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Non-technical summary

Bundesbank staff regularly calculate optimal policy projections (OPPs), allowing to derive

recommendations about how to set the monetary policy instruments for a given macroe-

conomic outlook. As such, they can be a valuable input for the preparation of monetary

policy meetings held by the Governing Council of the European Central Bank. An article

in the Bundesbank’s December 2023 Monthly Report (Deutsche Bundesbank, 2023) dis-

cusses the basic features of OPPs and how they can deliver valuable insights in practice.

To remain accessible to a general audience, the article refrains from covering technical

details about the computation of such projections. This note complements the article by

providing a more technical treatment of the subject to interested readers.

The present note describes how to formally state and solve an optimal policy problem

based on (i) a baseline projection, (ii) impulse response functions for monetary policy

shocks at different time horizons and (iii) a loss function. The baseline projection provides

the starting point for the OPP and describes how the economy is projected to evolve if

monetary policy instruments follow a baseline, e.g. evolve as expected by financial mar-

kets. The impulse response functions capture how policymakers can affect the projected

variables by selecting certain paths for their instruments, like the nominal interest rate

or asset purchases. Together with a loss function, which allows to rank potential out-

comes in terms of their desirability, one can then calculate how to best deviate from the

baseline policy path, optimally trading off different goals over a specified policy horizon.

The resulting optimal policy path and the associated paths for macroeconomic variables

of interest constitute an optimal policy projection.

The note first shows in detail how to derive an OPP, using a textbook version of the

New Keynesian model. It then illustrates various features of the OPP approach based

on three examples. To highlight the versatility of the OPP approach, the note then shows

results for two additional applications. The first application builds on a medium-scale

DSGE model and a baseline projection taken from the Broad Macroeconomic Projection

Exercise (BMPE) of the Eurosystem. The second application shows optimal policies for a

heterogeneous-agent New Keynesian (HANK) model.



Nichttechnische Zusammenfassung

Fachleute der Bundesbank berechnen regelmäßig optimale Politikprojektionen (OPPs).

Diese Analysen erlauben für einen vorgegebenen gesamtwirtschaftlichen Ausblick, Hin-

weise oder Empfehlungen hinsichtlich des Einsatzes der geldpolitischen Instrumente abzu-

leiten. Sie können daher einenwertvollen Beitrag für die Vorbereitung von geldpolitischen

Sitzungen des EZB-Rats liefern. Ein Sonderaufsatz im Dezember 2023 des Monatsberichts

der Bundesbank (Deutsche Bundesbank, 2023) beschreibt die wesentlichen Eigenschaften

von OPPs und führt aus, wie sie wertvolle Einsichten für die geldpolitische Praxis liefern

können. Um für eine breite Leserschaft zugänglich zu sein, sieht der Sonderaufsatz davon

ab, technische Aspekte hinsichtlich der Berechnung von OPPs im Detail auszuführen. Die

vorliegende Notiz ergänzt den Sonderaufsatz, indem sie interessierten Leserinnen und

Lesern einen ersten Zugang zu technischen Details bietet.

Die vorliegende Notiz beschreibt wie man ein optimales Politikproblem auf Basis von

drei Elementen formal aufschreibt und löst. Diese drei Elemente umfassen (i) eine Ba-

sislinie (Projektion), (ii) Impuls-Antwort-Funktionen für geldpolitische Schocks zu unter-

schiedlichen Zeithorizonten und (iii) eine Verlustfunktion. Die Basislinie projiziert, wie

sich relevante makroökonomische Größen verhalten, wenn die geldpolitischen Instru-

mente bestimmten Annahmen folgen, z.B. sich entsprechend den Erwartungen an den

Finanzmärkten entwickeln. Die Impuls-Antwort-Funktionen bilden ab, wie die Entschei-

dungsträger die projizierten Größen beeinflussen können, wenn sie bestimmte Pfade für

die geldpolitischen Instrumente, wie den Nominalzins oder Anleihekäufe, wählen. Zusam-

men mit der Verlustfunktion, die es erlaubt, unterschiedliche Pfade für Zielgrößen mitein-

ander zu vergleichen und zu bewerten, kann mit diesen Elementen berechnet werden, wie

von der Basislinie in optimaler Weise über einen bestimmten Politikhorizont abgewichen

werden sollte. Eine optimale Politikprojektion, die unterschiedliche Ziele gegeneinander

abwägt, umfasst dann einen optimalen Pfad für die Politikinstrumente sowie einen sich

ergebenen Pfad für die Zielgrößen.

Anhand einer Lehrbuchversion des neukeynesianischen Modells zeigt die vorliegende No-

tiz zunächst im Detail, wie eine OPP hergeleitet wird. Im Anschluss illustriert sie einige

Eigenschaften des OPP-Ansatzes anhand von drei Beispielen. Um die Vielseitigkeit des

OPP-Ansatzes zu verdeutlichen, werden ferner Ergebnisse von zwei weiteren Anwendun-

gen gezeigt. Die erste Anwendung verwendet ein mittelgroßes DSGE-Modell und eine

Basislinie aus der Broad Macroeconomic Projection Exercise (BMPE) des Eurosystems.

Die zweite Anwendung zeigt optimale Politiken für ein neukeynesianisches Modell mit

heterogenen Haushalten.
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1 Introduction

Optimal policy projections (OPPs) allow the derivation of policy recommendations for a

given macroeconomic scenario. As such, they can be a valuable input for policymakers in

central banks, who regularly face the difficult task of deciding how to best set their policy

instruments given the current macroeconomic outlook.
1
Bundesbank staff regularly cal-

culate OPPs in preparation for monetary policy meetings held by the Governing Council

of the European Central Bank (ECB), as discussed in a recent article in the Bundesbank’s

December 2023 Monthly Report (Deutsche Bundesbank, 2023). By taking a high-level per-

spective, the Monthly Report article abstracts from technical details of OPP computation

to focus on intuition and policy implications. This note provides a brief primer on OPPs

that complements the article by offering a more technical treatment of the subject.

The note is organised as follows. Section 2 describes the main idea of the OPP approach,

including its advantages and disadvantages. Using a simple textbook model, Section 3

presents the technical details needed to calculate an OPP. Section 4 provides some illus-

trative OPP simulations for that model. Section 5 shows OPP results for more complex

macroeconomic models. Section 6 offers some final remarks.

2 Main idea

The computation of optimal policy projections requires three ingredients: (i) a baseline

projection, (ii) impulse response functions for monetary policy shocks at different time

horizons and (iii) a loss function.

The baseline projection, which is the first key ingredient, is the starting point for the policy

analysis. It provides the policymaker’s outlook for the economy based on a given mone-

tary policy path. If the available monetary policy instruments, like the short-term nominal

interest rate and asset purchases, do not deviate from those paths assumed for the base-

line, the economy evolves as projected by the baseline as well. The second key ingredient

describes how monetary policy can affect the economy. This is captured through impulse

response functions (IRFs) formacroeconomic variables of interest to contemporaneous and

anticipated future (news) shocks to the monetary policy instruments. The IRFs are critical

for the OPP approach, as they reflect how the economy responds to an announced change

1
In principle, OPPs can also be used for fiscal or macro-prudential policies. The OPP concept has been

around for quite some time (see e.g. Svensson and Tetlow, 2005) and is used by various central banks around

the world (see Deutsche Bundesbank, 2023). Recently, the macroeconomic literature has shown a renewed

interest in the subject, exploring new aspects, extensions and applications of the approach (see e.g. Bersson

et al., 2019; de Groot et al., 2021; Harrison and Waldron, 2021; Hebden and Winkler, 2021; Barnichon and

Mesters, 2023a,b; McKay and Wolf, 2023a,b).

1



in a policy instrument for today or future periods. Capturing the causal effect of policy

changes at different horizons on outcomes is crucial for performing counterfactual policy

simulations that are not subject to the Lucas critique (see e.g. McKay and Wolf, 2023b).

The loss function is the third key ingredient. It reflects the objective of the policymaker,

e.g. a preference for inflation and output gap stabilisation, and allows the ranking of dif-

ferent macroeconomic outcomes. Given such a loss function and policy IRFs, one can then

calculate how to best deviate from the baseline policy path, optimally trading off different

goals over a specified policy horizon. The resulting policy path and the associated paths

for macroeconomic variables of interest constitute an optimal policy projection.

The OPP ingredients can come from the same source, but they do not have to. For in-

stance, ingredients (i)-(iii) can all come from a single dynamic stochastic general equi-

librium (DSGE) model with a Taylor rule that governs interest rate policy. Specifically,

one can obtain ingredient (i) by simulating the evolution of the economy for a specific

macroeconomic shock, ingredient (ii) based on shocks to the Taylor rule at different hori-

zons, and ingredient (iii) as a quadratic approximation of social welfare for the model

economy (see Galí, 2015).
2
For central bank policymakers, however, it is more natural

for (i) to stem from a macroeconomic projection prepared by central bank staff. For the

policy simulations conducted within the Bundesbank, the baseline projections come from

the (Broad) Macroeconomic Projection Exercise, short (B)MPE (see Deutsche Bundesbank,

2023).
3
These projections are not the outcome of a single, particular model, but rather in-

corporate various sources of information. They assume a future path for monetary policy

instruments, as given by market expectations at a specific cut-off date. Based on these

projections, policymakers may ask what the interest rate path should look like to best ful-

fill the central bank mandate. For policy simulations performed by central bank staff, the

loss function usually represents an operationalisation of the mandate rather than a mea-

sure of social welfare. For example, Bundesbank staff use a loss function that reflects the

mandate of the Eurosystem for its policy simulations (see Deutsche Bundesbank, 2023). To

represent policymakers’ ability to affect the economy with their instruments in an empiri-

cally plausible way, the policy IRFs, i.e. OPP ingredient (ii), typically come from estimated

medium- to large-scale DSGE models.
4
This is also the case for the simulations performed

2
As shown e.g. by de Groot et al. (2021), the optimal policy response calculated with the OPP approach

coincides with the optimal Ramsey policy derived using a recursive Lagrangian approach (see Marcet and

Marimon, 2019) and applied from a timeless perspective (see Woodford, 2003). Whereas the former solution

is based on a sequence-space representation of the model, the latter is based on an augmented state-space

representation. The latter representation includes natural state variables (such as capital) as well as additional

“artificial” state variables, whose purpose is to enforce the policymaker’s promises in future periods.

3
Each quarter, macroeconomic projections are prepared as inputs for the decision making of the ECB Gov-

erning Council. The BMPE is conducted for June and December of each year by staff from the Eurosystem’s

national central banks (NCBs) and the ECB. The MPE is conducted by ECB staff for March and September of

each year. For further details, see European Central Bank (2016).

4
While the use of model-implied IRFs is the most common approach among central banks, conceptually,

one could also use IRFs estimated from adequate data (see e.g. Barnichon and Mesters, 2023a,b; McKay and

2



by Bundesbank staff (see Deutsche Bundesbank, 2023).

For policymakers, a key advantage of the OPP approach is its flexibility. For example,

given policy IRFs and a loss function, it is easy to compute OPPs for different macroeco-

nomic scenarios, as captured by different baseline projections. Recent studies have also

demonstrated the flexibility of the approach by showing that it does not rely on the as-

sumption of a perfectly credible policymaker or completely rational agents, extending the

standard OPP framework (see Svensson and Tetlow, 2005) along various dimensions (see

e.g. de Groot et al., 2021; Harrison and Waldron, 2021; Hebden and Winkler, 2021). How-

ever, despite its flexibility, the OPP approach does rely on certain assumptions that limit

the set of feasible applications in practice. For example, the validity of the OPP approach

described in this note ultimately relies on linear (model) relationships. Although it is pos-

sible to incorporate some nonlinearities, such as occasionally binding constraints, asym-

metric objectives or temporary regime changes (see de Groot et al., 2021; Harrison and

Waldron, 2021; Hebden and Winkler, 2021), the OPP approach requires such nonlineari-

ties to apply only temporarily, leaving the steady state of the model unaffected. Therefore,

the approach is not well-suited for policy simulations with permanent effects, such as a

transition to a permanently different central bank balance sheet. Likewise, the OPP ap-

proach cannot be applied if policy affects the information set of agents, for example when

policy actions signal a policymaker’s hidden type or private information in general (see

McKay and Wolf, 2023b). As a result, the framework cannot capture, for example, a (de-

)anchoring of inflation expectations that is driven by a feedback between agents’ beliefs

about the central bank’s commitment to price stability and the policymaker’s actions (see

e.g. Lu et al., 2016). Discrete macroeconomic events, such as a sovereign default or a run

on a large bank, and how they are affected by policy cannot be properly accounted for in

the linear model structure either. Therefore, when applying OPPs in practice, one has to

be aware of these limitations and use them only as one input for decision making, com-

plemented by additional information and analyses (see Deutsche Bundesbank, 2023).

3 Computing an optimal policy projection

Using a simple textbook model, this section presents the technical details needed to com-

pute an OPP.

Wolf, 2023b). However, doing so is a non-trivial task and only works as an approximation, as it requires

estimates of anticipated future policy changes. McKay and Wolf (2023b) show that “empirical IRFs” do not

provide a good approximation in case of an interest rate peg. Therefore, optimal policy projections that

involve an occasionally binding effective lower bound on the nominal interest rate may likely be unreliable

when based on such IRFs. More importantly, however, one can flexibly adapt a DSGE model to reflect a

change in the economic environment, e.g. a steepening of the Phillips curve, to allow for additional (rather

new) instruments, like asset purchases, or to incorporate expert judgment. Doing so for empirical IRFs is not

as straightforward.

3



3.1 Model description

Consider the textbook linearised New Keynesian (NK) model (see e.g. Galí, 2015) sum-

marised by the three-equation system

𝑦𝑡 = 𝔼𝑡𝑦𝑡+1 − 𝜎
−1

(𝑖𝑡 − 𝔼𝑡𝜋𝑡+1) + 𝑢
𝑑
𝑡 , (1)

𝜋𝑡 = 𝜅𝑦𝑡 + 𝛽𝔼𝑡𝜋𝑡+1 + 𝑢
𝑠
𝑡 , (2)

𝑖𝑡 = 𝜌𝑖𝑖𝑡−1 + (1 − 𝜌𝑖) (𝜙𝑦𝑦𝑡 + 𝜙𝜋𝜋𝑡) +∑
𝑘≥0

𝜀𝑡|𝑡−𝑘 , (3)

where 𝜋𝑡 denotes inflation, 𝑦𝑡 the output gap and 𝑖𝑡 the nominal interest rate – all expressed

in log-deviations from their steady-state values.
5

The first equation is the dynamic IS curve, which governs the demand side of the economy

and is subject to a (demand) shock 𝑢𝑑𝑡 . The IS curve is derived from the Euler equation of a

representative household with intertemporal elasticity of substitution 𝜎−1
. It provides the

connection between real economic activity and the expected real interest rate 𝑖𝑡 − 𝔼𝑡𝜋𝑡+1.

The second equation is the forward-looking NK Phillips curve (NKPC), linking current

inflation 𝜋𝑡 to current real economic activity 𝑦𝑡 , expected future inflation 𝔼𝑡𝜋𝑡+1 and a

cost-push shock 𝑢𝑠𝑡 . The household discount factor is denoted as 𝛽, whereas 𝜅 denotes

the slope of the NKPC. The third equation is a Taylor rule, which determines the current

nominal interest rate 𝑖𝑡 as a function of inflation and the output gap in the same period. The

Taylor rule also depends on the lagged nominal rate 𝑖𝑡−1 as well as contemporaneous and

lagged exogenous shocks. Specifically, 𝜀𝑡|𝑡−𝑘 denotes a shock to the policy rate announced

in period 𝑡 − 𝑘, with 𝑘 ≥ 0, but realised in period 𝑡. It is assumed that the model system

has a unique solution.

3.2 How to use impulse response functions for policy (news) shocks

IRFs for model variables of interest to policy shocks at different time horizons capture how

policy changes affect the economy’s behaviour (see Figure 1).
6
Let 𝑇 denote the policy

horizon over which the optimal policy will be calculated. Define the policy shock vector

𝜀𝑡 ≡ (𝜀𝑡|𝑡 , 𝜀𝑡+1|𝑡 , 𝜀𝑡+2|𝑡 , … , 𝜀𝑡+𝑇 |𝑡)

′

, which collects policy shocks announced in period 𝑡 for

periods 𝑡 + 𝑘, 0 ≤ 𝑘 ≤ 𝑇 . In addition, define the vector 𝑑𝑥,𝑘 ≡ (𝑑
𝑥,𝑘
0 , 𝑑

𝑥,𝑘
1 , 𝑑

𝑥,𝑘
2 , … , 𝑑

𝑥,𝑘
𝑇 )

′

,

which contains the impulse response coefficients for variable 𝑥 ∈ {𝜋, 𝑖, 𝑦} to a policy shock

𝜀𝑡+𝑘|𝑡 that is announced today to take place in 0 ≤ 𝑘 ≤ 𝑇 periods from now.
7
The length of

5
While the simple textbook version of theNKmodel is used to describe the details for theOPP computation,

it is straightforward to generalise it and apply it to any linearised DSGE model (see e.g. de Groot et al., 2021;

Hebden and Winkler, 2021) – as highlighted by the applications shown in Section 5.

6
The depicted impulse responses use the model parametrisation from Section 4.

7
Note that 𝑑𝑥,𝑘𝑠 is not necessarily equal to zero, even if 𝑘 > 𝑠, i.e. even if the considered horizon ends

before the period in which the shock actually materialises. This is because of anticipation effects: A news

4



Figure 1: Impulse responses to anticipated policy shocks at different time horizons

0 10 20 30
0

0.5

1
Nominal rate shock

0 10 20 30
-0.08

-0.06

-0.04

-0.02

0
Inflation

0 10 20 30

Time

-1

-0.5

0
Output gap

0 10 20 30

Time

-0.5

0

0.5

Nominal rate

Notes: All variables are expressed in percentage deviations from steady state.

this IRF vector is thus 𝑇 + 1. To illustrate the relationship between the IRF coefficients and

the model variables for a given period 𝑡 + 𝑠, suppose the economy starts in period 𝑡 in the

model’s steady state. Ceteris paribus, a shock 𝜀𝑡+𝑘|𝑡 then implies that variable 𝑥 takes on

the value 𝑥𝑡+𝑠 = 𝑑𝑥,𝑘𝑠 × 𝜀𝑡+𝑘|𝑡 in period 𝑡 + 𝑠. More generally, by exploiting the linear model

structure, one can calculate 𝑥𝑡+𝑠 upon announcement of policy shocks 𝜀𝑡 in period 𝑡 as

𝑥𝑡+𝑠 = ∑
0≤𝑘≤𝑇

𝑑
𝑥,𝑘
𝑠 𝜀𝑡+𝑘|𝑡 . (4)

Alternatively, one can express it in matrix notation as

𝑥𝑡+𝑠 = (𝑑
𝑥,0
𝑠 , 𝑑

𝑥,1
𝑠 , 𝑑

𝑥,2
𝑠 , … , 𝑑

𝑥,𝑇
𝑠 )

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜀𝑡|𝑡

𝜀𝑡+1|𝑡

𝜀𝑡+2|𝑡

⋮

𝜀𝑡+𝑇 |𝑡

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5)

Let the vector 𝑋𝑡 ≡ (𝑥𝑡 , 𝑥𝑡+1, 𝑥𝑡+2, … , 𝑥𝑡+𝑇 )
′

denote the entire time path for variable 𝑥 from

period 𝑡 to 𝑡 + 𝑇 , implied by the policy shocks 𝜀𝑡 . Each element of this vector, 𝑥𝑡+𝑠 , captures

the response of variable 𝑥 in period 𝑡+𝑠 to contemporaneous and anticipated future shocks

shock about the future can have an impact on variable 𝑥 already today. Interest rate forward guidance is one

manifestation of this phenomenon. This can be seen in Figure 1, which shows IRFs for shocks to the interest

rate rule that are all announced in the first period but realise at different dates. Only the policy shock that is

realised in the first period (solid black line) constitutes a contemporaneous shock without anticipation effects.

5



𝜀𝑡 = (𝜀𝑡|𝑡 , 𝜀𝑡+1|𝑡 , 𝜀𝑡+2|𝑡 , … , 𝜀𝑡+𝑇 |𝑡)

′

. In order to calculate 𝑋𝑡 , construct the coefficient matrix

𝐷𝑥
based on the individual vectors 𝑑𝑥,𝑘 ,

𝐷
𝑥
≡ [𝑑

𝑥,0
, 𝑑

𝑥,1
, 𝑑

𝑥,2
, … , 𝑑

𝑥,𝑇
] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑
𝑥,0
0 𝑑

𝑥,1
0 𝑑

𝑥,2
0 ⋯ 𝑑

𝑥,𝑇
0

𝑑
𝑥,0
1 𝑑

𝑥,1
1 𝑑

𝑥,2
1 ⋯ 𝑑

𝑥,𝑇
1

𝑑
𝑥,0
2 𝑑

𝑥,1
2 𝑑

𝑥,2
2 ⋯ 𝑑

𝑥,𝑇
2

⋮ ⋮ ⋮ ⋱ ⋮

𝑑
𝑥,0
𝑇 𝑑

𝑥,1
𝑇 𝑑

𝑥,2
𝑇 ⋯ 𝑑

𝑥,𝑇
𝑇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6)

Given the shock vector 𝜀𝑡 = (𝜀𝑡|𝑡 , 𝜀𝑡+1|𝑡 , 𝜀𝑡+2|𝑡 , … , 𝜀𝑡+𝑇 |𝑡)

′

, which collects policy (news) shocks

known in period 𝑡 to take place in periods 𝑡, 𝑡 + 1, 𝑡 + 2, … , 𝑡 + 𝑇 , one can now conveniently

write

𝑋𝑡 = 𝐷
𝑥
𝜀𝑡 , (7)

to compute the entire path 𝑋𝑡 = (𝑥𝑡 , 𝑥𝑡+1, 𝑥𝑡+2, … , 𝑥𝑡+𝑇 )
′

for variable 𝑥 , or

𝑋𝑡 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑
𝑥,0
0 𝑑

𝑥,1
0 𝑑

𝑥,2
0 ⋯ 𝑑

𝑥,𝑇
0

𝑑
𝑥,0
1 𝑑

𝑥,1
1 𝑑

𝑥,2
1 ⋯ 𝑑

𝑥,𝑇
1

𝑑
𝑥,0
2 𝑑

𝑥,1
2 𝑑

𝑥,2
2 ⋯ 𝑑

𝑥,𝑇
2

⋮ ⋮ ⋮ ⋱ ⋮

𝑑
𝑥,0
𝑇 𝑑

𝑥,1
𝑇 𝑑

𝑥,2
𝑇 ⋯ 𝑑

𝑥,𝑇
𝑇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜀𝑡|𝑡

𝜀𝑡+1|𝑡

𝜀𝑡+2|𝑡

⋮

𝜀𝑡+𝑇 |𝑡

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑0≤𝑘≤𝑇 𝑑
𝑥,𝑘
0 𝜀𝑡+𝑘|𝑡

∑0≤𝑘≤𝑇 𝑑
𝑥,𝑘
1 𝜀𝑡+𝑘|𝑡

∑0≤𝑘≤𝑇 𝑑
𝑥,𝑘
2 𝜀𝑡+𝑘|𝑡

⋮

∑0≤𝑘≤𝑇 𝑑
𝑥,𝑘
𝑇 𝜀𝑡+𝑘|𝑡

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8)

3.3 How to incorporate a baseline scenario

So far, the model’s steady state has served as the implicit baseline scenario. That is, if all

policy shocks are equal to zero, the economy would simply stay in the steady state forever.

However, due to the linearmodel structure, one can express the time path ofmodel variable

𝑥 ∈ {𝜋, 𝑖, 𝑦} for an arbitrary baseline,

𝐵
𝑥
𝑡 ≡ (𝑥

𝑏
𝑡 , 𝑥

𝑏
𝑡+1, 𝑥

𝑏
𝑡+2, … , 𝑥

𝑏
𝑡+𝑇 )

′

, (9)

and policy shocks 𝜀𝑡 simply as

𝑋𝑡 = 𝐵
𝑥
𝑡 + 𝐷

𝑥
𝜀𝑡 . (10)

It is easy to see that without policy shocks, i.e. 𝜀𝑡 = (0, 0, 0, … , 0)
′

, the dynamics of variable

𝑥 are given by the baseline 𝐵𝑥
𝑡 .
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3.4 How to implement an arbitrary interest rate path

In general, one can use the policy IRFs to assess the consequences of arbitrary interest

rate counterfactuals for the economy (see Laseen and Svensson, 2011).
8
Specifically, one

can evaluate the consequences of an arbitrary interest path 𝐼 𝑡 by following a two-step

procedure. First, one has to find policy shocks 𝜀∗𝑡 , such that 𝐼 𝑡 = 𝐵𝑖
𝑡 + 𝐷𝑖𝜀∗𝑡 holds, where 𝐵

𝑖
𝑡

is the baseline path for the interest rate. Fortunately, one can accomplish this analytically

due to the linearity of the model:

𝜀
∗
𝑡 = (𝐷

𝑖
)
−1

(𝐼 𝑡 − 𝐵
𝑖
𝑡) . (11)

Given 𝜀∗𝑡 , one can then calculate the counterfactual path for variable 𝑥 conditional on the

interest path 𝐼 𝑡 as

𝑋 𝑡 = 𝐵
𝑥
𝑡 + 𝐷

𝑥
𝜀
∗
𝑡 . (12)

3.5 How to compute the optimal interest rate path

An optimal interest rate path for the economy selects policy shocks such that the implied

paths for the economyminimise a given loss function. While counterfactual policy projec-

tions based on specific interest rate paths can provide valuable insights, policymakers are

usually interested in the optimal interest rate path. To determine what is optimal, a loss

function is required to represent the policymaker’s preferences, allowing the ranking of

different paths for the economy. Specifically, the intertemporal loss function∑0≤𝑠≤𝑇 𝛽
𝑠𝐿𝑡+𝑠

is considered with quadratic period loss function

𝐿𝑡 =
(𝜋𝑡)

2
+ 𝜆(𝑦𝑡)

2
+ 𝑤𝑖(Δ

𝑖
𝑡)

2

2
, (13)

where Δ𝑖
𝑡 ≡ 𝑖𝑡 − 𝑖𝑡−1 denotes the difference between the interest rate in period 𝑡 and the

previous period 𝑡 − 1.

As will be shown in detail below, when combined with a linear system of equations, which

represent the (equality) constraints faced by the policymaker, a quadratic loss function

permits a formulation of the policy problem as a simple linear-quadratic programming

problem. The constraints reflect the relationship between policy shocks (choices) and

outcomes, generating potential trade-offs for the policymaker. How such trade-offs are

resolved then critically depends on the assumed specification of the loss function. A key

8
Analogously to shocks to the short-term policy rate, as presented here, one can proceed with shocks to

central bank asset holdings inmodels that explicitly model such asset holdings by the central bank (see Section

4.3 and Appendix A).
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advantage of a linear-quadratic programming problem is that it admits an analytical so-

lution if no further types of constraints, such as inequality constraints, are imposed. And

even if such constraints are imposed, the problem can typically still be solved efficiently

by numerical means.

For simple DSGE models, it is often possible to obtain microfounded relative weights for

the loss function based on a second-order welfare approximation. For instance, the simple

textbook model implies the weights 𝜆 = 𝜅/𝜃 and 𝑤𝑖 = 0, with 𝜃 denoting the demand

elasticity for intermediate goods (see e.g. Galí, 2015). In this case, fluctuations of inflation

and the output gap around their long-run values are costly for households in the econ-

omy, with 𝜆 capturing the relative importance of the output gap. A policymaker would

then aim at stabilising these two variables, which may involve a trade-off between stabil-

ising inflation and the output gap, within and across periods (see Section 4). According to

this microfoundation, the third term in the period loss function does not matter. Indeed, a

positive weight 𝑤𝑖 is usually assumed by central bank practitioners to avoid large swings

in interest rates (see Svensson and Tetlow, 2005), e.g. to capture an aversion to financial

market volatility in a reduced form. Since the mandate of a central bank usually explic-

itly states price stability as a key objective, inflation stabilisation naturally enters the loss

function. A positive relative output gap weight 𝜆may then reflect a dual mandate (Federal

Reserve System) or a medium-term focus (Eurosystem).
9

As mentioned above, without further restrictions on the policy instrument, such as an

effective lower bound (ELB) on the policy rate, one can compute the optimal policy path

analytically. To do so, first define the vector

𝑍𝑡 ≡

⎡
⎢
⎢
⎢
⎣

Π𝑡

𝑌𝑡

𝐼𝑡 − 𝐼𝑡−1

⎤
⎥
⎥
⎥
⎦

, (14)

which stacks the time paths for the three variables relevant to the loss function and is

therefore of dimension 3(𝑇 + 1) × 1. Next, define the vector

𝐵𝑡 ≡

⎡
⎢
⎢
⎢
⎣

𝐵𝜋
𝑡

𝐵
𝑦
𝑡

𝐵
Δ𝑖

𝑡

⎤
⎥
⎥
⎥
⎦

, (15)

which is of the same dimension as 𝑍𝑡 and contains the stacked baseline paths for the vari-

9
See Deutsche Bundesbank (2023) for details on the interpretation of the loss function from the perspective

of the Eurosystem.
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ables, and the matrix

𝐷 ≡

⎡
⎢
⎢
⎢
⎣

𝐷𝜋

𝐷𝑦

𝐷Δ𝑖

⎤
⎥
⎥
⎥
⎦

, (16)

which is of size 3(𝑇 + 1) × (𝑇 + 1) and contains the impulse response coefficient vectors for

different shock horizons. One can now conveniently express 𝑍𝑡 as

𝑍𝑡 = 𝐵𝑡 + 𝐷𝜀𝑡 . (17)

The policy problem can then be written as

min
𝜀𝑡

{
1

2
𝑍𝑡

′

𝑊𝑍𝑡

}

, (18)

subject to (17). The matrix𝑊 is of size 3(𝑇 + 1) × 3(𝑇 + 1) and reflects discounting and the

relative weights in the loss function 𝐿𝑡 . Specifically, it is given by

𝑊 =

⎡
⎢
⎢
⎢
⎣

𝑊𝛽 0 0

0 𝜆𝑊𝛽 0

0 0 𝑤𝑖𝑊𝛽

⎤
⎥
⎥
⎥
⎦

, (19)

for the example in this section, with diagonal matrix 𝑊𝛽 ≡ 𝑑𝑖𝑎𝑔 (1, 𝛽, 𝛽
2, … , 𝛽𝑇 ).

By substituting out 𝑍𝑡 in the minimisation problem above and ignoring constant terms

irrelevant to the policy choice, one can simplify the problem to

min
𝜀𝑡

{
1

2
𝜀
′

𝑡𝐷
′

𝑊𝐷𝜀𝑡 + 𝐵
′

𝑡𝑊𝐷𝜀𝑡

}

. (20)

The analytical solution to this problem is given by the first-order condition

𝜀
∗
𝑡 = −

(
𝐷

′

𝑊𝐷
)

−1

(𝐵
′

𝑡𝑊𝐷)
′

, (21)

and the optimal policy projection for variable 𝑥 can then be calculated as

𝑋
∗
𝑡 = 𝐵

𝑥
𝑡 + 𝐷

𝑥
𝜀
∗
𝑡 . (22)

Although it can no longer be achieved analytically, it is feasible to solve the minimisation

problem also subject to an ELB constraint, 𝑖𝑡 = 𝐵𝑖
𝑡+𝐷

𝑖𝜀𝑡 ≥ log (𝑖𝐸𝐿𝐵/𝑖𝑆𝑆), where 𝑖𝐸𝐿𝐵 denotes

the ELB on the gross nominal rate and 𝑖𝑆𝑆 the steady-state value of the gross nominal rate.
10

10
In MATLAB, one could, for instance solve this constrained linear-quadratic programming problem by us-

ing the built-in function quadprog.m. To use the function, rewrite the constraint as −𝐷𝑖𝜀𝑡 ≤ 𝐵𝑖
𝑡−log (𝑖𝐸𝐿𝐵/𝑖𝑆𝑆).
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4 Illustrative examples

This section illustrates the OPP approach for the texbook model based on three examples.

4.1 Optimal policy response to a cost-push shock

To illustrate the OPP approach, this section starts by simulating the optimal policy re-

sponses to a transitory and a persistent cost-push shock (see e.g. Galí, 2015). To compute

the respective responses, a baseline projection is required. For this application, the base-

line, shown by the dashed red lines in Figures 2 and 3, is given by the response of the text-

book NK model to a cost-push shock 𝑢𝑠𝑡 , which follows an AR(1) process with persistence

parameter 0 ≤ 𝜌𝑠 < 1 and is shown in the upper left panels. The interest rate response

is therefore based on the Taylor rule in this case, with coefficients 𝜌𝑖 = 0.7, 𝜙𝜋 = 1.5 and

𝜙𝑦 = 1. The remaining parameter values for the model are 𝛽 = 0.98, 𝜅 = 0.03, 𝜎 = 1 and

𝜃 = 6.11 The loss function weights are 𝜆 = 𝜅/𝜃 and 𝑤𝑖 = 0. The solid blue lines in Figures 2

and 3 display the optimal policy paths. Whereas Figure 2 shows the optimal response to a

transitory cost-push shock (𝜌𝑠 = 0), Figure 3 does the same for a persistent one (𝜌𝑠 = 0.5).

Since the cost-push shock is inflationary and contractionary at the same time (see e.g. the

dashed red lines), it introduces a trade-off for a central bank that cares about inflation and

output gap stabilisation. To counter the inflationary pressure, the central bank can only

hike the nominal rate and depress real economic activity even further. Compared to a

simple Taylor rule, the optimal policy under commitment can, however, optimally balance

this trade-off not onlywithin a given period but also intertemporally. In the case of a purely

transitory shock (see Figure 2), the optimal policy smooths the interest rate increases and

the resulting output gap losses over time, which necessitates a less strong output gap

reaction on impact.
12

For the persistent shock (see Figure 3), whose size was calibrated

to yield a similar inflation response in the first period as in the case of the transitory

shock, the optimal policy smooths the response even further. Indeed, the hiking response

is delayed and counterbalanced by an expansionary response in earlier periods, which

reduces the contractionary impact of the shock on the output gap in earlier periods.

4.2 Optimal policy response in a liquidity trap

To demonstrate that the OPP approach can also accommodate an occasionally binding

ELB constraint, the optimal policy response to a persistent negative demand shock is sim-

11
All of these parameter values are kept throughout the remainder of this section.

12
The response is also stronger compared to the baseline case, which is based on a Taylor rule with a rather

high output gap reaction coefficient. Note that the assumed Taylor rule coefficients (or even its functional

form) have no bearing on the calculated OPP.
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Figure 2: OPP for a transitory cost-push shock
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Figure 3: OPP for a persistent cost-push shock
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ulated.
13

For such a demand shock 𝑢𝑑𝑡 , Figure 4 shows time paths for the nominal rate, the

inflation rate and the output gap for three cases. The dashed red lines display the baseline

scenario (a version of the Taylor rule (3) that is subject to an ELB), the solid blue lines

the unconstrained OPP and the dashed-dotted yellow lines the ELB-constrained OPP.
14
As

shown by the solid blue lines, an unconstrained policymaker can stabilise inflation and

the output gap entirely by appropriately setting the nominal rate, reflecting a “divine co-

incidence” (see Blanchard and Galí, 2007). By contrast, the constrained OPP cannot do so,

displaying a lower-for-longer element to reduce the impact of the shock on the economy

in earlier periods (see e.g. Eggertsson and Woodford, 2003).

4.3 Optimal policy response with two instruments

At the ELB, asset purchases have become an accepted policy tool that can – to some ex-

tent – substitute for additional interest rate cuts (see e.g. Gerke et al., 2022). For the same

demand shock depicted in Figure 4, Figure 5 shows time paths for the nominal rate, the in-

flation rate and the output gap if the central bank can also choose to buy long-term govern-

ment bonds.
15

By using asset purchases, the central bank can provide additional stimulus

at the ELB, which raises output and inflation compared to the interest-rate-only scenario

in Figure 4. Moreover, monetary policy does not rely as much on a lower-for-longer inter-

est rate policy in this case. As a result, inflation and output only slightly overshoot their

target values in later periods to provide stimulus during earlier ELB periods. Notice that

without an ELB, the optimal policy does not make use of the asset purchases, reflecting the

assumption that 𝑤𝑖 = 0 holds in this section, whereas the use of asset purchases is costly

(𝑤𝑞 > 0).16 This simulation illustrates that it is straightforward to extend the OPP analysis

to applications with multiple instruments.
17

13
An AR(1) process is assumed for 𝑢𝑑𝑡 , with persistence parameter 𝜌𝑑 = 0.85.

14
The baseline path for the interest rate implied by the Taylor rule with an occasionally binding ELB con-

straint, 𝑖𝑡 ≥ log (𝑖𝐸𝐿𝐵/𝑖𝑆𝑆), is computed based on the policy IRFs and the method proposed by Holden (2016).

Specifically, the built-in MATLAB function intlinprog.m is used in that case, solving a mixed-integer linear

programming problem. This baseline is only shown as a reference for the optimal policy, which does not

depend on whether the ELB is imposed for the baseline or not. It only matters whether the policy problem

faces the constraint.

15
This analysis is conducted in Hills et al. (2021) based on an augmented state-space model representation.

Harrison (2017) provides the microfoundation for this model version. Compared to the textbook model from

before, the IS curve is now slightly different and given by 𝑦𝑡 = 𝔼𝑡𝑦𝑡+1 − 𝜎−1 (𝑖𝑡 − 𝔼𝑡𝜋𝑡+1 − 𝛾𝑞𝑡) + 𝑢𝑑𝑡 , where

𝑞𝑡 ≥ 0 denotes the fraction of government bonds held by the central bank. Central bank asset holdings give

rise to two additional terms in the loss function, 𝐿𝑡 = 0.5
[(
𝜋𝑡)

2
+ 𝜆(𝑦𝑡)

2
+ 𝑤𝑖(Δ

𝑖
𝑡)

2
+ 𝑤𝑞(𝑞𝑡)

2
+ 𝑤Δ𝑞(Δ

𝑞

𝑡 )
2

]
,

where Δ
𝑞

𝑡 ≡ 𝑞𝑡 − 𝑞𝑡−1. The law of motion for asset holdings is given by the exogenous process 𝑞𝑡 = ∑𝑘≥0 𝜀
𝑞

𝑡|𝑡−𝑘
,

where 𝜀
𝑞

𝑡|𝑡−𝑘
denotes a shock to asset holdings announced in period 𝑡 − 𝑘, with 𝑘 ≥ 0, and realised in period 𝑡.

16
The parameter values 𝑤𝑞 = 1/16000 and 𝑤Δ𝑞 = 0 are assumed for the simulation in this section (see Hills

et al., 2021).

17
Details about the policy problem with two instruments can be found in Appendix A.
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Figure 4: OPPs for a persistent negative demand shock
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Figure 5: OPPs for a persistent negative demand shock (with asset purchases)
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5 Applications

This section highlights how the OPP approach can be used in practice for applications that

go beyond the simple textbook model considered so far. To this end, Section 5.1 considers

a medium-scale DSGE model and an externally provided baseline, whereas Section 5.2

shows results for an application with a heterogeneous-agent NK model.

5.1 Medium-scale DSGE model and external baseline

Conceptually, it is straightforward to use the OPP approach also for more complex models

or to use external sources for the baseline projections. For instance, the policy simulations

performed by Bundesbank staff use a state-of-the-art medium-scale New Keynesian DSGE

model that can capture the transmission of conventional and unconventional monetary

policy measures (see Gerke et al., 2022). As in the previous section, the simulations allow

policymakers to jointly optimise over the paths for interest rates and central bank asset

purchases. Moreover, the simulations rely on the (B)MPE for the baseline projection (see

Deutsche Bundesbank, 2023). To be suitable for policy analysis, a macroeconomic model

must certainly be more complex than the simple textbook model considered so far. In the

case of the Bundesbank, the policy model features – amongst other things – two household

types, physical capital, consumption habits, nominal price and wage rigidities, financial

frictions and bounded rationality. This added complexity is necessary to obtain a good

fit for the model estimation, which in turn is important to capture the transmission of

monetary policy in an empirically plausible way.

From a computational perspective, what matters for the OPPs is the availability of IRFs for

all available policy instruments. Furthermore, the model needs to include those variables

that enter the loss function. While the computation of the IRFs is more involved for more

complex models, the model complexity does not affect the computation of the OPPs once

the IRFs are available.
18

Although the calculation of OPPs based on an externally provided

baseline projection, such as the (B)MPE, does not come with additional technical diffi-

culties per se, certain adjustments might be necessary in practice.
19

Figure 6 shows OPP

results based on a version of the policy model with a detailed fiscal policy sector.
20

This

18
The results shown in this section were computed using the toolkit provided by de Groot et al. (2021). The

toolkit allows to compute OPPs for DSGEmodels that can be formulated in Dynare (see Adjemian et al., 2011).

As a result, it cannot be used for the application shown in the next section.

19
For instance, it might be necessary to transform the time series from the baseline projection in a way

that makes them consistent with the model-implied variables. This may involve transforming annual into

quarterly data or de-trending certain empirical time series.

20
For these simulations, only optimal interest rate policy is considered, i.e. the policymaker does not op-

timise over two instruments. See Deutsche Bundesbank (2023) for a discussion of how different evolutions

of central bank asset holdings might affect an optimal interest rate path. Since there is no choice about asset
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Figure 6: OPP for a medium-scale DSGE model based on the June 2023 BMPE
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model version is estimated on recent euro area data and able to capture how monetary-

fiscal interactions affect the optimal monetary policy. The OPP is calculated based on the

BMPE baseline scenario prepared by Eurosystem staff for June 2023 (see European Central

Bank, 2023). Compared to the interest rate path envisaged by financial market participants

at that time, the OPP-implied interest rate is higher during the first quarters of the pro-

jection horizon. This policy reflects that, from the perspective of June 2023 (see vertical

dark grey lines), the baseline projection foresaw inflation remaining too high for too long,

suggesting that a tighter than expected monetary policy was justified for the next quarters.

5.2 Household heterogeneity

The OPP approach also permits the computation of optimal policies for models with het-

erogeneous households (see McKay and Wolf, 2023a,b), which capture how monetary pol-

icy transmission is affected bymovements in wealth and income inequality (see e.g. Kaplan

and Violante, 2018).
21

As argued in the previous section, if IRFs for the policy instruments

are available, obtaining OPPs for such models is no more difficult than for the textbook NK

purchases in this simulation, the loss function (13) is used with weights 𝜆 = 0.25 and 𝑤𝑖 = 3. However, instead

of quarterly inflation, annual (year-on-year) inflation enters the loss function as an argument in this case.

Similarly, we use annualised instead of quarterly interest rates.

21
Note that, as with prior OPP applications, optimal policy does not affect the steady state, i.e. only optimal

stabilisation policies around a given steady state can be studied this way. Under certain assumptions, it is

possible to also derive a microfounded loss function for a model with household heterogeneity, which includes

terms related to distributional concerns (see McKay and Wolf, 2023a). By contrast, this section again uses the

ad-hoc loss function (13), with weights 𝜆 = 0.25 and 𝑤𝑖 = 0.1.
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Figure 7: OPPs for a cost-push shock in model versions with heterogeneous households
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model. However, getting there, i.e. computing these policy IRFs, is usually substantially

more difficult (see e.g. Dobrew et al., 2023; Gerke et al., 2024).
22

Figure 7 shows OPPs for

a cost-push shock in a sticky-wage heterogeneous-agent New Keynesian (HANK) model

and its representative-agent New Keynesian (RANK) counterpart.
23

For the HANK model,

two cases are distinguished (see Gerke et al., 2024, for details). In the first case, the now

common assumption is made that all households work the same amount of hours (HomLS

case). In the second case, individual hours can vary across households, taking the indi-

vidual income and wealth situation into account (HetLS case). The OPPs predict inflation

to behave very similarly across all three model versions, reflecting a very flat New Key-

nesian wage Phillips curve. The output gap behaves similarly in all three cases as well,

but differences are more noticeable. For the nominal rate, the OPP-implied path is similar

only in the RANK model and the HANK model version with homogeneous labour supply.

22
It is more difficult due to the need to set up and use more advanced numerical solution techniques and the

additional costs in terms of computational resources. Simply writing down a model in Dynare, as is possible

for the application in the previous section, is usually not feasible anymore. For details on how to compute

IRFs for such models, see e.g. Reiter (2009), Bayer and Luetticke (2020) and Auclert et al. (2021).

23
To make the OPPs easier to compare across model versions, the impulse responses of the model variables

to the cost-push shock in the RANKmodel are also used as the baseline projection for the HANK case. The loss

function and its parametrisation are the same across model versions. While the calibrations of the different

model versions feature different values for the household discount factor, we assume the same discount factor

for the policymaker in all cases (𝛽 = 0.9951). Since the baseline and the loss function are the same, differences

between the OPPs reflect differences in the monetary transmission mechanism, which in turn shapes the

trade-offs faced by the policymaker.
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As shown in Gerke et al. (2024), the transmission of monetary policy shocks is dampened

when labour supply is allowed to vary across the income distribution. As a result, to sta-

bilise inflation and real economic activity, the policymaker has to be more restrictive to

achieve a similar outcome as under homogeneous labour supply.

6 Final remarks

Optimal policy projections offer a flexible way to derive monetary policy recommenda-

tions for a given scenario and are a useful tool to stimulate discussions. The OPP results

shown in this note for a medium-scale DSGE model and a HANK model have furthermore

highlighted the versatility of this approach. At the same time, it is important to keep in

mind the assumptions that underlie the OPP approach. Not all of these can be (completely)

overcome by extensions or workarounds, in particular when it comes to certain forms of

nonlinearities, such as a (de-)anchoring of inflation expectations or financial (in)stability.

This underlines that the OPP recommendations must always be taken with a grain of salt

and complemented by other sources of information and additional analyses.
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A Appendix: Optimal policy projectionwith two instruments

This section presents details about the optimal policy problem for the modified textbook

model with two policy instruments from Section 4.3. In this case, policy shocks involve

shocks to the interest rate, now denoted as 𝜀𝑖
𝑡+𝑘|𝑡

, and shocks to asset holdings, 𝜀
𝑞

𝑡+𝑘|𝑡
, for

0 ≤ 𝑘 ≤ 𝑇 . To reflect this, define the overall policy shock vector as

𝜀𝑡 ≡
(

𝜀𝑖𝑡

𝜀
𝑞
𝑡 )

, (23)

with 𝜀
𝑗
𝑡 ≡ (

𝜀
𝑗

𝑡|𝑡
, 𝜀

𝑗

𝑡+1|𝑡
, … , 𝜀

𝑗

𝑡+𝑇 |𝑡)

′

, 𝑗 ∈ {𝑖, 𝑞}. The policy shock vector 𝜀𝑡 thus now stacks two

instrument-specific shock vectors below each other, doubling the size of 𝜀𝑡 to 2(𝑇 + 1)

elements compared to Section 3.

The use of two instruments also requires two instrument-specific IRF vectors. Let the

vector 𝑑
𝑥,𝑘
𝑗 ≡ (𝑑

𝑥,𝑘
0,𝑗 , 𝑑

𝑥,𝑘
1,𝑗 , … , 𝑑

𝑥,𝑘
𝑇 ,𝑗 )

′

contain the impulse response coefficients for variable

𝑥 ∈ {𝜋, 𝑖, 𝑞, 𝑦} and the instrument-specific policy shock 𝜀
𝑗

𝑡+𝑘|𝑡
, 𝑗 ∈ {𝑖, 𝑞}. For the shock

vector 𝜀𝑡 , the value of variable 𝑥 in period 𝑡 + 𝑠 can then be written as

𝑥𝑡+𝑠 = ∑
𝑗∈{𝑖,𝑞}

∑
0≤𝑘≤𝑇

𝑑
𝑥,𝑘
𝑠,𝑗 𝜀

𝑗

𝑡+𝑘|𝑡
, (24)

or as

𝑥𝑡+𝑠 = (𝑑
𝑥,0
𝑠,𝑖 , 𝑑

𝑥,1
𝑠,𝑖 , … , 𝑑

𝑥,𝑇
𝑠,𝑖 , 𝑑

𝑥,0
𝑠,𝑞 , 𝑑

𝑥,1
𝑠,𝑞 , … , 𝑑

𝑥,𝑇
𝑠,𝑞 )

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜀𝑖
𝑡|𝑡

𝜀𝑖
𝑡+1|𝑡

⋮

𝜀𝑖
𝑡+𝑇 |𝑡

𝜀
𝑞

𝑡|𝑡

𝜀
𝑞

𝑡+1|𝑡

⋮

𝜀
𝑞

𝑡+𝑇 |𝑡

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (25)

in matrix notation.

Towrite the entire path for variable 𝑥 , given by𝑋𝑡 = (𝑥𝑡 , 𝑥𝑡+1, 𝑥𝑡+2, ..., 𝑥𝑡+𝑇 )
′

, in a convenient

manner, first define the instrument-specific coefficient matrix

𝐷
𝑥
𝑗 ≡ [𝑑

𝑥,0
𝑗 , 𝑑

𝑥,1
𝑗 , ..., 𝑑

𝑥,𝑇
𝑗 ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑑
𝑥,0
0,𝑗 𝑑

𝑥,1
0,𝑗 ⋯ 𝑑

𝑥,𝑇
0,𝑗

𝑑
𝑥,0
1,𝑗 𝑑

𝑥,1
1,𝑗 ⋯ 𝑑

𝑥,𝑇
1,𝑗

⋮ ⋮ ⋱ ⋮

𝑑
𝑥,0
𝑇 ,𝑗 𝑑

𝑥,1
𝑇 ,𝑗 ⋯ 𝑑

𝑥,𝑇
𝑇 ,𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (26)
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Now, define the (𝑇 + 1) × 2(𝑇 + 1)-dimensional overall coefficient matrix 𝐷𝑥
by stacking

the instrument-specific coefficient matrices next to each other, i.e. 𝐷𝑥 ≡ [𝐷
𝑥
𝑖 , 𝐷

𝑥
𝑞 ]. As in

the one-instrument case, the time path 𝑋𝑡 can then be computed as 𝑋𝑡 = 𝐷𝑥𝜀𝑡 . However,

the individual elements of 𝑋𝑡 are now given by equation (24).

The next step is to define the outcome vector

𝑍𝑡 ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π𝑡

𝑌𝑡

𝐼𝑡 − 𝐼𝑡−1

𝑄𝑡

𝑄𝑡 − 𝑄𝑡−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (27)

the baseline vector

𝐵𝑡 ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐵𝜋
𝑡

𝐵
𝑦
𝑡

𝐵
Δ𝑖

𝑡

𝐵
𝑞
𝑡

𝐵
Δ𝑞

𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (28)

and the coefficient matrix

𝐷 ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐷𝜋

𝐷𝑦

𝐷Δ𝑖

𝐷𝑞

𝐷Δ𝑞

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (29)

Since the relationship 𝑍𝑡 = 𝐵𝑡 +𝐷𝜀𝑡 from Section 3 still applies, so does the formulation of

the policy problem, min𝜀𝑡

{
1
2
𝑍𝑡

′

𝑊𝑍𝑡

}
s.t. 𝑍𝑡 = 𝐵𝑡 + 𝐷𝜀𝑡 .

However, the matrix 𝑊 is now given as

𝑊 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑊𝛽 0 0 0 0

0 𝜆𝑊𝛽 0 0 0

0 0 𝑤𝑖𝑊𝛽 0 0

0 0 0 𝑤𝑞𝑊𝛽 0

0 0 0 0 𝑤Δ𝑞
𝑊𝛽

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (30)

Performing the same steps as in Section 3, the solution to the policy problem is again given
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by

𝜀
∗
𝑡 = −

(
𝐷

′

𝑊𝐷
)

−1

(𝐵
′

𝑡𝑊𝐷)
′

,

for the unconstrained case, with 𝜀∗𝑡 now including shocks for two policy instruments.

For the constrained case, the solution can again be computed numerically by solving a

linear-quadratic programming problem with inequality constraints. This case is relevant

for the illustrative example from Section 4.3 because asset purchases only matter when

there is a binding ELB constraint (see Figure 5). Furthermore, a non-negativity constraint

for asset holdings, 𝑞𝑡 ≥ 0, is imposed in the example, which can be written as −𝐷𝑞𝜀𝑡 ≤ 𝐵
𝑞
𝑡

in matrix notation.
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