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RESEARCH Open Access

Time-to-event analysis in economic
evaluations: a comparison of modelling
methods to assess the cost-effectiveness of
transplanting a marginal quality kidney
Sameera Senanayake1* , Nicholas Graves2 , Helen Healy3,4 , Keshwar Baboolal3,4 , Adrian Barnett1 and
Sanjeewa Kularatna1

Abstract

Background: Economic-evaluations using decision analytic models such as Markov-models (MM), and discrete-
event-simulations (DES) are high value adds in allocating resources. The choice of modelling method is critical
because an inappropriate model yields results that could lead to flawed decision making. The aim of this study was
to compare cost-effectiveness when MM and DES were used to model results of transplanting a lower-quality
kidney versus remaining waitlisted for a kidney.

Methods: Cost-effectiveness was assessed using MM and DES. We used parametric survival models to estimate the
time-dependent transition probabilities of MM and distribution of time-to-event in DES. MMs were simulated in 12
and 6 monthly cycles, out to five and 20-year time horizon.

Results: DES model output had a close fit to the actual data. Irrespective of the modelling method, the cycle length of
MM or the time horizon, transplanting a low-quality kidney as compared to remaining waitlisted was the dominant
strategy. However, there were discrepancies in costs, effectiveness and net monetary benefit (NMB) among different
modelling methods. The incremental NMB of the MM in the 6-months cycle lengths was a closer fit to the incremental
NMB of the DES. The gap in the fit of the two cycle lengths to DES output reduced as the time horizon increased.

Conclusion: Different modelling methods were unlikely to influence the decision to accept a lower quality kidney
transplant or remain waitlisted on dialysis. Both models produced similar results when time-dependant transition
probabilities are used, most notable with shorter cycle lengths and longer time-horizons.

Keywords: Survival analysis, DES model, Markov model, Kidney transplantation

Introduction
Decision makers in health services commonly make re-
source allocation choices, aiming to select for high value
care. The processes of choice selection include arbitrary,

eminence, experience or evidence based. Economic eval-
uations estimate changes in the costs to health benefits
of competing health interventions, and so are an ideal
process for informing resource allocation decisions. Eco-
nomic evaluation of health interventions lends itself to
the decision analytic approach, using models such as de-
cision trees, Markov models, and discrete event simula-
tions (DES) [1]. The choice among these models is a
critical step in the process. Model selection is context
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specific, with deployment of inappropriate models yield-
ing results that could be flawed/lower value decision
making [2].
Donor kidney quality is an important factor that influ-

ences graft survival. Lower quality donor kidneys are asso-
ciated with increased risks of graft failure, earlier return to
dialysis and higher post-transplantation costs [3, 4]. The
ever-increasing demand for donor kidneys is driving deci-
sion makers to consider lower quality kidneys, predicated
on the premise that any transplant offers superior patient
survival and quality of life compared to remaining on dia-
lysis. Decision analytic models bring rigour to the premise,
systematically assessing the relative cost/benefits of trans-
planting even a lower quality kidney compared with
remaining on dialysis. Our review of the evidence of cost-
utility in people with chronic kidney disease (CKD) under-
going transplant found Markov models are by far the most
common decision analytic model used [5]. Axelrod et al.
was the only publication we found deploying DES model-
ling [6]. They reported transplanting a lower quality kid-
ney has an incremental cost-effectiveness ratio (ICER) of
USD 32,870 per quality adjusted life years (QALY) com-
pared with remaining on dialysis. The willingness to pay
threshold (WTP) is a systems decision that varies between
countries. Therefore, ICER of USD 32,870 can be either
above or below the WTP threshold depending on the
country of concerned.
However, when we deployed Markov models, our

studies found that transplanting a lower quality kidney is
the dominant strategy (cost saving and more effective)
compared with remaining on dialysis [7]. These two
studies cannot be comparable due to differences in data
sources and methods deployed to estimate output prod-
ucts. A comparison between the two-different decision
analytic models, Markov versus DES controlling for all
other factors, is required to answer the question: does
the choice of modelling method affect the outcome and
hence impact policy and clinical decisions?
Markov models are best suited if repeated outcomes

occur over time, such as in most chronic ie longitudinal
diseases like CKD. The transition from one health state to
another is based on transition probabilities [8]. Most often
it is assumed that transition probabilities are constant over
time, thus the same probability is used across all cycles of
the model [2]. This is a likely over-simplification in CKD
where clinical outcomes like mortality differ depending on
the health state and time, leading to potentially misleading
results [9]. For example, the probability of graft failure fol-
lowing kidney transplant reduces over time, whereas the
probability of mortality while waitlisted for the kidney in-
creases [10, 11]. Transition probabilities that increase or
decrease over time are factored into the models by using
transition probabilities specific for how long a person is in
a health state.

Discrete event simulation models use patient level
simulations to estimate the costs and benefits of health
interventions across a patient population [12]. The
models have the power to factor in random timing of
events, in contrast to Markov models that assume events
occur at regular intervals. They do this by modelling dis-
tributions for patient-level times-to-event [13] whereas
Markov models use the same transition probabilities for
all patients in the same health state. This means that a
patient can experience an event at any time rather than
at regular intervals as used by Markov models.
If patient information over time is available, as in a

registry, time-dependent transition probabilities for a
Markov model and time-to-event estimates for individ-
ual patients in a DES model can be estimated for time-
to-event analysis eg survival analysis [9, 14]. Time-to-
event analysis is superior in adjusting for censoring, a
not uncommon feature of longitudinal data. Some sur-
vival models handle the missing data by extrapolation of
model parameters beyond the duration of the censored
data. This is particularly important when the time-
horizon of the model is long, such as in lifetime time-
horizon. However, of the different survival approaches
available (e.g. Non-parametric, semi-parametric, para-
metric), the one selected to estimate the parameters of a
decision analytic model (i.e. Markov or DES) substan-
tially impacts the cost-effectiveness results [15]. There-
fore, choice of the appropriate survival approach is an
important variable to consider when performing time-
to-event analysis in estimating output products of a deci-
sion analytic model. The best established survival ap-
proach in estimating output products of Markov and
DES modelling is parametric [16, 17].
There is a lack of robust evidence on the cost-

effectiveness of transplanting a low-quality kidney and the
literature reports mixed results using DES and Markov
models. In this study we therefore aim to deploy Markov
and DES modelling to compare the cost-effectiveness of
transplanting a lower-quality kidney compared with
remaining waitlisted for a kidney on dialysis. Multiple
published studies comparing the output products of
Markov and DES models all used fixed transition prob-
abilities for the Markov models. None assessed the impact
of deploying a parametric survival approach into the input
parameters. We deploy the parametric survival approach
into the time-dependent transition probabilities of the
Markov model and the distributions of time-to-event ana-
lysis in the DES model in this study.

Methods
Decision analytic models: a Markov model and a
Discrete event simulation model were constructed using
TreeAge Pro 2020 with the purpose of estimating the in-
cremental costs and quality-adjusted life years (QALY)
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(Fig. 1). Both models estimated the cost-effectiveness of
transplanting a low-quality kidney as compared with
remaining waitlisted for a kidney. People who remain
waitlisted will be on dialysis throughout the time hori-
zon of the study. The quality of a donor kidney was de-
fined using the Kidney Donor Profile Index (KDPI),
which ranges from 0 to 100%, with higher scores indicat-
ing lower donor quality [18]. A kidney with a KDPI
more than 74 was defined as a lower quality kidney. The
decision analytic models were validated using the
method proposed by Vemer et al. (2016) (Supplementary
material; Table 1) and found that the models have ad-
equate validity.

Target population
The target population for the economic evaluation was
50-year old chronic kidney disease patients undergoing
kidney transplant in Australia.

Markov models
In a Markov model, a cohort of patients moves from one
health state to another at defined times depending on
the assigned transition probabilities. We used time-
dependent transition probabilities for the Markov model
derived from cumulative survival distributions, meaning
that the transition probabilities change as the time in a
health state increases. This is discussed in more details
in the section on model parameters.
The Markov model developed for transplanting a low-

quality kidney (KDPI > 74) had three health states: trans-
plantation, return to dialysis post kidney transplantation

failure and death (Fig. 1). The cohort starts at “KDPI >
74 kidney transplant” health state and tracks the out-
comes of: return to dialysis post kidney transplantation
failure, death, or successfully functioning transplant. In
the event of graft failure, the patient can have subse-
quent outcomes of either remain on dialysis or die while
on dialysis. It was assumed that no patients had a re-
transplantation following graft failure. The Markov
model for the cohort remaining waitlisted for a kidney
had two health states: die while on dialysis or remain
healthy (Fig. 1).
We fitted four Markov models (Table 1) with cycles of

6 or 12 months, each with two-time horizons (5 and 20
years). Different time-horizons were used to assess how
the main outputs change over time, while different cycle
lengths were used to assess whether Markov models
with shorter cycle length would more closely correspond
with the DES model results. A half-cycle correction was
used for all the models.

DES models
In a DES model, individual patients undergo a series of
processes (events) affecting the outcomes, costs and
quality adjusted life years (QALYs) over time [2], experi-
encing events in continuous time. These continuous
times are sampled for individual patients from probabil-
ity distributions, the parameters of which are selected to
create distributions that match observed data on survival
times.
All patients transplanted with low-quality kidney

(KDPI > 74) would experience either returning to dialysis

Fig. 1 Markov and the Discrete Event Simulation models used in the analysis. P1: Probability of graft failure after transplantation; P2: Probability of
death after transplantation; P3: Probability of death after graft failure; P4: Probability of death while waitlisted. T1: Time-to-graft failure after
transplantation; T2: Time-to-death after transplantation; T3: Time-to-death after graft failure; T4: Time-to-death while waitlisted
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post kidney transplantation failure or death as their next
event. When the patient is on dialysis post graft failure,
the next event they could experience is death. The only
next event the patients who are waitlisted could experi-
ence is death (Fig. 1). The time spent in each health state
is directly drawn per patient from the corresponding cu-
mulative survival distribution (see below).

Data sources
Cost data
Initial and follow-up costs for a kidney transplant were
extracted from the report, “The economic impact of
end-stage kidney disease in Australia - Projections to
2020” by Kidney Health Australia in 2010 [19]. The esti-
mated cost of a deceased donor kidney transplant in the
first year of surgery was AUD 81,549 (2010), which in-
cluded surgery and hospitalisation costs, immunosup-
pressive therapy, specialist review and consultations,
drugs and donor costs for a transplant. The cost of an-
nual follow-up care (from the second year onwards) was
estimated to be AUD 11,770 (2010), which included im-
munosuppressive therapy, drugs and non-drug follow-up
costs. However, the costs presented in the above study
represented an average cost for transplants of different
donor kidney quality levels (both high and low quality).
Compared with a high-quality donor kidney transplant,
a low-quality donor kidney transplant is expected to
incur higher costs due to greater likelihood of high
short-term costs from events such as delayed graft func-
tion and increased drug costs [20, 21]. Therefore, using
expert opinion, a conservative 15% increase was allo-
cated for a KDPI > 74 kidney transplant.
The costs for a dialysis patient were according to the

New South Wales Dialysis Costing Study (2008), which
reported procedural and non-procedural costs of man-
aging chronic kidney disease [22]. The annual cost for a
dialysis patient was calculated as a blend of in-centre
haemodialysis, satellite-centre haemodialysis, home
haemodialysis and peritoneal dialysis, in proportion to
current usage patterns of the different dialysis modalities
(AUD 69,089). All costs were converted to 2020 Austra-
lian dollars [23].

Utility data
Utility values among kidney transplant patients and dia-
lysis patients were sourced from a 2012 systematic

review and meta-analysis [24]. The utility score among
transplant patients was estimated to be 0.82 (95% CI
0.74 to 0.90), while among dialysis patients, it was esti-
mated to be 0.70 (95% CI 0.62 to 0.78), without differen-
tiating between different dialysis modalities.

Parameter estimation for both Markov and DES models
Model parameters for both Markov and DES models
were estimated from data sourced from the Australia
and New Zealand Dialysis and Transplant Registry
(ANZDATA). ANZDATA collects and reports the inci-
dence, prevalence and outcome of dialysis treatment and
kidney transplantation for patients with end stage kidney
disease across Australia and New Zealand. Strengths of
the Registry are the completeness of data captured
across Australia and New Zealand, longevity of follow-
up information and accessibility [25]. Model parameters
for the different health states were estimated in three
groups of patients:

1. Patients who had a KDPI > 74 donor kidney
transplantation between 1st January 2007 and 31st
December 2017 in Australia.

2. Patients who started dialysis of any modality
between 1st January 2007 and 31st December 2016
in Australia

3. Patients who have ever been waitlisted for a kidney
transplantation between 1st January 2007 and 31st
December 2017 in Australia but never had a kidney
transplantation.

The parameters for both models were calculated from
time-to-event analysis (survival analysis). Four parametric
distributions were fitted to the data: Exponential, Weibull,
Log-logistic and Log-normal. Latimer recommended fit-
ting more than one parametric model and then selecting
the best based on statistical and visual fit [15]. The best
model was selected based on its statistical fit (using the
Akaike and Bayesian information criterion (AIC, BIC)
[26]) to the observed data. The best fitting model was fur-
ther justified using its visual fit to the observed data [27].
Weibull regression had the best (lowest) AIC and BIC
(Table 2). Its visual fit to observed data further confirmed
the appropriateness of the Weibull model. Therefore,
Weibull regression was used to estimate the time-
dependent transition probabilities for the Markov model,
and time-to-event parameters for the DES model. The
Lambda (λ–rate parameter) and Gamma (ϒ–shape par-
ameter) were used to calculate the time-dependent transi-
tion probabilities in the Markov model according to the
method described by Briggs et al. [9], whereas the same
parameters (Lambda and Gamma) were used to sample
the time-to-event estimates for each individual patient in
the DES model (Table 3).

Table 1 Markov models fitted in the study

Model Cycle (years) Time horizon (years)

1 0.5 5

2 0.5 20

3 1 5

4 1 20
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The following time-dependent transition probabilities
(Markov model) and time-to-event parameters (DES
model) were estimated:

1) Graft failure following transplanting a KDPI > 74
donor kidney

2) Mortality following transplanting a KDPI > 74
donor kidney

3) Mortality following graft failure
4) Mortality while on waitlist for a kidney (only

waitlisted patients were included)

Both decision analytic models were simulated for two-
time horizons (5 years and 20 years) to assess how the
main outputs of the two models change over time.

Model evaluation
The main outputs of both Markov and DES models were
expected costs, expected QALY and Net Monetary Benefit
(NMB) for a patient who underwent a low quality (KDPI
> 74) kidney transplantation and a patient on dialysis who
is waitlisted for a donor kidney. We used a Willingness To

Pay (WTP) value of AUD 28,000, which reflects the op-
portunity cost of additional healthcare expenditures within
a constrained budgetary environment [28].
DES models are stochastic, and so produce different

results when run with different or even same number of
patients [13]. Hence, the model was run multiple times
with varying number of patients to determine the appro-
priate size of the patient population that would produce
stable NMB [29].
Parameter uncertainty was determined by probabilistic

sensitivity analyses using Monte Carlo simulation. Both
Markov and DES models were simulated for 5000 iterations
and, during each iteration, the model inputs were sampled
from the fitted distributions (Table 2). The results of prob-
abilistic sensitivity analyses were summarized using NMB
and were calculated using the following formula:

NMB ¼ WTP � QALYð Þ−Costs

The highest NMB is the most cost-effective decision
and choosing anything else incurs an opportunity cost.

Table 2 Comparison of AIC and BIC values using Cox, Exponential, Weibull and Log-logistic regression methods

Parameter Akaike information criterion (AIC) Bayesian information criterion (BIC)

Expo Weibull Log-L Log-N Expo Weibull Log-L Log-N

Graft failure following transplantation 1060.2 896.1 898.4 909.0 1065.2 906.1 908.4 919.0

Mortality following transplantation 1628.7 1628.1 1635.5 1666.2 1638.7 1633.1 1645.4 1676.2

Mortality following graft failure 23,759.2 23,700.6 23,770.5 24,046.3 23,766.3 23,714.8 23,784.7 24,060.5

Mortality while waitlisted 2093.2 2042.6 2047.9 2086.6 2098.4 2053.1 2058.4 2097.1

Expo: Exponential model; Log-L: Log-logistic model; Log-N: Log-normal model

Table 3 Parameter estimates and uncertainties used in the models

Parameter Baseline value Standard Error Distribution Source

Transition probabilities

Graft failure following transplantation Lambda 0.0698 0.0072 Normal ANZDATA

Gamma 0.3944 0.0345 Normal ANZDATA

Mortality following transplantation Lambda 0.0502 0.0059 Normal ANZDATA

Gamma 0.9305 0.0572 Normal ANZDATA

Mortality following graft failure Lambda 0.0922 0.0027 Normal ANZDATA

Gamma 1.1161 0.0153 Normal ANZDATA

Mortality while on waiting list Lambda 0.0315 0.0039 Normal ANZDATA

Gamma 1.4346 0.0654 Normal ANZDATA

Utility

Transplant 0.82; 95% CI (0.74 to 0.90) Uniform [24]

Dialysis 0.70; 95% CI (0.62 to 0.78) Uniform [24]

Cost (in AUD)

Transplant (1st year) 115,725 (± 15%) Uniform [19]

Transplant (2nd year onwards) 16,110 (± 15%) Uniform [19]

Dialysis 81,689 (± 15%) Uniform [22]
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Both QALYs and costs were discounted at an annual
rate of 5% as recommended by the Medical Services Ad-
visory Committee’s Technical Guidelines, Australia [30].
The perspective of the analyses was that of the health-
care payer.

Results
NMB from DES model with varying number of simu-
lated patients are in Fig. 2. The estimated NMB of the
DES model transplanting a KDPI> 74 kidney stabilized
around AUD − 110,000 for a patient population size of
2000. The NMB of waiting for a donor kidney stabilized
only after 4000 patients. Therefore, the results of DES
are from simulations of 4000 patients.
In the base case analysis, irrespective of the modelling

method (Markov or DES), the cycle length of Markov
model (6 or 12-months) or the time horizon (5 and 20
years) transplanting a low-quality kidney was both cost
saving and more effective (i.e. the dominant strategy)
compared to remaining waitlisted while on dialysis. Of
the three models (6 and 12 month cycle length Markov
models and the DES model), the Markov model with 12
month cycle lengths recorded the highest cost and the
highest QALY for “Waitlisted for a kidney” strategy. The
DES model recorded the highest total cost for “Trans-
planting a KDPI>74 kidney”, while the Markov model
with six-month cycle lengths had the highest total
QALY. This was true for both of the two-time horizons
(Table 4).
Results of probabilistic sensitivity analysis indicate that

transplanting a lower quality kidney results in the high-
est NMB compared to waitlisted for a kidney in all
models. Compared with the NMB of transplanting a

lower quality kidney in a DES model, transplanting a
lower quality kidney in the Markov model with 12
month cycle lengths is nearly 150% higher. This differ-
ence reduced to around 20% when the results were com-
pared with the Markov model with six-month cycle
lengths. However, in the “Waitlisted for a kidney” strat-
egy, which had only two health states in the Markov
models (one event in the DES model), the difference be-
tween the NMB of DES and the two Markov models was
around 10% in both of the two-time horizons. (The dif-
ference was < 1% in the Markov model with 12 month
cycle lengths). The incremental NMB of a Markov
model with six-month cycle lengths was closer to the in-
cremental NMB of the DES model than the Markov
model with 12month cycle lengths. Furthermore, this
gap reduces from 27 to 6% as the time horizon increased
from 5 to 20 years.
The differences in costs and QALYs observed in the

three models may be due to differences in numbers of
graft failures or of patients dying. The proportion of
events generated from the three models during the two-
time horizons is in Fig. 3. In both of the two-time hori-
zons, Markov models with 12month cycle lengths had the
highest proportion of graft failures and highest proportion
of deaths after transplantation. The highest proportion of
deaths while waitlisted was in the Markov model with six-
month cycle lengths. The relative differences in deaths
after transplantation and deaths while waitlisted in the lat-
ter model compared to the DES model decreased as the
time horizon increases. However, graft failures after trans-
plantation showed variable results.
The Markovian assumption means Markov models do

not account for long-term memory, thus the total time a

Fig. 2 Net monetary benefits produced from DES model with varying number of simulated patients. The red vertical line indicates the population
size where the net monetary benefit stabilized
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patient spent in a health state cannot be estimated [31].
However DES models do not have this limitation and
model observed time-to-event. Figure 3 shows the dens-
ity plots of time to death after transplantation, time to
graft failure after transplantation and time to death while
waitlisted, from DES modelling and actual data at the 5-
year time horizon. Plots of time to death after trans-
plantation and time to graft failure after transplantation
modelled using DES have a close resemblance to the ac-
tual data. However, the DES model predicted patients to
have longer times to death while waitlisted as compared
with the actual data.

Discussion
This study compared cost-effectiveness when different
types of modelling techniques (Markov and DES) were
used to model outcomes of transplanting a lower-quality
kidney versus remaining waitlisted for a kidney. We used
parametric survival models to estimate the time-
dependent transition probabilities of Markov models
and distribution of time-to-event in DES models. To the
authors knowledge, this is the first cost-effectiveness
study to compare the results when Markov and DES are
modelled with parameters estimated from parametric
survival methods, for any disease condition. Both models
were developed from the same patient datasets. DES
model output had the closer resemblance to the actual
data, thus, we are of the view that this modelling method

gives a closer approximation to reality. Our evaluation
found that transplanting a low-quality kidney was both
cost saving and more effective (i.e. the dominant strat-
egy) as compared to remaining waitlisted while on dialy-
sis. The finding was irrespective of the modelling
method, cycle lengths of Markov model or the time
horizon. The differences of incremental NMB between
Markov model and DES model reduces with the shorter
cycle lengths and longer time horizons.
The choice of the survival model used to estimate the

parameters of decision analytic models alter the cost-
effectiveness results, and thus may affect planning and
policy decisions [15, 32]. The semi-parametric Cox pro-
portional hazard method is the most commonly used
survival model in the literature [33]. However, its utility
in estimating time-dependent probabilities in Markov
models is limited by its inability to model how the risk
of an event changes over time [9]. Furthermore, the Cox
model does not allow extrapolation beyond the last
follow-up time which limits its use in health economic
modelling [31]. Another option would be estimating the
transition probabilities directly from published Kaplan–
Meier curves, which is a non-parametric method [17].
However, Kaplan–Meier curves tend to over fit the em-
pirical data, which impacts generalisability of the esti-
mated transition probabilities [34]. The current study
used parametric survival methods, with the power of
modelling time-dependency and extrapolate to longer

Fig. 3 Proportion of events predicted by Markov and DES models over the two time horizons and the percentage difference from the DES value
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times outside the observed data. Parametric survival
methods are best suited for our research question of
looking at long-term outcomes.
The literature on which of cohort-based Markov

models and DES models is superior is inconclusive.
Some studies show that the results are not substantially
different between the two modelling approaches [35],
while others demonstrate sizable differences [36, 37].
However, it is important to note that in these compari-
sons, Markov models used fixed transition probabilities
whereas, in the current study, we used time-dependant
transition probabilities. Therefore, the results of the
current study add knew knowledge to the continuing de-
bate about the superiority of different decision analytic
methods [38]. Our results indicate, for our research
question, different modelling methods are unlikely to in-
fluence the decision which produces best value for
money. However, costs and effectiveness measures
(QALY) differed between the two models. The Markov
model with the longer cycle lengths recorded the highest
cost and the highest QALY for “Waitlisted for a kidney”
strategy. The DES model recorded the highest cost for
“Transplanting a KDPI>74 kidney”, while the Markov
model with the shorter cycle lengths had the highest
QALY. Though these discrepancies may not affect the
direction of the funding decision, they may influence
subsequent analyses such as budget impact analysis [39].

In the DES model, the predicted time-to-event for
each of the simulated patients was a function of the
parametric survival method. This method ensures that
the times-to-event could vary even for two identical pa-
tients. This random variability is often seen in clinical
practice, thus, results generated from the DES model
have the potential to more closely represent the variabil-
ity seen in real-life. This was evident in the density plots
presented in Fig. 4, where predictions from a DES model
closely approximated the actual data.
Net monetary benefit and incremental net monetary

benefit were the main outputs of this cost-effective ana-
lysis. Of the two Markov models, Markov models with
shorter cycle lengths came close to DES results. Differ-
ence between the models got smaller as the time horizon
increased, with almost similar incremental net monetary
benefit (6% difference) when the time horizon was 20
years. Almost identical prediction of events (i.e. death
after transplantation, graft failure after transplantation
and death while waitlisted) by the Markov model with
shorter cycle lengths and DES model at 20 year time
horizon may explain the finding (see Figure 3). Further-
more, in the DES model, events can occur at any time,
whereas in Markov events occur at fixed intervals (i.e.
cycle lengths). Therefore, Markov models could have
artificial time delays of events occurring, compared to
DES models and real-life [37]. The Markov models with

Fig. 4 Density plots of time to death after transplantation, time to graft failure after transplantation and time to death while waitlisted from DES
model (single simulation) and actual data. The dotted vertical lines are the mean for the model and data
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shorter cycle lengths have less delays, which could ex-
plain the narrow difference of the main outputs between
Markov with six-month cycles and DES model. Several
authors have previously discussed the possibility of using
shorter cycle lengths to reduce the gap between Markov
and DES [2, 40], and we were able to demonstrate this
with empirical data.
Debate exists regarding the choice of the model struc-

ture. Some authors argue that DES should always be the
preferred modelling method for economic evaluations
[38, 41]. Others authors highlighted situations where a
DES model is preferred [42]. DES models capture the
heterogeneity of the patient population, an important
feature of chronic kidney disease patient populations.
Therefore, a DES model seems more appropriate to ad-
dress the research question of the current study. How-
ever, we demonstrated that use of shorter cycle lengths
and time-dependant transition probabilities in a Markov
model produces comparable results to a DES model.
The Markov model used in the present study had only
three health states and further research is needed to as-
sess whether complex Markov models (multiple health
states), with shorter cycle lengths and time-dependant
transition probabilities would produce results similar to
DES models.
This study has limitations. First, the decision analytic

models did not account for the clinical health state of
re-transplants following graft failure, as the scope of the
study was to assess the costs and outcomes following the
first kidney transplantation. However, the annual re-
transplantation rate in Australia is around 3%, thus, au-
thors believe this limitation would not have significantly
changed the current results. Secondly, quality of the
donor kidney was defined using KDPI, which has only
reasonable discriminatory power of predicting graft fail-
ure. However, KDPI is the best available index to de-
scribe donor kidney quality and has previously been
used to define marginal quality kidneys in economic
evaluations [5, 6, 43]. Finally, we adopted a healthcare-
payer perspective which does not capture costs incurred
by the patient. Analysis from a societal perspective,
which includes patient costs, could affect the cost-
effectiveness results.

Conclusion
This study found that although Markov and DES models
produced different outcomes, both delivered the same
conclusion that transplanting even a low-quality kidney
is cost-effective compared to remaining on dialysis. The
finding is robust, with similar outputs from the Markov
and DES models as the conditions of the time-
dependant transition probabilities ie shorter cycle
lengths and longer time-horizons were modelled.
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