
van Buggenum, Hugo; Gersbach, Hans; Zelzner, Sebastian

Working Paper

Contagious stablecoins?

CFS Working Paper Series, No. 717

Provided in Cooperation with:
Center for Financial Studies (CFS), Goethe University Frankfurt

Suggested Citation: van Buggenum, Hugo; Gersbach, Hans; Zelzner, Sebastian (2024) :
Contagious stablecoins?, CFS Working Paper Series, No. 717, Goethe University Frankfurt,
Center for Financial Studies (CFS), Frankfurt a. M.,
https://ssrn.com/abstract=4746634

This Version is available at:
https://hdl.handle.net/10419/285365

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://ssrn.com/abstract=4746634%0A
https://hdl.handle.net/10419/285365
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. 717 
 

Hugo van Buggenum, Hans Gersbach, 
and Sebastian Zelzner 
 

Contagious Stablecoins? 



 

 

 

 

 

 

 

 

 

 

 

 

 
 

The CFS Working Paper Series 
presents ongoing research on selected topics in the fields of money, banking and finance. The papers are 
circulated to encourage discussion and comment. Any opinions expressed in CFS Working Papers are those 
of the author(s) and not of the CFS. 
 
The Center for Financial Studies, located in Goethe University Frankfurt’s House of Finance, conducts 
independent and internationally oriented research in important areas of Finance. It serves as a forum for 
dialogue between academia, policy-making institutions and the financial industry. It offers a platform for 
top-level fundamental research as well as applied research relevant for the financial sector in Europe. CFS 
is funded by the non-profit-organization Gesellschaft für Kapitalmarktforschung e.V. (GfK). Established in 
1967 and closely affiliated with the University of Frankfurt, it provides a strong link between the financial 
community and academia. GfK members comprise major players in Germany’s financial industry. The 
funding institutions do not give prior review to CFS publications, nor do they necessarily share the views 
expressed therein. 
 
 

 



Contagious Stablecoins?∗

Hugo van Buggenum† Hans Gersbach‡ Sebastian Zelzner§

KOF Swiss Economic Institute at ETH Zurich,
Leonhardstrasse 21, 8092 Zürich, Switzerland.
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1 Introduction

The latest attempts to construct a private money in the form of stablecoins are yet an-

other test of whether competing private monies can serve as effective payment and saving

instruments.1 Stablecoins are a digital form of privately-created money. Unlike cryptocur-

rencies like Bitcoin and Ethereum, they aim to maintain a stable value against a national

currency or a basket of national currencies. Well-known stablecoins like Tether and USDC

are pegged one-to-one to the US Dollar and invest in liquid, dollar-denominated assets

to maintain their peg. In that sense, they closely resemble traditional forms of banking

and, maybe even more, money-market mutual funds (MMFs). Yet, stablecoins remain

largely unregulated and in contrast to bank deposits and MMFs, which typically operate

as open-end investment funds, most stablecoins can be traded in secondary markets.

While some believe that stablecoins are a promising form of private money, the history

of free banking is full of examples of competing, privately-produced monies that were

pegged to national currencies or commodities but still encountered severe difficulties in

serving as a stable store of value and medium of exchange. During the recent great

financial crisis, even MMFs were prone to runs. In light of the recent emergence of

stablecoins, three questions are thus particularly relevant. First, how should an individual

stablecoin be designed so that it is truly stable, i.e., always trades at the peg, and do we

require any regulation to achieve this? Second, does competition between issuers make

it more or less likely for stablecoins to be truly stable? Third, how should a system of

competing stablecoins be designed, so that poorly designed stablecoins do not harm well-

designed ones, i.e., how can contagion from poorly designed to well-designed stablecoins

be avoided?

To answer these questions, we develop a continuous-time model to study the issuance

and competition of stablecoins in a dynamic framework. Stablecoins are backed by safe,

interest-bearing assets and are pegged to a stable currency. They serve to insure investors

against an idiosyncratic investment horizon, much like traditional bank deposits that

provide liquidity insurance in models following Bryant (1980) and Diamond and Dybvig

(1983). Unlike deposits, however, stablecoins can be traded in a secondary market,

much like current stablecoins can be traded on platforms like Binance and Coinbase.2 A

1For an overview, see, e.g., Bains, Ismail, Melo and Sugimoto (2022), Catalini, de Gortari and Shah
(2022) and Kosse, Glowka, Mattei and Rice (2023).

2We do not consider algorithmic stablecoins or stablecoins that are backed by other cryptoassets. See
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particular feature of our model is that stablecoins look like a blend between open- and

closed-end MMFs since issuers act as market makers in the secondary market by standing

ready to buy coins at a quoted peg, i.e., by providing liquidity.3 Our core contribution is

to study how such an asset should be designed and regulated to obtain efficient outcomes

in a competitive environment. We derive four main insights.

First, an individual stablecoin can be made both truly stable and attractive relative

to an existing currency by means of an investment rule. This rule stipulates that at

each point in time, a fraction of the issuer’s disposable resources is invested in safe assets

that dominate currency. Resources earmarked for redemption thus have to be limited to

respect the investment rule.4 Since stablecoins are traded in a secondary market, there is

no reason for a run, unlike in the model of Engineer (1989), where a run can be triggered

by the fear of not being able to consume in the future due to a redemption limit. And

even if a run occurred accidentally, for which there is some evidence from lab experiments

(Kiss, Rodriguez-Lara and Rosa-Garcia, 2018), there are no losses for investors selling

stablecoins in the secondary market. We call stablecoins adhering to the investment rule

micro-well-designed, as they are run-proof if the stablecoin is the only stablecoin in the

market.

Second, a monopolistic issuer of a micro-well-designed stablecoin implements the effi-

cient allocation by issuing a zero-interest stablecoin offered in an ICO (initial coin offering)

at a discount. This arrangement provides insurance against investors’ idiosyncratic in-

vestment horizon while simultaneously allowing investors to enjoy, on average, the return

on safe assets. We call a stablecoin that is micro-well-designed, pays zero interest, and is

issued at a discount, macro-well-designed, as it implements the efficient allocation.

Third, even if all stablecoins are micro-well-designed, competition between issuers

entails a coordination problem. The reason is that an issuer has to match the returns of

other stablecoins to satisfy its investors’ dynamic incentive constraint—a stablecoin that

is micro-well-designed but pays a positive interest rate is contagious for other stablecoins

Cao, Dai, Kou, Li and Yang (2021) for a model on stablecoin design based on option pricing and smart
contracts implemented on the Ethereum platform. Mayer (2022) develops a model that rationalizes
dual-token structures such as Terra/Luna.

3ETFs are likewise traded in a secondary market, but they are not directly created or redeemed by
the issuer. Instead, this is done by authorized market participants (big institutional investors that act
as market makers) who can trade the basket of securities that the ETF tracks with the ETF issuer in
exchange for ETF shares.

4The rule may be implemented by using blockchain technology (Cong, Li and Wang, 2022).
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by forcing them to offer the same returns. The intuition relates to work of Jacklin

(1987, 1993), Haubrich and King (1990), and von Thadden (1997, 1998, 2002), who

show that when investors can access other assets, this imposes tighter dynamic incentive

constraints on liquidity-insurance contracts. The distinguishing feature of our model

is that investors cannot access safe, interest-bearing assets themselves, but can trade a

variety of stablecoins, which are backed by a safe interest-bearing asset, in a secondary

market. Competition among issuers of micro-well-designed stablecoins in the secondary

market may thus fail to produce efficient outcomes. In fact, a continuum of inefficient

allocations featuring interest-bearing stablecoins exist as equilibria besides the efficient

equilibrium.

Fourth, ruling out interest payments on competing stablecoins implements the efficient

allocation as the unique equilibrium. This provides a rationale for policies preventing

interest-bearing stablecoins. In the US, for instance, interest-bearing stablecoins would

subject the issuer to banking or securities-market regulation, which is probably one of

the reasons for the zero-interest design of stablecoins like Tether and USDC. The EU is,

in fact, planning to prohibit interest-bearing stablecoins (Read and Diefenbach, 2022).

Given the above, the contribution of our paper can be summarized as follows. We

study the design of stablecoins, as well as competition between them, through the lens

of a model in which stablecoins resemble a blend between open- and closed-end MMFs—

stablecoins can be traded in a secondary market, while the issuers simultaneously act

as market makers that provide liquidity by standing ready to purchase their respective

stablecoins at a quoted peg. This blending allows us to derive new results relative to tra-

ditional models of banking, which abstract from secondary markets for liquidity-insurance

contracts. Moreover, by casting our model in continuous time, we study the interplay

between two types of delicate dynamic incentives. First, when it is attempted to prevent

runs by limiting redemption, runs can arise due to the fear of a future redemption limit.

Second, in the presence of a secondary market and competition between stablecoins, in-

vestors have an incentive to sell efficient, zero-interest stablecoins and to buy inefficient,

interest-bearing stablecoins, thus threatening efficient risk sharing. Our results show that

investors’ fear for a future redemption limit unravels since stablecoins can always be sold

in the secondary market, and that inefficient risk sharing is avoided by prohibiting interest

payments on stablecoins.
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Model summary and detailed results. We derive our insights in a continuous-

time, infinite-horizon model with overlapping cohorts of agents representing stablecoin

investors. As argued, among others, by von Thadden (1997, 1998, 2002), continuous time

allows for sufficient tractability while preserving the dynamic nature of liquidity-insurance

contracts such as deposits, MMFs, and, in our case, stablecoins. Stablecoin investors

exert effort to produce a homogeneous good at birth (representing market entry and

initial investment) and consume at a random time of death (representing disinvestment

and market exit). The random time of death entails an idiosyncratic investment horizon

and thus a role for liquidity insurance. Goods are perfectly storable (we interpret them

as stable currency) and can also be invested in scalable, safe investment opportunities

that we call trees.

A tree gestates a deterministic amount of goods (fruit) at a stochastic date drawn

from a Poisson distribution, entailing an idiosyncratic maturity. Trees are destroyed after

producing fruit and fruit can be consumed, stored, or used to plant new trees. A well-

diversified portfolio of trees eliminates the maturity risk and resembles a perpetual bond

with exponentially decaying coupons similar as in Woodford (2001). We assume that the

expected return on a tree equals the investors’ rate of time preference, reflecting that our

model captures a small sector of a macro economy in steady state. We further assume that

the expected maturity of a tree is shorter than investors’ expected investment horizon,

reflecting that stablecoin issuers mostly invest in assets with short maturities.

We find no storage in the efficient Arrow-Debreu allocation, i.e., there is only invest-

ment in trees, and investors’ consumption levels are independent from the point in time

at which they exit, i.e., the optimal contingent-consumption schedule is smoothed to the

extent that it becomes flat. In this sense, there is perfect insurance against investors’

random investment horizon, and investors earn, on average, the rate of time preference

on their initial investment. More specifically, those who exit early earn a high annualized

return, whereas those who exit late earn a low annualized return.

In a decentralized economy where investors can trade trees, perfect insurance breaks

down. The reason is that the market for trees allows investors to earn the rate of time

preference at each point in time. Those who exit early therefore earn the same annualized

return on their initial investment as those who exit late, so that consumption on exit

increases with the realized investment horizon. This lack of insurance, manifesting itself
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as an increasing rather than a flat contingent-consumption schedule, is inefficient and well

known: if investors can access interest-bearing assets, this can unravel efficient insurance

(Jacklin, 1987, 1993; Haubrich and King, 1990; von Thadden, 1997, 1998, 2002).

The stablecoin economy allows investors to undertake storage on their own, but they

can neither plant trees nor trade trees themselves. Instead, investors of a particular

cohort—defined by time of entry—coalesce to form stablecoin issuers, which can plant

trees, store goods, and issue redeemable stablecoins to their members in an ICO. Our

view of the stablecoin economy is reminiscent to Wallace’s (1988, 1990) view on banking,

i.e., stablecoins are an alternative to market-based exchange of interest-bearing assets

when such markets are unavailable or difficult to access for (unsophisticated) investors.

We do, however, allow investors to trade existing stablecoins in a competitive secondary

market, i.e., they cannot trade trees, but they can trade stablecoins.

We first consider a version of the stablecoin economy with a single cohort of investors

that coalesce as an issuer, representing a platform with a single tradable stablecoin. By

issuing stablecoins at a discount in the ICO, investing the proceeds in planting trees,

maintaining a time-invariant peg with goods after the ICO, and paying zero interest,

the issuer replicates the Arrow-Debreu insurance arrangement. The single issuer earns

exactly enough fruit from its trees to meet redemption by all exiting investors and to keep

the ratio of trees to stablecoins in circulation constant. If only exiting investors redeem

their stablecoins, non-exiting investors have no incentive to redeem stablecoins or to sell

in the secondary market. They know that the peg can be maintained, so that their only

outside option, storage, earns the same return as the stablecoin.

If all investors ask for redemption, however, the fruit from the trees is insufficient to

service all redemption requests at the peg. If the issuer then redeems as much as possible

at the peg, maturing trees cannot be replaced, so that the stock of trees per stablecoin

shrinks. This reduces the resources available for future redemption and thus forces the

issuer to reduce the future peg—the run becomes self-fulfilling. In other words, investors

know that the peg cannot be maintained, and in the secondary market, the stablecoin

starts to trade at a discount relative to the current peg. Our results on the dynamic

behavior of the peg are in line with empirical evidence on open-end investment funds.

For instance, Feroli, Kashyap, Schoenholtz and Shin (2015) and Wang (2015) find that

fund outflows predict future declines in a fund’s net asset value (NAV), i.e., in the price
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at which the fund buys shares from its shareholders.

A run can be prevented by limiting the funds earmarked for redemption, which is

reminiscent of the suspension of convertibility advocated by Diamond and Dybvig (1983)

and others. More precisely, the issuer should ensure that it always has enough resources

left to plant new trees and keep the ratio of trees to circulating stablecoins constant.

Adhering to this investment rule is in the issuer’s own interest since it avoids a deviation

from the efficient allocation, even when a run happens by accident, as exiting investors

can also trade the stablecoin at the peg in the secondary market. In this sense, stablecoins

are micro-well-designed as long as limiting redemption is in line with regulation. In fact,

regulation that allows MMFs to limit redemption has been introduced by US and EU

authorities in response to some MMFs experiencing runs during the great financial crisis

(Voellmy, 2021). We stress again the role of the secondary market in ruling out runs.

In a dynamic environment with a redemption-limit policy, investors could still have an

incentive to run for fear of not being able to consume due to a future redemption limit

(Engineer, 1989). In our model, this fear unravels because if a redemption limit is set,

investors are insured as they can consume by selling stablecoins in the secondary market.

We proceed by studying stablecoin issuance with overlapping cohorts of investors.

Since each cohort’s members can trade other issuers’ stablecoins, this represents a plat-

form with multiple tradable stablecoins. Each cohort has an incentive to issue a micro-

well-designed stablecoin since this avoids runs. Whether a cohort can issue a macro-

well-designed stablecoin depends on the return that investors can earn by trading other

stablecoins. More precisely, when an issuer expects others to issue an interest-bearing

micro-well-designed stablecoin, it has to pay at least that interest on its own stablecoin,

as investors prefer to hold the stablecoin which offers the highest return. This means that

the dynamic incentive constraint on liquidity-insurance contracts becomes tighter when

investors can access other stablecoins—they have a stronger incentive to claim a need for

liquidity to redeem their funds and reinvest them in a stablecoin with better returns.

A distinguishing feature of our model is that the return on investors’ outside option

is endogenous, as it depends on the returns of all other stablecoins. This feature implies

that micro-well-designed stablecoins that pay interest are contagious, i.e., they force all

other stablecoins to pay interest as well, thereby driving the economy away from the ef-

ficient equilibrium. Issuers thus face a coordination problem and there is a continuum of
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stationary equilibria, among which only one implements the efficient allocation. We also

find a multitude of perfect-foresight equilibria with cyclical and non-stationary dynamics,

demonstrating the instability of micro-well-designed but unregulated stablecoins. Regu-

lation that prohibits interest payments on stablecoins implements the efficient allocation

as the unique equilibrium.

Relation to the literature. Our paper relates to three strands of literature. First,

in terms of methods, we relate closely to the literature on liquidity insurance following

Bryant (1980) and Diamond and Dybvig (1983). We contribute to this literature by

studying a dynamic framework in which liquidity-insurance contracts, stablecoins in our

framework, can be redeemed with the issuer and traded on a secondary market. Further,

competition between stablecoins in the secondary market generates dynamic incentive

constraints similar to those studied by von Thadden (1997, 1998, 2002). To this litera-

ture, we provide a new angle by having investors’ outside option depend on how other

stablecoins are designed. The similarities between stablecoins and MMFs imply that we

also relate to the theoretical literature on the design and stability of MMFs. For instance,

Zheng (2017) shows how even floating-NAV MMFs, i.e., those that continuously adjust

their redemption price to the value of underlying assets, can be subject to runs. Voellmy

(2021) studies how recent changes in the regulation of MMFs can help to prevent runs of

both fixed- and floating-NAV MMFs. We contribute by analyzing matters with an asset

that looks like a blend between open- and closed-end MMFs.

Second, we relate to a growing literature on the risks, design, and regulation of cryp-

toassets. Stablecoins promise to be a stable store of value and means of payment. Our

contribution focuses on how the stablecoin market should be designed to attain effi-

cient allocations. Related but within a different framework, Fernández-Villaverde and

Sanches (2019) analyze whether competition in private digital currencies can be com-

patible with price stability and efficient money supply. Li and Mayer (2021) develop a

dynamic model of stablecoin management and argue that sufficient reserves are key for

stability. D’Avernas, Maurin and Vandeweyer (2022) show that while sufficient collat-

eral is essential to maintain a peg, decentralization can substitute for commitment in

issuing stablecoins. Brunnermeier, James and Landau (2021), Guennewig (2022), and

Rogoff and You (2023) study the issuance of digital money by retailers, notably by large
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online platforms such as Amazon or Alibaba. In this context, issuers have an incentive

to limit interoperability between monies to bind consumers to their platform and to ex-

ploit intra-platform transaction data. Goldstein, Gupta and Sverchkov (2023) show that

the tradablity of general-purpose tokens is essential for competitive pricing. We add to

this literature by studying competition through the lens of dynamic incentives that can

undermine efficient liquidity insurance.

Third, we relate to the free-banking literature. Gorton and Zhang (2021) assess

that the realm of stablecoins resembles earlier free-banking episodes. They stress that

experience from the latest US free-banking episode—the 1837–1862 wildcat-banking era—

suggests that unregulated competition among stablecoins can result in fluctuating prices,

as stablecoins may not always be accepted at par, and it is likely to produce runs. The

idea of free banking has a long history and has been the subject of enduring analyses and

debates, as recently reviewed by White (2014). Many theoretical studies on free banking

are also relevant for competition between stablecoins. Gersbach (1998), for instance,

shows that free banking leads to over-issuance of private monies. Other contributions

on modeling private-money competition include Cavalcanti and Wallace (1999a,1999b),

Cavalcanti, Erosa and Temzelides (1999, 2005), Williamson (1999), Aghion, Bolton and

Dewatripont (2000), Berentsen (2006), and Martin and Schreft (2006). Their findings

on whether free banking can be efficient vary, and they show that the way in which

private monies are structured and compete matters. Our contribution is to show how

unregulated competition between stablecoins, sharing features with traditional deposits,

entails coordination problems that endanger efficient liquidity insurance and that generate

instability.

Outline. Our paper proceeds as follows: Section 2 introduces the model environment.

Section 3 studies an Arrow-Debreu setting and characterizes the efficient allocation. Sec-

tion 4 considers a decentralized economy with tradable assets. Section 5 introduces the

stablecoin economy, where investors coalesce to issue stablecoins backed by safe, interest-

bearing assets, and trade the stablecoins in a secondary market. To start, we study a

single cohort represented by a single issuer in Section 6. Section 7 considers overlap-

ping cohorts and competition among issuers. Section 8 concludes. Lengthy proofs are

relegated to the Appendix.
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2 The Model

Time t ∈ R+ is continuous and lasts forever. For any stock variable X, we interpret Xt

as a state at time t. For any variable Y , we let Y +
t be the right hand limit of Yt and Ẏt

the right-hand derivative of Yt w.r.t. to t.

The economy is inhabited by investors with a finite but idiosyncratic investment

horizon. A unit mass of investors enter at time t = 0. Incumbent investors exit at rate

δ (in the aggregate) and are replaced by new investors, so that there is a unit mass of

investors alive at any point in time. There is a single, perfectly divisible and storable

good available in the economy. The good can be produced by investors on entry. The

aggregate stock of goods stored is St. One interpretation of this storage good in a broader

sense is a stable national currency such as the US Dollar. Stablecoin issuers, which we

introduce later, then redeem their coins into dollars.

There are also scalable, safe investment opportunities that we label as trees in the

spirit of Lucas (1978). Goods can be used to plant trees at a one-to-one rate and trees

have an idiosyncratic maturity: a tree generates a fruit of y goods with Poisson arrival

rate ϕ and the tree is destroyed after generating fruit. The stock of trees At develops as

Ȧt = It − ϕAt, (1)

where It is the investment made to plant trees. The expected real return r from planting

a tree is r = ϕ(y − 1), which follows from solving

1 =

∫ ∞

t

ϕye−(r+ϕ)(τ−t)dτ. (2)

Equation (2) elucidates that a well-diversified portfolio of trees resembles a perpetual

bond with exponentially decaying coupons à la Woodford (2001)—when a unit mass of

trees is planted at time t, it diminished to mass e−ϕ(τ−t) at time τ , thus generating flow

income ϕye−ϕ(τ−t) at time τ . Our specification of trees allows to model safe, interest-

bearing assets with some average duration 1/ϕ in an algebraically convenient way.

Preferences. The preferences of an investor entering at time s are represented by the

function

Us = −hs + E
{
e−ρ(T−s)u(cT,s)

}
, (3)
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where hs ≥ 0 is the investor’s labor effort at time s, T is the time period at which the

investor exits, cT,s is the investor’s consumption on exit, ρ is the rate of time preference,

and u : R+ 7→ R is concave with the standard Inada properties. We interpret labor effort

on entry as initial investment and consumption on exit as disinvestment. Disinvestment

represents a liquidity-demand shock like in much of the banking literature since the

investor wants to consume the storage good (dollars) on exit. The realized investment

horizon T − s thus constitutes idiosyncratic liquidity risk. An individual investor exits

with Poisson arrival rate δ.

Assumptions on parameters. In order to obtain an efficient allocation that is sta-

tionary, we assume that y is such that r = ρ. This simplifies the analysis, as otherwise we

would have to introduce growth effects. The assumption also views our stablecoin econ-

omy as being part of a bigger macro economy that is in steady state. We furthermore

assume that ϕ > δ, i.e., the expected maturity of a tree is shorter than the investor’s

expected investment horizon. This ensures that the first welfare theorem holds in our

model, which is not obvious with a double infinity of traders and dated goods (Shell,

1971). The assumption also implies that the efficient allocation requires no transfers be-

tween investors entering at different dates, allowing us to study in isolation a cohort of

investors entering at a particular date.

Resource constraints. When the economy starts, there is a unit mass of investors

providing labor effort (initial investment) h0. There is no exit yet, so h0 is used for

planting trees or storage. Thus,

h0 = A+
0 + S+

0 . (4)

Consumption by exiting investors (disinvestment), labor supply (initial investment)

by new investors, and income from maturing trees become flows at time t > 0. Aggregate

flow consumption is

ct = δe−δtct,0 +

∫ t

0

δ2e−δ(t−s)ct,sds (5)

and the aggregate flow labor supply is δht. To obtain Expression (5), we treat the cohort

of investors present when the economy starts separately, which yields the first term. The

other cohorts entering later yield the second term. Of the first cohort, which has initial

mass 1, a mass e−δt is still alive at time t and in the aggregate, they exit at rate δ,
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leading to flow consumption δe−δtct,0. New investors enter at rate δ and likewise exit at

rate δ, so the contribution to time-t flow consumption by investors entering at time s is

δ2e−δ(t−s)ct,s, which we integrate from s = 0 to s = t.

The aggregate resource constraint reads as

(ρ+ ϕ)At + δht = ct + It + Ṡt. (6)

We note that from r = ϕ(y−1) and the assumption r = ρ it follows that ϕy = ρ+ϕ. The

first term on the left-hand side of Equation (6) is therefore equal to ϕyAt and represents

the resource income from maturing trees. The second term is resource income from labor

by new investors. The right-hand side is the summand of spending through consumption

by exiting investors, investment in trees, and changes in storage.

3 Arrow-Debreu Allocation

We study first an Arrow-Debreu setting in which the allocation is determined by a fric-

tionless market for dated goods before the economy actually starts. The purpose is to

derive an efficient benchmark allocation that a (system of competing) stablecoin(s) should

ideally implement. Let pt denote the Arrow-Debreu price of the time-t good.5 The avail-

ability of storage implies ṗt ≤ 0 ∀t, i.e., prices cannot increase over time. We also have

S+
t > 0 ⇒ ṗt = 0, i.e., storage is undertaken only when prices remain constant. Investors’

ability to plant trees implies

pt ≥ Vt ≡
∫ ∞

t

(ρ+ ϕ)e−ϕ(τ−t)pτdτ ∀t, (7)

where Vt denotes the present value of the tree’s fruit. Again, note for this formula that

ρ+ ϕ = ϕy. More particularly, a well-diversified portfolio of trees with mass one at time

t diminishes to mass e−ϕ(τ−t) at time τ > t, as the trees mature at rate ϕ. This leads

to a flow income ϕye−ϕ(τ−t) = (ρ + ϕ)e−ϕ(τ−t) of goods at time τ , valued at price pτ .

Furthermore, It > 0 ⇒ pt = Vt, i.e., a tree is planted only when the present value of its

fruit equals the cost of planting. We note that V̇t = −(ρ+ ϕ)pt + ϕVt. With pt ≥ Vt, this

5The level of pt does not matter. Only the relative prices matter, and p0 can be normalized to 1.

11



implies

−ρVt ≥ V̇t, with “=” if It > 0. (8)

An investor that enters at time s chooses hs and (ct,s)
∞
t=s to maximize

−hs +

∫ ∞

s

δe−(ρ+δ)(t−s)u(ct,s)dt (9)

subject to the budget constraint

∫ ∞

s

δe−δ(t−s)ptct,sdt ≤ pshs. (10)

Condition (10) states that the expected consumption expenditure of the investor, i.e.,

taking into account the probability distribution over the possible investment horizons

t−s, cannot exceed the value of the investor’s labor effort on entry. It is in this sense that

the Arrow-Debreu environment allows the investor to take out actuarially fair (liquidity)

insurance against its idiosyncratic investment horizon. Substituting Condition (10) into

Expression (9), we find that the investor chooses (ct,s)
∞
t=s to maximize

∫ ∞

s

δe−(ρ+δ)(t−s)

[
u(ct,s)− eρ(t−s) pt

ps
ct,s

]
dt, (11)

so that the optimal consumption and labor choices satisfy

ct,s = u′−1

(
eρ(t−s)pt

ps

)
and hs =

∫ ∞

s

δe−δ(t−s) pt
ps
u′−1

(
eρ(t−s)pt

ps

)
dt. (12)

Aggregate consumption at time t > 0 is thus given by

ct = δe−δtu′−1

(
eρtpt
p0

)
+

∫ t

0

δ2e−δ(t−s)u′−1

(
eρ(t−s)pt

ps

)
ds. (13)

We now characterize the allocation in which there is planting of trees at all times

but no storage, which turns out to be the unique Arrow-Debreu equilibrium. With

It > 0 ∀t, we obtain ṗt = −ρpt ∀t, i.e., prices decline at rate r = ρ, which also implies

St = 0 ∀t. We define c⋆ ≡ u′−1(1) for notational convenience. Since pt = pse
−ρ(t−s) ∀t ≥

s, the expressions for individual consumption, individual labor supply, and aggregate
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consumption simplify to

ct,s = c⋆, hs =
δc⋆

ρ+ δ
, and ct = δc⋆. (14)

From the aggregate resource constraints we find that the stock of trees develops according

to

Ȧt = ρAt − δc⋆ +
δ2c⋆

ρ+ δ
, with A+

0 =
δc⋆

ρ+ δ
⇒ Ȧt

At

= ρ

(
1− A+

0

At

)
. (15)

Clearly, this implies At = A+
0 ∀t > 0, which in turn requires It > 0 ∀t. In other words,

we found an Arrow-Debreu equilibrium, which happens to be the unique equilibrium.

Proposition 1. The Arrow-Debreu equilibrium characterized above is the unique Arrow-

Debreu equilibrium, and it is also Pareto efficient, i.e., the first welfare theorem holds.

Uniqueness and Pareto efficiency of the Arrow-Debreu equilibrium arise naturally

under the assumption ϕ > δ, as this allows a cohort of investors entering at a particular

date to enjoy the fundamental return on trees without the need to trade with investors

entering at other dates.

To see this, suppose, for the sake of illustration, that every cohort—defined by time

of entry—has its own stock of trees. Let At,s denote the stock of trees owned by cohort s

at time t ≥ s, where we measure the stock of trees relative to the initial size of the cohort

so that At = At,0 +
∫ t

0
δAt,sds. The law of motion for At,s if there is no storage is

Ȧt,s = ρAt,s − δe−δ(t−s)ct,s, where A+
s,s = hs, (16)

i.e., the change in the stock of trees is the fundamental return on trees, which already

accounts for maturing trees, minus the consumption by the cohort’s exiting investors.

The allocation requires trade between cohorts if and only if there exists a time t > s for

which Ȧt,s < −ϕAt,s, as the absence of such trades imposes Ȧt,s ≥ −ϕAt,s ∀t, s, t ≥ s.

In words, if Ȧt,s < −ϕAt,s at time t, cohort s wants to reduce its stock of trees at a rate

greater than natural gestation, which is only feasible if the implicit ownership of trees is

transferred to a different cohort.

Using Equation (14) in Equation (16), we obtain

Ȧt,s = ρAt,s − (ρ+ δ)A+
s,se

−δ(t−s) ⇒ At,s = e−δ(t−s)A+
s,s, (17)
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i.e., the stock of trees owned by cohort s diminishes at a rate δ. Implementing the

Arrow-Debreu allocation therefore requires no trade between cohorts since we assumed

δ < ϕ. This also implies that in a hypothetical, different Arrow-Debreu equilibrium, each

cohort of investors should obtain at least the level of utility generated by the allocation

characterized above. The resource constraints, however, imply that given the allocation

above, one cohort cannot be made better off without making another cohort worse off.

Thus, the equilibrium is unique and Pareto efficient.

4 A Decentralized Economy with Tradable Trees

Consider next a decentralized economy in which investors can undertake storage and plant

trees by themselves. There are no markets for time-t goods where investors can trade in

advance, but trees, which are identical once planted, can be sold in a continuously-open

secondary market for vt goods. We rule out short-selling. The purpose of this section is

to show that a simple asset market implements an inefficient equilibrium, indicating that

there is a role for more sophisticated trading arrangements, e.g., stablecoins, in order to

implement a Pareto-efficient allocation.

We have vt ≤ 1 in any possible equilibrium, as vt > 1 allows for arbitrage by planting

trees and immediately selling them. Trees are only planted if they cannot be acquired

more cheaply in the secondary market, so It > 0 ⇒ vt = 1. The real return r+v,t from

holding a tree from time t to time t+ ε, with ε > 0 but infinitesimal, satisfies

r+v,tvt = ϕ(y − vt) + v̇t ⇒ r+v,t = ρ/vt + ϕ(1/vt − 1) + v̇t/vt. (18)

Equation (18) is a standard asset-pricing equation—the return on trees is composed

of three components: the fundamental return on trees ρ/vt; the discount 1/vt − 1 of

reacquiring a tree in the secondary market instead of replanting it after maturity; and

price changes in the secondary market. All trees would be offered for sale if r+v,t < 0

because storage is available as an alternative investment, so we must have At > 0 ⇒

r+v,t ≥ 0. Likewise, trees cannot dominate storage whenever storage is undertaken, so

S+
t > 0 ⇒ r+v,t ≤ 0.

Due to the possibility of storing goods and trading trees, all incumbent investors can

save at an effective real return of max{rv,t, 0}. Assuming that the process (max{rv,t, 0})∞t=0
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is integrable, an investor entering at time s consumes

cT,s = e
∫ T
s max{rv,t,0}dths (19)

on exit at time T . It follows that hs is chosen to maximize

∫ ∞

s

δe−(ρ+δ)(T−s)u
(
e
∫ T
s max{rv,t,0}dths

)
dT − hs. (20)

The optimal choice for hs thus follows uniquely from the first-order condition

0 =

∫ ∞

s

δe
∫ T
s (max{rv,t,0}−ρ−δ)dtu′

(
e
∫ T
s max{rv,t,0}dths

)
dT − 1, (21)

and aggregate consumption at time t satisfies

ct = δe
∫ t
0 (max{rv,τ ,0}−δ)dτh0 +

∫ t

0

δ2e
∫ t
s (max{rv,τ ,0}−δ)dτhsds. (22)

We now show that there is a decentralized equilibrium in which It > 0 ∀t, as is the

case for the unique Arrow-Debreu equilibrium, but that this equilibrium is inefficient.

We have vt = 1 ∀t when It > 0 ∀t, so that rv,t = ρ > 0 ∀t > 0 and St = 0 ∀t > 0. From

the aggregate resource constraint (6) we find that the stock of trees develops according

to

Ȧt = ρAt − δe(ρ−δ)th0 −
∫ t

0

δ2e(ρ−δ)(t−s)hsds+ δht, with A+
0 = h0. (23)

Since rv,t (= ρ) is time-invariant, we obtain hs = h0 = A+
0 ∀s. Thus,

Ȧt = ρAt + A+
0

(
δ − δe(ρ−δ)t −

∫ t

0

δ2e(ρ−δ)(t−s)ds

)
, (24)

which in turn implies

At = A+
0

[
e(ρ−δ)t + δ

∫ t

0

e(ρ−δ)(t−s)ds

]
= A+

0

ρe(ρ−δ)t − δ

ρ− δ
⇒ Ȧt

At

=
ρ(ρ− δ)e(ρ−δ)t

ρe(ρ−δ)t − δ
.

(25)

We have Ȧt/At ≥ 0 with limt→∞[Ȧt/At] = ρ−δ if ρ ≥ δ, and Ȧt/At > 0 with limt→∞ At =

δ
δ−ρ

A+
0 and limt→∞[Ȧt/At] = 0 if ρ < δ. The stock of trees therefore always expands, so

that It > 0 ∀t. In other words, we have found a decentralized equilibrium, for which the

growth rate of the stock of trees converges to max{0, ρ− δ}.
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The decentralized equilibrium above is Pareto inefficient—every investor is ex-ante

worse off compared to the unique Pareto-efficient Arrow-Debreu equilibrium. This follows

from the fact that individual consumption cT,s increases at a rate ρ with the realized

investment horizon T − s, while prices in the Arrow-Debreu allocation decline at rate

ρ. The decentralized allocation (hs, (cT,s)
∞
T=s)

∞
s=0 therefore respects the budget constraint

for any investor in the Arrow-Debreu equilibrium, but is never chosen by an investor in

the Arrow-Debreu equilibrium. Proposition 2 generalizes the inefficiency by additionally

proving uniqueness:

Proposition 2. The decentralized equilibrium is unique and Pareto inefficient.

The inefficiency relates to the liquidity insurance that investors can buy in the Arrow-

Debreu economy to insure against their idiosyncratic investment horizon. More partic-

ularly, investors choose a contract giving them a consumption level independent of the

realized investment horizon—the optimal contingent-consumption schedule is flat. Offer-

ing such a schedule with an insurance contract is, however, infeasible in the decentralized

economy. Investors would then claim exit immediately after entry and invest the pro-

ceeds in the secondary market to earn the return ρ and increase future consumption. This

finding is in line with Jacklin (1987, 1993), Haubrich and King (1990), and von Thadden

(1997, 1998, 2002), among others.

5 Preliminaries for a Stablecoin Economy

In what follows, we construct a trading arrangement with stablecoins to implement the

Arrow-Debreu allocation. We assume that investors can claim entry only at the time of

actual entry and that trees cannot be traded, whereas exit is unobservable and stablecoins

are tradable in a secondary market. The cohort of investors entering at time s coalesce to

issue a stablecoin. They form an issuer that plants trees and issues a perfectly divisible

stablecoin in an initial coin offering (ICO) to the member investors and only to the

member investors. Our setup aligns with Wallace’s (1988, 1990) view of banking in the

sense that stablecoins provide investors with an alternative to market-based exchange

of trees when such markets are unavailable or difficult to access. The distinguishing

feature here is that investors do have access to a secondary market for their own cohort’s
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stablecoin, and potentially also to secondary markets for stablecoins issued by other

cohorts.

We interpret the stablecoin version of our model as supported by a digital platform,

for instance a mobile-phone app or an online portal. Investors can use the platform to

hold a national currency (goods in our model), to create and hold stablecoins, to trade a

stablecoin for other stablecoins or currency, and to pay for consumption. Consumption

could represent the actual purchase of consumption goods, for instance with online re-

tailers, or the purchase of cryptoassets like Bitcoin. We implicitly assume that those who

sell consumption goods or cryptoassets prefer to hold national currency. When sellers

accept the stablecoin in payment, they would then immediately convert it into currency

and move this currency off the platform.

The observability of entry and the unobservability of exit imply a form of limited

record-keeping by the platform. More particularly, investors can claim a need to consume

at any time—a common assumption in the liquidity-insurance literature—, which would

imply that currency is moved off the platform and stored by the investor until actual exit

arises. Moving currency off the platform is, however, observed, so that the investor can

be excluded from using this currency to participate in an ICO again.6

6 Monopolistic Issuance of Stablecoins

In this section we consider a setup with investors that hold and trade their own stable-

coin only, i.e., we consider a single cohort that operates in isolation. This represents a

platform with a single stablecoin. The purpose is to show that a well-designed stablecoin

can uniquely implement the Pareto-efficient Arrow-Debreu allocation in a monopolistic

environment.

A unit mass of investors enter at time t = 0, after which the pool of investors gradually

declines at a rate δ. No new investors enter. The Arrow-Debreu allocation we seek to

implement is

ct,0 = c⋆, ct = δe−δtc⋆, h0 =
δc⋆

ρ+ δ
, At =

e−δtδc⋆

ρ+ δ
, and It = (ϕ− δ)At. (26)

6One reason could be know-your-client requirements. In case of pseudo-anonymity, one can argue
that investors find it too costly to move fiat currency off the platform and then on the platform again
under a different identity.
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D+
0 units of the stablecoin are minted in an ICO by the issuer, who seeks to maximize

its members’ utility. The ICO’s proceeds are used to plant A+
0 trees. We set A+

0 = D+
0

so that the ICO price is normalized to one. The issuer allows investors to redeem a

stablecoin for xt goods at times t > 0, subject to a resource constraint—with At trees

owned by the issuer, the flow payment to cover redemption is at most ϕyAt (= (ϕ+ρ)At).

We refer to xt as the peg, and the resource constraint, in essence, limits the amount of

liquidity that the issuer can provide at the peg. The stablecoin can be traded among

investors at price qt in a secondary market at all times t > 0.

In order to characterize the peg and the ICO quantity, respectively, we distinguish

between the issuer’s choices at times t > 0 and time t = 0. Consider that the issuer has

At′ > 0 trees, Dt′ circulating coins, and St′ = 0 goods in storage at time t′ > 0, where

we assume zero storage because we know that storage is inefficient, and we assume that

the amount of trees is positive to have a meaningful constellation. The issuer chooses

(ct,0, At, St)
∞
t=t′ to maximize ∫ ∞

t′
δe−(ρ+δ)tu(ct,0), (27)

i.e., utility of the investors, subject to: the law of motion

Ȧt + Ṡt = ρAt − δe−δtct,0; (28)

the constraints Ȧt ≥ −ϕAt and St ≥ 0; the starting values At′ and St′ = 0; and the

dynamic incentive-feasibility constraint ċt,0 ≥ 0. The latter reflects the fact that con-

sumption cannot decline because investors can trade the stablecoin and use storage as

an alternative investment. More particularly, if the targeted consumption path would

decline between time t1 and t2, investors could avoid this decline by redeeming or selling

stablecoins at t1, storing the proceeds, and then implicitly acquiring the consumption

path as of t2 by buying stablecoins at t2. This strategy is feasible because the market

value of an investor’s stablecoin holdings at time t must equal the targeted consumption

on exit at time t, as otherwise this consumption cannot be provided by the issuer on the

equilibrium path. In this sense, the secondary market entails a tighter dynamic incentive

constraint compared to a constellation without a secondary market, where an investor

must store forever after redeeming.7

7When storage earns a return rS,t, then without a secondary market, the dynamic incentive constraint
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The targeted path for (ct,0, At, St)
∞
t=t′ follows directly from the Arrow-Debreu alloca-

tion. There is no storage, the consumption level on exit satisfies ct,0 =
(ρ+δ)

δ
eδt

′
At′ ∀t ≥ t′,

and the path for trees is At = e−δ(t−t′)At′ ∀t ≥ t′. The issuer therefore sets the time-t′

peg to

xt′ =
ρ+ δ

δ

At′

Dt′
, (29)

as investors exiting at time t′ hold eδt
′
Dt′ stablecoins by construction, so that they con-

sume ct′,0 = xt′e
δt′Dt′ = (ρ+δ)

δ
eδt

′
At′ . The argument can then be forward iterated to

conclude that the peg is set according to (29) at all dates t > 0, i.e.,

xt =
ρ+ δ

δ

At

Dt

. (30)

Provided that the targeted path for trees is indeed implemented as of time t′ = 0, i.e.,

At = e−δtA+
0 , an exiting investor can then consume ct,0 = eδtxtDt =

(ρ+δ)eδt

δ
At =

ρ+δ
δ
A+

0

by redeeming at the peg. The peg thus remains constant over time when the targeted

path is implemented since this will imply Ȧt/At = Ḋt/Dt = −δ, i.e., only exiting investors

redeem so both the stock of stablecoins and the stock of trees contract at rate δ on the

targeted path. Note that the way in which the issuer sets the peg according to Equation

(30) resembles the design of floating-NAV MMFs. Such MMFs continuously adjust the

NAV, i.e., the price at which the fund stands ready to redeem its shares, to reflect the

value of the fund’s assets per outstanding share. In our setup, the time-t peg (30) is

likewise a function of the amount of trees per stablecoin in circulation at time t.

Turning to the ICO quantity, with the ICO price normalized to one so that we have

A+
0 = D+

0 , the issuer chooses D+
0 to maximize

∫ ∞

0

δe−(δ+ρ)tu

(
δ + ρ

δ
D+

0

)
dt−D+

0 , (31)

where we use that ct,0 =
ρ+δ
δ
A+

0 on the targeted path. We therefore obtain A+
0 = D+

0 =

h0 = δc⋆

ρ+δ
and ct,0 = xtD

+
0 = c⋆ ∀t > 0, i.e., the Arrow-Debreu allocation. Whether this

allocation is implemented as an equilibrium depends on investors’ incentives to participate

in the ICO and to redeem coins only when they indeed exit the market. These incentives

would read as ct,0
∫∞
t

e
∫ τ
t
(rS,s−ρ−δ)dsdτ ≤

∫∞
t

δcτ,0e
−(ρ+δ)(τ−t)dτ , whilst with a secondary market it

would read as ċt,0/ct,0 = rS,t. With storage earning a zero return, this does not make a difference.
However, it would make a difference if storage earns some time-varying return rS,t.
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hinge on the issuer’s redemption policy, i.e., how many stablecoins can be redeemed at

date t against the peg xt as specified in Equation (30), as well as the secondary market

price qt, as we show next.

Unlimited redemption. Suppose the issuer commits to use the full amount of income

(ϕ+ ρ)At from maturing trees for redemption when necessary. When a fraction χt of the

stablecoinsDt in circulation is offered for redemption—thus assuming that the ICO indeed

succeeded, as otherwise there would be no stablecoins in circulation—, the arrival rate of

a successful redemption from the perspective of the investor is

αt =
(ϕ+ ρ)At

xtχtDt

, (32)

i.e., a flow αt of the stablecoins offered for redemption is indeed redeemed.8

We focus on equilibria in which xt ≥ qt, as otherwise not even the exiting investors

would redeem their stablecoins with the issuer, i.e., there would be no redemption at all.

If xt = qt, exiting investors are indifferent between selling their stablecoins or redeeming

them, in which case we assume that all exiting investors choose to redeem, whilst non-

exiting investors choose not to redeem. In that case, exiting investors will redeem all

their stablecoins successfully as they have infinitesimal mass, i.e., χt → 0 so αt → ∞.

If xt > qt, all investors, both exiting and non-exiting, attempt to have their stablecoins

redeemed, i.e., a run takes place. The reason is that a profit can be made by redeeming,

i.e., if a non-exiting investor successfully redeems a stablecoin against the peg xt, it can

immediately buy back the same stablecoin at a lower price qt. A run features χt = 1 by

definition and together with the peg given by (30) it follows that during a run

αt = δ
ϕ+ ρ

δ + ρ
. (33)

From the above, we find that the return r+t on stablecoins satisfies

r+t = δ
ϕ+ ρ

δ + ρ
max

{
0,

xt

qt
− 1

}
+

q̇t
qt
. (34)

According to Equation (34), the return is determined by: the flow profit that arises from

8An individual investor can also have a flow αt of its coins redeemed because coins are perfectly
divisible.
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the strategy of redeeming stablecoins at xt and buying them back at qt in case qt < xt;

and changes in the market price. The law of motion for the stock of stablecoins reads as

Ḋt =

−δ ϕ+ρ
δ+ρ

Dt if qt < xt,

−δDt if qt = xt.

(35)

The issuer cannot plant new trees during a run since all fruit is used for redemption.

Thus,

Ȧt =

−ϕAt if qt < xt,

−δAt if qt = xt.

(36)

Note that the stock of trees diminishes faster during a run since we assume ϕ > δ.

No runs. When a run does not take place, so that qt = xt ∀t > 0, we obtain

r+t =
q̇t
qt

=
ẋt

xt

=
Ȧt

At

− Ḋt

Dt

= 0, (37)

where the second equality uses qt = xt, the third equality follows from the specification

of xt, and the fourth equality uses Ḋt/Dt = −δ. We thus have x+
0 = xt =

δ+ρ
δ

since we

have normalized A+
0 = D+

0 . It follows that the Arrow-Debreu allocation is implemented

and although investors can store goods, they have no incentive to do so. First, the return

on the stablecoin at all times t > 0 is zero, i.e., it is not dominated by storage. Second,

the investor strictly prefers to participate in the ICO over investing in storage at time

t = 0 because x+
0 > 1, i.e., the return from holding the stablecoin from time t = 0 to time

t = ε, where ε > 0 is infinitesimal, approaches infinity. In other words, the issuer can

implement the efficient Arrow-Debreu equilibrium by issuing stablecoins at a discount

(relative to the peg at time t = ε) in the ICO. Once issued, provided there is no run, the

peg then remains constant and the stablecoin effectively earns zero interest.

Runs. If the issuer does not limit redemption, there can also be unexpected runs at

any time tR > 0. To see this, suppose that xt = qt ∀t < tR. Then consider what happens

when the market price drops discontinuously and unexpectedly at time tR, so that we
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have qtR < xtR . The aggregate resource constraint implies that during a run

Ṡt = (αtxt − δqt)Dt − δSt, (38)

where St is the aggregate amount of storage that investors undertake on their own, δDt

is the flow of stablecoins offered for sale by exiting investors, δSt is the flow of storage

consumed by exiting investors, and αtxtDt is the redemption flow paid by the issuer.

Using the characterization of αt, we can write

Ṡt = δ

(
ϕ+ ρ

δ + ρ

xt

qt
− 1

)
qtDt − δSt. (39)

It follows that during a run S+
t > 0: we have xt > qt and we assume ϕ > ρ, so that

limSt→0 Ṡt > 0. The low price intuitively implies that, being forced to sell at a discount,

exiting investors consume less than the resources paid out by the issuer. The difference

is then stored by the non-exiting investors, as they cannot plant trees on their own.

Investors are unwilling to undertake storage when r+t > 0, and all investors want to sell

stablecoins when r+t < 0. Market clearance therefore requires r+t = 0 during a run.

Setting qt < xt and r+t = 0 in Equation (34), we thus find that the market price during

a run develops as

0 = δ
ϕ+ ρ

δ + ρ

(
xt

qt
− 1

)
+

q̇t
qt
. (40)

At this point, it is convenient to define θt ≡ qt/xt, i.e., the discount at which the

stablecoin trades. During a run, (40) implies that the discount develops as

0 = δ
ϕ+ ρ

δ + ρ

(
1

θt
− 1

)
+

θ̇t
θt

+
ẋt

xt

= δ
ϕ+ ρ

δ + ρ

(
1

θt
− 1

)
+

θ̇t
θt

+
Ȧt

At

− Ḋt

Dt

= δ
ϕ+ ρ

δ + ρ

1

θt
+

θ̇t
θt

− ϕ,

(41)

where the second line uses ẋt/xt = Ȧt/At− Ḋt/Dt ∀t and the third line uses the fact that

Ȧt/At = −ϕ and Ḋt/Dt = −αt during a run. In short, as long as θt < 1, it must be that

θ̇t = ϕθt − δ
ϕ+ ρ

δ + ρ
. (42)
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Because qt cannot drop discontinuously with positive probability (if it does, then at time

t−ε investors either already start to run or start to sell in market), it follows that starting

from time tR we have

θt = min

{
θtRe

ϕ(t−tR) +
δ

ϕ

ϕ+ ρ

δ + ρ

(
1− eϕ(t−tR)

)
, 1

}
. (43)

There is a steady state at θ = δ
ϕ
ϕ+ρ
δ+ρ

≡ θ < 1 and at θ = 1. For θtR < θ, θt contracts

at a rate that increases over time, so that at some time t′ > tR, we obtain qt′ = 0,

which cannot be an equilibrium. The reason is that stablecoins must have a positive

value because xt > 0 even if the run continues forever. For θtR ∈ (θ, 1), θt grows at an

increasing rate until at some time t′ > tR, we obtain θt′ = 1. In short, at any point in

time tR > 0, a run can start unexpectedly if θtR jumps from 1 into the interval [θ, 1). The

run either continues forever if θtR = θ, or it lasts for a finite period of time if θtR ∈ (θ, 1).

Once the run has stopped, storage develops as Ṡt = −δSt, i.e., the accumulated storage

during a run gradually declines since the exiting investors consume their storage. The

presence of storage is consistent with equilibrium because the stablecoin continues to earn

zero return once the run has stopped.

A run implies that all investors are worse off, as the stock of trees contracts at an

inefficiently high rate and part of the income from maturing trees is stored rather than

used to plant new trees. In the proof of Proposition 3, where we fully characterize the

allocations in case of a run, we show that consumption on exit drops permanently after

the run has started, i.e., ct,0 = θtRc
⋆ ∀t ≥ tR.

Proposition 3. Unexpected runs can occur when an issuer does not limit redemption

and the resulting allocation in a run is Pareto inefficient.

A run is self-fulfilling because the issuer cannot plant new trees during a run, as the

income from maturing trees is used to cover redemption. This implies that xt declines

during the run, which explains why investors attempt to run—anticipating that xt is going

to decline, investors attempt to redeem stablecoins because they can store the redemption

proceeds. This suggests that to prevent runs, the issuer should restrict redemption in

such a way that, even in case of a run, investment is maintained at It = (ϕ − δ)At. We

call stablecoins that satisfy this investment rule micro-well-designed and further analyze

their properties below.
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Example of a run. Figure 1 illustrates a run that starts at tR = 1. The run starts with a

sudden drop in the price qt and continues until the peg xt and the price qt equalize again

(Figure 1a). All investors attempt to redeem during the run and the amount of trees

decreases faster than the amount of stablecoins in circulation (Figure 1b). Investors that

do not exit use the proceeds from successful redemption to buy stablecoins from exiting

investors and store the remainder, which leads to a positive stock of storage (Figure

1c). At some point, however, the stock of storage starts to decrease as exiting investors

consume their storage. Individual consumption on exit drops discontinuously at the onset

of the run, which reflects the sudden price drop (Figure 1d). Subsequently, consumption

remains constant due to two forces that cancel each other out: on the one hand, the

aggregate market value of stablecoins in circulation drops as the run continues; on the

other, investors’ stock of storage grows due to successful redemption.

Limited redemption. In a hypothetical run in which redemption is limited such that

It = (ϕ − δ)At, i.e., the issuer adheres to the investment rule so that the stablecoin is

micro-well-designed, we obtain αt = δ. From the perspective of the issuer, the rate at

which stablecoins are redeemed therefore equals δ, independently of whether a run takes

place or not. The law of motion for stablecoins in circulation then reads

Ḋt = −δDt. (44)

From Equation (38), based on the aggregate resource constraint, we obtain

Ṡt = δ(xt − qt)Dt − δSt (45)

during a run, so that, as before, S+
t > 0 when there is a run. This implies that the return

on stablecoins should be zero, and during a run, this return reads as

r+t = δ(xt/qt − 1) + q̇t/qt (46)
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Figure 1: A finite run

(a) The peg and the secondary market price. (b) Trees per stablecoin.

(c) Aggregate savings. (d) Individual consumption upon exit.

Note: The figure assumes a utility function u = ln(·), which implies c⋆ = 1 and thus A0 = D0 = δ
ρ+δ ,

x0 = δ+ρ
δ . We let ρ = 0.03, δ = 1, ϕ = 6 and θtR = θ + 0.01(1− θ).
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because investors can now redeem at arrival rate δ instead of δ ϕ+ρ
δ+ρ

. Imposing r+t = 0 and

defining θt as before, we obtain

0 = δ

(
1

θt
− 1

)
+

θ̇t
θt

+
ẋt

xt

= δ

(
1

θt
− 1

)
+

θ̇t
θt

+
Ȧt

At

− Ḋt

Dt

= δ

(
1

θt
− 1

)
+

θ̇t
θt
, (47)

where we used Ȧt/At = −δ and Ḋt/Dt = −δ. Starting from time tR, we thus have

θt = min
{
(θtR − 1)eδ(t−tR) + 1, 1

}
. (48)

There is now only one steady state at θ = 1, i.e., a steady state in which there is no

run. If a run unexpectedly occurred at time tR, we would have θtR < 1. Then θt would

diminish at an increasing rate until at some time t′ > tR we would obtain qt′ = 0, which

cannot be an equilibrium for reasons explained before.

Investors now have no strict incentive to run because a run does not change the

dynamic development of the peg. Although a run implies that an exiting investor cannot

redeem stablecoins (only an infinitesimal fraction of stablecoin holdings, i.e., a flow, can

be redeemed), exiting investors can sell their coins at a price qt = xt in the secondary

market. The reason is that in case of a run, the issuer restricts redemption so that the

dynamic development of the stock of trees is left unaffected.

We stress the role of the secondary market for this result. In dynamic models from

the banking literature that add one or more (or, in our case, a continuum of) periods

to the benchmark two-period model of Bryant (1980) and Diamond and Dybvig (1983),

a redemption-limit policy typically fails to prevent runs, as investors have an incentive

to run pre-emptively if they fear a future run. A future run namely implies the risk of

not being able to obtain funds in case of a future need for liquidity, exactly because a

redemption limit would then be put in place, as argued by Engineer (1989). In our model,

however, investors with a liquidity need can always sell stablecoins in the secondary

market, albeit at a potentially lower price than the peg, when they cannot or fail to

redeem. The competitive nature of the secondary market implies that the market price

remains unaffected by the run since, due to the investment rule, the run leaves the
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dynamic development of the stock of trees, and therefore also the dynamic development

of the peg, unchanged.

We thus find that a monopolistic stablecoin issuer can uniquely implement the Arrow-

Debreu allocation by minting a micro-well-designed stablecoin that is issued at a discount

in the ICO. The investment rule, which, in essence, limits the amount of liquidity that

the issuer provides at the peg over and above the income from maturing trees, guarantees

that the peg remains constant over time. Since a constant peg represents zero interest

payments, the stablecoin issued by a monopolist is also macro-well-designed.

Theorem 1 (Monopolistic stablecoins). A micro-well-designed stablecoin is invulnerable

to runs since the issuer adheres to an investment rule. A macro-well-designed stablecoin

uniquely implements the Pareto-efficient Arrow-Debreu allocation as an equilibrium.

7 Stablecoin Competition

We now return to the baseline model with new investors entering at rate δ. The stablecoin

economy then represents a platform with multiple tradable stablecoins. The purpose is

to show that a system of competing, micro-well-designed stablecoins can but need not

implement the Pareto-efficient Arrow-Debreu allocation.

7.1 Incumbent issuers

Consider first the choices of incumbent issuers at some point in time t′, as we did for

the monopolistic issuer. Incumbent issuer s is the coalition of investors entering at date

s ∈ [0, t′). Let issuer s have Dt′,s stablecoins in circulation and let it own At′,s > 0

trees, where these quantities are expressed relative to the associated cohort’s initial size.

Assume also that Dt′,s is fully held by the cohort of investors s and let Zt,s denote cohort

s’s holdings of other coins and/or storage at time t ≥ t′. We suppose that Zt′,s = 0

to represent a situation in which the incumbent investors initially only hold their own

stablecoin backed by the positive stock of trees At′,s, much like we assumed St′,0 = 0 in

Section 6.

The incumbent issuer’s choices. Incumbent issuer s maximizes the utility of cohort

s but has to take as given the return process (rt)
∞
t=t′—a key equilibrium variable that
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depends on the design of all other stablecoins. Here, rt is the return that investors can

earn by storing goods or trading other stablecoins, where the option of storage implies

rt ≥ 0 ∀t > t′. More particularly, (ct,s, At,s, Zt,s)
∞
t=t′ is now targeted to maximize

∫ ∞

t′
δe−(ρ+δ)(t−s)u(ct,s)dt, (49)

subject to: the law of motion

Ȧt,s + Żt,s = ρAt,s + rtZt,s − δe−δ(t−s)ct,s; (50)

the constraints Ȧt,s ≥ −ϕAt,s and Zt,s ≥ 0; the starting values At′,s and Zt′,s = 0; and

the dynamic incentive-feasibility constraint ċt,s/ct,s ≥ r+t . The law of motion simply

states that the change in the asset stock, which consists of trees, storage, and holdings

of other stablecoins, is equal to the return on the asset stock minus the consumption

by the cohort’s exiting investors. The intuition for the incentive-feasibility constraint is

similar as before. I.e., stablecoin s is designed to provide a consumption process (ct,s)
∞
t=t′

for cohort s. The effective return on stablecoin s is therefore r+t,s = ċt,s/ct,s. But with

the outside option of trading other coins and/or storage, investors can earn an effective

real return max{r+t , ċt,s/ct,s}. The outside option would thus dominate stablecoin s when

r+t > ċt,s/ct,s, so that investors would deviate from the targeted consumption process.

The dynamic incentive-feasibility constraint prevents such a deviation.

Regarding issuer s’s desire to hold other stablecoins and/or storage, we find

Lemma 1. Targeting Zt,s = 0 ∀t > t′ is optimal only if rt ≤ ρ ∀t > t′.

The intuition is that when the return on other assets—storage and other stablecoins—

exceeds the fundamental return on trees r = ρ, the issuer prefers other assets over trees.

In general equilibrium we must have St = Zt,0+ δ
∫ t

0
Zt,sds, i.e., the aggregate holding

of other assets must equal storage. With rt > ρ we must therefore have St > 0 on the

one hand, since Lemma 1 applies to all incumbent issuers. On the other hand, St > 0

directly implies rt = 0, a contradiction. In what follows, we can therefore focus on return

processes (rt)
∞
t=t′ that satisfy rt ∈ [0, ρ] ∀t > t′. It then turns out that the dynamic

incentive-feasibility constraint is always binding and the constraint Ȧt,s ≥ −ϕAt,s is

always slack:
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Lemma 2. Suppose rt ∈ [0, ρ] ∀t > t′. Then targeting Zt,s = 0 ∀t > t′ is optimal. The

optimal targeted consumption process (ct,s)
∞
t=t′ furthermore satisfies ċt,s/ct,s = r+t ∀t ≥ t′,

and the constraint Ȧt,s ≥ −ϕAt,s is always slack.

From the proof of Lemma 2 we also obtain

Corollary 1. The optimal targeted process (ct,s, At,s)
∞
t=t′ is time consistent and implies

that consumption on exit at time t is a multiple of the trees per investor at time t:

ct,s = at,s

[
δ

∫ ∞

t

e
∫ τ
t [rT−ρ−δ]dTdτ

]−1

, where at,s ≡ eδ(t−s)At,s. (51)

We note that the multiple in Equation (51), i.e., the term in square brackets, accounts

for two factors: the fundamental return that trees will earn; and the process (rτ )
∞
τ=t

that future consumption growth has to match in order to satisfy the dynamic incentive-

feasibility constraint. In essence, a higher required return r reduces current consumption

given the current amount of trees. The reason is that a higher return requires stronger

future consumption growth, which can only be financed when more trees are planted,

thus requiring a lower level of current consumption.

Optimal coin design. Can issuer s design its stablecoin to implement the allocation

described above? The answer is yes, as becomes evident by supposing that at any time

t ≥ t′, issuer s stands ready to redeem its stablecoin for xt,s > 0 goods, subject to a

resource constraint. With At,s trees owned by issuer s at time t, the time-t flow payment

to cover redemption is at most ϕyAt,s (= (ϕ + ρ)At,s). The optimal allocation above,

however, suggests that Ȧt,s = ρAt,s − δct,se
−δ(t−s). To maintain this path, the issuer

should devote at most

δct,se
−δ(t−s) = e−δ(t−s)δct,s

=

[∫ ∞

t

e
∫ τ
t [rT−ρ−δ]dTdτ

]−1

At,s (52)

goods to cover redemption, where the second equality follows from Equation (51). Sta-

blecoin s is micro-well-designed, i.e., it is invulnerable to runs, when its issuer adheres to

the investment rule above. This is shown next.
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From the perspective of an investor, the arrival rate of a successful withdrawal is

αt,s =

[∫∞
t

e
∫ τ
t [rT−ρ−δ]dTdτ

]−1
At,s

xt,sχt,sDt,s

, (53)

when a fraction χt,s of the stablecoinsDt,s is offered for redemption. Similar as in Equation

(30), issuer s sets the peg

xt,s =
1

δ
∫∞
t

e
∫ τ
t [rT−ρ−δ]dTdτ

At,s

Dt,s

(54)

to implement the optimal consumption path, as an exiting investor holds the amount

Dt,se
δ(t−s) of stablecoins by construction, so that it can consume eδ(t−s)xt,sDt,s by re-

deeming. In the special case that rτ = 0 ∀τ ≥ t, i.e., the other stablecoins do not

outperform storage, we get the exact same peg as set by the monopolistic issuer (see

Equation (30)). When the other stablecoins earn a positive return, however, the peg is

set at a lower level. The reason is that the issuer, when the targeted path is indeed im-

plemented, must let the peg increase over time to match the return on other stablecoins.

To pay for a peg that increases over time, the current peg has to be lower so that more

resources can be devoted to planting trees.

Stablecoin s can be traded in a secondary market at price qt,s. As before, we focus

on equilibria in which xt,s ≥ qt,s. When xt,s = qt,s, only exiting investors from cohort s

redeem stablecoin s and when xt,s > qt,s, all investors, exiting or not, attempt to have

stablecoin s redeemed, i.e., a run takes place. In case of a run, which features χt,s = 1 by

definition, the characterization of xt,s in Equation (54) implies that αt,s = δ. The return

earned by stablecoin s therefore satisfies

r+t,s = δmax{0, xt,s/qt,s − 1}+ q̇t,s/qt,s, (55)

which is the same equation as for the micro-well-designed monopolistic stablecoin (46),

and, no matter whether a run takes place or not, we have

Ḋt,s = −δDt,s and Ȧt,s =

(
ρ−

[∫ ∞

t

e
∫ τ
t [rT−ρ−δ]dTdτ

]−1
)
At,s. (56)

The equilibrium return on stablecoin s satisfies r+t,s = r+t if there is no run at time t. This
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follows from

r+t,s =
q̇t,s
qt,s

=
ẋt,s

xt,s

=

[∫ ∞

t

e
∫ τ
t [rT−ρ−δ]dTdτ

]−1

+ r+t − ρ− δ +
Ȧt,s

At,s

− Ḋt,s

Dt,s

= r+t , (57)

where the second equality uses qt,s = xt,s, the third equality follows from Equation (54),

and the fourth equality uses Ḋt,s/Dt,s = −δ and Ȧt,s/At,s = ρ −
[∫∞

t
e
∫ τ
t [rT−ρ−δ]dTdτ

]−1
.

We note that Equation (57) implies that xt,s is only constant over time if r+t,s = r+t = 0.

No runs under optimal coin design. There are no runs on stablecoin s when it is

micro-well-designed, i.e., when issuer s adheres to the investment rule described above.

To see this, suppose first that xt,s = qt,s ∀t ∈ [t′, tR). Then consider what happens if at

time tR the market price drops unexpectedly so that we have qtR,s < xtR,s. In the spirit

of Equation (45), we obtain

Żt,s = δ (xt,s − qt,s)Dt,s − δZt,s, (58)

where Zt,s are cohort s’s holdings of other coins and/or storage. The return on Zt,s

is, by definition, rt. It follows that Z+
t,s > 0 during a run because limZt,s→0 Żt,s =

δ (xt,s − qt,s)Dt,s, which is strictly positive because xt,s > qt,s during a run. Cohort s

thus needs to invest in other stablecoins and/or storage during the run. With r+t,s > r+t ,

all incumbent investors prefer to hold stablecoin s and with r+t,s < r+t all investors want

to sell stablecoin s. Market clearance therefore requires r+t,s = r+t in case of a run. Thus,

setting r+t,s = r+t and xt,s > qt,s in Equation (57), we find that the market price during a

run develops as

r+t = δ (xt,s/qt,s − 1) + q̇t,s/qt,s. (59)

Defining θt,s ≡ qt,s/xt,s, with θtR,s < 1, we obtain

r+t = δ

(
1

θt,s
− 1

)
+

θ̇t,s
θt,s

+
ẋt,s

xt,s

= δ

(
1

θt,s
− 1

)
+

θ̇t,s
θt,s

+

[∫ ∞

t

e
∫ τ
t [rT−ρ−δ]dTdτ

]−1

+ r+t − ρ− δ +
Ȧt,s

At,s

− Ḋt,s

Dt,s

= δ

(
1

θt,s
− 1

)
+

θ̇t,s
θt,s

+ r+t . (60)
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Starting from time tR, we find

θt,s = min
{
(θtR,s − 1)eδ(t−tR) + 1, 1

}
. (61)

There is a unique steady state at θ = 1. If θtR,s < 1, θt,s would decline at a rate that

increases over time, so that at some time t′′ > tR we would have qt′′,s = 0, which cannot

be an equilibrium for reasons discussed earlier. Thus, there is no run on stablecoin s,

exactly because it is micro-well-designed. However, as we will show below, there is a

continuum of processes (rt)
∞
t=t′ that are consistent with an equilibrium.

7.2 New stablecoin issuers

We next derive the time-t′ choices of the new issuer representing the cohort of investors

entering at time t′. The new issuer becomes incumbent at time t′ + ε, so we can build

on the choices of incumbent issuers. More particularly, issuer t′ mints a micro-well-

designed stablecoin and we need to solve for the ICO quantity D+
t′,t′ . We again use the

normalization D+
t′,t′ = A+

t′,t′ so that the ICO price is one. It is clear from the choices of an

incumbent issuer that the consumption path targeted and, in fact, implemented by the

new issuer, satisfies

ct,t′ = ct′,t′e
∫ t
t′ rτdτ , with ct′,t′ = D+

t′,t′

[
δ

∫ ∞

t′
e
∫ τ
t′ [rT−ρ−δ]dTdτ

]−1

. (62)

Once issued, the return rt,t′ earned by stablecoin t′ thus mimics the return process (rt)
∞
t=t′ ,

and since xt,t′ = qt,t′ ∀t > t′ and q+t′,t′D
+
t′,t′ = c+t′,t′ , the cohort of investors t′ are willing to

participate in the ICO if and only if9

δ

∫ ∞

t′
e
∫ τ
t′ [rT−ρ−δ]dTdτ ≤ 1, (63)

which holds true since the return process (rt)
∞
t=t′ satisfies rt ∈ [0, ρ] ∀t > t′. More

particularly, there is an ICO discount unless rt = ρ ∀t. The discount is the higher, the

lower the return on outside options implied by (rt)
∞
t=t′ . If rt = 0 ∀t′ > t, we obtain an

ICO discount δ
ρ+δ

and a constant peg and consumption path thereafter, i.e., exactly as

with the monopolistic issuer described in Section 6.

9To be precise, participation requires limε→0 qt′+ε,t′ ≥ limε→0 e
∫ t′+ε

t′ rτdτ , which reduces to (63).
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With the ICO taking place and generating the consumption process as specified by

Equation (62), it follows that the new issuer t′ chooses the ICO quantityD+
t′,t′ to maximize

∫ ∞

t′
δe−(ρ+δ)(t−t′)u

([
δ

∫ ∞

t′
e
∫ τ
t′ [rT−ρ−δ]dTdτ

]−1

e
∫ t
t′ rτdτD+

t′,t′

)
dt−D+

t′,t′ . (64)

The resulting ICO quantity is therefore uniquely determined by the first-order condition

0 =

∫ ∞

t′
e
∫ t
t′ [rτ−ρ−δ]dτu′

([
δ

∫ ∞

t′
e
∫ τ
t′ [rT−ρ−δ]dTdτ

]−1

e
∫ t
t′ rτdτD+

t′,t′

)
dt−

∫ ∞

t′
e
∫ τ
t′ [rT−ρ−δ]dTdτ.

(65)

7.3 General equilibrium

We now characterize the equilibrium return processes (rt)
∞
t=0 and the associated alloca-

tions. It is useful to explicitly introduce the equilibrium concept for an economy with

competing stablecoins.

Sequential markets equilibrium. We focus on equilibria with micro-well-designed

stablecoins, as this allows the issuers to prevent runs. Recall that we normalize ICO

prices to one and that the equilibrium return process (rt)
∞
t=0 is taken as given by the

stablecoin issuers and the investors. As we explain in Section 7.1, the process has to

satisfy rt ∈ [0, ρ] ∀t, which, by Lemma 2, allows us to focus on an equilibrium with each

cohort holding only its own stablecoin, i.e., (Zt,s)
∞
t=s = 0 ∀s. Lemma 2 also tells us that

with rt ∈ [0, ρ], the constraint Ȧt,s ≥ −ϕAt,s is always slack and the dynamic incentive-

feasibility constraint always binds. We therefore obtain the following characterization:

Definition 1 (Sequential markets equilibrium). A competitive equilibrium with compet-

ing, micro-well-designed stablecoins, is a sequence for: the investors’ labor effort and

contingent-consumption schedules, i.e., (hs, (ct,s)
∞
t=s)

∞
s=0; the stock of trees and amount

of stablecoins in circulation for each issuer s, i.e., ((At,s, Dt,s)
∞
t=s)

∞
s=0; the peg for each

stablecoin s, i.e., ((xt,s)
∞
t=s)

∞
s=0; the secondary market price for each stablecoin s, i.e.,

((qt,s)
∞
t=s)

∞
s=0; the return earned by each stablecoin s, i.e., ((rt,s)

∞
t=s)

∞
s=0; and the return

process (rt)
∞
t=0 ∈ [0, ρ] on the investors’ outside option, such that:

(i) any incumbent issuer s maximizes at any time t′ > s ≥ 0 the utility of cohort s

given (rt)
∞
t=t′ and (At′,s, Dt′,s), i.e., (ct,s, At,s)

∞
t=t′ maximizes (49) s.t.: the law of
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motion (50) with Zt,s = 0 ∀t ≥ t′; the constraint Ȧt,s ≥ −ϕAt,s ∀t ≥ t′; the starting

values At′,s and Dt′,s; the incentive-feasibility constraint ċt,s/ct,s = rt ∀t ≥ t′; and

the peg (xt,s)
∞
t=t′ satisfies (54);

(ii) any incumbent issuer s ≥ 0 adheres to the investment rule Ȧt,s = ρAt,s−δct,se
−δ(t−s)

so that it limits the funds earmarked for redemption by RHS of (52) and its stock

of trees and circulating stablecoins develop according to (56);

(iii) any new issuer s ≥ 0 maximizes the expected utility of cohort s given (rt)
∞
t=s and

the anticipated optimal consumption plan (ct,s)
∞
t=s by issuing the optimal amount of

stablecoins, i.e., D+
s,s maximizes (64) and the issuer’s ICO succeeds so that hs =

A+
s,s = D+

s,s;

(iv) the secondary market for stablecoins clears, i.e., qt,s = xt,s, so that r+t,s = ẋt,s/xt,s;

(v) the return on investors’ outside option equals the highest attainable return given

the availability of storage and the tradability of stablecoins, i.e., it is (r+t )
∞
t=0 =

(max{maxs∈[0,t){r+t,s}, 0})∞t=0.

We are now ready to state the first main result on stablecoin competition:

Theorem 2 (Instability of a system of competing stablecoins). For every piecewise con-

tinuous return process rt ∈ [0, ρ] ∀t > 0, there exists a sequential markets equilibrium in

which each cohort issues a micro-well-designed stablecoin that generates the return rt at

each point in time once the stablecoin has been issued.

This result follows directly from the fact that with Ȧt,s and Ḋt,s given by Equation (56),

we have ẋt,s/xt,s = r+t according to Equation (54). In other words, if the return on

the outside option is rt ∈ [0, ρ], every stablecoin in circulation at time t will also earn

rt as follows from an incumbent issuer’s choices. The incumbent issuer ideally offers a

zero return on its stablecoin to provide the corresponding cohort of investors with the

flat contingent-consumption schedule that characterizes the Arrow-Debreu allocation, but

consumption needs to grow at least at the rate rt earned by investors’ outside option.

Accordingly, also offering a return rt on the stablecoin is the second-best thing to do.

This makes any piecewise continuous process rt ∈ [0, ρ] ∀t > 0 self-fulfilling.10

10We assume piecewise continuity so that we have well-defined integrals over rt.
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The self-fulfilling nature of equilibria highlighted above suggests that even if all issuers

mint a micro-well-designed stablecoin, competition between stablecoin issuers is a source

of instability. An issuer’s potential to implement the efficient allocation by means of

a micro-well-designed stablecoin requires, on the one hand, that the stablecoin pays

zero interest. Thus, it must be macro-well-designed, i.e., provide the investors with a

flat contingent-consumption schedule so that consumption is independent of the realized

investment horizon. On the other hand, the issuer’s ability to mint a macro-well-designed

stablecoin depends on the actions of all other coin issuers, i.e., issuers face a coordination

game.

More particularly, without regulation, incumbent issuers anticipate competition from

other incumbent issuers as well as from future issuers. If all incumbent and future issuers

mint macro-well-designed stablecoins, it is in the individual interest of a single issuer

to mint a macro-well-designed stablecoin, too. However, if one issuer mints an interest-

bearing, micro-well-designed stablecoin, all the incumbent issuers have to change the

design of their stablecoins. This implies that the equilibrium allocation in the stablecoin

economy moves away from the Pareto-efficient Arrow-Debreu allocation, i.e., a single

interest-bearing, micro-well-designed stablecoin is contagious.

Our findings highlight how a secondary market for stablecoins can but need not lead to

a breakdown of efficient liquidity insurance. It is well-known from the banking literature

that efficient liquidity insurance unravels if investors can directly trade interest-bearing

assets—trees in our model. In the stablecoin economy, although investors cannot trade

trees directly, a related but novel issue arises since investors can invest in other stablecoins

via the secondary market. The novelty is that the stablecoins earn an endogenous return,

i.e., the return that a stablecoin earns depends, through the dynamic incentive-feasibility

constraint, on the return earned by other coins. Although the secondary-market helps

to prevent runs on individual coins, as argued in Section 6, it does open the door to a

coordination problem that renders the stablecoin economy unstable and inefficient.

The discussion above suggests that regulatory intervention can rule out coordination

problems by preventing interest payments on stablecoins. This is our second and last

finding with regard to stablecoin competition.

Theorem 3 (Regulating interest payments on stablecoins). If regulation ensures rt =

0 ∀t, the efficient Arrow-Debreu allocation is implemented as the unique equilibrium.
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8 Conclusion

We have developed a model to study how stablecoins should be designed, whether there

is contagion when multiple stablecoins compete via a secondary market, and how such

contagion can be prevented. The optimal design is straightforward at the micro-level: an

investment rule with limited redemption avoids runs and guarantees the stability of the

coin in the presence of a secondary market. Such a micro-well-designed stablecoin imple-

ments the Pareto-efficient allocation by paying zero interest when it faces no competition

from other stablecoins via the secondary market. Micro-well-designed coins, however,

are not sufficient at the macro-level because a single, micro-well-designed stablecoin that

pays interest is contagious for other stablecoins. This provides a rationale for prohibiting

stablecoin issuers from paying interest.

There are several extensions that can be pursued with the current model. One could,

for instance, add a convenience yield to the holding of stablecoins if they can be used with

lower transaction costs to make payments compared to national currencies. Moreover, one

might introduce agency conflicts when a private company issues and operates stablecoins

on behalf of investors. Agency conflicts could also necessitate standardized requirements

that a stablecoin issuer has to fulfill in order to mint stablecoins, similar to the licenses

that commercial banks need to be able to operate in the current monetary system. Finally,

one could study how repeated issuance of stablecoins affects the result, i.e., we could allow

a cohort of investors to issue further coins according to some predetermined plan once

they have started issuance.

One can certainly agree with Gorton and Zhang (2021) that the new world of sta-

blecoins posits similar problems to those encountered in earlier free-banking eras. But

the knowledge on how to address these problems, the technical and financial infrastruc-

ture, and our entire monetary system have evolved considerably since then. The search

for stablecoins that compete and produce favorable outcomes therefore continues. The

current paper is a step in that direction.
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A Proofs

We provide all our proofs in continuous time. Our continuous-time model can also be

cast as the limit of a discrete-time model, for which we find that all our results hold true.

The associated proofs in discrete time are available on request.

A.1 Proof of Proposition 1

The first step is to derive a lower bound on the utility Us that an investor entering at

time s can attain in an Arrow-Debreu equilibrium. Let It,s denote the time-t investment

made to plant trees by an investor entering at time s. We show first that regardless of

the process for Arrow-Debreu prices (pt)
∞
t=0, the investor can finance

hs =
δ

ρ+ δ
c⋆ and ct,s = c⋆ ∀t ≥ s (66)

by planting the following amount of trees:

It,s =


0 if t < s,

δ
ρ+δ

c⋆ if t = s,

e−δ(t−s) δ(ϕ−δ)
δ+ρ

c⋆ if t > s.

(67)

By assumption ϕ > δ, so these quantities are non-negative (and therefore feasible). Time-

t net expenditure by the investor, i.e., expected consumption expenditure and investment

expenditure minus labor income, then reads as

Et,s =


0 if t < s,

Is,sps − hsps = 0 if t = s,

δe−δ(t−s)ct,spt + It,spt = e−δ(t−s) δ(ϕ+ρ)
δ+ρ

c⋆pt if t > s,

(68)
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where ct,s = c⋆ by Equation (66), and the income from planted trees gestating at time t

reads as

Yt,s = ϕypt

∫ t

0

e−ϕ(t−τ)Iτ,sdτ

= (ϕ+ ρ)pt

∫ t

0

e−ϕ(t−τ)Iτ,sdτ

= 1{t>s}
δ(ϕ+ ρ)

δ + ρ
c⋆pt

[
e−ϕ(t−s) + (ϕ− δ)

∫ t

s

e−ϕ(t−τ)e−δ(τ−s)dτ

]
= 1{t>s}e

−δ(t−s) δ(ϕ+ ρ)

δ + ρ
c⋆pt.

(69)

The net income (Yt,s)
∞
t=0 generated by the planting schedule (It,s)

∞
t=0 therefore exactly

covers the net expenditure (Et,s)
∞
t=0, and it is a feasible planting schedule since ϕ > δ

implies that (It,s)
∞
t=0 is never negative. The utility obtained by the investor in an Arrow-

Debreu equilibrium is therefore bounded from below by

Us ≥ U ≡ − δ

ρ+ δ
c⋆ +

∫ ∞

s

δe−(ρ+δ)(t−s)u(c⋆)dt

=
δ [u(c⋆)− c⋆]

ρ+ δ
.

(70)

The next step is to find an upper bound on Us from the resource constraints and

the fact that Us ≥ U ∀s must hold in an Arrow-Debreu equilibrium. Define the welfare

measure

W = U0 + δ

∫ ∞

0

e−ρsUsds. (71)

The utility of investors entering at time 0 thus receives weight one, and the utility of

investors entering at time s > 0 is treated as a flow that accounts for the rate of entry δ

as well as discounting according to the rate of time preference ρ. From the analysis above,

we can find a lower bound on the realized welfare W in an Arrow-Debreu equilibrium:

W ≥ W ≡ U
[
1 + δ

∫ ∞

0

e−ρsds

]
=

ρ+ δ

ρ
U

=
δ [u(c⋆)− c⋆]

ρ
.

(72)
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The aggregate resource constraints, on the other hand, imply an upper bound

W ≡ max
((It,ht,(ct,s)s=t

s=0))
∞
t=0


∫ ∞

0

e−ρt

(
δe−δtu(ct,0) +

∫ t

0

δ2e−δ(t−s)u(ct,s)ds− δht

)
dt

− h0


s.t. Ȧt = It − ϕAt ∀t > 0, (λA,t)

Ṡt = δht + (ϕ+ ρ)At − It − δe−δtct,0 −
∫ t

0
δ2e−δ(t−s)ct,sds ∀t > 0, (λS,t)

ht ≥ 0, (µh,t)

St ≥ 0, (µS,t)

h0 ≥ A+
0 + S+

0 . (χ0)

(73)

We ignore the constraint It ≥ 0 in W , which is without loss because adding constraints

will only lower attainable welfare—we are going to show that W = W , i.e., W is in fact

attainable. The solution to maximizing W follows by defining the Hamiltonian

Ht = δe−δtu(ct,0) +

∫ t

0

δ2e−δ(t−s)u(ct,s)ds− ht(δ − µh,t) + µS,tSt + λA,t (It − ϕAt)

+ λS,t

(
δht + (ϕ+ ρ)At − It − δe−δtct,0 −

∫ t

0

δ2e−δ(t−s)ct,sds

)
,

(74)

where λA,t and λS,t are the co-states and µh,t and µS,t the Lagrange multipliers for the

non-negativity constraints. Optimality conditions for h0, A
+
0 , and S+

0 imply

h0 : 0 = −1 + µh,0 + χ0, (75)

A+
0 : 0 = −χ0 + λA,0, (76)

S+
0 : 0 = −χ0 + λS,0, (77)

where χ0 is the Lagrange multiplier for the constraint h0 = A+
0 + S+

0 ; the first-order

conditions for the controls It, ht, (ct,s)
s=t
s=0 imply

It : 0 = λA,t − λS,t, (78)

ht : 0 = −δ + µh,t + δλS,t, (79)

ct,s : 0 = u′(ct,s)− λS,t; (80)

39



and the co-states develop according to

At : 0 = −ρλA,t − ϕλA,t + (ϕ+ ρ)λS,t + λ̇A,t, (81)

St : 0 = −ρλS,t + µS,t + λ̇S,t. (82)

It follows from the condition for It that we have λA,t = λS,t ∀t. The law of motion for the

costate λA,t then implies λ̇A,t = 0 ∀t i.e., λA, and therefore also λS, are time-invariant.

The condition for St then implies that µS is also time-invariant, with µS = ρλS = ρλA.

Because zero consumption is clearly sub-optimal, there must be t for which ht > 0, which

in turn implies λS = 1 from the condition for ht. Accordingly, λS = λA = 1 and µS = ρ;

there is no storage and consumption by exiting investors is given by ct,s = c⋆, as follows

from the condition for ct,s. We obtain

W = U0 + δ

∫ ∞

0

e−ρsU sds, U s ≡ −hs +
δ

ρ+ δ
c⋆ + U , (83)

where U s is the utility attained by investors entering at time s. We find that

W −W =
δc⋆

ρ
− h0 − δ

∫ ∞

0

e−ρshsds, (84)

where it remains to determine the value of h0 + δ
∫∞
0

e−ρshsds in the solution for W .

With St = 0 ∀t, we can forward iterate on Ȧt = It − ϕAt by using It = δht + (ϕ+ ρ)At −

δe−δtct,0 −
∫ t

0
δ2e−δ(t−s)ct,sds and A+

0 = h0 to find

h0 + δ

∫ ∞

0

e−ρshsds = δ

∫ ∞

0

e−(ρ+δ)tct,0dt+ δ2
∫ ∞

0

e−ρs

∫ ∞

s

e−(ρ+δ)(t−s)ct,sdtds

+ lim
T→∞

[
e−ρTAT

]
=

δc⋆

ρ
,

(85)

where we have used the fact that limT→∞
[
e−ρTAT

]
= 0 by the transversality condition.

We thus obtain W = W , i.e., the social welfare in an Arrow-Debreu equilibrium must

be W = W . Combined with the fact that Us ≥ U ∀s, it follows that Us = U ∀s in an

Arrow-Debreu equilibrium. An immediate corollary is that the Arrow-Debreu allocation

is Pareto efficient, as it otherwise cannot attain W .
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Finally, because

ct,s = c⋆ ∀t ≥ 0, s ∈ [0, t]; and St = 0 ∀t (86)

are necessary to attain W , and because Us = U ∀s implies hs =
δ

ρ+δ
c⋆ ∀s, it follows that

At develops according to A+
0 = h0 and

Ȧt = ρAt + δht −
(
δe−δt + δ2

∫ t

0

e−δ(t−s)ds

)
c⋆ ⇒ At =

δ

ρ+ δ
c⋆ ∀t > 0, (87)

which logically satisfies Ȧt > −ϕAt so that It > 0. Thus, the Arrow-Debreu allocation is

unique and Pareto efficient.

A.2 Proof of Proposition 2

Suppose first that for some tS ≥ 0 we have St = 0 for all t ≤ tS but S+
tS

> 0. We set out

to show that this cannot be part of a decentralized equilibrium. The supposition S+
tS

> 0

implies r+v,tS = 0, so that Equation (18) implies v̇tS < 0. This, in turn, implies vtS+ε < 1

for ε > 0 but sufficiently small since vtS ≤ 1. We must therefore have I+tS = 0, as no trees

are planted when the price of trees falls short of the cost of planting. This finding can

then be generalized for all t > tS by considering matters at time tS + ε.

The income for maturing trees at that time tS + ε is ϕyAtS+ε = (ϕ + ρ)AtS+ε and

incumbent investors’ aggregate wealth (storage plus the market value of trees) is given by

StS+ε + vtS+εAtS+ε. Incumbent investors consume their wealth on exit by construction,

so the aggregate flow consumption at tS + ε satisfies ctS+ε = δ (StS+ε + vt+εAt+ε). The

aggregate resource constraint (6) therefore implies

ṠtS+ε = δhtS+ε + (ϕ+ ρ)AtS+ε − ctS+ε − ItS+ε

= δhtS+ε + (ϕ+ ρ)AtS+ε − δ (StS+ε + vt+εAt+ε)− ItS+ε

≥ δhtS+ε + (ϕ+ ρ− δ)AtS+ε − δStS+ε − ItS+ε,

(88)

where we have used that vtS+ε ≤ 1 to arrive at the third line and where it has to be

noted that htS+ε > 0. The latter property follows from the fact that zero labor supply is

sub-optimal for the investor entering at tS + ε as u satisfies Inada conditions.
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Taking the limit ε → 0 in (88), we obtain

Ṡ+
tS

≥ δh+
tS
+ (ϕ+ ρ− δ)A+

tS
− δS+

tS
− I+tS

= δh+
tS
+ (ϕ+ ρ− δ)A+

tS
− δS+

tS
,

(89)

where we have used the fact that the supposition S+
tS

> 0 implies I+tS = 0, as we have

demonstrated above, to arrive at the second line. From (89) it follows that limS+
tS

→0 Ṡ
+
tS

>

0 when ϕ > δ. We can thus forward iterate the argument above to conclude that the

supposition S+
tS

> 0 implies I+tS+ε, r
+
v,tS+ε = 0 ∀ε ≥ 0 and S+

tS+ε > 0 ∀ε ≥ 0.

The above, however, cannot be an equilibrium. Equation (18) implies that with

r+v,tS+ε = 0 ∀ε ≥ 0, we have v̇tS+ε = −(ρ + ϕ) + ϕvtS+ε ∀ε ≥ 0. Since this differential

equation is linear and vtS ≤ 1, we will have vT = 0 for some T ≥ tS, i.e., the price of trees

hits zero within a finite amount of time. This contradicts the notion that trees must have

a strictly positive fundamental value. I.e., the probability that the tree matures within

an investor’s investment horizon is strictly positive, and the investor can then store the

resulting income until consumption on exit.

Suppose next that St = 0 ∀t. We show that this must imply It > 0 ∀t, i.e., the case

we solve explicitly in Section 4. From the supposition and the resource constraint (4) for

t = 0 we find I0 = h0, where h0 > 0 is positive for the reasons explained earlier. Building

on Equation (88), we have for t > 0:

0 = Ṡt = δht + (ϕ+ ρ)At − δ(St + vtAt)− It

= δht + (ϕ+ ρ)At − δvtAt − It

≥ δht + (ϕ+ ρ− δ)At − It

> −It,

(90)

where we use St = Ṡt = 0, vt ≤ 1, ht > 0, and ϕ > δ. Concluding, It > 0 ∀t in

a decentralized equilibrium, which yields the uniquely determined allocation derived in

Section 4. We have argued in Section 4 that this allocation is Pareto inefficient.
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A.3 Proof of Proposition 3

We derive the full-fledged allocations in case of a run. It holds true that

xt =
δ + ρ

δ

At

Dt

. (91)

We furthermore have

αt = δ
ϕ+ ρ

δ + ρ
(92)

and

Ȧt = −ϕAt, Ḋt = −δ
ϕ+ ρ

δ + ρ
Dt (93)

during a run. An exiting investor consumes

ct,0 = qtdt + st (94)

during a run, where dt and st denote individual stablecoin holdings and storage. We

only need to account for the secondary market price qt because the amount of stablecoins

successfully redeemed by the investor is a flow during a run in continuous time. By

construction, we have dt = Dte
δt and st = eδtSt. Aggregate flow consumption during a

run therefore reads as

ct = δe−δtct,0 = δ (qtDt + St) . (95)

No trees are planted during a run, and the aggregate flow income from gestating trees is

yϕAt = (ϕ+ ρ)At. The change in aggregate storage is therefore

Ṡt = (ϕ+ ρ)At − δ (qtDt + St)

= (ϕ+ ρ)
At

Dt

Dt − δ (qtDt + St)

= δ
ϕ+ ρ

δ + ρ
xtDt − δ (qtDt + St)

= δ

(
ϕ+ ρ

δ + ρ
xt − qt

)
Dt − δSt,

(96)

where we use (91) to arrive at the third line.

Note that because st = Ste
δt we have

ṡt
st

=
Ṡt

St

+ δ ⇒ ṡt =
(
Ṡt + δSt

) st
St

. (97)
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Combining this with (96) and using st = Ste
δt, we therefore find for individual storage

that

ṡt = δ

(
ϕ+ ρ

δ + ρ
xt − qt

)
Dte

δt

= (αtxt − δqt)dt,

(98)

i.e., the change in individual storage equals the flow revenue from redeeming stablecoins

minus the purchasing of stablecoins on the secondary market, where the latter equals the

sale of stablecoins by the flow of investors exiting.

With xt > qt during a run and ϕ > δ by assumption, it also follows from (96) that

S+
t > 0 during a run because St = 0 implies

Ṡt = δ

(
ϕ+ ρ

δ + ρ
xt − qt

)
Dt > 0. (99)

We therefore know that for t ≥ tR, where tR is the time at which the run starts, the

discount develops according to

qt
xt

= θt = min

{
θtRe

ϕ(t−tR) +
δ

ϕ

ϕ+ ρ

δ + ρ

(
1− eϕ(t−tR)

)
, 1

}
, (100)

with the run continuing forever when θtR = δ
ϕ
ϕ+ρ
δ+ρ

= θ, in which case θt = θtR ∀t ≥ tR,

and lasting for a finite amount of time when θtR ∈ (θ, 1).

To characterize the development of storage during the run, we can use (96):

Ṡt = δ

(
ϕ+ ρ

δ + ρ
xt − qt

)
Dt − δSt

= δ

(
ϕ+ ρ

δ + ρ
− θt

)
xtDt − δSt

= δ

(
ϕ+ ρ

δ + ρ
− θt

)
δ + ρ

δ
At − δSt

=

(
ϕ+ ρ

δ + ρ
− θtRe

ϕ(t−tR) − δ

ϕ

ϕ+ ρ

δ + ρ

(
1− eϕ(t−tR)

))
(δ + ρ)e−ϕ(t−tR)AtR − δSt

=

(
ϕ− δ

δ

δ

ϕ

ϕ+ ρ

δ + ρ
−
(
θtR − δ

ϕ

ϕ+ ρ

δ + ρ

)
eϕ(t−tR)

)
(δ + ρ)e−ϕ(t−tR)AtR − δSt

=

(
ϕ− δ

δ
θ − (θtR − θ)eϕ(t−tR)

)
(δ + ρ)e−ϕ(t−tR)AtR − δSt.

(101)

Equation (101) can be rearranged and multiplied by an integrating factor It (not to be
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confused with investment It) to find

ṠtIt + δStIt =

(
ϕ− δ

δ
θ − (θtR − θ)eϕ(t−tR)

)
(δ + ρ)e−ϕ(t−tR)ItAtR . (102)

Choosing It such that İt = δIt, i.e., It = ItRe
δ(t−tR) implies by the product rule that

∂(StIt)

∂t
=

(
ϕ− δ

δ
θ − (θtR − θ)eϕ(t−tR)

)
(δ + ρ)e(δ−ϕ)(t−tR)ItRAtR . (103)

Therefore,

StIt = StRItR +

∫ t

tR

(
ϕ− δ

δ
θ − (θtR − θ)eϕ(τ−tR)

)
(δ + ρ)e(δ−ϕ)(τ−tR)ItRAtRdτ

= StRItR + (δ + ρ)ItRAtR

∫ t

tR

(
ϕ− δ

δ
θe(δ−ϕ)(τ−tR) − (θtR − θ)eδ(τ−tR)

)
dτ

= StRItR − δ + ρ

δ
ItRAtR

∫ t

tR

(
θ
∂e(δ−ϕ)(τ−tR)

∂τ
+ (θtR − θ)

∂eδ(τ−tR)

∂τ

)
dτ

= StRItR − δ + ρ

δ
ItRAtR

[
θe(δ−ϕ)(τ−tR) + (θtR − θ)eδ(τ−tR)

]τ=t

τ=tR

= StRItR +
δ + ρ

δ
ItRAtR

(
θeδ(t−tR)(1− e−ϕ(t−tR))− θtR(e

δ(t−tR) − 1)
)
.

(104)

With StR = 0 and It = ItRe
δ(t−tR), it follows that

St =
δ + ρ

δ
AtR

(
θ(1− e−ϕ(t−tR))− θtR(1− e−δ(t−tR))

)
. (105)

When the run ends, it is clear that Ṡt = −δSt, i.e., investors exiting consume their

storage. Having storage after the run has stopped is consistent with equilibrium because

the return on the stablecoin is zero.

Individual consumption by investors exiting during a run can be characterized as
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follows:

ct,0 = (qtDt + St) e
δt

= (θtxtDt + St) e
δt

=

(
θt
δ + ρ

δ
At + St

)
eδt

=
δ + ρ

δ
AtR

(
θte

−ϕ(t−tR) + θ(1− e−ϕ(t−tR))− θtR(1− e−δ(t−tR))
)
eδt

=
δ + ρ

δ
AtRe

δtRθtR

= θtRc
⋆,

(106)

where the last line uses AtR = DtR = e−δtRD+
0 , D

+
0 = h0, and Equation (26). When the

run starts, individual consumption therefore drops permanently by exactly a fraction θtR ,

and remains constant thereafter, even when the run has stopped. This proves that the

run is Pareto inefficient.

A.4 Proof of Lemma 1

We first show that r+t > ρ implies that It,s = 0, i.e., the issuer targets zero planting of

trees at time t when r+t > ρ. Consider a proof by contradiction: Suppose that It,s > 0.

The mass of trees remaining from this investment at time t + ε is ft+ε,s = It,se
−ϕε and

the flow of fruit generated by it at time τ ∈ (t, t + ε] is gτ,s = yϕIt,se
−ϕ(τ−t) = (ϕ +

ρ)It,se
−ϕ(τ−t). Suppose that instead we now plant ft+ε,s trees at time t + ε, financed by

investing ft+ε,se
−

∫ t+ε
t rτdτ in the alternative asset Z at time t, where we note that the

alternative asset Z, i.e., storage and other stablecoins, is fully liquid. We can likewise

replace the sequence of fruit (gτ,s)
τ=t+ε
τ=t by additionally investing

∫ t+ε

t
gτ,se

−
∫ τ
t rT dTdτ in

the alternative asset at time t. The proposed alternative strategy thus leaves everything

after time t unaffected, while leading to a net reduction in resources used for investment

activity at time t given by

dt,s = It,s − ft+ε,se
−

∫ t+ε
t rτdτ −

∫ t+ε

t

gτ,se
−

∫ τ
t rT dTdτ

= It,s

[
1− e−

∫ t+ε
t (ϕ+rτ )dτ − (ϕ+ ρ)

∫ t+ε

t

e−
∫ τ
t (ϕ+rT )dTdτ

]
.

(107)
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Dividing dt,s by the length of time ε over which we deploy the alternative investment

strategy and taking the limit ε → 0, we obtain

lim
ε→0

[
dt,s
ε

]
= It,s lim

ε→0

[
1− e−

∫ t+ε
t (ϕ+rτ )dτ − (ϕ+ ρ)

∫ t+ε

t
e−

∫ τ
t (ϕ+rT )dTdτ

ε

]
= It,s lim

ε→0

[
(ϕ+ rt+ε)e

−
∫ t+ε
t (ϕ+rτ )dτ − (ϕ+ ρ)e−

∫ t+ε
t (ϕ+rT )dT

]
= It,s

[
r+t − ρ

]
> 0,

(108)

where we apply L’Hôpital’s rule to arrive at the second line, the fact that r+t ≡ limε→0 rt+ε

to arrive at the third line, and finally the supposition that It,s > 0 together with r+t > ρ

to arrive at the fourth line. The alternative investment strategy thus frees up resources at

time t when it is deployed over a sufficiently short time horizon ε, implying that targeting

It,s > 0 cannot be optimal when r+t > ρ.

The next step is to show that the issuer targets Z+
t,s > 0 when r+t > ρ. We established

in the first step that r+t > ρ ⇒ It,s = 0, so that Ȧt,s = −ϕAt,s. Now suppose that Z+
t,s = 0

to establish a contradiction. The issuer’s resource constraints at time t and t + ε with

ε → 0 would then imply

ct,s ≥
(ρ+ ϕ)At,se

δ(t−s)

δ
and lim

ε→0
ct+ε,s ≤ lim

ε→0

(ρ+ ϕ)At,se
(δ−ϕ)ε+δ(t−s)

δ
. (109)

It follows that
ċt,s
ct,s

≡ 1

ct,s
lim
ε→0

[
ct+ε,s − ct,s

ε

]
= lim

ε→0

[
ct+ε,s/ct,s − 1

ε

]
≤ lim

ε→0

e(δ−ϕ)ε − 1

ε

= δ − ϕ

< 0,

(110)

where we use (109) to arrive at the third line, L’Hôpital’s rule to arrive at the fourth line,

and the fact that δ < ϕ to arrive at the fifth line. Thus, Z+
t,s = 0 ∧ It,s = 0 ⇒ ċt,s/ct,s ≤

0. This however implies that the constraint ċt,s/ct,s ≥ r+t is violated because r+t > ρ by

supposition. Concluding, r+t > ρ ⇒ Z+
t,s > 0 or, equivalently, Z+

t,s = 0 ⇒ rt ∈ [0, ρ],
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where we know that rt ≥ 0 because storage is available as an alternative investment.

A.5 Proof of Lemma 2

We first define at,s = At,se
δ(t−s) and zt,s = Zt,se

δ(t−s), i.e., the amount of trees and the

market value of other investments (storage and/or other stablecoins) owned by cohort s

in per-investor terms. This allows us to redefine the optimization problem as

max
(ct,s,at,s,zt,s)∞t=t′

∫ ∞

t′
δe−(ρ+δ)(t−s)u(ct,s)dt

s.t. ȧt,s + żt,s = (ρ+ δ)at,s + (rt + δ)zt,s − δct,s,

ȧt,s ≥ (δ − ϕ)at,s, zt,s ≥ 0, and ċt,s/ct,s ≥ rt,

(111)

and subject to the starting values at′,s > 0 and zt′,s = 0.

We next verify that when the constraint ȧt,s ≥ (δ − ϕ)at,s is slack, this must imply

ċt,s/ct,s = r+t when rt ∈ [0, ρ] ∀t > t′. We thus consider

max
(ct,s,at,s,zt,s)∞t=t′

∫ ∞

t′
δe−(ρ+δ)(t−s)u(ct,s)dt

s.t. ȧt,s + żt,s = (ρ+ δ)at,s + (rt + δ)zt,s − δct,s,

zt ≥ 0, ċt,s/ct,s ≥ r+t , and lim
T→∞

[
e−(ρ+δ)(T−t′)aT,s

]
≥ 0,

(112)

where the last condition constitutes a no-ponzi-scheme condition for at,s, which we need

to include here because at,s < 0, i.e., borrowing, is now feasible. We consider the same

starting values as before. It is immediately clear that we can set zt,s = 0 ∀t ≥ t′ because

we have rt ≤ ρ ∀t ≥ t′ by supposition, i.e., the return on trees weakly dominates the

return on alternative investments. The problem therefore reduces to

max
(ct,s,at,s)∞t=t′

∫ ∞

t′
δe−(ρ+δ)(t−s)u(ct,s)dt

s.t. ȧt,s = (ρ+ δ)at,s − δct,s, ct,s/ct,s ≥ r+t , lim
T→∞

[
e−(ρ+δ)(T−t′)aT,s

]
≥ 0.

(113)

Suppose now that the solution (ct,s, at,s)
∞
t=t′ to (113) implies the existence of a T ≥ t′

for which ċT,s/cT,s > r+T . We show that this leads to a contradiction, so that we must

in fact have ċt,s/ct,s = r+t ∀t ≥ t′. Assuming ċT,s/cT,s > r+T for some T ≥ t′ implies the
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existence of a t1 ≥ t′ and a t3 > t1 (we will use a point in time t2 ∈ (t1, t3) later on) such

that

ct3,s > ct1,se
∫ t3
t1

rτdτ . (114)

To see why, note that the opposite must imply

cT+ε,s ≤ cT,se
∫ T+ε
T rτdτ ∀T ≥ t′, ∀ε > 0, (115)

which must in turn imply

1

cT,s

cT+ε,s − cT,s
ε

≤ e
∫ T+ε
T rτdτ − 1

ε
∀T ≥ t′, ∀ε > 0. (116)

One particular instance of (116) is the case in which ε → 0, i.e., (116) must imply that

∀T ≥ t′, we have

ċT,s
cT

≡ 1

cT,s
lim
ε→0

[
cT+ε,s − cT,s

ε

]
≤ lim

ε→0

[
e
∫ T+ε
T rτdτ − 1

ε

]
= lim

ε→0

[
rT+εe

∫ T+ε
T rτdτ

]
= r+T ,

(117)

where we apply L’Hôpital’s rule to arrive at the second line and use r+T ≡ limε→0 rT+ε to

arrive at the third line. Equation (117) clearly contradicts the existence of a T ≥ t′ for

which ċT,s/cT,s > r+T .

The existence of a t1 ≥ t′ and t3 > t1 for which (114) holds allows us to construct an

alternative, feasible solution (c′t,s, a
′
t,s)

∞
t=t′ to (113) that is strictly better than (ct,s, at,s)

∞
t=t′ .

We illustrate this graphically by means of Figure 2 before delving into the details.

The existence of a t1 ≥ t′ and t3 > t1 for which (114) holds basically implies that the

consumption process (ct,s)
∞
t=t′ grows faster than r+t over the time interval [t1, t3], which

we illustrate in Figure 2a. This consumption process never declines because r+t ≥ 0 due

to the availability of storage and the fact that feasibility implies ċt,s/ct,s ≥ r+t . We focus

on improving on this consumption process over the time interval [t′, t3], i.e., we keep

consumption after time t3 fixed. The asset a that we use to finance the consumption

processes earns the return ρ + δ, so that an alternative consumption process (c′t,s)
t=t3
t=t′ is

feasible when it has the same present value as the process (ct,s)
t=t3
t=t′ , where the present
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value is determined by applying ρ + δ as the discount rate. We then observe that the

discount rate applied to utility u in (113) is also ρ+ δ. The strict concavity of u therefore

implies that an alternative consumption process (c′t,s)
t=t3
t=t′ that has the same present value

as (ct,s)
t=t3
t=t′ but is flatter, i.e., that does not decline but that grows at a weakly lower

rate on the interval [t′, t3] and at a strictly lower rate on some sub-interval with positive

mass, will be strictly better. The fact that (ct,s)
t=t3
t=t′ grows faster than r+t on the interval

[t1, t3] allows us to construct such an alternative process while respecting the constraint

ċ′t,s/c
′
t,s ≥ r+t everywhere.

We proceed to do this in the following way. First, we leave consumption on the

interval [t′, t1] unaffected and reduce the growth rate of consumption on the interval

[t1, t3] to exactly r+t . The adjusted consumption process (c̃t,s)
t=t3
t=t′ is depicted in Figure 2b

and it clearly has a lower present value than the original process (ct,s)
t=t3
t=t′ , i.e., resources

have been freed up. We subsequently use these slack resources to increase consumption on

the entire interval [t′, t3] by a constant. This leads to the consumption process (c′t,s)
t=t3
t=t′ ,

depicted in Figure 2c, that: has exactly the same present value as (ct,s)
t=t3
t=t′ ; and grows

at rate r+t over the interval [t1, t3). It furthermore features c′t3,s < ct3,s, as otherwise

c′t,s > ct,s ∀t ∈ [t′, t3), which would violate the notion that (c′t,s)
t=t3
t=t′ and (ct,s)

t=t3
t=t′ have the

same present value. In turn, c′t3,s < ct3,s, implies that we also have ċ′t3,s/c
′
t3,s

> ċt3,s/ct3,s ≥

r+t3 , as we left consumption after t3 unaffected. Our alternative consumption process is

therefore feasible because it has the same present value as the original and because it

grows at at least the rate r+t . From Figure 2c we see that it is clearly flatter than the

original process in the interval [t′, t3]—it intersects the original process from above at

some unique point t2 ∈ (t1, t3) and it never declines. In other words, the alternative

consumption process is not only feasible, but also strictly better than the original one.

We now specify explicitly the alternative solution (c′t,s, a
′
t,s)

∞
t=t′ to formalize the verbal

reasoning above:

c′t,s =


ct,s + f if t′ ≤ t < t1,

ct1,se
∫ t
t1

rT dT
+ f if t1 ≤ t ≤ t3,

ct,s if t > t3;

, f =

∫ t3
t1

e−(ρ+δ)(τ−t′)
[
cτ,s − ct1,se

∫ τ
t1

rT dT
]
dτ∫ t3

t′
e−(ρ+δ)(τ−t′)dτ

,

a′t,s = at′,se
(ρ+δ)(t−t′) − δ

∫ t

t′
c′τ,se

(ρ+δ)(t−τ)dτ,

(118)
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t′
t

ct′,se
∫ t
t′ rτdτ

ct,s

t1 t3

(a) The consumption process (ct,s)
∞
t=t′ , which grows at a rate greater that rt on the interval

[t1, t2] and at a rate equal to rt otherwise.

t′
t

ct′,se
∫ t
t′ rτdτ

ct,s

c̃t,s

t1 t3

(b) Constructing (c̃t,s)
t=t3
t=t′ from (ct,s)

t=t3
t=t′ by setting c̃t,s = ct′,se

∫ t
t′ rτdτ .

t′
t

ct′,se
∫ t
t′ rτdτ

ct,s

c′t,s

c̃t,s

t1 t2 t3

(c) Constructing (c′t,s)
t=t3
t=t′ from (c̃t,s)

t=t3
t=t′ by adding a constant f to c̃t,s ∀t ∈ [t′, t3] so that the

present value of (c′t,s)
t=t3
t=t′ equals that of (c′t,s)

t=t3
t=t′ , i.e.,

∫ t3
t′ e−(ρ+δ)(t−t′)[c′t,s − ct,s]dt = 0.

Figure 2: Construction of the alternative consumption process (c′t,s)
t=t3
t=t′ from (ct,s)

t=t3
t=t′ .
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where we note that ∫ t3

t′
e−(ρ+δ)(t−t′)

(
c′t,s − ct,s

)
dt = 0 (119)

by the construction of f . Note furthermore that a discontinuous process (ct,s)
∞
t=t′ is

trivially sub-optimal due to the strict concavity of u, i.e., there should be no jumps in

the consumption process. This, in turn, implies that the existence of a t1 ≥ t′ and t3 > t1

for which (114) holds implies that we also have

ct,s > ct1,se
∫ t
t1

rτdτ ∀t ∈ (t3 − µ, t3], where µ ∈ (0, t3 − t1). (120)

By (120), we therefore have f > 0 . We also have c′t3 < ct3 because

f =

∫ t3
t1

e−(ρ+δ)(τ−t′)
[
cτ,s − ct1,se

∫ τ
t1

rT dT
]
dτ∫ t3

t′
e−(ρ+δ)(τ−t′)dτ

<

∫ t3
t1

e−(ρ+δ)(τ−t′)
[
ct3,s − ct1,se

∫ t3
t1

rT dT
]
dτ∫ t3

t′
e−(ρ+δ)(τ−t′)dτ

≤

∫ t3
t1

e−(ρ+δ)(τ−t′)
[
ct3,s − ct1,se

∫ t3
t1

rT dT
]
dτ∫ t3

t1
e−(ρ+δ)(τ−t′)dτ

= ct3,s − ct1,se
∫ t3
t1

rT dT ,

(121)

where we use ċt,s/ct,s ≥ r+t ∀t ≥ t′ and (120) to arrive at the second line. We furthermore

have the existence of a t2 ∈ (t1, t3) for which

c′t,s


> ct,s if t < t2,

= ct,s if t = t2,

< ct,s if t > t2.

(122)

It follows from the fact that ċt,s/ct,s ≥ ċ′t,s/c
′
t,s ≥ r+t ≥ 0 ∀t ∈ [t′, t3) that (c′t,s)

t=t3
t=t′ and

(ct,s)
t=t3
t=t′ are both increasing and intersect exactly once, i.e. at t2, where ct,s intersects c

′
t,s

from below.

We can now prove that (c′t,s)
∞
t=t′ is strictly better than (ct,s)

∞
t=t′ . More particularly, we
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have∫ ∞

t′
δe−(ρ+δ)(t−s)

[
u(c′t,s)− u(ct,s)

]
dt =

∫ t2

t′
e−(ρ+δ)(t−s)

∫ c′t,s

ct,s

u′(c)dcdt

−
∫ t3

t2

e−(ρ+δ)(t−s)

∫ ct,s

c′t,s

u′(c)dcdt

>

∫ t2

t′
e−(ρ+δ)(t−s)

∫ c′t,s

ct,s

u′(c′t,s)dcdt

−
∫ t3

t2

e−(ρ+δ)(t−s)

∫ ct,s

c′t,s

u′(c′t,s)dcdt

=

∫ t2

t′
e−(ρ+δ)(t−s)u′(c′t,s)[c

′
t,s − ct,s]dt

−
∫ t3

t2

e−(ρ+δ)(t−s)u′(c′t,s)[ct,s − c′t,s]dt

≥ u′(c′t2,s)

∫ t2

t′
e−(ρ+δ)(t−s)

[
c′t,s − ct,s

]
dt

− u′(c′t2,s)

∫ t3

t2

e−(ρ+δ)(t−s)
[
ct,s − c′t,s

]
dt

= 0,

(123)

where we use that c′t,s > ct,s ∀t ∈ [t′, t2) and c′t,s < ct,s ∀t ∈ (t2, t3] together with

the fact that u′′ < 0 to arrive at the “>”, the fact that c′t,s ≤ c′t2,s∀t ∈ [t′, t2) and

c′t,s ≥ c′t2,s∀t ∈ (t2, t3] together with the fact that u′′ < 0 to arrive at the “≥”, and finally

Equation (119) to arrive at the “= 0”. We can conclude from (123) that the alternative

consumption process (c′t,s)
∞
t=t′ generates strictly higher utility than (ct,s)

∞
t=t′ .

We finally verify the feasibility of (c′t,s, a
′
t,s)

∞
t=t′ to arrive at the desired contradiction.

From the specification of the consumption process, in particular that c′t3,s < ct3,s, it follows

that ċ′t,s/c
′
t,s ≥ r+t ∀t ≥ t′, as otherwise (ct,s)

∞
t=t′ would have violated ċt,s/ct,s ≥ r+t ∀t ≥ t′

as well. The specification of (a′t,s)
∞
t=t′ furthermore implies directly that

ȧ′t,s = (ρ+ δ)a′t,s − δc′t,s (124)

and the starting condition is satisfied because a′t′,s = at′,s. Forward iterating on (124)

yields

at′,s = a′t′,s = δ

∫ ∞

t′
e−(ρ+δ)(t−t′)c′t,sdt+ lim

T→∞

[
e−(ρ+δ)(T−t′)a′T,s

]
= δ

∫ ∞

t′
e−(ρ+δ)(t−t′)ct,sdt+ lim

T→∞

[
e−(ρ+δ)(T−t′)a′T,s

]
,

(125)
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where we use (119) to arrive at the second line. Because forward iterating on the law of

motion in (113) likewise yields

at′,s = δ

∫ ∞

t′
e−(ρ+δ)(t−t′)ct,sdt+ lim

T→∞

[
e−(ρ+δ)(T−t′)aT,s

]
, (126)

it follows from (125) and (126) that limT→∞
[
e−(ρ+δ)(T−t′)a′T,s

]
= limT→∞

[
e−(ρ+δ)(T−t′)aT,s

]
.

In other words, (a′t,s)
∞
t=t′ satisfies the no-ponzi-scheme condition since (at,s)

∞
t=t′ satisfies it

as well. We have now arrived at a contradiction: (c′t,s, a
′
t,s)

∞
t=t′ is feasible and is strictly

better than (ct,s, at,s)
∞
t=t′ . We have therefore proved that ċt,s/ct,s = r+t must hold for all

t ≥ t′ when the constraint ȧt,s ≥ (δ − ϕ)at,s is slack and r+t ∈ [0, ρ] ∀t ≥ t′.

The last step is to show that the constraint ȧt,s ≥ (δ − ϕ)at,s ∀t′ ≥ t is indeed not

binding when we have ċt,s/ct,s = r+t ∈ [0, ρ] ∀t ≥ t′. The latter implies ct,s = ct′,se
∫ t
t′ rτdτ ,

and the dynamics of at,s according to the law of motion in (113) can then be written as

ȧt,s = (ρ+ δ)at,s − δct′,se
∫ t
t′ rτdτ . (127)

Forward iterating on Equation (127) and then imposing limT→0

[
e−(ρ+δ)(T−t′)aT,s

]
= 0,

i.e., the transversality condition, implies that

ct′,s = at′,s

[
δ

∫ ∞

t′
e
∫ τ
t′ [rT−ρ−δ]dTdτ

]−1

. (128)

Again using the fact that ct,s = ct′,se
∫ t
t′ rτdτ and that the law of motion ȧt,s = (ρ+ δ)at,s−

δct,s implies

at,s = at′,se
(ρ+δ)(t−t′) −

∫ t

t′
e(ρ+δ)(t−τ)cτ,sdτ. (129)
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We therefore also find

at,s
δct,s

= e(ρ+δ)(t−t′) at′,s
δct′,s

ct′,s
ct,s

− ct′,s
ct,s

∫ t

t′
e(ρ+δ)(t−τ)+

∫ τ
t′ rT dTdτ

= e−
∫ t
t′ rτdτe(ρ+δ)(t−t′) at′,s

δct′,s
− e−

∫ t
t′ rτdτ

∫ t

t′
e(ρ+δ)(t−τ̃)+

∫ τ
t′ rT dTdτ

= e−
∫ t
t′ [rτ−ρ−δ]dτ at′,s

δct′,s
−
∫ t

t′
e−

∫ t
τ [rT−ρ−δ]dTdτ

= e−
∫ t
t′ [rτ−ρ−δ]dτ

∫ ∞

t′
e
∫ τ
t′ [rT−ρ−δ]dTdτ −

∫ t

t′
e−

∫ t
τ [rT−ρ−δ]dTdτ

=

∫ ∞

t′
e
∫ τ
t [rT−ρ−δ]dTdτ −

∫ t

t′
e−

∫ t
τ [rT−ρ−δ]dTdτ

=

∫ ∞

t

e
∫ τ
t [rT−ρ−δ]dTdτ,

(130)

which implies that (128) generalizes for all t ≥ t′:

ct,s = at,s

[
δ

∫ ∞

t

e
∫ τ
t [rT−ρ−δ]dTdτ

]−1

, (131)

i.e., the solution is fully time-consistent.

Substituting (131) into the law of motion in (113) yields

ȧt,s =

[
ρ+ δ −

[∫ ∞

t

e
∫ τ
t [rT−ρ−δ]dTdτ

]−1
]
at,s

≥

[
ρ+ δ −

[∫ ∞

t

e−(ρ+δ)(τ−t)dτ

]−1
]
at,s

= 0,

(132)

where we use rt ≥ 0 ∀t > t′ to arrive at the second line. It follows that ȧt,s ≥ (δ − ϕ)at,s

because we have δ < ϕ. This concludes the proof.
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