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RESEARCH Open Access

Mendelian randomization: estimation of
inpatient hospital costs attributable to
obesity
Katherine Dick1*, John E. Schneider1, Andrew Briggs1,2, Pascal Lecomte3, Stephane A. Regnier3 and Michael Lean4

Abstract

Background: Mendelian Randomization is a type of instrumental variable (IV) analysis that uses inherited genetic
variants as instruments to estimate causal effects attributable to genetic factors. This study aims to estimate the
impact of obesity on annual inpatient healthcare costs in the UK using linked data from the UK Biobank and
Hospital Episode Statistics (HES).

Methods: UK Biobank data for 482,127 subjects was linked with HES inpatient admission records, and costs were
assigned to episodes of care. A two-stage least squares (TSLS) IV model and a TSLS two-part cost model were
compared to a naïve regression of inpatient healthcare costs on body mass index (BMI).

Results: The naïve analysis of annual cost on continuous BMI predicted an annual cost of £21.61 [95% CI £20.33 –
£22.89] greater cost per unit increase in BMI. The TSLS IV model predicted an annual cost of £14.36 [95% CI £0.31 –
£28.42] greater cost per unit increase in BMI. Modelled with a binary obesity variable, the naïve analysis predicted
that obese subjects incurred £205.53 [95% CI £191.45 – £219.60] greater costs than non-obese subjects. The TSLS
model predicted a cost £201.58 [95% CI £4.32 – £398.84] greater for obese subjects compared to non-obese
subjects.

Conclusions: The IV models provide evidence for a causal relationship between obesity and higher inpatient
healthcare costs. Compared to the naïve models, the binary IV model found a slightly smaller marginal effect of
obesity, and the continuous IV model found a slightly smaller marginal effect of a single unit increase in BMI.

Keywords: Mendelian randomization, Obesity, Instrumental variables, Genetics, Economics, Healthcare utilization

Background
The global prevalence of obesity has increased signifi-
cantly since 1980 and represents a significant economic
burden worldwide [1–5]. Analysis of Global Burden of
Disease data (2015) estimated that 603.7 million adults
were obese, representing 12% of adults globally [6]. Ac-
cording to the World Health Organization criteria used
internationally and by the UK National Health Service

(NHS), an adult with a body mass index (BMI) of 18.5 to
25.0 kg/m2 is considered to be of a normal weight. Indi-
viduals with a BMI of 25 to 30 kg/m2 are considered to
be overweight, and individuals with a BMI at or above
30 kg/m2 are considered to be obese [7]. Obesity has a
significant impact on health through secondary conse-
quences such as type 2 diabetes, coronary heart disease,
cancer, stroke, and depression [8–10].
Observational studies have established a positive cor-

relation between elevated BMI and healthcare costs, but
they cannot definitively establish causation because of
the high likelihood of unobserved confounding factors
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and the possibility of reverse causation [1, 4, 11]. Random-
ized controlled trials may establish causation, but there
are challenges to conducting randomized controlled trials
in obesity [12–14]. Mendelian Randomization (MR) is a
type of instrumental variable analysis that uses genetic
variants as instruments to mitigate the effects of unob-
served confounding factors in statistical models. In the
case of this study, MR is used to evaluate the relationship
between the risk factor of elevated BMI on the outcome of
inpatient healthcare costs.
To our knowledge, at the time this study was designed, no

published studies had investigated the link between obesity
and healthcare costs using MR methods, though general in-
strumental variable analysis has been used extensively to in-
vestigate the relationship with obesity and other factors such
as cancer and cardiovascular diseases [15–18]. A few studies
have used general instrumental variable analysis to investi-
gate the relationship between obesity and healthcare costs,
but these studies did not use genetic variants as instruments.
Cawley and Meyerhoefer [19] conducted an instrumental
variable analysis of US Medical Expenditure Panel Survey
data to determine that obesity increases annual medical costs
by $2741. The study used the weight of a biological relative
as an instrument for the weight of the primary subject. An
Australian instrumental variables study on the impact of
childhood obesity on healthcare costs found that obese indi-
viduals incurred healthcare costs $102.90 AUD greater than
their normal weight counterparts. This study by Black et al.
used a biological parent’s BMI as an instrument for the
child’s BMI [20].
Our study aims to use MR to estimate the impact of

obesity on annual inpatient healthcare costs in the UK
using linked data from the UK Biobank and Hospital Epi-
sode Statistics (HES). The use of MR methods to investi-
gate the relationship between obesity and healthcare costs
is a novel approach, and this analysis was intended to fill a
gap in the literature. A study using similar methods and
conducted independently of ours was recently published,
and reported marginal effects per additional unit of BMI
ranging from £18.85 [95% CI: 9.05–28.65] to £21.22 [95%
CI: 14.35–28.07] [21]. There are some key differences in
the approach, including the use of a larger sample size,
data over a longer follow-up period, and different model-
ling strategies, but the results of both studies suggest a sig-
nificant causal relationship between obesity and inpatient
healthcare costs. This study offers an applied example of
the use of Mendelian Randomization in health economics
research and is a useful independent replication of the re-
cent results reported by Dixon et al.

Methods
Instrumental variable analysis
An instrumental variable, in this case a genetic variant,
must fulfill three assumptions: 1) the instrument must

be associated with the risk factor (relevance assumption);
2) the instrument must be associated with the outcome
only through its association with the risk factor (exclu-
sion-restriction assumption); and 3) the instrument must
be independent of factors that may affect the outcome
(independence assumption) [14, 22].
Genes are randomly allocated, conditional on parental

genes, according to Mendel’s laws of inheritance, and
are therefore generally independent of external factors
[14, 22]. The presence of obesity will not alter the geno-
type, so reverse causation is also not a concern [14, 23].
These characteristics make genetic variants viable instru-
mental variables. Figure 1 presents a directed acyclic
graph that depicts the relationship between the instru-
ment, exposure, and outcome.

Data sources
The UK Biobank is a medical research database sup-
ported by the NHS. Between 2006 and 2010, the UK
Biobank collected detailed demographics, health data
and biological samples from over 500,000 participants
between the ages of 40 and 69. The UK Biobank reports
patient-level genotype data [24]. The UK Biobank is also
linkable to inpatient admissions data from the HES data-
base, which contains information on the diagnoses and
procedures associated with each hospital admission [25].
These admissions are constructed in terms of hospital
spells and episodes. A hospital spell represents the time
from hospital admission to discharge. Within each hos-
pital spell, subjects may experience several episodes of
care, which are continuous periods of care under a single
consultant. The linkage between the UK Biobank and
HES records connects the genotype data necessary for
MR analysis with the outcome of interest, healthcare re-
source use.

Subjects
This study included all UK Biobank subjects with data
for age, gender, and baseline BMI measurements and se-
lected genetic variants. The UK Biobank data was linked
with HES records using a unique patient identifier. A
small number of patients who received bariatric surgery
were excluded from the analysis because of the potential
for rapid weight loss with elevated inpatient healthcare
costs, which may obscure the relationship between BMI
and inpatient healthcare cost. Female subjects with a
confirmed pregnancy within 9 months of the baseline
BMI measurement were also excluded due to possible
confounding from pregnancy-related weight gain. The
final sample included 482,127 subjects. A flowchart
depicting dataset construction and subject exclusions is
presented in Fig. 2.
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Instrument
Genome-wide association studies (GWASs) are an in-
valuable resource for investigating diseases mediated by
multiple genes. The objective of GWASs is to identify
specific genetic variants, known as small-nucleotide
polymorphisms (SNPs), that are associated with a par-
ticular trait or disease. Dozens of obesity-associated gen-
etic variants have been identified in GWAS studies with
low but significant explanatory power [26–28]. Alone,
these variants would be weak instruments, but when
combined into a genetic risk score (GRS), the variants
can explain a greater amount of variance in BMI and re-
duce weak-instrument bias [29, 30].
A 2013 study by Belsky et al. synthesized data from 16

GWAS studies with the objective of developing a GRS to
efficiently and effectively predict subjects’ predisposition

toward obesity. SNPs were systematically chosen for in-
clusion in Belsky’s GRS based on both strength of asso-
ciation with obesity and the number of times the specific
SNP was identified in different GWAS studies (i.e., rep-
licability). The instrument was found to be a statistically
significant predictor of BMI and obesity [31]. Belsky’s
GRS formed the basis of the instrument used in this
study, though not all of the specific SNPs were available
in the UK Biobank data. In cases where the exact SNPs
were unavailable in the genotyping platform imple-
mented by the UK Biobank, SNPs on the same gene
were chosen from the largest, most recent GWAS study
included in Belsky’s analysis (i.e., Speliotes et al.) [27,
31]. Following the method employed by Belsky et al.,
each SNP was weighted according to its effect size and
summed to generate the GRS.

Fig. 1 Directed acyclic graph (DAG) of relationship between instrumental variable Z, exposure X and outcome Y

Fig. 2 Flowchart of dataset construction and subject exclusion
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MR analysis is only useful if the instrument is proven
to be both valid and strong. Such an instrument does
not violate any of three instrumental variable assump-
tions. The relevance assumption requires that the instru-
ment (i.e. the GRS) be strongly associated with the
exposure (i.e. BMI). The F-statistic is a common metric
of instrument strength in MR analysis; typically, an F-
statistic above 10 generally suggests a strong instrument
[32]. The independence assumption requires that the in-
strument is not associated with any factors that may influ-
ence the outcome (i.e. inpatient healthcare cost) such as
age, sex, ethnicity, or socioeconomic status. These factors
generally have no direct effect on gene assignment, though
systematic differences in allele frequency can occur in cer-
tain subpopulations, which is referred to as population
stratification. This can be tested by linear regression of the
instrument on each covariate [22, 29, 33].
The exclusion-restriction assumption requires that the

GRS be associated with healthcare cost only through its
association with BMI. Linkage disequilibrium and plei-
otropy are both violations of this assumption. Linkage
disequilibrium is a correlation between two genetic vari-
ants that occurs when traits are inherited together (i.e.
not randomly), often in close proximity on a chromo-
some. Linkage disequilibrium violates the exclusion-
restriction assumption if a variant in the GRS is in link-
age disequilibrium with another variant that is associated
with traits that also influence cost [14, 22]. For example,
the assumption is violated if a variant in the GRS is in
linkage disequilibrium with a variant associated with
breast cancer, which is also associated with greater in-
patient healthcare cost. Pleiotropy occurs when a genetic
variant has multiple functions that may be related to the
outcome variable [14, 22]. For example, the assumption
is violated if a variant in the GRS is associated with both
elevated BMI and increased risk of cardiovascular dis-
ease because cardiovascular disease also impacts in-
patient healthcare cost. There is no direct test for these
violations, but searching GWAS studies provides infor-
mation on the variants’ associations with other genes
and traits that could indicate violation by pleiotropy or
linkage disequilibrium. The National Human Genome
Research Institute’s (NHGRI) GWAS Catalog is a data-
base of all known GWAS studies, which enables a search
for all currently known gene associations [22, 34].

BMI
According to the World Health Organization criteria
used internationally and by the UK NHS, an adult with
BMI of 18.5 to 25.0 kg/m2 is considered to be of a nor-
mal weight. Individuals with a BMI of 25 to 30 kg/m2

are considered to be overweight, and individuals with a
BMI at or above 30 kg/m2 are considered to be obese
[7]. Although BMI is a commonly used measure for

obesity, it is an imperfect measure that does not distin-
guish between lean and fat mass [35, 36].
BMI may be treated as a continuous variable or as a

categorical variable. The categorical variable tested in
this analysis was binary; subjects below the threshold of
30 kg/m2 were categorized as non-obese, and subjects
above the threshold were categorized as obese. All
models in this analysis were executed twice, representing
BMI as a continuous variable or as a binary variable.

Inpatient healthcare costs
The linked HES data provides episode-level information
about diagnoses, procedures, and hospital length of stay.
This information was used to classify each episode of
care by Healthcare Resource Group (HRG). HRGs are
groupings of clinically similar diagnoses, procedures, and
treatments that use similar resources and may be linked
to a national unit cost [37]. An NHS application referred
to as the HRG Reference Costs Grouper was used to
process hospital data and appropriately assign HRGs to
episodes of care [38]. Each HRG code was assigned a
cost based on the 2017/2018 NHS National Schedule of
Reference Costs [39]. In some cases, records were
assigned two HRG codes, one of which was an
“unbundled” code, which separately captures high-cost
specialized care such as chemotherapy, specialist pallia-
tive care, and renal dialysis [40]. The cost of the
unbundled code was included in the total estimated cost
for the episode. Episodes of care that could not be proc-
essed by the Cost Grouper due to missing data elements
were assigned the average cost of episodes in the same
diagnosis category. All episodes of care were assigned an
appropriate cost based on the National Schedule of Ref-
erence Costs, and all episodes of care were summed to
generate a total inpatient healthcare cost per patient. An
average annual inpatient cost per patient was then de-
rived by dividing by years of follow-up. Subjects with no
hospital visits during the relevant time period were
assigned an annual inpatient healthcare cost of zero.

IV models
Three models were developed in this analysis to estimate
the impact of BMI on inpatient healthcare costs.

1. A “naïve” regression that is a standard ordinary
least squares regression of inpatient healthcare costs
on observed BMI.

2. An instrumental variable model that uses the GRS
instrument as a proxy for BMI to evaluate the
association between inpatient healthcare costs and
BMI.

3. An instrumental variable model with a two-part
model of inpatient healthcare cost that uses the
GRS instrument as a proxy for BMI, but accounts
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for the high proportion of subjects with zero in-
patient healthcare costs.

The naïve, non-instrumental variable model was developed
for comparison to the instrumental variable model. The re-
gression of inpatient healthcare cost on BMI was adjusted
for age, age squared, sex, ethnicity, socioeconomic status,
smoking status, and the interaction of age and sex. Previous
research has shown a U-shaped relationship between BMI
and mortality, with underweight and obese patients at higher
risk of death [41, 42]. A corresponding non-linear relation-
ship between BMI and healthcare cost was also anticipated,
so a BMI-squared term was also included in the regression.
Age is also expected to have a non-linear relationship with
BMI because healthcare costs tend to increase with age [43,
44]. Insignificant covariates were excluded from the final
naïve model.
Several model types were tested in the development of

the instrumental variable model. The first was a two-stage
least squares (TSLS) model, which is the most common
instrumental variable model used in MR studies [14]. The
first stage of the TSLS model is a linear regression of BMI
on the GRS and other covariates. The linear second stage
regression predicts total inpatient healthcare costs from
predicted BMI and the same covariates. An instrumental
variable probit model was also tested to determine
whether it would provide a better fit for the binary
dependent variable. Best-fit models were chosen based on
the F-statistic of the instrument and the magnitude of R2.
In addition to these standard instrumental variable

models, two-part instrumental variable cost models were
tested because a large proportion of patients incurred no
healthcare costs. The first stage of the model was identi-
cal to the standard TSLS model. The second stage was
constructed as a two-part model. The first part of the
cost model was a logistic regression, which predicted
whether subjects had non-zero costs. The second part of
the cost model was an ordinary least squares or general-
ized linear model regression of predicted BMI on cost,
conditional on the subject having non-zero costs. The
generalized linear model used a log link and gamma dis-
tribution to account for the skewness of the cost data.
The main outcome of all three models is the marginal
effect of obesity on inpatient healthcare costs. In this
analysis, marginal effects refer to the added incremental
costs associated with obesity. All analyses were executed
in STATA® version 14.

Results
The mean BMI of the 482,127 subjects included in the
analysis was 27.4 kg/m2. The average age of subjects was
56.5 years, 24% of subjects had BMI > 30 kg/m2, 94%
were white, and 54% were female. Additional baseline
characteristics are presented in Table 1.

The instrument (GRS) was then checked for violation
of any of the three instrumental variable assumptions
(relevance, independence, exclusion-restriction). The F-
statistic of our TSLS models were 3999 and 2453 for
continuous and binary BMI respectively. Model F-
statistics were well over the commonly used IV thresh-
old of 10, which satisfies the relevance assumption [22,
32]. Linear regression of age, sex, and socioeconomic
status found no significant relationship between the in-
strument and the confounding factors. The instrument
was significantly associated with ethnicity (p < 0.001),
which suggests a possible violation of the independence
assumption by population stratification, which occurs
when alleles occur with different frequencies in a popu-
lation subgroup [22]. This finding is consistent with pre-
vious genetic studies that have shown varying effect sizes
for obesity-related genes among different ethnicities [45,
46]. However, there was no significant association of
ethnicity with inpatient healthcare cost (p = 0.896). This
non-significance and the ethnically homogenous popula-
tion (94% white) provide evidence against violation by
population stratification. Assortative mating can also
violate the independence assumption, though this cannot
be directly tested. Genes are randomly assigned condi-
tional on parental genes, but research suggests that indi-
viduals tend to select mates who are phenotypically
similar to themselves [47–49]. This may violate the inde-
pendence assumption if the mother and father’s genetic
traits are associated with each other and with the out-
come of inpatient healthcare costs [49].
Violation of the exclusion-restriction assumptions by

linkage disequilibrium or pleiotropy cannot be directly
tested. A search of NHGRI’s GWAS Catalog showed
that some variants in the GRS may have multiple func-
tions (pleiotropy) or be in linkage disequilibrium with
variants associated with confounding factors or comor-
bidities. These variants were removed from the GRS in a
sensitivity analysis and the direction of the estimated ef-
fect is the same as the primary analysis. The final naïve
model is presented in Table 2.
The association between healthcare cost and BMI

was significant (p < 0.05). BMI-squared was also tested
as the dependent variable in the naïve analysis be-
cause of the non-linear relationship between BMI and
cost. However, using the squared term did not im-
prove the model fit (R2), probably because so few
(under 1%) of the study population were underweight
(BMI < 18.5). The best-fit instrumental variable model
was a TSLS model, presented in Table 3 for both
continuous and binary BMI.
The relationship between predicted BMI and inpatient

healthcare costs was significant (p < 0.05) in the TSLS
model, but was not significant in the two-part cost
models.
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The naïve analysis of annual cost on continuous BMI
predicts an additional healthcare cost of £21.61 [95% CI
£20.33 – £22.89] associated with each additional BMI
unit. The TSLS instrumental variable model predicts a
slightly smaller cost difference of £14.36 [95% CI £0.31 –
£28.42] per additional BMI unit. When the same models
were executed with obesity expressed as a binary vari-
able, the naïve analysis estimated £205.53 [95% CI
£191.45 – £219.60] greater inpatient healthcare costs for

obese subjects compared to non-obese subjects. The
TSLS instrumental variable model found that inpatient
healthcare costs were £201.58 [95% CI £4.32 – £398.84]
greater for obese subjects compared to non-obese sub-
jects. The two-part cost models did not find a significant
difference in healthcare costs between obese and non-
obese subjects, though the marginal effects were similar
to the standard TSLS model. The predicted probability
of being obese effectively ranges from 16 to 34% in the

Table 1 Baseline Characteristics

Underweight
[BMI < 18.5]

Normal [25 >
BMI ≥ 18.5]

Overweight
[30 > BMI ≥ 25]

Obese Class 1/2
[40 > BMI ≥ 30]

Obese Class 3
[BMI ≥ 40]

Total

N (%) N (%) N (%) N (%) N (%) N (%)

Weighted GRS Mean (SD) 3.07 (0.53) 3.11 (0.52) 3.16 (0.52) 3.21 (0.52) 3.29 (0.52) 3.16
(0.52)

Median (Q1, Q3) 3.06 (2.70, 3.42) 3.10 (2.75, 3.46) 3.15 (2.80, 3.51) 3.21 (2.86, 3.56) 3.29 (2.94, 3.65) 3.15
(2.80,
2.51)

BMI t0 Mean (SD) 17.6 (0.8) 22.9 (1.5) 27.3 (1.4) 33.1 (2.5) 43.6 (3.5) 27.4 (4.7)

Median (Q1, Q3) 17.9 (17.3, 18.2) 23.1 (21.8, 24.1) 27.2 (26.1, 28.5) 32.5 (31.1, 34.6) 42.5 (41.1, 45.1) 26.7
(24.1,
29.9)

Sex Male 514 (21%) 55,141 (35%) 109,199 (53%) 53,078 (49%) 2818 (32%) 220,750
(45.8%)

Female 1980 (79%) 102,189 (65%) 96,208 (47%) 55,004 (51%) 5996 (68%) 261,377
(54.2%)

Age Mean (SD) 55.4 (8.1) 55.7 (8.2) 57.0 (8.1) 60.0 (7.9) 55.6 (7.7) 56.5 (8.1)

Median (Q1, Q3) 56 (49, 62) 57 (49, 63) 59 (51, 64) 58 (51, 63) 56 (50, 62) 58 (50,
63)

Ethnicity White 2319 (93%) 149,143 (95%) 193,899 (94%) 101,231 (94%) 8157 (93%) 454,127
(94%)

Black 10 (< 1%) 1427 (< 1%) 3063 (1%) 2613 (2%) 327 (4%) 7440
(2%)

Mixed 20 (< 1%) 864 (< 1%) 941 (< 1%) 531 (< 1%) 52 (< 1%) 2408 (<
1%)

Asian 84 (3%) 3895 (3%) 4643 (2%) 1937 (1%) 111 (1%) 10,670
(2%)

Other 54 (2%) 1732 (1%) 2522 (1%) 1535 (1%) 141 (2%) 5984
(1%)

Townsend
Deprivation Index

Mean (SD) −0.7 (3.4) −1.5 (3.0) −1.4 (3.0) − 0.91 (3.2) − 0.02 (3.4) −1.3 (3.1)

Median (Q1, Q3) −1.6 (−3.4, 1.7) −2.3 (− 3.7, 0.2) −2.3 (− 3.7, 0.3) −1.76 (− 3.4, 1.2) −.6 (− 2.8, 2.6) −2.2 (−
3.7, 0.5)

Missing 5 183 239 138 13 578

Smoking Status Yes 570 (23%) 17,726 (11%) 20,949 (10%) 10,479 (10%) 810 (9%) 429,176
(10%)

No 1911 (77%) 139,001 (88%) 183,417 (89%) 96,904 (90%) 7943 (90%) 50,534
(89%)

Missing/Prefer Not
to Answer

13 (< 1%) 603 (< 1%) 1041 (1%) 699 (< 1%) 61 (1%) 2417
(1%)

TOTAL 2494 (0.1%) 157,330 (32.6%) 205,407 (42.6%) 108,082 (22.4%) 8814 (1.8%) 482,127
(100%)

Estimated UK National Averagea < 1% 27% 39% 30% 4% –

Health Survey for England 2017: Adult and child overweight and obesity. NHS Digital
aAdults aged 55–64 weighted by sex;
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TSLS instrumental variable model. In the two-part cost
model, the association between predicted BMI and in-
patient healthcare cost is more significant (p = 0.003),
and the odds of incurring hospital costs for obese pa-
tients is 1.02 [95% CI: 1.01–1.04] times that of non-
obese patients. Marginal effects of each of these models
are compared in Table 4.

Discussion
The results of both the TSLS and naïve models show
significantly greater inpatient healthcare costs for obese
patients in all versions of the model compared to non-
obese patients. The impact of using instrumental vari-
able methods compared to naïve models depends on
whether BMI is expressed as a continuous or binary
variable. When BMI was expressed as a binary categor-
ical variable (above or below 30 kg/m2), the naïve and in-
strumental variable models estimated very similar
marginal effects (£206 vs. £202), which suggests that the
greater healthcare cost is almost entirely causal. When
BMI was expressed as a continuous variable, the instru-
mental variable model estimated a smaller marginal ef-
fect than the naïve model (£14 vs £22), suggesting that
only a portion of elevated costs are directly caused by
greater BMI.
The IV model is more robust to residual confounding

and reverse causality than the naïve model, but both
models show very similar marginal effects. This similar-
ity suggests that the naïve model is not strongly influ-
enced by residual confounding and reverse causality. If
the naïve model found a much larger cost difference be-
tween obese and non-obese individuals than the IV

model, that would suggest that the cost difference esti-
mated by the naïve model might be inflated by residual
confounding. The naïve model has the advantage of a
much tighter confidence interval than the IV model be-
cause the relationship between BMI and healthcare cost
is estimated directly from the data instead of using GRS
as a proxy.
In the TSLS model, predicted BMI is significantly (p <

0.05) associated with inpatient healthcare cost, but the
p-value of 0.045 may be considered high given the large
sample size. A large sample size is important to the
strength of the instrument, and may reduce the likeli-
hood of weak instrument bias, and offset the low ex-
planatory power of the GRS [32, 50]. However, since
95% of the weighted GRS values are between 2.16 and
4.19, the predicted BMI effectively ranges between 26
and 29 kg/m2, which is close to the obesity threshold of
BMI 30 kg/m2.
The MR approach used in this study makes the re-

sults less vulnerable to bias than standard regression
analysis in scenarios where there is a high potential
for unobserved confounding factors, and the large
sample size reduces weak instrument bias [32, 50].
Results of both the instrumental variable and naïve
models show a significantly greater inpatient cost for
patients with BMI ≥30 kg/m2 than < 30 kg/m2 in all
versions of the model, which is consistent with other
studies of the impact of obesity on healthcare costs.
A 2016 study of linked general practice and HES data
found that annual healthcare costs were £456 [95% CI
£344–£568] higher for subjects of BMI ≥ 40 kg/m2 [1].
An observational study by Tigbe et al. using data

Table 2 Naïve ordinary least squares regression results

Covariate Continuous BMI Binary BMI

Coefficient SE P-
value

95% CI Coefficient SE P-
value

95% CI

Low High Low High

BMI 21.611 0.652 < 0.001 20.333 22.889 205.527 7.183 < 0.001 191.449 219.604

Age −49.341 5.492 < 0.001 −60.106 −38.577 −47.531 5.493 < 0.001 −58.297 −36.765

Age squared 0.619 0.050 < 0.001 0.522 0.716 0.608 0.050 < 0.001 0.511 0.705

Sex − 644.472 43.352 < 0.001 − 729.441 − 559.502 − 606.837 43.339 < 0.001 −691.779 − 521.895

Sex and Age Interaction 11.591 0.758 < 0.001 10.104 13.077 11.155 0.758 < 0.001 9.669 12.641

Townsend index 8.979 1.034 < 0.001 6.952 11.005 9.544 1.034 < 0.001 7.518 11.571

Smoking Status 126.316 10.150 < 0.001 106.423 146.209 120.019 10.147 < 0.001 100.131 139.907

Black 104.144 25.287 < 0.001 54.583 153.706 116.879 25.284 < 0.001 67.324 166.435

Mixed 26.561 43.427 0.541 −58.555 111.676 25.539 43.440 0.557 −59.601 110.680

Asian 36.939 20.968 0.078 −4.157 78.036 32.292 20.972 0.124 −8.813 73.396

Other 30.554 28.049 0.276 −24.422 85.530 32.230 28.057 0.251 −22.761 87.222

Intercept 778.239 151.054 < 0.001 482.178 1074.300 1250.700 150.661 < 0.001 955.409 1545.990

R2 0.012 0.012

Adjusted R2 0.012 0.012
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from the UK Counterweight Programme found an an-
nual healthcare cost greater by £16 [95% CI: £11–
£21] per unit BMI, when adjusted for age, sex, smok-
ing status, alcohol intake, and physical activity [4].
Our analysis estimated a remarkably similar cost of

£14.36 [95% CI £0.31 – £28.42] per additional unit of
BMI, but in contrast our more recent analysis only
focused on hospital expenditures, and did not assess
total healthcare expenditures which have increased
over the years.

Table 3 Two-stage least squares regression results

Covariate Continuous BMI Binary Obesity

Coefficient SE P-
value

95% CI Coefficient SE P-
value

95% CI

Low High Low High

STAGE 1 Weighted GRS 0.825 0.013 < 0.001 0.799 0.850 0.059 0.001 < 0.001 0.056 0.061

Age 0.289 0.012 < 0.001 0.265 0.313 0.022 0.001 < 0.001 0.019 0.024

Age squared −0.002 0.000 < 0.001 −0.002 −0.002 0.000 0.000 < 0.001 0.000 0.000

Sex 2.457 0.096 < 0.001 2.270 2.644 0.076 0.009 < 0.001 0.059 0.093

Sex and Age Interaction − 0.029 0.002 < 0.001 − 0.033 − 0.026 − 0.001 0.000 < 0.001 − 0.001 −0.001

Townsend Index 0.145 0.002 < 0.001 0.140 0.149 0.012 0.000 < 0.001 0.012 0.013

Current Smoker −0.679 0.022 < 0.001 − 0.723 − 0.635 −0.041 0.002 < 0.001 −0.045 − 0.037

Black 1.869 0.056 < 0.001 1.759 1.978 0.128 0.005 < 0.001 0.118 0.138

Mixed −0.008 0.096 0.934 −0.196 0.180 0.001 0.009 0.891 −0.016 0.018

Asian −0.630 0.046 < 0.001 −0.721 −0.540 − 0.050 0.004 < 0.001 − 0.058 − 0.042

Other 0.352 0.062 < 0.001 0.231 0.473 0.025 0.006 < 0.001 0.013 0.036

Intercept 15.539 0.335 < 0.001 14.883 16.195 −0.577 0.030 < 0.001 − 0.637 − 0.518

STAGE 2 BMI / Obesity 14.363 7.170 0.045 0.310 28.415 201.579 100.644 0.045 4.322 398.837

Age −47.242 5.869 < 0.001 −58.745 −35.739 −47.446 5.907 < 0.001 −59.023 −35.868

Age squared 0.603 0.052 < 0.001 0.502 0.705 0.607 0.053 < 0.001 0.504 0.710

Sex − 626.552 46.813 < 0.001 −718.304 −534.800 −606.534 44.019 < 0.001 − 692.810 − 520.258

Sex and Age Interaction 11.377 0.787 < 0.001 9.834 12.920 11.151 0.765 < 0.001 9.652 12.650

Townsend Index 10.027 1.461 < 0.001 7.163 12.891 9.593 1.622 < 0.001 6.414 12.773

Smoking Status 121.418 11.239 < 0.001 99.389 143.446 119.860 10.928 < 0.001 98.440 141.279

Black 116.296 27.979 < 0.001 61.457 171.134 117.331 27.766 < 0.001 62.910 171.751

Mixed 25.874 43.437 0.551 −59.262 111.010 25.520 43.442 0.557 −59.625 110.664

Asian 30.997 21.772 0.155 −11.675 73.669 32.041 21.922 0.144 −10.925 75.007

Other 32.182 28.098 0.252 −22.890 87.254 32.291 28.100 0.25 −22.784 87.366

Intercept 909.619 198.924 < 0.001 519.735 1299.504 1249.149 155.737 < 0.001 943.911 1554.387

Model Fit F-statistic 3999 2453

R2 0.031 0.017

Partial R2 0.008 0.005

Table 4 Model Comparison

Model Continuous BMI Binary Obesity

Marginal
Effect

SE P-
Value

95% CI Marginal
Effect

SE P-
Value

95% CI

Low High Low High

Naïve 21.611 0.652 < 0.001 20.333 22.889 205.527 7.183 < 0.001 191.449 219.604

TSLS 14.363 7.170 0.045 0.310 28.415 201.579 100.644 0.045 4.322 398.837

Two-Part Cost Model, OLS 15.312 12.112 0.206 −8.428 39.051 214.898 170.024 0.206 −118.345 548.140

Two-Part Cost Model, Gamma Family, Log Link 16.211 11.883 0.172 −7.079 39.500 227.519 166.773 0.172 −99.351 554.388

Note: N = 479,134 for first stage of all models; N = 287,776 in second part of two-part cost models
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A 2020 study by Dixon et al. (conducted at the same
time as this study) undertook an MR analysis of linked
UK Biobank and HES data, completely independently of
the present analysis [21]. The 2020 study by Dixon and
colleagues found marginal effects per additional unit of
BMI ranging from £18.85 [95% CI: 9.05–28.65] to £21.22
[95% CI: 14.35–28.07] depending on the type of instru-
mental variable model used [21]. These results are not
materially different from those presented in the current
study, which found a marginal effect of £14.36 [95% CI
£0.31 – £28.42] per additional unit of BMI. The minor
differences in our results could be due to several factors.
Dixon et al. included a greater number of alleles in the
instrument, whereas the current study used an instru-
ment with fewer alleles and had been generated and vali-
dated as a measure of obesity risk [31]. The F-statistic (a
measure of the strength of the instrument) is higher in
our study and suggests a stronger instrument, though
the statistic is strongly influenced by sample size and it
is likely a reflection of that factor [50]. The current study
had the benefit of approximately two additional years of
follow-up data and included approximately 100,000
more subjects. Both strategies produced instrumental
variable analyses with F-statistics well above the thresh-
old of 10 for a strong instrument. Both studies adopted
the same costing methods, but used different versions of
the NHS Cost Grouper software and national reference
costs [21, 51]. Our study used the 2017/2018 Grouper,
which has updated the valuation of procedure codes and
included a larger net number of HRGs than the 2016/
2017 Grouper [52].
The types of IV models chosen also differed between

the studies. Our analysis included a standard TSLS
model and a two-stage cost model similar to the one ex-
ecuted by Cawley and Meyerhoefer, while Dixon et al.
implemented inverse variance weighted models and pe-
nalized weighted median models. Notably, our IV
models found smaller effect sizes than the naïve models,
except in the case of the two-part cost models using bin-
ary obesity. This is different than the results of Dixon
[21] and Cawley and Meyerhoefer [19], where the oppos-
ite was true. Any combination of these differences covar-
iates, sample size, and modelling strategy could be
responsible for the differences in our results, but the fact
that the results are similar in magnitude suggests that
the results stand up to independent replication.
Only inpatient healthcare costs are considered in this

analysis because outpatient, accident and emergency,
and pharmacy data were not yet linkable to the UK Bio-
bank data at the time the analyses were conducted.
However, Tigbe et al. found that the positive association
of healthcare cost with BMI extends beyond the in-
patient setting. The study found that subjects with a
BMI greater than 40 kg/m2 incurred significantly greater

costs for prescription medication, primary care, and out-
patient care than for subjects with a BMI less than 20
kg/m2 [4]. These additional costs are a subject for fur-
ther research once additional ambulatory health record
data is available for linkage with the UK Biobank.
This study also does not consider social care costs

associated with obesity. In England, health and social
care services cost about £17 billion per year, and
about 70% of these annual costs are attributable to
the care of individuals with long-term conditions [53,
54]. Obese individuals are at greater risk for diseases
that require long-term care such as diabetes, cardio-
vascular disease, musculoskeletal disorders, and men-
tal health disorders. These individuals often
experience functional limitations and require long-
term assistance with personal care, domestic tasks,
transportation, housing and finances, which increases
social care costs [53, 54]. A 2017 study by Copley
et al. found that a 1 unit (kg/m2) increase in BMI
was associated with a 5% increase in the odds of re-
quiring social care. They also estimated that a BMI of
40 is associated with a nearly £500 increase in aver-
age annual social care cost compared to an individual
with a normal BMI [52].
There are limitations to the generalizability of these

results, including the ‘healthy volunteer’ bias of the UK
Biobank data and the age limit of the patients recruited
(40–69 years) [53]. Specifically, UK Biobank subjects
were less likely to be obese, to report health conditions,
or to smoke and drink [53, 55]. These individuals also
had a lower mortality rate than the general population
[55]. The non-representativeness of the UK Biobank
sample introduces the potential for collider bias [56, 57].
In this case, the most severely obese individuals (who
are also those at the highest genetic risk for obesity) are
less likely to be represented in the data. If higher BMI
and higher healthcare costs both reduce the likelihood
of participation in the Biobank, an association is induced
that violates the instrumental variable assumptions.
Non-representative samples are common with large
scale databases and this source of bias is typically small
compared to other types of bias [56].
The costs reflect recent standard of care within the

UK National Health Service, which may be different
under other healthcare systems. Any MR analysis is lim-
ited by current knowledge of genes associations. The
GRS used as an instrument in this analysis explained a
significant but limited amount of variation in BMI. Fu-
ture GWAS studies of obesity-related traits may reveal
additional BMI-associated alleles that could explain
more of the variation in BMI and create a stronger in-
strument. Unknown pleiotropy or linkage disequilibrium
violations could also bias the analysis [13, 22]. Not all
BMI-related alleles are necessarily related to body fat,
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given that they are derived from normal population
among whom a half or more are likely to have BMI
below 30, and thus influenced to a greater degree by
variance in muscle mass, especially in younger people.
The influence of parental behavior on their offspring
may also violate the exclusion-restriction assumption.
For example, a mother’s high-risk genotype may influ-
ence her behavior and preferences, which in turn may
affect the child’s behavior either directly or through
intrauterine effects of maternal adiposity [13, 58, 59]. If
the mother’s genotype influences both the genotype of
the child and the child’s inpatient healthcare cost, this
represents a violation of the exclusion-restriction as-
sumption [13, 19].
BMI is the most commonly used measure of obesity,

but it is imperfect. BMI classification is based on a per-
son’s height and weight, but does not distinguish be-
tween lean and fat mass. Therefore, BMI may be
overestimated in people with higher muscle mass [35,
36]. Although there may be some cases where BMI is
not a perfect measure, it is appropriate for use in this
study because BMI was a common measure in the
GWAS studies used to generate the GRS [26, 27]. There
is however a potentially important source of error aris-
ing from the fact that the disease process of obesity (in-
cluding its genetic elements) is present in large numbers
of people before their BMI has risen to the conventional
public health obesity threshold of 30 kg/m2. Thus, it is
possible that some subjects in the sample who possess
risk alleles may not yet have developed obesity or its co-
morbidities. Increase in size and number of fat cells trig-
gers changes in metabolic and inflammatory processes,
but comorbidities such as diabetes, atherosclerosis,
osteoarthritis take time to develop [11, 60]. This may re-
sult in an underestimation of the costs attributable to
obesity.

Conclusions
The continuous and binary IV models provide evidence
for a causal relationship between obesity and higher in-
patient healthcare costs, independent of unobserved
confounding factors such as lifestyle. Compared to the
naïve model, the binary IV model found a slightly
smaller marginal effect of obesity (₤201.58 vs. ₤205.53).
The continuous IV model found a slightly smaller mar-
ginal effect of a single unit increase in BMI than the
naïve model (₤14.36 vs. ₤21.61 annual cost). While we
believe that this analysis is a very important step in un-
derstanding the role of endogeneity in determining caus-
ation in healthcare cost studies, further analyses with
instrumental variables used in addition to weighted GRS
would strengthen the results. At the time this analysis
was conducted, general practice data were not yet linked
to UK Biobank. Once the linked data become available,

the MR analysis on all healthcare costs should be con-
ducted to provide a more complete picture of healthcare
costs attributable to obesity.
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