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RESEARCH Open Access

The efficiency of routine infant
immunization services in six countries: a
comparison of methods
Nicolas A. Menzies1,2* , Christian Suharlim2, Stephen C. Resch2 and Logan Brenzel3

Abstract

Background: Few studies have systematically examined the efficiency of routine infant immunization services.
Using a representative sample of infant immunization sites in Benin, Ghana, Honduras, Moldova, Uganda and
Zambia (316 total), we estimated average efficiency levels and variation in efficiency within each country, and
investigated the properties of published efficiency estimation techniques.

Methods: Using a dataset describing 316 immunization sites we estimated site-level efficiency using Data
Envelopment Analysis (DEA), Stochastic Frontier Analysis (SFA), and a published ensemble method combining these
two approaches. For these three methods we operationalized efficiency using the Sheppard input efficiency
measure, which is bounded in (0, 1), with higher values indicating greater efficiency. We also compared these
methods to a simple regression approach, which used residuals from a conventional production function as a
simplified efficiency index. Inputs were site-level service delivery costs (excluding vaccines) and outputs were total
clients receiving DTP3. We analyzed each country separately, and conducted sensitivity analysis for different input/
output combinations.

Results: Using DEA, average input efficiency ranged from 0.40 in Ghana and Moldova to 0.58 in Benin. Using SFA,
average input efficiency ranged from 0.43 in Ghana to 0.69 in Moldova. Within each country scores varied widely,
with standard deviation of 0.18–0.23 for DEA and 0.10–0.20 for SFA. Input efficiency estimates generated using SFA
were systematically higher than for DEA, and the rank correlation between scores ranged between 0.56–0.79.
Average input efficiency from the ensemble estimator ranged between 0.41–0.61 across countries, and was highly
correlated with the simplified efficiency index (rank correlation 0.81–0.92) as well as the DEA and SFA estimates.

Conclusions: Results imply costs could be 30–60% lower for fully efficient sites. Such efficiency gains are unlikely to
be achievable in practice – some of the apparent inefficiency may reflect measurement errors, or unmodifiable
differences in the operating environment. However, adapted to work with routine reporting data and simplified
methods, efficiency analysis could triage low performing sites for greater management attention, or identify more
efficient sites as models for other facilities.
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Background
Given constrained budgets, increasing the efficiency of
health service delivery is seen as a way to free up resources
for increasing the scale and quality of services [1]. Improv-
ing efficiency is not among the goals described by the
WHO’s Global Vaccine Action Plan [2], yet doing so
could make funds available to address immunization pro-
gram objectives, such as increasing population coverage
and introducing new vaccines. A variety of approaches
have been used to investigate the level of technical effi-
ciency achieved by immunization programs. One general
class of approaches can be considered ‘program review’,
involving observation and interviews with program
personnel, consultation of stakeholders, and detailed rec-
ord review. These approaches are able to draw on a wide
range of evidence, and produce qualitative findings that
may cover a much wider scope than just technical effi-
ciency [3–6]. Intensive approaches such as the WHO’s
National Immunization Programme Reviews [7] may re-
veal areas where resources are being wasted, or where
underinvestment in some program components is ham-
pering overall performance. These reviews are intended to
not only diagnose problems but also suggest solutions,
and consider both implementation and strategic chal-
lenges. However, these approaches can have limited repro-
ducibility, given the central role of the investigator in
evidence discovery and interpretation.
Other approaches for investigating efficiency rely on

the quantitative comparison of inputs (e.g. resources
consumed) and outputs (e.g. services provided), for a
sample of service providers. One approach focuses on
mean values, either estimating the overall average cost
per output, or using stratification or regression methods
to estimate this average for subsets of the sample. With
this approach variation in efficiency within the program
is described with respect to the mean, and conclusions
about program-level efficiency drawn by comparing the
mean estimate to external standards [8–12]. A third
class of approaches attempts to estimate efficiency dir-
ectly. These ‘frontier approaches’ estimate an efficient
frontier describing sites operating at peak efficiency, and
then compare all other sites to this standard [13, 14].
Program-level efficiency can be gauged by constructing a
frontier across comparable programs [15]. All these
quantitative approaches make the assumption that other
service providers—particularly those that are similar in
terms of relevant characteristics—can be used to create
a benchmark for assessing efficiency.
Use of frontier approaches for efficiency evaluation

within healthcare is growing [16–18], yet there are few
examples of applications for immunization programs
[19–21]. In one of few examples, Hollingsworth et al.
compared 23 facilities providing immunization services
in Victoria, Australia, finding modest evidence that

urban sites were operating more efficiently than their
rural peers. In a larger study, Valdmanis and colleagues
examined the efficiency of 117 vaccination sites operat-
ing in Dhaka, Bangladesh, finding that sites were gener-
ally operating at a low level of efficiency, with greater
efficiency statistically associated with government own-
ership, fixed location (as compared to outreach clinics),
and greater time since site operations began. This study
also found clear evidence of scale economies associated
with higher service volume [20].
In this analysis we draw on a unique data set of

immunization service costs collected as part of the EPIC
studies, funded by the Bill & Melinda Gates Foundation to
fill the knowledge gap around immunization costs and fi-
nancing. These data describe the costs and performance
of a large, representative sample of immunization sites in
Benin, Ghana, Honduras, Moldova Uganda and Zambia
[22–24]. Using these data, we investigate different quanti-
tative approaches for estimating the efficiency of
immunization sites, to describe their relative performance
and draw conclusions about their utility for efficiency
evaluation within infant immunization programs, as well
as provide summary estimates of efficiency at a country
level and describe within-country variation in efficiency.

Methods
Data and sample
The EPIC studies collected information on service vol-
ume, costs and other characteristics for 319 sites provid-
ing routine immunization services in Benin, Ghana,
Honduras, Moldova, Uganda, and Zambia during the 12-
month period January–December 2011 [22]. Data were
collected through a series of country-level studies imple-
mented during 2012–13 [25–30]. Sites were selected
from a sampling frame consisting of public and NGO fa-
cilities providing routine immunization services, and
data were collected using a standardized approach [31],
to allow comparison and pooling of data across sites and
settings.
For this analysis, we examined variation in the effi-

ciency of service provision between participating sites.
Data from all six country studies were cleaned by a cen-
tral project team, and variable definitions standardized.
We removed sites with anomalous or missing values for
key variables (3 sites), for an analytic sample of 316 sites.
All data are freely available for download at www.immu-
nizationcosting.org, along with study materials and pub-
lications [32].

Efficiency measure
We operationalize efficiency as the Shephard input effi-
ciency [33]. This measure describes the value by which
the inputs of a particular site would need to be multi-
plied in order to move that site onto the efficient
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frontier, holding outputs constant. Under this definition,
the efficiency score is bounded between zero and one,
with higher values indicating greater efficiency. Input ef-
ficiency was used in preference to output efficiency
(which considers hypothetical changes in output, holding
inputs constant), as substantial increases in service deliv-
ery volume may be implausible for sites that are serving
close to 100% of their potential target population.

Inputs and outputs
In the main analysis, inputs were represented by the total
service delivery costs of immunization services provided
by the facility. This includes all resources expended for
site-level immunization activities (staff salaries, per diems,
volunteer incentives, transport, buildings, utilities, equip-
ment, and non-vaccine consumables). We excluded vac-
cine and vaccine supplies, as these may be less sensitive to
site-level decisions, and show low variation across sites
per unit of output [23]. Administrative costs incurred by
district, regional, and central offices were also excluded
from the analyses. Outputs were represented by the total
children receiving DTP3 (3rd dose of diphtheria, tetanus,
and pertussis, typically via a single injection of the penta-
valent vaccine), a conventional proxy for completion of
the basic infant immunization schedule.

Analytic approach
We used three methods for estimating the efficient fron-
tier (DEA, SFA, ensemble method). For each of these
methods we calculated the Shephard input efficiency of
individual sites in comparison to the estimated frontier.
As a forth comparator we constructed a simplified effi-
ciency index using the residuals derived from a conven-
tional production function fitted to site input and output
data. Details for each of these methods are provided
below.

Data envelopment analysis
Data Envelopment Analysis (DEA) uses a non-
parametric linear programming approach [14] to esti-
mate the efficient frontier for a sample of discrete
decision-making units, which in this study are repre-
sented by immunization service delivery sites. The fron-
tier is constructed as a piecewise linear function joining
the most efficient sites, and describes the minimum set
of inputs required to produce a given set of outputs.
DEA allows relatively weak assumptions to be made
about the shape of the efficient frontier, and for this ana-
lysis we allowed for variable returns-to-scale, consistent
with earlier studies [20]. DEA estimates are sensitive to
outliers, which could reflect measurement error or fea-
tures of the sites operating environment making them
incomparable to other sites. We used super-efficiency
analysis to identify and remove outliers, calculating

efficiency for each site based on a frontier constructed
from the other sites [34]. This produces scores > 1.0 for
the most efficient sites, and we removed the site with
the highest score above 1.5. We repeated this procedure
until no score exceeded 1.5 or 5% of sites had been re-
moved [35]. Super-efficient sites were assigned a Shep-
hard input efficiency of 1.0 and not used for estimating
the efficient frontier. For the other sites, the Shephard
input efficiency was calculated with respect to the effi-
cient frontier estimated from the non-excluded sites.
Using conventional DEA methods can overestimate the
efficiency of sites, particularly where the sample is small.
We corrected for this using the Simar and Wilson para-
metric bootstrapping approach [36] implemented with
5000 bootstrap replicates.

Stochastic frontier analysis
Under Stochastic Frontier Analysis (SFA), the efficient
frontier is estimated by fitting a parametric production
function (e.g. Cobb-Douglas), in a model that assumes de-
viations from the regression line can be decomposed into
the sum of a mean-zero error term representing measure-
ment error in the output plus a one-sided term represent-
ing deviations from efficient production. This formulation
allows the efficient frontier to be constructed as a transla-
tion of the fitted regression line [13]. As the approach al-
lows for measurement error, not all sites need to fall
within this frontier. The use of a parametric function for
mean output is seen as a drawback of this approach and
can artificially constrain the form of the frontier. To relax
this constraint we used the semi-parametric approach de-
veloped by Fan et al. [37], using thin plate regression
splines (f() in eq. 1) in place of a parametric mean function
[38]. Equation 1 shows the relationship that was esti-
mated, where Yi and Xi represent total outputs and inputs
for site i, respectively, f() represents the flexible spline used
to model the relationship between inputs and outputs, υi
represents the error term, and μi represents the efficiency
term. Following common practice, we assumed a Normal
distribution for the error term υi and a half-Normal distri-
bution for the efficiency term μi, and estimated the regres-
sion using logged inputs and outputs. As a consequence
of these assumptions the regression residuals (υ − μ) are
assumed to be left-skewed, and valid efficiency estimates
cannot be calculated if this assumption does not hold. We
calculated the Shephard input efficiency from the esti-
mated values for μi.

ln Y ið Þ ¼ f ln Xið Þð Þ þ υi−μi ð1Þ

Ensemble methods
Several studies have investigated the relative benefits of
SFA and DEA estimators for different applications [39].
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Directly relevant to this analysis is a recent study by Di
Giorgio et al. [35] who investigated SFA and DEA esti-
mators using simulated data on health services delivery
costs in low and middle income settings. This study
found that efficiency estimates from both methods were
unsatisfactory in the presence of non-trivial measure-
ment error, particularly when distributional assumptions
were not met. The relative performance of the two ap-
proaches was dependent on the shape of the production
function, but the authors found an ensemble approach,
averaging both estimators, was preferred across a wide
range of scenarios. We applied this ensemble approach
as a third efficiency estimator.

Ordinary least squares
For each country we fitted a conventional production
function to input and output data via ordinary least
squares (OLS) [40]. Equation 2 shows the relationship
that was estimated, where Yi and Xi represent total out-
puts and inputs for site i, respectively. The relationship
between inputs and outputs was modelled using inter-
cept, linear and quadratic terms, and the regression
equation estimated using logged inputs and outputs.

ln Y ið Þ ¼ β0 þ β1 ln Xið Þ þ β2 ln Xið Þ2 þ εi ð2Þ

We used the residuals from this regression as a simpli-
fied efficiency index, to provide a less technically-
demanding comparator for the frontier methods de-
scribed above. This is similar to the Corrected OLS
(COLS) approach [41], where the fitted regression line
from a conventional production function is shifted up-
wards until it passes through the most extreme observa-
tion, and this shifted line used to represent the efficient
frontier. In our implementation we do not estimate this
COLS frontier, in order to retain a method based solely
on conventional regression techniques.
With all these methods it is assumed the sample of

sites being compared is sufficiently homogenous, i.e.
undertaking comparable activities, with comparable re-
sources, to produce comparable products, while operat-
ing in comparable environments [42]. While many
aspects of immunization service provision are similar
across countries, it is likely the operating environment
differs substantially, and it is unlikely the performance of
immunization sites in one country can be used to form
an efficient frontier for sites in another. For this reason,
we estimated efficiency scores on a country-by-country
basis.

Sensitivity analysis
We assessed the consistency of the results for different
formulations of inputs (using total site-level costs in-
cluding vaccines, site-level vaccine wastage, and vaccine

supplies, and excluding above-site supply-chain costs)
and outputs (using total infant doses delivered in place
of DTP3). For each approach we calculate the lambda
statistic proposed by Badunenko et al. as an indicator of
the reliability of the efficiency estimator [43], and used
Spearman’s rank correlation coefficient to describe
agreement between the site efficiency rankings created
by each estimator.

Implementation
Analyses were conducted in R [44]. The Simar and Wil-
son DEA estimator was implemented using the FEAR
package [45]. The Fan et al. SFA estimator was imple-
mented using the semsfa package [46]. Results reported
for sample means, variances and distributions were ad-
justed for survey weighting.

Results
Distribution of inputs and outputs
Table 1 presents summary statistics for inputs, outputs,
and the cost-per-output for each country. There was
substantial variation within and between countries for
each outcome, and all outcomes were positively skewed.

Efficient frontiers estimated by DEA and SFA
Panel A of Fig. 1 presents plots of the efficient frontier
estimated by DEA for each country. Frontiers produced
by conventional and Simar and Wilson bias-corrected
estimators are shown, with the latter consistently lying
to the right of the conventional estimator. Sites excluded
by super-efficiency analysis are highlighted in red, and in
general these sites lie far from the center of the distribu-
tion in each county, with substantially greater service
volume. For each country the efficient frontier is con-
cave, reflecting the assumption that if two input-output
combinations are feasible, then any linear combination
of those input-output combinations is also feasible.
Panel B of Fig. 1 presents plots of the efficient frontier
estimated by SFA. For Uganda and Zambia no efficient
frontier could be calculated. For these countries the re-
gression residuals (υ − μ in equation 1) were right-
skewed, and could not be decomposed into error and ef-
ficiency terms. Across countries the SFA efficient fron-
tier is either straight or slightly convex, and qualitatively
different to the concave DEA frontier.

Efficiency scores estimated by DEA and SFA
Figure 2 shows side-by-side histograms of the distribu-
tion of DEA and SFA efficiency values (fraction of effi-
ciency scores falling into each of 10 equally sized bins
from 0.0–1.0) for each country. Average efficiency scores
varied between countries, with average DEA efficiency
scores varying from 0.40 in Ghana and Moldova to 0.58
in Benin, and average SFA efficiency scores varying from
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Table 1 Average facility-level inputs, outputs, and costs per outputa

Outcome Benin Ghana Honduras Moldova Uganda Zambia

Number of facilities in sample 45 50 71 50 49 51

Service delivery costb (000 s) 5.55 (2.21) 12.4 (7.83) 7.66 (8.85) 3.72 (7.47) 4.70 (5.75) 19.0 (11.1)

Total costc (000 s) 18.0 (9.53) 17.9 (11.7) 13.4 (19.0) 4.27 (8.82) 8.00 (11.0) 27.9 (20.7)

DTP3b 601 (417) 321 (306) 105 (200) 30.8 (73.9) 298 (667) 702 (904)

Doses 6540 (4210) 2930 (2940) 1420 (3140) 313 (773) 2890 (5790) 6880 (10100)

Service delivery cost per DTP3 12.3 (6.7) 82.6 (130) 165 (154) 191 (131) 28.8 (21.1) 52.7 (40.7)

Total cost per DTP3 35.2 (15.7) 106 (137) 223 (169) 210 (135) 40.1 (20.9) 64.9 (40.9)

Service delivery cost per dose 1.11 (0.705) 9.77 (15.2) 12.2 (10.1) 16.7 (8.16) 3.52 (3.98) 5.75 (4.2)

Total cost per dose 3.16 (1.33) 12 (15.7) 16.6 (10.3) 18.5 (8.24) 4.69 (4.08) 7.07 (4.23)
aResults estimated from analysis of the cleaned pooled dataset of 316 sites. Values in parentheses represent sample standard deviation. All estimates adjusted for
survey weighting. All costs reported in 2011 USD
bOutcomes used in main analysis
cTotal costs include site-level service delivery costs (staff salaries, per diems, volunteer incentives, transport, buildings, utilities, equipment, and non-vaccine
consumables) as well as vaccines and vaccine supplies [23]

Fig. 1 Efficient frontiers estimated by DEA and SFA. Panel a efficient frontier estimated by DEA under variable returns-to-scale for each country.
Dashed line represents the conventional deterministic DEA frontier. Solid line represents the Simar and Wilson bias-corrected DEA frontier. Panel
b efficient frontier estimated by SFA for each country. Dashed and solid lines represent the mean function and efficient frontier respectively, for
the semi-parametric SFA estimator proposed by Fan et al. For Uganda and Zambia no frontier could be calculated, due to inability to decompose
error and efficiency terms
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0.43 in Ghana to 0.69 in Moldova. In the four countries
where both scores could be calculated the mean SFA ef-
ficiency was higher than the mean value estimated by
DEA, most notably in Moldova. Within each country the
efficiency scores varied widely with a standard deviation
of 0.18–0.23 for DEA efficiency and 0.10–0.20 for SFA
efficiency.
Figure 3 compares the ranking of sites within each

country by their DEA and SFA efficiency scores. Sites at
the upper and right-hand quadrant of each panel have
higher efficiency scores by SFA and DEA respectively,
and sites lying on the diagonal share the same rank by
both methods. We calculated Spearman’s rho to
summarize agreement between the rankings from each
score, with this rank correlation varying from 0.56 in
Ghana to 0.79 in Benin. Disagreement between scores
was generally higher for sites in the upper or lower tail
of the distribution of service delivery costs. This is con-
sistent with the marked difference in curvature of the ef-
ficient frontiers estimated by DEA and SFA (Fig. 1),
which has a greater impact on efficiency scores for more
extreme sites.

Efficiency scores estimated by an ensemble approach
Following Di Giorgio et al. we estimated an ensemble effi-
ciency score by averaging the DEA and SFA scores for the
4 countries with both scores available. Not surprisingly,
there was relatively high agreement between this ensemble
score and the DEA score, and between the ensemble score
and the SFA score. Rank correlation with the ensemble
score ranged from 0.88 to 0.96 for DEA efficiency and from
0.87 to 0.92 for SFA efficiency. Figure 4 plots the value of
this ensemble efficiency score against logged service deliv-
ery costs and logged service volume for each country (for
Uganda and Zambia the DEA efficiency is plotted).
We found a high level of agreement between the effi-

ciency scores from the ensemble method and a crude effi-
ciency index based on a parametric production function
fitted with OLS. For the 4 countries for which ensemble
results could be calculated the rank correlation with this
OLS index ranged from 0.81 in Moldova to 0.92 in Benin.

Sensitivity analysis
Table 2 presents mean efficiency scores for each method
(DEA, SFA, ensemble) using different inputs (service

Fig. 2 Distribution of technical efficiency scores estimated by DEA and SFA. Efficiency scores represent Shepherd input efficiency. DEA efficiency
estimated by Simar and Wilson bias-corrected method under variable returns-to-scale. SFA efficiency estimated using semi-parametric SFA
estimator proposed by Fan et al. Distributions and means adjusted for survey weighting. For Uganda and Zambia no frontier could be calculated,
due to inability to decompose error and efficiency terms
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delivery costs vs. total immunization costs) and outputs
(DTP3 vs. doses delivered) per site. The rank correlation
of efficiency scores with the values obtained in the main
analysis is shown in parentheses. Across the six coun-
tries, scores calculated using total costs were higher than
those calculated using service delivery costs (implying
higher average efficiency). This likely reflects the low
variability in the vaccine cost per DTP3 and per dose
across sites, reducing the relative difference between
most and least efficient sites. In contrast, the choice of
DTP3 or doses delivered as the output measure had little
impact on mean efficiency. In all countries apart from
Benin there was a high level of agreement between the
different approaches, with most correlation coefficients
above 0.9. In Benin the results calculated using total
immunization costs as the input measure differed from
the main analysis, with correlation coefficients ranging
from 0.62 to 0.73.
Table 2 also reports a diagnostic described by Badu-

nenko et al. to gauge the reliability of SFA and DEA esti-
mates. This diagnostic (lambda) represents the ratio of
the variance of μi (efficiency estimate) to the variance of
υi (measurement error) calculated as part of the SFA
frontier estimation. High values of lambda imply low
measurement error relative to the technical efficiency,

and in this context all estimators have been shown to
work well [43]. When the ratio is near 1.0 results should
be interpreted cautiously, and both DEA and SFA
methods may underestimate efficiency. For low values of
lambda most variation in the sample is due to measure-
ment error and the efficiency results will be meaningless.
For most countries and input/output combinations
lambda lies in the range 1–3, implying modest confi-
dence in the efficiency results. However, in a number of
circumstances (Uganda and Zambia in the main ana-
lysis) lambda could not be estimated as the efficiency
and error terms could not be statistically separated. In
these circumstances, despite the fact that DEA efficiency
scores could still be estimated, the results from this diag-
nostic suggest that little weight should be placed on the
results for Zambia and Uganda.

Discussion
We analyzed data on resource utilization and perform-
ance for 316 health facilities providing routine infant
immunization services in Benin, Ghana, Honduras,
Moldova, Uganda and Zambia, and used standard tech-
niques to estimate the technical efficiency of each site
compared to an efficient frontier defined by their best
performing peers. Mean efficiency estimates varied by

Fig. 3 Comparison of site efficiency ranking by DEA and SFA. DEA efficiency estimated by Simar and Wilson bias-corrected method under
variable returns-to-scale. SFA efficiency estimated using semi-parametric SFA estimator proposed by Fan et al. Higher rank (upper right) indicated
higher efficiency score. Results for Uganda and Zambia not shown as SFA efficiency could not be estimated for these countries
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country and by analytic approach, but all lay within the
range 0.4–0.7. For a given site, these input efficiency esti-
mates represent the ratio between resource utilization
under perfect efficiency as compared to observed efficiency.
Subtracting the efficiency estimate from 1.0 provides an es-
timate of the fraction of site-level inputs that could be re-
covered if a site were to become perfectly efficient. Based
on this definition, our study results imply a 30% to 60% re-
duction in costs would be possible if all sites could be relo-
cated to the efficient frontier. This finding of low apparent
efficiency levels is consistent with other studies employing
similar methods to assess immunization services in low in-
come, high burden settings [20, 21], but lower than esti-
mates derived from a high income setting (Australia [19]).
For all estimation methods there was substantial variation
in efficiency scores within each country. For most countries
the estimates calculated in the main analysis were robust to
changes in the specification of inputs and outputs (among
the options compared), although efficiency levels appeared
higher when total site-level costs were used in place of ser-
vice delivery costs as an input measure. The site efficiency
rankings differed substantially between DEA and SFA, due
to marked differences the shape of the efficient frontiers es-
timated by these two techniques.

Taken at face value these results imply wide variation in
efficiency between sites in each country, and major oppor-
tunities to improve the overall efficiency of immunization
programs through targeted intervention to resolve ineffi-
ciency in low-performing sites. However, this uncritical in-
terpretation should be avoided. All efficiency metrics
included in this analysis assume that the service delivery
units being compared operate in approximately similar
environments. This assumption is unlikely to hold for
immunization sites, for which the catchment population
may differ in size, geographic dispersion, and demand for
immunization services, and which are supported by health
systems of varying performance. These differences in op-
erating environment will create variation in the resource
levels required by different sites to adequately serve their
target populations. SFA explicitly allows for variation in
site-level performance that is not due to technical effi-
ciency, and modern DEA approaches have similar features
[36], yet both methods rely on strong assumptions in
order to decompose observed variation between technical
efficiency and other causes. Inability to disentangle tech-
nical efficiency and other sources of variation can bias effi-
ciency scores downward, as has been demonstrated in
simulation studies [35]. It is possible that the low apparent

Fig. 4 Efficiency score calculated by ensemble approach, plotted as a function of logged service delivery costs and logged service volume. For
Uganda and Zambia SFA efficiency could not be calculated, and plotted values represent DEA efficiency scores
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efficiency levels observed in this and other studies con-
ducted in low income settings [20, 21] simply reflects vari-
ation in the operating environment of sites, and where
this variation is smaller [19] apparent efficiency will be
higher. In an empirical study like this it is impossible to
judge the validity of the efficiency estimates against a ref-
erence standard, yet the lambda diagnostic described by
Badunenko et al. provides some guidance. For Benin,
Ghana, Honduras, and Moldova, this diagnostic suggests
results should be interpreted with caution, while for
Uganda and Zambia this diagnostic suggests efficiency re-
sults should not be trusted. While simulation studies have
found the ensemble model to provide more accurate esti-
mates of efficiency than DEA or SFA alone [35], these re-
sults will still be affected by the deficiencies of the
underlying measures, and so should also be used with cau-
tion. Another reason to doubt the opportunities for sub-
stantial efficiency gains is that intervening in inefficient
sites may itself be costly, though such intervention may be
justified to promote equity goals.
There are several aspects of immunization program

performance that were not considered in this study. The
outcome used (total children receiving DTP3) is used as
a proxy for completion of the infant immunization
schedule, yet this is only a partial measure of the value
generated by immunization programs. Achieving high

coverage of the target population is another important
programmatic goal, yet coverage measures available for
this analysis exhibited substantial measurement error. As
a consequence, even if the efficiency measures are reli-
able, they only provide partial evidence on the efficiency
of sites in generating valued outcomes, which incorpo-
rates a broader set of concerns than simply maximizing
the DTP3 per dollar. More concretely, if efforts to raise
coverage increase the marginal cost of services, metrics
based on the cost per output may be a poor gauge of
how efficiently sites are pursing programmatic objec-
tives. Structuring program incentives around such a
metric might produce undesirable outcomes, by divert-
ing focus away from broad program improvement
towards improving a relatively narrow measure of effi-
ciency. Moreover, as the methods examined in this study
focus on inter-site variation, they will largely miss sys-
tematic factors that affect all sites simultaneously, identi-
fying local rather than program-level inefficiencies even
though the latter may be more consequential.
Despite these concerns, it is possible that some form

of efficiency evaluation may play a role in program mon-
itoring as a triage test, with sites found to have low effi-
ciency scores marked for more intense scrutiny based on
a wider set of information than the inputs and outputs
considered by efficiency analysis. Conversely, sites with

Table 2 Mean efficiency scores calculated with different inputs and outputsa

Outcome Benin Ghana Honduras Moldova Uganda Zambia

Input = services delivery costs, outputs = DTP3 delivered (main analysis)

DEA efficiency 0.58 0.40 0.44 0.40 0.47 0.46

SFA efficiency 0.63 0.43 0.49 0.69 – –

Ensemble efficiency 0.61 0.41 0.46 0.54 – –

Lambda 1.44 2.18 1.54 1.02 0.00 0.00

Input = total immunization costs, outputs = DTP3 delivered

DEA efficiency 0.73 (0.73) 0.48 (0.92) 0.56 (0.94) 0.45 (1.00) 0.63 (0.95) 0.55 (0.96)

SFA efficiency 0.71 (0.72) 0.43 (0.94) 0.59 (0.93) 0.68 (0.99) 0.63 (−-) -- (−-)

Ensemble efficiency 0.72 (0.69) 0.46 (0.94) 0.58 (0.95) 0.57 (1.00) 0.63 (−-) -- (−-)

Lambda 3.33 4.43 2.70 1.25 3.56 0.00

Input = services delivery costs, outputs = doses delivered

DEA efficiency 0.60 (0.96) 0.38 (0.97) 0.44 (0.94) 0.39 (0.91) 0.47 (0.93) 0.46 (1.00)

SFA efficiency 0.58 (0.93) 0.42 (0.82) 0.61 (0.93) -- (−-) -- (−-) -- (−-)

Ensemble efficiency 0.59 (0.96) 0.40 (0.93) 0.53 (0.94) -- (−-) -- (−-) -- (−-)

Lambda 3.07 2.16 0.91 0.00 0.00 0.00

Input = total immunization costs, outputs = doses delivered

DEA efficiency 0.74 (0.71) 0.50 (0.90) 0.53 (0.84) 0.45 (0.91) 0.58 (0.91) 0.55 (0.98)

SFA efficiency 0.76 (0.62) 0.41 (0.77) 0.64 (0.82) -- (−-) 0.66 (−-) -- (−-)

Ensemble efficiency 0.75 (0.65) 0.46 (0.89) 0.59 (0.85) -- (−-) 0.62 (−-) -- (−-)

Lambda 3.46 7.1 2.17 0.00 2.18 0.00
aResults for each approach (DEA, SFA, ensemble) represent mean values for each country, adjusted for survey weighting. Values in parentheses represent rank
correlation of efficiency scores with values obtained for the same estimator in the main analysis. Lambda represents the diagnostic proposed by Badunenko et al.
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high efficiency scores might be studied to see whether
they had successful management practices that could be
adopted by other sites. For efficiency evaluation to have
a role in routine program management it is inadequate
to have information for a small sample of sites, and
methods would need to be designed to work with the
limited data routinely collected for all sites through
existing reporting systems. The technical sophistication
required to apply modern DEA and SFA methods might
be a barrier to their use in this application, yet simpler
methods might well suffice. In the 4 countries for which
we were able to calculate the ensemble estimator we
found a high level of agreement with a metric based on
the residuals of a simple production function estimated
with OLS, and this kind of simple metric might be suffi-
cient to identify sites for further investigation. Identify-
ing routinely reported data that adequately describe site
inputs and outputs—sufficient to implement a basic effi-
ciency analysis—could be more challenging, and this is a
subject that warrants further investigation.

Conclusions
This study applied standard efficiency estimation tech-
niques to a large, multi-country dataset of routine infant
immunization sites. Site-level results differed between these
approaches, but all suggested substantial inefficiency within
the sample of sites in each country. However, practical op-
portunities for efficiency gains are likely to be smaller than
suggested by these results, with some of the apparent ineffi-
ciency reflecting measurement error, or unmodifiable dif-
ferences in the operating environment, such as site location
or health system structure. Adapted to work with routine
reporting data and simplified methods, efficiency analysis
could be used as an initial triage step to identify concerning
differences between sites, which could be investigated
though more in-depth investigation.
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