tested a Bayesian network-based model

to help identify the crucial risk factors impacting supply chain networks. Their paper

also emphasizes the versatility of their model, which can always be adjusted to reflect

the most recent new information. This feature of Bayesian networks is also paramount to

the method developed in this paper. Further, Hossain et al. (2019) modeled a deep-water

port resilience using a Bayesian network to identify the critical factor contributing to the

strategical facilities’ robustness. Jeong et al. (2021) propose a risk-adaptive technology

roadmap able to swiftly adapt to a complex changing environment to increase the sus-

tainability of the technology road-mapping. In the manufacturing industry, models for

maintenance planning are a common application of Bayesian networks. Jones et al. (2010)

identifies and models different parameters causing a failure in the system. They apply

their model to a delay-time analysis and establish a failure rate with higher accuracy than

what is achieved using a simple statistical average. However, the application presented in

our article is yet unexplored. Moreover, there is no mention of concurrent business and

distribution planning in the literature using any other method. Importantly, the aim of

our work is not to offer an alternative to the existing business or distribution strategic

planning methods but a framework allowing to perform both processes concurrently.

3 Notation and preliminary steps

In this article, we use the BNs as an effective tool to concurrently plan business and

distribution strategies. Importantly, our method does not replace the existing approaches



for business or distribution planning processes. It represents an extension allowing us

to effectively combine and evaluate the information from both processes. This section

describes the process of input collection for our model and establishes the variables that

we use.

The preliminary step is to gather the inputs from the business and distribution plan-

ning processes. First, we describe the step of the business planning process. Although the

usability of our approach is not conditioned by the use of any specific planning method,

outputs from the process must be transferable to the BN. An example of our BN structure

is shown in Figure 1. We work with a time outlook for n consecutive periods.

• Variable Ai, i ∈ 1 . . . n, is the modeled company in the time period i, and its

states aij , j ∈ 1 . . .mi are possible states the company can have in that time period.

A = {A1, . . . , An} is the set of all company nodes at all time periods.

• Variables Y i
q , i ∈ {1, . . . , n}, q ∈ {1, . . . , si} represent other events influencing the

company. The subscript k specifies that there are si parent nodes Y for a period

Ai.

Figure 1: Example structure of our BN model

A1 A2 A3

Y1_1

A4

Y3_1

Now we can proceed to the collection of inputs from the distribution network planning

process. The company designs a number d of feasible distribution networks Z which

could accommodate the needs of the company {A1, . . . , An}. Symbol Zi
f , i ∈ {1, . . . , n},

f ∈ {1, . . . , d} then refers to a strategy Zf implemented during a specific period i.

Next, we estimate several key performance indicators (KPIs) which we implement



in our model. KPIs are metrics that companies track to measure their performance.

Specifically, we implement revenue r, distribution network operating costs c and profit p.

• Revenue is the total amount of income generated by the sales of goods and ser-

vices that a company provides. In our model, rij,f , i ∈ {1, . . . , n}, f ∈ {1, . . . , d},

j ∈ {1, . . . ,mi} stands for revenue in a state aij while operating a distribution net-

work Zf . The tool selected to estimate rij,f can be chosen freely but it must be

capable of doing so for every Zf at every state aij included in the BN model.

• Distribution network operating costs for a company are costs directly related to

the network operations (fuel, worker wages, . . . ). In our model, cij,f , i ∈ {1, . . . , n},

j ∈ {1, . . . ,mi}, f ∈ {1, . . . , d} stands for distribution network operating costs in a

state aij while operating a distribution network Zf . The tool selected to estimate

cij,f can be chosen freely but it must be capable of doing so for every Zf at every

state aij included in the BN model.

• We define the profit p as the difference between r and c, hence

pij,f = rij,f − cij,f

.

The dependency of both r and c on aij and Zf is a logical consequence of our empirical

experience and fundamental belief, that the business and distribution planning processes

are dependent and should be planned concurrently.

Finally, we need to estimate the transition costs tie,f , i ∈ {2, . . . , n}, e, f ∈ {1, . . . , d}.

Transition costs tie,f is an additional expense a company must make between periods i−1

and i, when changing from a Ze to Zf . These costs can be, for example, associated with

moving from an existing facility to a new facility. An estimate must be made for every

pair due to the possibility of the following situation: tie,f ̸= tif,e, e, f ∈ {1, . . . , d}.



Conditional probabilities of Ai are all obtained from the preliminary planning pro-

cesses. They are as follows.

P (Ai|Pa(Ai)), i ∈ {1, . . . , n}

3.1 Estimation of costs for every scenario using DW

To estimate the designed distribution networks across all business scenarios, we use a

simulation software Distribution wizard (DW), developed by company Logio. This spe-

cialized simulation software implements an open-source engine JSprit1 to model complex

business scenarios. Effectiveness of the engine has been successfully demonstrated on a

range of research activities to solve a variety of problems (Mahmoud et al., 2022). In the

simulation process, DW incorporates a set of parameters allowing to realistically model

a wide range of networks and to provide answers to many business questions.

JSprit uses a so called Ruin and Recreate (RAR) metaheuristic introduced by Schrimpf

et al. (2000). They tested their new approach on the existing library of Vehicle Routing

Problems (Dantzig and Ramser, 1959) (VRPs) and recorded overwhelmingly better results

than what any other contemporary method could achieve.

Generally, the RAR principle contains three steps. First, it is necessary to define an

admissible solution to the problem at hand which will obey all the predefined constraints.

An admissible solution is a collection of routes (a sequence of jobs) to the given VRP. The

Ruin and Recreate is a second step which attempts finding a better solution. The Ruin

part selects a segment of the solution devised in the previous step and removes it from

the solution. Subsequently, the removed part is recreated by the Recreate part as good as

possible by again finding an admissible solution which obeys all the constraints. Lastly,

the algorithm compares the new solution with the existing one and decides whether to

preserve the previous, or keep the new solution.

1https://github.com/graphhopper/jsprit



4 Concurrent optimization model

In this section we present our model. First, we define a sequence of indices

kl = {k1l , . . . , knl }, k·l ∈ {1, . . . , d} which creates a sequence of distribution networks in

time periods Xl = {Zk1
l
, . . . , Zkn

l
}, where each l marks a single permutation of indices2.

The goal of our model is to find an optimum sequence of Xl for the whole outlook 1 . . . n.

We propose three modifications of our model, based on three different optimization ob-

jectives.

• Distribution strategy costs minimization

The customer delivery costs and the warehousing costs are minimized while keep-

ing the defined service level. Therefore, the objective of this problem is to find a

sequence of Xl, such, that in combination with the associated tie,f , the sequence

yields the lowest expected total operation costs.

• Revenue maximization

Revenue maximization is a common objective that many firms pursue as a priority,

for example, to increase their market share. The objective of this problem is to find

a sequence of Xl, such, that in combination with the associated tie,f , the sequence

yields the highest expected total revenue.

• Profit maximization

The objective of this problem is to find a sequence of Xl, such, that in combination

with the associated tie,f , the sequence yields the highest expected total profit.

2There are n periods and d possible distribution network each period. Therefore, there is a total of
dn permutations.



4.1 Distribution strategy costs minimization

The first step is to obtain ∀i ∈ {1. . . n} and ∀f ∈ {1. . . d} the expected operation costs γi
f .

In total, there are n ∗ d estimates because we are estimating γ of every Zf , f ∈ {1, . . . , d}

at every Ai, i ∈ {1, . . . , n}.

E[γi
f ] =

mi∑
j=1

cij,fP (aij |Pa(Ai)) (1)

Using E[γi
f ] and tie,f we can now define the optimization problem.

argmin
l
{

n∑
i=1

E[γi
ki
l
] +

n∑
i=2

ti
k
(i−1)
l ,ki

l

} (2)

The resulting l is such a sequence of distribution networks which yields the minimum

costs.

4.2 Revenue maximization

The first step is to obtain ∀i ∈ {1, . . . , n} and ∀f ∈ {1, . . . , d} the expected revenue ρi
f .

In total, there are n ∗ d estimates because we are estimating ρ of every Zf , f ∈ {1, . . . , d}

at every Ai, i ∈ {1, . . . , n}.

E[ρif ] =

mi∑
j=1

cij,fP (aij |Pa(Ai)) (3)

Using E[ρif ] and tie,f we can now define the optimization problem.

argmax
l

{
n∑

i=1

E[ρiki
l
]−

n∑
i=2

ti
k
(i−1)
l ,ki

l

} (4)

The resulting l is such a sequence of distribution networks which yields the maximum

revenue.



4.3 Profit maximization

First step is to obtain ∀i ∈ {1, . . . , n} and ∀f ∈ {1, . . . , d} the expected total profit πi
f .

In total, there are again n ∗ d estimates.

E[πi
f ] =

mi∑
j=1

pij,fP (aij |Pa(Ai)) (5)

Using E[πi
f ] and tie,f we can now define the optimization problem.

argmax
l

{
n∑

i=1

E[πi
ki
l
]−

n∑
i=2

ti
k
(i−1)
l ,ki

l

} (6)

5 Case study

5.1 Introduction

We tested the method proposed in previous sections using data and the business case

of the company Pilsner Urquell. Pilsner Urquell Brewery (PU) is the largest brewery in

Czechia, headquartered in Pilsen. PU has three production plants where beer and other

beverages are produced. Its customers are large supermarket chains, smaller convenience

stores, restaurants, and pubs. To help accommodate this vast network of clients, PU runs

a network of fourteen strategically located depots in the Czech region.

PU runs its logistics at the high end of the domain standard and it achieves remarkable

efficiency and results. This is possible because of their proper planning and long-term

evaluations. The business task described below is one of the cases where PU wanted to

analyze the situation on the market in advance and to be ready for the change when

it arrives. This is necessary as all changes in logistics operations take a long time to

implement. The goal is to set the optimum long-term distribution strategy in the Czech

market for the years 2018 - 2020.



The case study is structured as follows. First, we provide the key facts regarding the

company’s operations and the business outlook. Next, we construct the BN model based

on the business outlook and the historical data and simultaneously propose several feasible

distribution strategies. Further, we evaluate each distribution strategy for each business

scenario in terms of operation costs3, using a specialized software created by the company

Logio called Distribution wizard (DW). Consequently, using the outputs from DW and

the estimated transition costs among strategies, we select the optimal distribution plan

for the company for the years 2018 - 2020.

Operations description

The company’s distribution network can be divided into three transportation channels:

• Primary - The primary channel is concerned with goods redistribution among the

PU’s facilities, mainly from the production plants to the depots. These shipments

are almost always large amounts carried by trailers with 38t capacity.

• Direct - Through the direct channel, the product is delivered from the production

plants to the distribution centers (DCs) operated by some large supermarket chains.

These are always wholesale shipments carried by a trailer with 24t capacity. This

channel is the most cost-effective because the product is transported in bulk to the

customer using the most direct way.

• Secondary - Through the secondary channel, the product is delivered to all cus-

tomers except those already delivered by the direct channel. These shipments are

usually distributed using smaller trucks with 9.7t capacity.

3Prices are always listed in units, corresponding to CZK*coefficient due to a confidentiality policy of
PU. Therefore, all conclusions are expressed in relative terms which remain accurate.



Figure 2: Monthly sales in HL
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5.2 Concurrent optimization

Business outlook

PU delivers its products to multiple supermarket chains. Some supermarket chains are

already delivered by the direct channel in 2017. Some of the large customers prefer the

direct channel as it allows them to consolidate goods and to better manage the supply

of their stores. Three additional chains are signaling a possibility of a request to change

to this model as well. This change would result in a transition of a portion of deliveries

from the secondary and primary channels to the direct channel. Also, PU does not expect

significant sales growth in the domestic market hence we assume the sales stay constant

over the whole outlook.

Data

We obtained data from PU related to their distribution network operations for the full

calendar year 2017. The VRP problem is very complex and the simulations require a

lot of time to complete. Therefore, we select two calendar months, January and June

on which the method is demonstrated. The two months is a representative sample. As

can be seen in Figure 2, January is the slowest month of the year and June is when the

summer peak occurs.



Figure 3: Bayesian network model
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2020

Source: Author’s creation based on data provided

Bayesian network construction

Using the business outlook and the obtained data, we could proceed to the BN construc-

tion. Figure 3 shows the structure of our BN model. The model is built around the

expectation that up to three customers will change to the direct way of delivery. There

are three nodes 2018, 2019, and 2020 representing the company over the three-year out-

look horizon, each having eight states. The states stand for every possible scenario when

none or the maximum of all three customers (A, B, C) shift their preference toward direct

delivery.

The name of every state also contains the respective shares of the direct and secondary

distribution channels. For example, the state BA 31 69 represents the situation when

customers B and A change to the direct distribution channel, resulting in a share of

direct distribution of 31% and the share of secondary 69% 4. The probability distribution

on each node in the BN is based on the company’s expectations.

Possible distribution strategies

With respect to the business outlook, the company is considering closing the operations

in one or two depots. Due to their location and throughput, depots in Teplice and Jihlava

4Primary is exempted because it is a redistribution among the PU facilities, never customer delivery



Table 1: Operating costs of different network configurations (thous. units) as estimated
by DW

No depot Teplice Jihlava Both
BS Jan June Jan June Jan June Jan June

Base 6,183 10,224 6,255 10,399 6,588 10,815 6,648 10,957
B 5,854 9,963 6,026 10,163 6,452 10,598 6,632 10,815
C 5,874 9,942 6,046 10,170 6,448 10,685 6,628 10,873
A 5,769 10,007 5,950 10,195 6,416 10,710 6,576 10,902
CB 5,789 9,713 6,002 9,924 6,516 10,486 6,721 10,710
AB 5,609 9,583 5,813 9,855 6,275 10,406 6,524 10,678
CA 5,737 9,688 5,902 10,029 6,400 10,569 6,592 10,815
CAB 5,420 9,282 5,665 9,557 6,187 10,253 6,432 10,547

were the most fitting ones to be closed. There are therefore four distinct strategies in

total that the company could adopt:

• No depot closes

• Depot in Teplice closes - based on the distance, the customers get split between the

nearby depots in Karlovy Vary and Mnichovo Hradǐstě

• Depot in Jihlava closes - the customers get split among the nearby depots in Hradec

Kralove, Praha, Ceske Budejovice, and Brno

• Both depots close

Closing a depot eliminates the fix and operation costs required to run it. However,

closing a depot also results in an increased distance to the affected customers which in

turn increases the distribution network operation costs in other depots.

5.3 Optimum strategy selection

We have constructed the BN with our future expectation (Figure 3) and estimated the

operating costs of four possible distribution strategies (Table 1) at each state in the BN.



Figure 4: Closing the Teplice depot

(a) Base setup with Teplice depot
operational

(b) Alternative setup when depot in
Teplice is closed

Source: Author’s creation based on data provided

Before we can proceed to find the optimum sequence of distribution strategies, we need

to establish the transition costs and also adjust the operations costs estimates in Table 1

for the savings achieved by closing the depots.

The transition costs are extra, one-time expenses that PU would have to make to

change the network setup. We estimate the one-time cost of closing the depot in Teplice

to be 350,000 units and 550,000 units in Jihlava. We assign a large penalty to the cases

when a closed depot would be reopened again because, from the business perspective, it is

an unrealistic development. Furthermore, PU calculated the Teplice depot operation costs

for January and June to be 509,000 units and 671,000 units respectively. For the depot

in Jihlava, the costs are higher at 911,000 units and 1,036,000 units. Having obtained

all necessary inputs, we can apply our distribution strategy cost minimization model as

described in Section 4.1. Using Formulas 1 and 2, we obtain the optimum sequence of

distribution strategies for all three years.

Table 2 shows five transition paths with the lowest operation costs. For both months,

the estimated optimum transition paths are identical, Both-Both-Both. The interpretation

of this distribution plan is that PU should immediately close both depots in Teplice and

in Jihlava and keep them closed for the whole outlook. Figures 4 and 5 show the situation

before and after closing the depots. Although there are only minor cost differences among

the top transition paths, the results clearly show that closing one or both depots would



Figure 5: Closing the Jihlava depot

(a) Base setup with Jihlava depot
operational

(b) Alternative setup when depot in
Jihlava is closed

Source: Author’s creation based on data provided

Table 2: The top five optimum transition paths for 2018-2019-2020 by January and June,
based on the projected distribution strategy operating costs (thous. units)

January June
Strategy Costs Strategy Costs

Both-Both-Both 16,466 Both-Both-Both 28,288
Jihlava-Both-Both 16,856 Teplice-Both-Both 28,690
Teplice-Both-Both 16,871 Teplice-Teplice-Teplice 28,735
Teplice-Teplice-Teplice 16,876 Jihlava-Both-Both 28,786
Jihlava-Jihlava-Jihlava 17,157 Teplice-Teplice-Both 29,015

be beneficial for the company.

5.4 Comparison to the company data

We expected the company to have 0% growth over the outlook. In 2018 and 2019, PU

sales grew yearly by less than 1%. Although the growth rate reached 4% in 2020, our

expectation was overall reasonably accurate.

For the base scenario in our model, we estimated the operation costs to be 6,183,000

units in January and 10,224,000 units in June. PU’s real costs were, on average, higher at

7,821,000 units in January and 11,783,000 units in June. The difference can be explained

as a potential between the near-optimal state and reality. In the near optimum, the trucks

are always fully loaded and always choose the shortest path to complete the delivery. The



relative differences of 26% in January, which is off-season, and 15% in June, during the

summer peak, suggest that PU operates comparably a very efficient distribution network.

The potential can be mainly found in the smaller depots with smaller customer bases, for

which it is much more demanding to achieve similar efficiency rates to the large depots,

especially off-season.

Over 2018 - 2020, PU preserved all of their depots operational. The optimum distri-

bution strategy selected by our model is closing both depots in Teplice and in Jihlava.

As shown by our model, this strategy better corresponds with the company’s persistent

expectations regarding the changing preferences of the large customers. Closing these

depots could have resulted in net savings of 5.5% over 2018-2020.

5.5 Impact of the Covid-19 pandemics on the company sales

By the end of 2019, Covid-19 was officially discovered in China. By the spring of 2020,

Covid-19 was rapidly spreading to the majority of the world, and nearly all governments

started adopting unprecedented measures of closing borders, limiting the movement of

the population even within borders, and closing businesses except for essential services.

The first restrictions directly affecting restaurants in Czechia came into effect on March

145. Since then, the restaurants had to stay closed for 58 days, until May 11, except

for takeaway orders. From May 11 until May 25, the restaurants had been allowed to

reopen their outdoor areas. Afterward, restaurants could also reopen their indoor areas

from May 25 until June 30, between 6 am and 23 pm. Although it was still closed at

night, the customers could largely restore their social gathering habits. The reported

figures from June do not seem negatively affected by the pandemic. The 5% year-to-year

June sales growth that the company experienced despite the ongoing pandemics could be

attributed to the release of restrictions, combined with the natural summer season and

5https://www.podnikatel.cz/clanky/nejvetsi-otloukanek-epidemie-hospody-byly-od-brezna-2020-
zavrene-skoro-260-dnu/



the enthusiasm of customers who were recently released from unprecedented restrictions.

Nevertheless, due to the reasoning above, neither January nor June sales seem to be

significantly impacted by the ongoing pandemic.

However, overall data from 2020 would likely show a sales decline due to the re-

adoption of major restrictions in the fall of 2020. Nevertheless, the optimum strategy

selected by COM, Both-Both-Both would also prove robust during the pandemic. Whereas

the non-essential establishments, including restaurants and pubs, remained closed for a

large part of the pandemic, retail stores were preserved open. As established in the

previous chapter, all restaurants and pubs are accommodated using the secondary channel.

There is the highest benefit in terms of saved kilometers driven when using the regional

depots (such as Teplice or Jihlava) to deliver the beer to these customers because of their

number and because they place orders frequently. Therefore, when these businesses have

closed, the benefit of operating the depots diminishes compared to the pre-pandemic state

of affairs, and hence the Both-Both-Both would have been optimal for the company.

5.6 The short-term and the long-term planning comparison

In line with our second research question, we compare the short-term and the long-

term optima. The hypothesis will be evaluated by comparing the long-term optimum, as

selected by COM, with the sum of the costs of the strategies optimal in the short term.

The optimal strategy in the long term was selected to be Both-Both-Both, on data from

January and June as well, as depicted in Table 2. The short-term optima can be found

by selecting the strategy for each year separately, including the implied transition costs

in the process. The intuition behind the said approach is that the firm would only plan

for one year in advance, not considering a more distant future in the planning. Therefore,

a firm would select the least costly strategy for the following year at the end of each year.

Using the short-term selection approach, the optimal strategy is Teplice-Teplice-Teplice.



The optimum is identical using the January and June data sets. In January, the total

operating costs are estimated to be 16,875,000 units. Based on the June data, the result

corresponds to operating costs of 28,735,000 units. Both strategies are among the top

five long-term distribution strategies as depicted in Table 2. However, in both cases,

they are sub-optimal. In the case of January, the strategy selected using the short-term

approach, Teplice-Teplice-Teplice, is 2.5% more expensive than the long-term optimum

Both-Both-Both. Using the June data, the short-term optimum is 1.5% more costly than

the long-term optimum Both-Both-Both. Therefore, it can be concluded by averaging the

results for the two peak months that the short-term optimum would be approximately

2% more expensive to operate than the long-term optimum.

6 Conclusion

Based on our empirical experience in the field, we have formulated the hypothesis that

concurrent business and distribution strategy planning holds substantial potential. In

this article, we presented a new method for concurrent business and distribution strat-

egy planning using a Bayesian network. The method was described and applied to a

business case of the company Pilsner Urquell. Using our method, we selected the most

cost-effective distribution strategy for the company (Table 2). The company could have

decreased its expected distribution network operation costs by 5.5%, had it followed the

strategy selected by our model. Empirical evidence has, therefore, confirmed the validity

of this hypothesis. Nevertheless, there are many unresolved issues within this field due

to its complexity and multifaceted nature. One area for future research is to extend the

presented model to also include inventory planning in concurrent optimization. Finally,

the concurrent optimization model presented in this study offers a promising base for

future research in this research area and has the potential for application on a wide range

of research topics.
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