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Abstract 

We propose a research agenda integrating environment-related science, technology, and 

innovation (STI) using a problem-solving approach to sustainable development. We argue 

that STI for sustainability encompasses four major task domains: (1) ecological moderniza-

tion and transformation, (2) ecosystem management, (3) environmental risk assessment, 

and (4) adaptation to environmental change, each posing great social challenges. For each 

domain, nature–society interaction increasingly relies on knowledge acquisition. The pro-

posed agenda focuses on the investigation of R&D capacity and linking knowledge and 

action within and among societal spheres (i.e., science, politics, business, law, mass media, 

and education). While today the disciplinary niches of environment-related STI research 

are still fragmented, with this broader framework, STI research could develop into a major 

social science field of human–environment relations. 
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1. Introduction 

 

The term "anthropocene" characterizes the current geological age in which humanity 

is a strong driver of change in the Earth system. Most ecosystems are now dominated by 

the human species (Turner II and McCandless, 2004; Vitousek et al., 1997). The accelerat-

ing pace of global environmental change is accompanied by an increasing requirement of 

knowledge on nature–society interaction. The Russian geochemist Vladimir Vernadsky 

coined the term "noosphere" to highlight the fact that human cognition is significant on the 

geological level (1945). Conversely, when social systems approach the limits of ecological 

carrying capacity, these systems require more information and more efficient practices to 

monitor and maintain services that we derive from natural systems (ecosystem services). 

Science, technology and innovation (STI) are increasingly being reframed as part of our 

capacity for sustainable development (Cash et al., 2003; Clark and Dickson, 2003). While 

progress in knowledge and technology alone is not sufficient to solve the sustainability 

crisis, there is no doubt that STI has an important role in our achieving targeted sustainable 

development paths (Berkhout and Gouldson, 2003). 

STI research is used here as a term for research on economic, political, sociological, 

historical, and cultural dimensions of STI in society. The growing importance of knowl-

edge and information (knowledge intensity) for monitoring and maintaining ecosystem 

services suggests that STI research should devote more effort to questions of nature–

society interaction. Yet the relevant parameters of this knowledge have not been delineated 

in a way that presents a systematic agenda for STI research. The objective of this paper is 

to present a conceptual map of the knowledge required for achieving sustainability goals. 

We outline a comprehensive programme that links different topics in environment-related 

STI research and helps to identify gaps in current understanding. STI research, in our opin-

ion, can evolve into a major social science field of human–environment relations, and we 

would like to engage in a broader discussion of this potential, with our proposed frame-

work as a starting point. 

The challenge of sustainable development is, according to Clark and Dickson (2003: 

8059) "the reconciliation of society's development goals with the planet's environmental 

limits over the long term". A fruitful perspective for sustainability-oriented STI research 
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exists in the investigation of problem-solving capacity (cf. Jacob and Volkery, 2006; 

Jänicke et al., 1999). This perspective includes problem-solving in science and technology 

proper, as well as a focus on the coupling of knowledge and action between different 

spheres of society, i.e., science, business, politics, law, mass media, and education. The 

coupling of knowledge and action is essential for environmental innovation and social 

learning and includes the analysis of obstacles to progress in the direction of sustainable 

development. 

There has been a tendency on the part of environmental historians and social scien-

tists to conceptually divide the social construction of knowledge and social discourse about 

nature from the "material interaction" of humans and their environment which is related to 

natural resource consumption (e.g. Buttel et. al., 2002, Cronon, 1990). We believe that this 

separation is flawed and artificial because large portions of relevant knowledge are embed-

ded in the ever more sophisticated technologies used to transform natural resources 

through the economic processes of production, transport, consumption, and waste disposal; 

this connection between knowledge and action belies the proposed conceptual divide. In 

general terms, the knowledge required for a sustainability transition comprises both (a) 

knowledge about natural systems and anthropogenic changes in these systems and (b) 

technological knowledge because technologies determine the flux of material and energy, 

which in turn affects natural systems. The term "material interaction" is inadequate for 

complex economic processes and should be used only in the more narrow sense of material 

and energy flows. This can be demonstrated with the help of the "ecological interaction 

chain". 

This paper starts with the concept of an "ecological interaction chain", (section 2). 

We distinguish four domains of problem-solving by their respective focus on this ecologi-

cal interaction chain: ecological modernization and transformation (2.1), ecosystem man-

agement (2.2), environmental risk assessment (2.3), and adaptation to environmental 

change (2.4). Each domain encompasses the problem-solving capacities of natural sci-

ences, engineering disciplines, and social sciences in various combinations. The proposed 

agenda for STI research involves observation and analysis of the societal problem-solving 

capacity in each of these domains (section 3). Together, the four domains present a coher-



 Task Domains of STI for Sustainability 5 

ent outline of sustainability related STI issues to address at the beginning of the 21st cen-

tury. 

 

2. Task domains of STI for sustainability 

 

The "ecological interaction chain" is a generalized representation of the causal link-

ages between society and nature. This scheme was originally developed by William Clark 

and colleagues in the context of research on hazard management (Clark et al., 2001: 10ff.). 

The chain consists of six causal steps, as described in Figure 1. A similar concept of a 

causal interaction chain is used in the well-known DPSIR framework. DPSIR stands for 

driving forces, pressures, states, impacts and responses (http://glossary.eea.europa.eu/ 

EEAGlossary/D/DPSIR). However, Clark's scheme is more amenable to the purposes of 

STI research because it cites technology as a causal linkage and makes more explicit use of 

social concepts (such as demand, choice, practice, valuation, and vulnerability). 

In the past, many environmental sociologists and historians divided knowledge and 

communication about nature from "material" relationships of humans and their environ-

ment (e.g. Buttel et al., 2002; Cronon, 1990). With the help of the ecological interaction 

chain, we propose to show that STI research requires a very different approach. Rather 

than artificially separating anthropogenic modifications of natural systems from knowledge 

and discourse, we use the interaction chain to distinguish four domains in terms of problem 

content while including both physical relationships and knowledge. Each domain demar-

cates a suite of problem-solving tasks involving knowledge creation, technological devel-

opment, innovation, and related social discourse for sustainability, and each covers a cer-

tain section on the interaction chain. These four "task domains" are labelled: (1) ecological 

modernization and transformation, (2) ecosystem management, (3) environmental risk as-

sessment, and (4) adaptation to environmental change. 
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Figure 1 The causal chain of nature–society interaction1 

 

1. 2. 3. 4. 5. 6.

Society Nature Society

1. 2. 3. 4. 5.1. 2. 3. 4. 5. 6.

Society Nature Society  
 

(1) Demand for goods and services: The causal chain starts with human demand. This 

comprises demand for artefacts and services created by society, as well as demand for 

natural resources and ecosystem services. 

(2) Choice of technologies and practices: Humans develop and employ technologies and 

practices to satisfy demand. Technologies are embedded in institutions and infrastructures. 

(3) Flux of materials and energy: Depending on the choice of technology, practice and 

location, flows of materials and energy occur (extractions and emissions). 

(4) Environmental properties and ecosystem services: Anthropogenic flows alter the flux 

of material and energy in the geosphere and biosphere. The modification is not confined to 

direct effects but includes catalytic reactions, e.g., the greenhouse effect of CO2 emissions, 

as well as the removal or addition of biological agents, such as the introduction of alien 

species. These modifications affect environmental properties and ecosystem services. 

(5) Vulnerability to risks of environmental change: Change in the behaviour of natural 

systems may have unintended consequences for people and the things they value. Vulner-

ability is the differential susceptibility to damage from hazards and environmental change. 

(6) Consequences to people and things they value: Mediated by their vulnerability or resil-

ience, people are subject to the adverse consequences of changing environmental condi-

tions. The chain may be conceived as a closed loop because many impacts of environ-

mental change cause shifts in human demands (step 1). 

                                                 

1  The causal chain is adapted from Clark et al. (2001). 



 Task Domains of STI for Sustainability 7 

The basic idea displayed in Fig. 2 is that different task domains of STI for sustain-

ability investigate different causal links of the ecological interaction chain. Research and 

development (R&D) often does not deal with all steps of a complex causal chain simulta-

neously but concentrates on selected causal links. This focus on specific causal relations is 

represented in Fig. 2 as the maximum of a schematic distribution curve. The idealized dis-

tribution shows that each task domain is focused on a specific causal link, while also con-

sidering links with the preceding and the subsequent causal step. For example, the focus of 

research in the domain of "ecological modernization and industrial transformation" (do-

main 1) is on "technologies and practices" (step 2) and the resulting "flux of materials and 

energy" (step 3). The causal connection between the design and choice of technologies and 

the resource efficiency and emissions of technical processes is at the core. More peripher-

ally, the task domain also includes research on the conditions of "human demand" (step 1), 

which determine the choice of technologies, and on "environmental properties"(step 4), for 

example the CO2 concentration in the atmosphere. In contrast, issues of vulnerability 

(step 5) and consequences of environmental change (step 6) rarely figure prominently in 

R&D for ecological modernization. The four domains shift in relation to each other. 

STI capacity is an essential part of society's overall capacity for sustainable develop-

ment. The four task domains help to gain a more systematic view of respective STI prob-

lems and capabilities. Such an overview is useful for STI research. Fig. 2 is based on an 

extensive review of current STI research topics in the areas of environmental innovation 

research, environmental sociology, and social studies of science, history of environmental 

sciences, and research in the human dimensions of global environmental change. However, 

the content of each domain is much broader, encompassing knowledge from natural sci-

ences, engineering and social sciences. The scheme as such does not distinguish internal 

subdivisions of nature (e.g., geosphere–biosphere, ocean-atmosphere-land, or ecosystems) 

or society (e.g., actors, social groups, social arenas, or social systems). Thus, neither natu-

ral nor social science constructs are singled out in a fundamental way. 
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Figure 2 Task domains of STI for sustainability 

 

(1)

(2) Ecosystem
management

(1) Ecological
modernization

(3) Environmental
risk assessment

(4) Adaptation to
environmental change

Focus of STI activities

Ecological interaction chain

Demand Technology Material
flows

Environm.
properties

ImpactsVulnerability
(2) (6)(5)(3) (4)

 
Source: author 

Fig. 2 visualizes the role of knowledge in nature-society interaction. Four domains of sci-

ence, technology, and innovation (STI) for sustainability are distinguished (task domains). 

Research in different task domains focuses on different causal links of the ecological in-

teraction chain (horizontal axis). This focus of STI activities is represented as the maxi-

mum of an idealized distribution curve (vertical axis). A detailed description of the eco-

logical interaction chain is given in Fig. 1. 
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Using examples, Table 1 shows how STI capacity can be disaggregated for the pur-

poses of empirical study. We distinguish between R&D capacity and the societal capacity 

to link knowledge and action. R&D capacity encompasses (a) the cognitive and techno-

logical capabilities which are defined by scientific theories, methods, data, instruments, 

models, terminologies, and practices of a research field (b) the scientists, engineers, and 

social scientists; (c) the financial resources allocated to R&D; and (d) private and public 

R&D organizations dedicated to the area of interest. R&D capacity is commonly subdi-

vided by S&T fields or disciplines, although it may also refer to multidisciplinary problems 

(first row in Table 1). 

Defining the societal capacity to link knowledge and action is less straightforward. 

Each task domain represents challenges of sustainable development, which means that the 

task is derived from a societal perspective and not confined to research and development 

alone. The challenge for STI research is to investigate the interplay between scientific and 

technical developments with capabilities for environmental action in other realms of soci-

ety. The coupling of science and other functional social systems, primarily business, poli-

tics, law, mass media, and education, is still an under-researched field in contemporary 

sociology (Heinze, 2006; Luhmann, 1995; Weingart, 2001). Table 1 presents a selection of 

societal categories that appear particularly useful for the study of problem-solving capacity 

in this broader sense, without being comprehensive (second row in Table 1). These exam-

ples are also further elaborated in sections 2.1–2.4 below. 
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A focus on social challenges and problem-solving inevitably introduces normative 

dimensions to STI research. Because there is no forceful social consensus on how to 

attain a "sustainability transition" (Parris and Kates, 2003), a certain danger exists that 

sustainability-oriented STI research would become so politicized that it would lose sci-

entific credibility. On the other hand, STI research can offer valuable contributions to 

identifying and implementing feasible next steps. In any case, the recognition of norma-

tive dimensions in STI research does not necessitate suppression of the empirical diver-

sity of actors' views on what constitutes environmental problems and viable solutions in 

different social contexts. There are some good models in the literature for the treatment 

of normative dimensions in studies on the application of knowledge to social problems. 

For example, Clark and colleagues (2001) recommend the use of metacriteria. These are 

"criteria for evaluating efforts to link knowledge with action" and have been summa-

rized under the headings of "adequacy, value, legitimacy, and effectiveness" (definitions 

of criteria p. 15). According to the authors, this approach offers an "uneasy middle 

ground" between "imposing on our empirical material a rigid normative framework of 

our own making" and "giving up on the normative discussion by simply assuming that 

all outcomes are equal" (ibid: 14). Because normative aspects can rarely be circum-

vented altogether in research on progress for sustainability, addressing them explicitly is 

certainly advisable. 

We contend that the four task domains together give a comprehensive picture of 

STI in nature–society interaction, on a high level of aggregation. The schematic distri-

bution in Fig. 2 does not express quantitative estimates for the respective knowledge 

demand or output, which are questions for empirical study. Rather, our purpose is to 

provide a cognitive map for diverse STI research topics that are currently often frag-

mented by the boundaries of traditional disciplines such as economics, political sci-

ences, sociology, engineering sciences, and Earth and environmental sciences. We argue 

that problem-solving capacity is suited to providing a common framework for STI re-

search on nature–society interaction. Among all four domains, probably the largest 

share of current STI literature can be classified under the categories of ecological mod-

ernization and transformation, and there is a substantial amount of mainly sociological 

literature on topics of environmental risk assessment. Even a cursory review of the STI 
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research literature shows that these two domains have received far more attention by 

social scientists than have ecosystem management and adaptation to environmental 

change. In this sense, our aim is not only to systematize current research topics but also 

to highlight upcoming and comparatively neglected themes. 

The following sections (2.1–2.4) explain the content of the four STI task domains 

in more detail. Each section gives a definition and refers to selected literature in STI-

related research. Most contributions come from a background in innovation economics, 

political science, and sociology, and some from history. An example illustrates the 

"task" in each domain. These illustrations are taken from engineering sciences (2.1), 

ecology (2.2), social sciences (2.3), and climate research (2.4). 

 

2.1. Ecological modernization and transformation 

 

The defining task of the first STI domain is to reduce the environmental impacts 

of socio-economic metabolism and to disconnect growth of the economy from natural 

resource consumption. Correspondingly, the focus of knowledge creation is on the 

choice of technologies and practices and the resulting flux of material and energy 

(Fig. 2). This focus is explicit in the definition by Martin Jänicke: 

Ecological modernization" refers to the wide spectrum of environmental im-

provements that can be attained through technical innovations beyond end-of-pipe ap-

proaches (Jänicke, 2004: 201). 

"Environmental innovation" means the invention, adaptation, and diffusion of new tech-

nologies, products, and practices that are beneficial for the environment, and includes 

both radically new solutions and incremental improvements. 

Modernisation, in economic terms, is the systematic, knowledge-based improve-

ment of production processes and products. The urge to modernise is a compul-

sion inherent in capitalistic market economies, and the increasing competition for 

innovation in industrialised countries has led to the continuing acceleration of 

technological modernisation. (…) The task is therefore to change the direction of 
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technological progress and to put the compulsion for innovation at the service of 

the environment (Jänicke, 2006: 11). 

Strategies of ecological modernization emphasize the exploitation of environ-

mental–economic win–win situations where gains in eco-efficiency are connected with 

enhanced competitiveness at the level of firms, industrial sectors, or national economies 

(Porter and van der Linde, 1995; Taistra, 2001). Ecological modernization includes im-

proving the management of material and energy flows in production processes as inves-

tigated by "industrial ecology" (Daniels, 2002; Haberl et al., 2004). These efficiency-

oriented modernization strategies are distinguished from deep change in technological 

and economic structures. "Industrial transformation" or "transition" refers to the adop-

tion of radically different technological development paths, or "radical changes at the 

level of socio-technical regimes" (Smith et al., 2004: 113). As Jänicke stated, "Problem-

solving in the form of ecological restructuring affects systems of behaviour which – 

irrespective of technical eco-efficiency improvements – stand out by their high envi-

ronmental intensity" (2005: 205). 

There are few explicit treatments of R&D capacity for ecological modernization 

and transformation (cf. Legler et al., 2006), but there are feasibility studies of moderni-

zation strategies which make assessments of current technological capabilities. An ex-

ample, described below, is provided by the Swiss study on a "2000 Watt per capita in-

dustrial society" (Jochem et al. 2004). Inventions on the part of engineering sciences 

play a central role in ecological modernization, where they contribute to the develop-

ment of greener technologies. Yet technological developments are too often treated 

separately from the economic and political aspects of modernization capacity. This ob-

servation leads us to the question of how the dynamics of knowledge and action have 

been conceptualized for this domain (Table 1). 

STI capacity is part of society's broader capacity for sustainable development. Pol-

icy analysts have shown that in the absence of strong price signals on resource markets 

(e.g., high oil prices), "eco-innovations invariably require political support" (Jänicke 

and Jacob, 2006: 12). Yet although the relationship between firms' innovativeness and 

environmental policy has been a topic of some debate among economists and political 

scientists (Hemmelskamp et al., 2000; Klemmer, 1999), there is little systematic re-
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search on capacity building for environmental innovation. We believe that economic 

and socio-technical meso-scale concepts, such as economic sectors or socio-technical 

regimes, are useful tools for the combined analysis of technological, economic, politi-

cal, legal, and other social aspects. Inspired by Malerba's definition of sectoral innova-

tion systems (Malerba, 2004), economic sectors are understood here to delineate a com-

bination of technologies, actors, and institutions that is relatively stable over timescales 

of years to decades. Compared to sectors, the notion of socio-technical regimes is 

geared to the study of more dynamic shifts or transitions in technology (Berkhout et al., 

2005; Kemp and Loorbach, 2006, Elzen et al., 2005). "Socio-technical regimes are rela-

tively stable configurations of institutions, techniques and artefacts (…) that determine 

the 'normal' development and use of technology in order to fulfil socially-determined 

functions" (Smith et al., 2004: 114). The concept is also applied to large technical infra-

structures, such as those for traffic, communication, water, or energy (Konrad et al., 

2004; Markard and Truffer, 2006). On the basis of these and similar ideas, a more ex-

plicit and detailed approach to the study of modernization capacity could be developed. 

 

2.1.1 Example of of ecological modernization and transformation: energy efficiency 

Energy efficiency is an example of ecological modernization and restructuring that cuts 

across economic sectors. The scope of the efficiency challenge was recently specified 

by the vision of a "2000 Watt per capita industrial society", advanced by the board of 

the Swiss Federal Institutes of Technologies (Jochem et al., 2004). An energy demand 

of 2000 Watt, or 65 GJ, per capita per year, equals one-third of today's per capita pri-

mary energy use in Europe. Assuming a 70% increase of GDP (gross domestic product) 

per capita by 2050, the challenge of a 2000 Watt/cap society is to improve energy effi-

ciency by a factor of five. According to the study, an efficiency increase on this order of 

magnitude is technically feasible within five decades. 

The authors maintain that pertinent sectoral interest groups and political actors are 

still not sufficiently aware of the economic opportunities and co-benefits of a shift to-

wards resource efficient development paths. In particular, there is a conspicuous lack of 

strategic energy and STI policies. Energy-related R&D is still focused on the supply 
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side, i.e., on the efficiency of conversion steps from primary to useful energy and on 

renewable energy sources. By contrast, the saving potentials of the demand side are 

often neglected, i.e., the reduction of the demand for useful energy per energy service 

(e.g., through low-energy buildings or lightweight vehicles) and options to reduce or 

substitute certain energy-intensive uses (e.g., energy-intensive materials, motorized mo-

bility). Overall efficiency gains of 60%–80% are deemed feasible in the aggregated de-

mand sectors of industry, transportation, residential uses, and commerce, public, and 

agriculture. In total, reducing energy intensity is the most underestimated option in the 

face of the pending peak of oil production and the need to reduce CO2 emissions 

(Jochem, 2004). 

The authors conclude that both energy and climate policy should be redefined as part of 

an innovation policy that is essentially sustainability-driven. "The transition to a 2000 

Watt per capita industrial society would need the support of a fundamental change in the 

innovation system (e.g., research policy, education, standards, incentives, intermediates 

and entrepreneurial innovations" (Jochem, 2006: 268, italics added). 

 

2.2. Ecosystem management 

 

The central task of the second problem domain is the long-term maintenance of 

essential ecosystem services. Palmer et al. (2004: 1253) stress that "our future environ-

ment will largely consist of human-influenced ecosystems, managed to varying degrees, 

in which the natural services that humans depend on will be harder and harder to main-

tain." The concept of ecosystem management does not refer only to the harvest of spe-

cific natural resources, such as agricultural produce, but also includes our total depend-

ency on natural systems. The Millennium Ecosystem Assessment distinguishes the fol-

lowing ecosystem services: 

"An ecosystem is a dynamic complex of plant, animal and microorganism com-

munities and the nonliving environment interacting as a functional unit. (…) Ecosystem 

services are the benefits people obtain from ecosystems. These include provisioning 

services such as food, water, timber, and fibre; regulating services that affect climate, 

floods, disease, wastes and water quality; cultural services that provide recreational, 
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aesthetic, and spiritual benefits; and supporting benefits such as soil formation, photo-

synthesis, and nutrient cycling. The human species, while buffered against environ-

mental changes by culture and technology, is fundamentally dependent on the flow of 

ecosystem services" (Millennium Ecosystem Assessment, 2005: v). 

The growing human influence on the planet's ecosystems is accompanied by an 

increasing knowledge intensity of ecosystem management. R&D capacity refers to the 

scientific understanding of ecosystem functioning and to the development of more sus-

tainable management practices (Fig. 2). More knowledge is required not only to inten-

sify the harvest of targeted services, as in agriculture or fisheries (see example below), 

but also increasingly to avoid degradation or collapse of valuable functions and for eco-

system restoration. Topsoils offer a good illustration of this growth in knowledge inten-

sity. Although some techniques to combat erosion and nutrient depletion have been 

practiced since ancient times, today’s soil scientists claim that "soil ecosystems are 

probably the least understood of nature's panoply of ecosystems and increasingly among 

the most degraded" (McNeill and Winiwarter, 2004: 1629). Desertification, erosion, 

salinization, pollution, sealing, compaction, and nutrient depletion of soils restrict agri-

cultural production in many regions worldwide (Anon., 2004: 1614f.). The U.S. Geo-

logical Survey in cooperation with agencies in the U.S., Canada, and Mexico recently 

initiated a project with the long-term goal of a continental-scale soil geochemical survey 

of North America. This project has been long awaited by scientists who maintain that 

soils "are a sponge for pesticides and other nasty compounds filtering down from the 

surface", but have "only a sketchy idea of how the ground copes with this toxic trickle" 

(Proffitt, 2004: 1617). More generally, an important element of R&D capacity consists 

of technologies and observation networks to monitor natural system behaviour. 

Compared to the domain of ecological modernisation and transformation, there is 

much less STI research on the dynamics of knowledge and action in ecosystem man-

agement. One way to look at this empirically is through economic sectors that centre on 

the management of renewable resources (Table 1). A sectoral approach is not confined 

to agriculture, forestry, and fisheries but involves many other sectors dealing in differ-

ent ways with ecosystem services, including management of freshwater, urban planning 

and construction, control of pests and diseases, tourism, and nature reserves. Again, 
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economic sectors are understood here to encompass a set of socio-technical practices, a 

set of diverse actors, including firms, regulating agencies, research organizations, and 

diverse stakeholder groups, as well as institutions and policies that influence actors' be-

haviour and the evolution of technologies. 

To some extent, the domains of ecosystem management and ecological moderni-

zation overlap in a sectoral perspective. For example, intensive agriculture and fishery 

depend on cheap fossil fuels, and agricultural innovation systems could be vastly im-

proved in terms of material and energy efficiency (Clark, 2002; Pauly et al., 2003; 

Raina et al., 2006). Yet ecosystem management typically requires specific knowledge of 

natural system functioning, a demand for knowledge that is not inherent to the domain 

of ecological modernization. 

Another way to look at relationships between science and decision-making is 

through institutions that govern the use and management of natural resources (Table 1). 

Institutions that deal explicitly with environmental or resource issues have also been 

called "environmental" or "resource regimes" (Young, 2002). The analysis of environ-

mental institutions has made progress in recent years. An influential line of thinking 

features generalizable design principles of common property institutions for "common 

pool resources", such as the oceans or the global atmosphere (Dietz et al., 2003; Na-

tional Research Council , 2002). More recently, "institutional diagnostics" has been ad-

vocated as a more case-specific approach to the analysis of existing institutions on local 

to global scales. Institutional diagnostics seeks to identify important features of ecosys-

tem management issues "that can be understood as diagnostic conditions, coupled with 

an analysis of the design implications of each of these conditions" (Young, 2002: 176). 

Diagnostic conditions are specific combinations of ecosystem properties, actor attrib-

utes, and implementation issues. 

Although the role of knowledge is a recurring topic in this institutional literature 

(e.g., Young, 2003), we believe that STI research has much to contribute to a more sys-

tematic understanding of interactions among environmental knowledge, innovation, 

actor constellations, and environmental regimes. In this respect, STI research could also 

build upon a rapidly growing body of literature that emphasizes the importance of citi-
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zen participation and local knowledge in ecosystem management (Fischer, 2000; 

Kasemir et al., 2003). 

2.2.1 Example of ecosystem management: agriculture and fishery 

The meaning of ecosystem management is well illustrated through practices with a long 

history that continue to change the Earth's ecosystems at a rapid pace, such as agricul-

ture and ocean fisheries. In some 10,000 years, humans moved from the invention of 

plant cultivation to global changes in vegetation cover (Turner II and McCandless, 

2004). Today, "croplands and pastures have become one of the largest terrestrial biomes 

on the planet (…) occupying ~40% of the land surface" (Foley et al., 2005: 570). Agri-

cultural production must be further expanded and yields increased in order to reduce 

hunger (there are 852 million chronically hungry people in the world today) and to feed 

a growing global population (an estimated increase of 2 billion people by 2030; figures 

from the UN Food and Agriculture Organization FAO). According to the International 

Food Policy Research Institute, "global cereal production is estimated to increase by 

56% between 1997 and 2050, and livestock production by 90%" (Rosegrant and Cline, 

2003: 1917). Yet intensive farming has strong adverse effects on the environment. 

Among the pervasive negative impacts are soil degradation, overexploitation of water 

resources, eutrophication of freshwater and coastal ecosystems, global biodiversity loss 

(ranging from rainforests to agro-biodiversity), and the release of greenhouse gases. 

While agriculture is based on the maintenance of impoverished terrestrial ecosys-

tems, fisheries continue to overexploit the world's marine biological resources. "The 

past decade established that fisheries must be viewed as components of a global enter-

prise, on its way to undermine its supporting ecosystems" (Pauly et al., 2003: 1359). 

Global marine fisheries landings are estimated to have peaked in the late 1980s at 80 to 

85 million metric tons and are declining by about 500,000 tons per year. Marine ecolo-

gists describe present trends as "fishing down marine food webs" (ibid.). Ecosystem-

based fishery management would essentially "reverse the order of management priori-

ties to start with the ecosystem rather than the target species" (Pikitch et al., 2004: 346). 

Apart from a massive reduction in fishing effort, abatement of coastal pollution and the 
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establishment of networks of marine reserves are deemed necessary to return to sustain-

able yields and reduce the threat of species extinction (Pauly et al., 2003: 1359-1361). 

 

2.3. Environmental risk assessment 

 

The central task of the third domain is the anticipation, analysis, and evaluation 

of environmental risks—those risks caused by variability and change in environmental 

phenomena—and effective response options. Environmental hazards such as storms, 

floods, droughts, or pests have always threatened human life and prosperity (Nigg and 

Mileti, 2002). In addition to natural variability, this domain encompasses all hazards 

caused or increased by anthropogenic environmental change, including risks of anthro-

pogenic climate change or health risks caused by the spread of toxic chemicals and ra-

diation. STI activities are focused on variability and change in environmental properties 

on different temporal and spatial scales and on the vulnerability of people and things to 

hazards or the negative consequences of altered environmental conditions (Fig. 2). 

In a landmark comparative study on the management of global atmospheric risks, 

the Jäger et al. give the following definition of risk assessment: 

A risk assessment provides information about the causes, possible consequences, 

likelihood, and timing of a particular risk. Risks by definition involve uncertain-

ties, and especially for global environmental processes these uncertainties are so 

large that the usual features of risk assessment – namely, the calculation of prob-

abilities of specific harm from particular activities, natural or manmade – are 

swamped by larger uncertainties and ignorance about key processes, interactions, 

and effects (Jäger et al., 2001: 7). 

In the context of STI research, risk assessment means more than just scientific 

reports or policy recommendations. Following Farrell and colleagues (2006), risk as-

sessment is understood here as a social process that bridges scientific knowledge crea-

tion and decision-making by governments or industries: "Environmental assessment 

refers to the entire social process by which expert knowledge related to a policy prob-

lem is organized, evaluated, integrated, and presented in documents to inform policy 

choices or other decisionmaking" (Farrell and Jäger, 2006: 1). 
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From the perspective of sociological systems theory, risk assessment is a mecha-

nism to communicate about new or complex environmental problems in the context of a 

functionally differentiated society (cf. Luhmann, 1986; Luhmann, 1993). As a conse-

quence of an environmental problem's novelty or complexity, the available scientific 

knowledge is often incomplete or uncertain and in part contentious. Yet in an apparent 

paradox, this scientific uncertainty frequently augments the expectations that the legal 

and political system, the mass media, and the public direct at scientific experts and ex-

pert knowledge (Weingart, 2003). Ever since environmental consciousness arose in the 

1960s and early 1970s, the demand for this type of assessment has been on the increase. 

Since the time of the United Nations Conference on the Human Environment 

(UNCHE) in Stockholm in 1972, industrialised countries enormously expanded their 

R&D capacity for environmental risk assessment, including scientific knowledge of 

environmental risks, the underlying behaviour of natural systems, and options for risk 

prevention and mitigation. While sociologists showed great interest in the topic of risk 

and risk perception (e.g., Beck, 1992; Grundmann, 1999; Luhmann, 1993), this expan-

sion of R&D capacity has rarely been studied by sociologists of science or STI research. 

To our knowledge, there are no detailed studies on the socio-technical development of 

observation systems that monitor conditions on land, in the oceans, and in the global 

atmosphere and provide input for simulation models. Yet new observation systems such 

as the establishment of a Global Earth Observation System of Systems (Lautenbacher, 

2006) will change our view of the global environment in fundamental ways. 

Policy analysis offers a rich conceptual toolkit to dissect the evolution of socially 

contested issues, and this toolkit has been adapted and refined in studies of risk-related 

policies. One of the largest undertakings in this area is the study by the "social learning 

group", an international group of 37 scholars who investigated policy development in 

three atmospheric risks across nine countries and in two international arenas between 

1957 and 1992 (see example below). A major objective of their study is to trace proc-

esses of "social learning", a concept that is similar in some respects to the idea of capac-

ity building (Social Learning Group, 2001b: 13f.). Another influential idea in this con-

text is the notion that communication between science and politics can be enhanced 

through skilful "boundary management". Determinants of effective boundary manage-
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ment have been investigated for boundary organizations (Guston, 1999; Guston, 2001), 

issue domains (Social Learning Group, 2001a), and assessment processes (Farrell and 

Jäger, 2006). Actors who take this problem seriously are found to invest overall more 

time and resources in "communication, translation, and/or mediation" between scientists 

and decision-makers and "thereby more effectively balance salience, credibility, and 

legitimacy in the information that they produce" (Cash et al., 2003: 8089). 

A different way to think about the capacity to link knowledge and action is to fo-

cus on social groups or regions believed to be particularly vulnerable, for example 

coastal areas vulnerable to the risk of sea level rise. Vulnerability is a term for the dif-

ferential susceptibility to loss from a given insult (Kasperson et al., 2001: 24). Vulner-

ability analyses explain why certain individuals or populations are more likely to be 

exposed, are more sensitive to adverse impacts, or have less adaptive capacity in the 

face of changes in environmental conditions or environmental hazards. As Kasperson et 

al. (2001, p. 5) described it, "Vulnerability is a function of variability and distribution in 

physical and socio-economic systems, the limited human ability to cope with additional 

and sometimes accumulating hazard, and the social and economic constraints that limit 

these abilities". The Intergovernmental Panel on Climate Change describes vulnerability 

as a function of the sensitivity of a system to changes in climate, its adaptive capacity, 

and the degree of exposure to climatic hazards; and "resilience" as "the flip side of vul-

nerability" (IPCC, 2001: 89). STI research on vulnerable groups or regions could con-

tribute to the investigation of social responses and adaptive processes triggered by the 

expectation of increased environmental risk and long-term change in environmental 

conditions. The concepts of vulnerability and resilience have also been used to build 

bridges between ecological and social sciences (Berkes et al., 2003; Luers, 2005; Turner 

II et al., 2003). 
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2.3.1 Example of environmental risk assessment: policy evolution in three cases of 

global atmospheric risks 

The social learning group investigated the three atmospheric risks of acid rain, strato-

spheric ozone depletion, and climate change in the period from the International Geo-

physical Year in 1957 to the United Nations Conference on Environment and Develop-

ment (UNCED) in 1992 (Social Learning Group, 2001a). The study compares issue 

evolution across eleven political "arenas", including nine countries, the European com-

munity, and the family of international environmental organizations. The study de-

scribes policy along two dimensions: one focusing on "problem framing, agenda setting, 

and issue attention in individual arenas"; the other comparing management functions 

across arenas: "risk assessment, option assessment, goal and strategy formulation, im-

plementation, evaluation, and monitoring" (Clark et al., 2001: 6). By means of this em-

pirical design, a constructivist analysis of issue development in social arenas is success-

fully integrated with a realist perspective of problem content as defined by the contem-

porary state of knowledge in Earth and environmental sciences. 

 

2.4. Adaptation to environmental change 

 

The central task of the fourth domain is the adaptation of society to long-term en-

vironmental change. In relation to the other three task domains, knowledge creation is 

focused on the consequences of environmental change and their implications for human 

demand in goods and services. Adaptation is more difficult to demarcate as a domain of 

STI because adaptation is located on the social pole of the ecological interaction chain 

(Fig. 2). To date, the term is most common in the context of climate change, as illus-

trated by the example below. 

In the book "Earth System Analysis for Sustainability", leading scientists in inter-

national research on global environmental change give a clear but very general defini-

tion of societal adaptation: 
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Throughout history, society has responded in two principal ways to environmental 

vagaries, flux, hazards, and drawdown, including resource depletion: move, either 

through designed mobility as in pastoral nomadic systems or 'forced' relocation 

owing to environmental or resource degradation (…) and change techno-

managerial strategies, as in the adoption of fossil-fuel energy or genomics. (…) 

The second option – to modify or transform biophysical conditions in order to 

gain a measure of 'control' over some portion of the environment or to deliver a 

substitute for a depleted resource (…) [is] labelled technological fix and substitu-

tion (Steffen et al., 2004: 331). 

From a macro-historical perspective, it becomes apparent that the two options of 

relocation and changes in techno-managerial strategies are inseparably bound in the 

history of the modern world. In the 18th century, Europeans expanded the agricultural 

resource base of their economies to distant continents: North and South America for 

food, fibre, and timber production, and Africa for a slave labour force. Leading scholars 

of world history argue that this earlier expansion of the renewable resource base is es-

sential to explain the later take-off of the industrial revolution and the historical diver-

gence between development centres in western Europe and east Asia (Pomeranz, 2000). 

In other words, Europeans combined the "move" strategy of territorial expansion with 

the "techno-managerial" innovations of early capitalism. As a result, the most developed 

centres of the West escaped the growth constraints of limited renewable resources 

within their home countries, long before agricultural technologies were revolutionized 

in the 20th century. Kenneth Pomeranz (2000) argues that in the early modern world, 

limits in the regional output of renewable resources constrained technology-based eco-

nomic growth in the most-developed regions and that different ways to cope with this 

problem are essential to explain the historical divergence of development paths in China 

and western Europe. 

Viewed from this angle, long-distance trade has substantially supplanted "move" 

strategies in the modern world, at least for those who enjoy affluence in a globalized 

economy (cf. Pomeranz, Topik, 1999). External trade in agricultural and manufactured 

goods implies exchange relations among countries with regard to their ecological carry-

ing capacity. However, to date this ecological balance of trade is not explicitly ac-
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counted for. Although accounting tools are being developed to determine the overall 

"ecological footprint" of nations (http://www.footprintnetwork.org), it remains method-

ologically challenging to quantify export and import relations among countries for par-

ticular ecosystem services. Recent studies of "green water" flows are a good example 

(SIWI; IFRI; IUCN; IWMI 2005.) Markets and long-distance trade are among the most 

basic mechanisms for society to perceive and to adjust to changes in the abundance of 

non-renewable (e.g., oil) and renewable natural resources. At the same time, "globaliza-

tion enhances the likelihood that those parts of the world involved in active trade with 

each other will reach many of their limits more or less simultaneously" (Meadows et al., 

2004: 222). This situation only underlines the difficulty of separating broad issues of 

adaptation from the analysis of economic and power relations among nations and social 

groups. 

The contours and core themes of this STI task domain will manifest themselves as 

the 21st century advances. For the more narrow purposes of STI research, "adaptation" 

can be confined to technological fixes of environmental problems and new economic 

opportunities that arise from altered environmental conditions and reduced abundance 

of natural resources. Adaptation processes in this narrow sense are often incremental, at 

least initially, and determined by multiple social factors (Smit et al., 2000). Further-

more, adaptive responses are likely to trigger innovations in the STI domains of "eco-

logical modernization" or "ecosystem management". For instance, an adaptive response 

to regional climate change might consist in technologies that increase the efficiency of 

agricultural water use. Thus, adaptation pressures might act as positive feedback that 

propels the ecological interaction chain towards more sustainable socio-technical trajec-

tories. 
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2.4.1 Example of adaptation to environmental change: studies in regional climate 

change 

Climate change is the topic that dominates the current literature on adaptation. "Climate 

changes are likely to manifest in four main ways: slow changes in mean climate condi-

tions, increased interannual and seasonal variability, increased frequency of extreme 

events, and rapid climate changes causing catastrophic shifts in ecosystems" (Tompkins 

and Adger, 2004: without p.). 

Adaptation to slow changes in variation can be expected to at least initially rely 

upon similar means and strategies that were developed to cope with natural variability 

(Smit et al., 2000). Today, most regional impact assessments focus on climatic extremes 

(e.g., droughts or floods or hurricanes). Further research is needed on methods to inte-

grate regional and global climate modelling because the resolution of global climate 

models is currently too coarse for regional impact assessments (Steffen et al., 2004: 

327). Yet various countries are beginning to integrate regional climate change scenarios 

into strategies for long-term natural resource management, e.g., for water supply, agri-

cultural crops, and energy demand. 

Adger et al., stated that "There have been documented adaptations in markets such 

as insurance and reinsurance, coastal planning, health interventions, built environment, 

water resources and adjustments and adaptations within resource-based livelihoods" 

(2005: 85). For example, in many river basins worldwide, mountain snow cover func-

tions as a natural reservoir that stores winter precipitation and gradually releases water 

during the spring and summer seasons. If mountain snow is permanently reduced as a 

result of warmer or drier climates, it may become necessary to build more artificial res-

ervoirs, to transfer water from more distant rivers and aquifers, or to reduce substan-

tially water consumption during seasonal dry periods (e.g., Carle, 2004). 
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3. Conclusion 

 

This paper presented a comprehensive outline of the problem space of STI re-

search for sustainability. We distinguished between four major task domains: 

(1) ecological modernization and transformation: reducing the environmental 

impacts of the socio-economic metabolism and disconnecting growth of the econ-

omy from natural resource consumption; 

(2) ecosystem management: long-term maintenance of essential ecosystem 

services; 

(3) environmental risk assessment: anticipation, analysis, and evaluation of 

environmental risks and response options; and 

(4) adaptation of society to long-term environmental change. 

For all four respects, knowledge is bound to become increasingly important in 

humanity's relationship to the natural environment over the coming decades, related to 

the fact that society is approaching ecological limits on regional and global scales 

(Meadows et al. 2004; Clark and Dickson, 2003). This increase in knowledge intensity 

deserves more attention from STI researchers. One way to achieve this focus is to inves-

tigate the societal development of STI capacity, understood to encompass both R&D 

capacity and the capacity to link knowledge and action between different spheres of 

society. This paper does not discuss the global distribution of STI capacity, but targeted 

presentation of a cognitive map of STI research topics. Today, environment-related STI 

research is still fragmented in what are often peripheral niches of major disciplines, such 

as economics, political science, sociology, and the history of science. We argue that by 

linking related ideas and findings from social sciences and connecting them with re-

search in engineering sciences and Earth and environmental sciences, STI research 

could move to the heart of human–environment relations to enhance our understanding 

of the creation and uses of knowledge for sustainability. 
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