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Abstract 

This paper investigates market-based decarbonization, driven by carbon pricing, and under different 

regulatory settings. These consist of a conventional energy-only market (EOM), an EOM with operating 

reserve demand curve (ORDC) and a capacity market (CM). 

We find that contrary to previous research findings, all markets produce conclusive market outcomes 

in all stages of decarbonization, as flexible technologies create market signals that ensure the 

economic viability of renewables. This is relevant for systems that rely on carbon pricing, but also for 

those relying on out-of-the-market measures to deploy renewables, as it implies that markets can be 

deregulated again later if carbon prices are sufficiently high.  

All three regulatory scenarios further achieve close-to-optimal market outcomes, if they are calibrated 

well. The outcome in CMs, however, is especially prone to suboptimal configurations, relying on 

several design parameters, which are commonly deducted from weather data and system projections. 

Varying only one of these parameters induced large changes in the observed generation mix. ORDCs 

provided more stable results, even if the input parameters differed strongly from optimal values. We 

therefore recommend to rely on ORDCs to maintain resource adequacy, as they appear to produce 

lower costs and interfere less with the general market dynamics than CMs.  
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1 Introduction 

Power systems around the world are currently undergoing a transformational process to lower the 

carbon intensity of their system, shifting away from fossil fuels and towards renewable energies. Wind 

power and solar photovoltaics (PV) are the dominant sources, because of their low costs. This 

transformation marks a paradigm change, which goes beyond simply replacing carbon intensive fuels 

with climate neutral ones. Variable renewable electricity (VRE) generators are “fueled” by the sun and 

the wind. For VRE production, no fuel cost incurs. Nor are they able to store their primary energy and 

use it in times when electricity production is most profitable.  

The system is transformed, shifting away from power plants which can operate on demand towards 

large shares of generation capacities which rely on favorable weather conditions. At the same time, 

VRE is produced at (near) zero marginal cost and therefore leads to price drops whenever supply is 

high, replacing more costly dispatchable generation in the mix (Cludius et al., 2014; de Lagarde and 

Lantz, 2018; Luňáčková et al., 2017).  

Up to date, VRE deployment has mostly been steered through out-of-the-market (OOM) mechanisms 

that aim at fostering investment. Initially, these instruments were targeted at getting VRE “off the 

ground”, with governments playing a crucial role in increasing and speeding up the deployment of VRE 

(IPCC, 2011). Reliable support policies, such as feed-in tariffs or tax credits, were necessary to drive 

research and development of VRE, thereby reducing their costs and increasing their competitiveness 

(IEA, 2011). Due to these mechanisms, several power systems have already achieved a high share of 

VRE in the grid. In Denmark and South Australia, VRE have exceeded all other electricity sources in 

terms of electricity production (Department of the Environment and Energy, 2019; JRC, 2018). 

Denmark and Austria further aim at 100% fossil-free electricity systems by 2030, while Germany aims 

for the same target by 2035 (Federal Ministry of Economic Affairs and Climate Action of Germany, 

2023; Government of Austria, 2023; Ministry of Foreign Affairs of Denmark, 2023). 
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Concerns about the efficiency of deploying VRE through OOM mechanisms have been raised before. 

(Hogan and Pope, 2017) established that renewable tax credits led to inefficiencies in the ERCOT 

system, while (Coester et al., 2018) found that OOM VRE expansion reduces supply security in an 

energy-only market (EOM), due to the downwards pressure on prices that VRE assert. In Europe, 

concerns for the reliability of the system in the long run are boosted by large parts of the existing coal 

fleet retiring, due to coal phase-out plans of national governments and low economic profitability as a 

result of high EU ETS prices (Redl et al., 2020). But concerns go even further: Some question whether 

a power market can effectively function in a system which is primarily dominated by VRE (Blazquez et 

al., 2018; Djørup et al., 2018). As a response to such concerns, several European governments have 

implemented capacity remuneration mechanisms, now effectively also subsidizing conventional 

generators in addition to VRE (Bublitz et al., 2019). This could, in turn, undo the liberalization of the 

electricity market, or as (Joskow, 2019) put it: “It is a slippery slope where subsidies and special 

contracts lead to more subsidies and more special contracts guided by centralized resource planning 

rather than decentralized market incentives”.  

1.1 Scarcity pricing 

Two different approaches have crystalized in recent years to achieve and maintain resource adequacy: 

Incentivizing the necessary investments in generation capacities through meaningful scarcity prices or 

through capacity remuneration mechanisms, such as capacity markets (CMs) (Milligan et al., 2016).  

Most power systems have set a maximum price, which is raised whenever load shedding occurs. In 

EOMs, this price can be based on an estimate of the average value of lost load (VOLL), which aims at 

finding the most economical solution to the generation adequacy problem (Cramton et al., 2013a). The 

higher the scarcity price is, the more generation can be profitable, leading to lower occurrences of load 

shedding events (Stoft, 2002).  

Several power systems – such as ERCOT, PJM, the UK and Mexico – have furthermore enhanced the 

effect of scarcity pricing by implementing a demand curve for operating reserves (ORDC) (Bajo-
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Buenestado, 2021; ERCOT, 2013; Hogan and Pope, 2019; Ofgem, 2018). (Hogan, 2013) first proposed 

to price operating reserves at the value of avoided load shedding, calculated based on the loss of load 

probability (LOLP) – the probability that balancing reserve demand exceeds the available reserves –

and the VOLL. The ORDC price adder for one reserve type can be calculated as follows (Papavasiliou et 

al., 2021): 

𝑝ℎ
𝑂𝑅𝐷𝐶  =  𝐿𝑂𝐿𝑃ℎ ∙ (𝑉𝑂𝐿𝐿 − 𝜆ℎ) (1) 

With 𝜆ℎ as the spot market clearing price and 𝑝ℎ
𝑂𝑅𝐷𝐶 as the price adder. The LOLP is constructed 

probabilistically using a cumulative distribution function (cdf), with the help of a mean 𝜇 and standard 

deviation (STD) 𝜎 that describe past imbalances that occurred after the spot market cleared:  

𝐿𝑂𝐿𝑃ℎ =  1 − 𝑐𝑑𝑓(𝑅𝑡𝑜𝑡,ℎ − 𝑅min, 𝜇, 𝜎) (2) 

With 𝑅𝑡𝑜𝑡,ℎ being the total amount of available reserve capacity, and 𝑅min being the reserve 

contingency limit, i.e. the minimum amount of reserve capacity withheld. Data on historical balancing 

activation can be a suitable proxy to determine 𝜇 and 𝜎 (Papavasiliou and Smeers, 2017). 

This price signal also influences the spot market, either directly, in the form of a price adder or implicitly 

through arbitrage between spot and balancing market (ERCOT, 2014; Hogan, 2013; Ofgem, 2018; 

Papavasiliou and Smeers, 2017). Scarcity prices therefore do not only occur when electricity demand 

exceeds supply, but already when the operating reserves available for balancing services begin to run 

out.  

1.2 Capacity markets 

Instead of relying on rarely occurring scarcity-pricing events, the regulator can pay the revenue 

otherwise generated during these events as a capacity premium1. This payment is usually designed as 

a monthly payment, and decreases the risk of investing in generation assets through generating more 

                                                           
1 For example: if there is an average of four load shedding events, during which a VOLL of 10,000 EUR/MWh sets 
the price, the scarcity revenue for plants which are available at full capacity during these hours would equal 
40,000 EUR/MW. The system operator could then decide to pay 40,000 EUR/MW to all providers of firm capacity 
and in turn introduce a price cap far below 10,000 EUR/MWh.  
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foreseeable income streams (Cramton et al., 2013a). The regulator sets a reliability target in terms of 

a loss-of-load expectation (LOLE). Based on the LOLE and the expected peak demand, a capacity 

requirement can be derived. Often, an auction – the CM – determines the recipients of the capacity 

payment, based on who can provide the amount of capacity at lowest cost. VRE generators and storage 

can participate, but are usually de-rated by their capacity credit, which aims to represent the amount 

of firm capacity the respective plant can provide (Byers et al., 2018). The calculation of the capacity 

credit is subject to sections 3.2.3.1 and 3.2.3.2.  

1.3 Objective  

In this paper, we continue the work presented in (Thomaßen et al., 2022), in which we found that there 

are no barriers to decarbonizing power systems through price signals produced by an EOM. While the 

previous analysis relied largely on evidence collected from the scientific literature, the work presented 

here underpins this analysis with the help of electricity market modelling. As many power systems 

have implemented specific policies to increase the security of supply in their system, we will further 

investigate the interactions with both ORDCs and CMs. For this, we assess their impact on the market 

equilibrium under optimal and suboptimal calibration. 

The remainder of this paper is structured as follows: In section 2, we discuss the relevant literature 

and further outline the contribution of this paper to the scientific discussion. Section 3 describes the 

general modeling approach for the different market designs. In section 4, the results are presented 

and discussed, while section 5 concludes. 

2 Previous works and unique contribution 

The concerns about whether the electricity market with high VRE shares can function have been 

addressed mostly qualitatively (Blazquez et al., 2018; Evans, 2017). While (Blazquez et al., 2018) argue 

that EOMs cannot function with high shares of VRE, due to the need of a conventional plant setting 

the price for them to run a profit, (Evans, 2017) argues that these systems can function for as long as 

sufficient amounts of storage are available in the system. The only quantitative analysis known to us is 
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(Djørup et al., 2018), who modeled dispatch and prices for the Danish power system in a highly 

decarbonized scenario. They concluded that especially renewable generators were not able to recover 

their fixed costs. They used an exogenously determined capacity mix, and introduced neither a carbon 

price nor an administrated scarcity price in the power market, raising the question whether these 

circumstances are the cause for the low profitability of the installed capacities. This is supported by 

(Brown and Reichenberg, 2021) who showed that a decline in the market value of VRE technologies 

can be avoided by a reliance on carbon pricing.  

Questions about the right market design for reliability and resource adequacy have been widely 

discussed in the literature, yet primarily with a focus on supply security, not with regard to the 

interactions with decarbonization policies (Cramton et al., 2013b; Götz, 2018; Höschle et al., 2017; 

Khan et al., 2018; Petitet et al., 2017; Weiss et al., 2017).  

CMs, is often argued, are difficult to calibrate correctly, due to the necessity of forecasting the future 

capacity demand, and are therefore prone to under- or overinvestment (Hogan, 2013; Yaffe and Tabak, 

2018).  (Levin and Botterud, 2015) showed further that the introduction of a capacity market led to a 

decrease in revenue for all generators not participating in the mechanism. Capacity markets were 

furthermore identified to disfavor VRE (Mays et al., 2019) or storage investments (Askeland et al., 

2019). This appears to be in contrast to (Höschle et al., 2017), who found that VRE targets can even be 

achieved at lower costs if a CM is implemented, and (Coester et al., 2018), who concluded similarly 

with regard to decarbonization targets. 

The scientific literature on scarcity pricing through an ORDC is much less comprehensive. Several case 

studies found that ORDCs mitigated the missing money issue for dispatchable generation (Liu et al., 

2018; Papavasiliou and Smeers, 2017). (Levin and Botterud, 2015) further found that they could 

achieve a level of supply security similar to a CM. This is in line with (Papavasiliou et al., 2021), who 

investigated the European system’s reliability under different market design settings, including partial 

and full roll-out scenarios for CMs and/or ORDCs. They concluded that ORDCs were a no-regret option, 
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as their price increasing effect vanishes, when capacity is abundantly available. In a sense, the study 

presented here can be seen as a follow up to their analysis, as they investigated transformation 

pathways with a focus on how reliability policies affected the viability of flexible resources. This 

analysis goes one step further, investigating the impact of these policies on decarbonization, i.e. the 

viability of VRE investment and the amount ultimately integrated into the grid. A first indication was 

presented in (Thomaßen and Bruckner, 2024), which concluded that ORDCs can be safeguard the 

security of supply during the energy transition without reducing market-based investments in VRE. The 

case study, howver, featured only two VRE technologies, as well as two dispatchable ones, and 

therefore neglected the impact of flexibility, for example through electricity storage. The results 

presented in this case study suggest that flexibility is vital to understand the drivers behind market-

based VRE investment and, ultimately, the amount of energy integrated into the grid.  

We identified several gaps in the existing literature: So far, there is no analysis of far reaching 

decarbonization that is achieved through a market-based approach, which includes all relevant 

technology clusters, i.e. VRE, flexibility and dispatchable generation. To convey a broad picture, we 

portray the whole transformation process: From a power system primarily based on coal to one, in 

which more than 95% of electricity demand is satisfied by VRE generation. Analyses that argue against 

the functionality of the market are either of a qualitative nature, or analyze exogenously determined 

scenarios on their plausibility. In contrast to this, we focus on the long-term market equilibrium, i.e. 

an endogenously determined state in which all technologies recover their fixed and operating costs, 

while no additional investment would be profitable.  

A VRE share of 100% is not reached, as we purposefully do not consider zero-carbon dispatchable 

solutions in our stylized model. This decision was made to contrast VRE with scarce dispatchable 

generation, the scarcity being determined by the level of the carbon price. As there are, however, 

carbon-neutral dispatchable technologies (being fueled by biomass, imported synthetic fuels or 

uranium), a decarbonized system based on 100% VRE does not appear likely. These technologies can 

be subject to different constraints, such as resource constraints or social acceptance (Thomaßen et al., 
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2022). To the extent that they are available, they will bring down abatement costs further. Limiting 

their deployment allows us, however, to investigate the implications that the paradigm shift from 

dispatchable generation to VRE and storage has for markets and market design. 

Furthermore, model-based analyses of reliability policies have almost exclusively focused on supply 

security issues and aspects of revenue sufficiency for conventional power plants, even though (Kozlova 

et al., 2023) found that renewable policies and CRMs in the EU are often in conflict with regard to their 

objectives. Only one, very stylized example deals with the effects of capacity auctions on VRE and 

storage revenues (Mays et al., 2019). The question of market design was commonly tackled in a rather 

narrow sense, contrasting EOMs and different CM designs, with only one example including an ORDC 

(Levin and Botterud, 2015).  

We address these gaps by depicting power systems, in which the investment in all technologies occurs 

based on market revenues. Going further than previous analyses, we analyze the different stages in 

which market-based decarbonization takes place and look at the interactions with policies that aim to 

maintain resource adequacy. The three regulatory scenarios include a conventional EOM, an EOM with 

ORDC (EOM+ORDC), and a CM. Our focus lies on whether these affect the way that decarbonization 

takes place, i.e. whether they affect the system’s resource mix. The EOM will serve as a reference in 

this context.  

3 Methodology 

This section elaborates the modelling approach applied in this case study. Information on the cost data 

for each technology, as well as timeseries data for load and VRE availabilities can be found in Annex A. 

3.1.1 Market design parameters 

We constructed three market-design archetypes to investigate the impact on investment and contrast 

the different outcomes with regard to their efficiency for decarbonization. Some of the parameters, 

presented in Table 1, have to be chosen, as they are usually pre-defined by the regulator.  
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Table 1: Market design specific parameters 

Market design VOLL 

[EUR/MWh] 

LOLE target 

[hours] 

EOM 10,000 Not specified 

EOM+ORDC 10,000 Not specified 

CM 1,000 3 

 

The benchmark design, to which we compare the other designs to, is an EOM with a VOLL2 of 10,000 

EUR/MWh, which is derived from the technical bidding limit at the EEX intraday market (9.999 

EUR/MWh). This design can be interpreted as a pure EOM. The only difference to the EOM+ORDC 

scenario is the implementation of the characteristic demand curve for reserves. At last, we investigate 

a CM with a fixed balancing requirement, similar to the EOM. A price cap is introduced at 1,000 

EUR/MWh, which is a common measure in capacity markets and similar to the upper price limit in most 

US markets (1,000 USD/MWh), except ERCOT (FERC, 2016). Since the significance of peak prices for 

investments in generation plants is replaced by a capacity payment, offer caps can be introduced to 

limit the exercise of market power (Fabra, 2018).  

3.2 Model 

In this section, we describe the model used to compute the market outcome under each design. The 

nomenclature used in this chapter can be seen in Table 2. Especially in cases involving an ORDC, an 

accurate representation of available balancing capacity is essential, so that the ORDC’s price effects 

are neither over- nor underestimated. We therefore rely on the capacity-commitment formulation 

presented in (Thomaßen and Bruckner, 2024), which takes into consideration the amount of capacity 

that is able to provide spinning reserves – those capacities that are committed at the respective point 

                                                           
2 In this analysis, VOLL refers to the price being raised as soon as load shedding occurs due to demand exceeding 
the available supply. 
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in time. How abundantly or scarcely these reserves are available directly influences the reserve price 

and implicitly the spot price (through arbitrage with the balancing market).  

The model is further expanded to include storage technologies, namely batteries, pumped hydro and 

hydrogen storage.  Table 2 displays the nomenclature used in this section.  

 

 

Table 2: Declaration of sets, variables and parameters 

Sets   

ℎ Hour of the year  

𝑠 Storage (subset of 𝑢)  

𝑢 Technology  

Variables and parameters   

𝐴𝐹𝑢,ℎ Availability factor MW/MW 

𝐶𝑎𝑝𝑓𝑖𝑟𝑚
𝑒𝑞

 Equivalent firm capacity MW 

𝐶𝑎𝑝𝑢
𝑖𝑛𝑠 Installed capacity MW 

𝐶𝑎𝑝𝑚𝑖𝑛 Minimum capacity requirement MW 

𝐶𝐸𝑠 Charging efficiency  

𝐶𝑟𝑢 Capacity credit MW/MW 

𝐷ℎ Demand MWh 

𝐷ℎ
𝑚𝑎𝑥 Peak demand MWh 

𝑃𝑢,ℎ Power fed to the grid MWh 

𝑆𝑠,ℎ Storage content MWh 

𝑆𝐶𝑠,ℎ Storage charging MWh 

𝑆𝐶𝑅𝑠 Storage capacity to discharging 

capacity ratio 

MWh/MW 
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3.2.1 Modelling approach for EOMs 

An in-depth description of the model is featured in (Thomaßen et al., 2022). The model depicts a 

market assuming no flexible demand, yet allowing for involuntary load shedding ordered by the system 

operator. The objective for modeling the market designs without ORDC is written as a cost 

minimization, taking into account variable generation costs, fixed costs, annuitized investment costs, 

as well as load shedding penalized at the VOLL. For markets with ORDC, a term is added to the cost 

minimization which describes the probabilistically-determined expected cost of load shedding (Levin 

and Botterud, 2015; Papavasiliou and Smeers, 2017) (compare section 1.1).  

Considering the respective shadow prices as market prices, the result is a representation of the market 

at equilibrium, as it describes a state in which the market revenue is just sufficient to cover the costs 

of each asset. We rely on a greenfield approach, therefore the market outcome describes the long-

term equilibrium. Similar approaches were used by (Tietjen et al., 2016) to model investments in the 

power market under risk, and (Levin and Botterud, 2015) when modeling the investment in 

conventional generation under different market designs. 

3.2.2 Storage  

Storage is expected to be a major component of decarbonized electricity systems (Ruhnau and Qvist, 

2022; Zerrahn and Schill, 2017). We therefore expanded the model formulation used in (Thomaßen 

and Bruckner, 2024) to allow for the inclusion of short- and medium-term storage technologies 

(batteries and pumped hydro storage), as well as long-term storage (hydrogen storage).  

Storage technologies are modeled using a capacity constraint, a storage balance and a maximum 

charging constraint, similar to the one used by (Quoilin et al., 2017). To keep things simple, we assume 

that the ratio between storage capacity and charging capacity is constant and discharge capacity 

equals charging capacity. We furthermore use one round-trip efficiency, as the relevant outputs – the 

amount of energy used for charging and discharging the storage unit – remain the same as if two 

separate efficiencies were used.  
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𝑃𝑠,ℎ ≤ 𝐶𝑎𝑝𝑠
𝑖𝑛𝑠 

𝑆𝑠,ℎ+1 ≤ 𝑆𝑠,ℎ + 𝑆𝐶𝑠,ℎ ∗ 𝐶𝐸𝑠 − 𝑃𝑠,ℎ 

𝑆𝑠,ℎ ≤ 𝐶𝑎𝑝𝑠
𝑖𝑛𝑠 ∙ 𝑆𝐶𝑅𝑠 

𝑆𝐶𝑠,ℎ ≤ 𝐶𝑎𝑝𝑠
𝑖𝑛𝑠 

(3) 

(4) 

(5) 

(6) 

3.2.3 Capacity market  

The capacity auction has been modeled as an additional constraint, which enforces a minimum 

capacity requirement. The different technologies can contribute to fulfilling the capacity requirement, 

valued at the respective capacity credit. The credit is treated as a parameter in this model, as the slope 

is usually non-linear for VRE and storage technologies.  

Σ𝑢𝐶𝑎𝑝𝑢
𝑖𝑛𝑠 ∗ 𝐶𝑟𝑢 ≥ 𝐶𝑎𝑝𝑚𝑖𝑛   (7) 

 

This formulation enforces a fixed capacity requirement. We assume a LOLE target of 3h, similar to the 

one set in Italy, Poland, France and the UK (European Commission, 2018a, 2018b). The minimum 

capacity requirement therefore equals the fourth largest system-wide load plus the capacity required 

for fulfilling the balancing reserve requirement.  

3.2.3.1 Capacity credit of VRE technologies 

The capacity credit of VRE technologies describes the amount of dispatchable generation that can be 

replaced by the respective VRE capacity, while maintaining the same adequacy level. This is being 

determined by taking into consideration the correlation between demand and the generation profile 

(Ensslin et al., 2008). It can be expressed through the difference between peak demand and peak 

residual remand, normalized to the installed capacity of the respective VRE technology: 

𝐶𝑟𝑢(𝐶𝑎𝑝𝑢
𝑖𝑛𝑠) =  

𝐷max − (𝐷ℎ − 𝐴𝐹𝑢,ℎ𝐶𝑎𝑝𝑢
𝑖𝑛𝑠)

𝑚𝑎𝑥

𝐶𝑎𝑝𝑢
𝑖𝑛𝑠

 
(8) 

For this estimation, we consider 20 weather years. This way, a wide range of correlations between 

resource availability and electricity demand is reflected. Increasing the number of years therefore 
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increases the robustness of the estimated capacity value. On the other hand, it also decreases the 

capacity value itself, especially at small installed capacities. As more years are considered, it is more 

likely that one of them includes the coincidence of high demand with (very) low availability. Figure 1 

displays this correlation, as well as the capacity credits for onshore and offshore wind. For solar PV, 

the credit was zero throughout the whole capacity range, as no solar generation was registered during 

the hour of peak electricity demand. 

The capacity credit for onshore (WTON) and offshore (WTOF) wind remains stable for as long as the 

residual peak remains at the same hour as the total peak. During this period, the credit of VRE 

technologies is equal to the availability during that hour since each additional MW reduces the peak 

by 1 MW multiplied with the respective availability. At some point, however, the residual peak starts 

moving to hours with a lower availability: The residual load in this timeframe is reduced less by 

additional VRE capacity than the initial residual peak. The capacity credit therefore approaches the 

lowest hourly availability within the time-series with increasing amounts of installed capacity, as the 

residual demand during this interval is reduced the least by additional capacity. 

  

Figure 1: Capacity credit of onshore and offshore wind in Germany considering 20 weather years (left), as well as impact of 
the number of weather years selected in the calculation process (right).  

The capacity credit function is non-linear and non-convex. To avoid approximating the function 

through a set of piecewise-linear constraints – which would change the problem from a linear to a 

mixed-integer problem – an iterative approach was used: First, a capacity market is modeled, using a 

first guess for the capacity credits. Based on the resulting capacities, the credit is recalculated using 
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the curves presented above. In case that the capacity credit deviated from the initial guess, this step 

is repeated until the capacity credits for all technologies converged. 

3.2.3.2 Capacity credit of storage technologies 

We selected an equivalent firm capacity (EFC) approach to assess the capacity credit of storage 

technologies, as applied in the UK CM (Burke, 2017). The approach aims to determine how much 

perfectly reliable capacity is needed to replace a certain level of storage capacity while maintaining the 

same level of reliability. This capacity credit can be calculated as:  

𝐶𝑟𝑠(𝐶𝑎𝑝𝑠
𝑖𝑛𝑠 ) =

𝐶𝑎𝑝𝑠
𝑖𝑛𝑠

𝐶𝑎𝑝𝑓𝑖𝑟𝑚
𝑒𝑞

(𝐶𝑎𝑝𝑠
𝑖𝑛𝑠)

   
(9) 

The calculation of storage capacity credits is subject to Appendix B. Based on the results, we concluded 

that hydrogen storage – due to its long storage durations – functions basically as a perfect substitute 

for firm capacity. The contribution of batteries was found to be independent of the carbon price, and 

only dependent on the capacity level of batteries. This indicates that it does not make a difference for 

their contribution to reliability how the battery is being charged – using gas-fired generation or using 

VRE.  

4 Results and discussion 

In this section, we first present the results for the reference case – the EOM. Then, we evaluate the 

impact of different reliability policies, an ORDC as well as a CM, on the market equilibrium. This 

evaluation includes an assessment of well-calibrated policies, as well as cases where those policies 

have been calibrated inaccurately, i.e. where we applied a wrong design parameter on purpose. Our 

focus lies primarily on how these decisions affect the resource mix, and therefore how robust the 

general market outcome under each policy is.  

4.1 System transformation in the EOM 

Figure 2 shows the development of the VRE share in the electricity mix as well as the carbon intensity 

over the full set of carbon prices. One can distinguish several phases: During the first phase, which 
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covers the range from 0 to 40 EUR/tCO2, a fuel switch is triggered by the increasing cost of emitting 

carbon. The system transforms from a lignite-based system, with some gas peakers, to a completely 

gas-based system at 40 EUR/tCO2, as shown in Figure 3. Only little VRE investment occurs towards the 

end of the phase. At the same time, this phase accounts for roughly 65% of the total emissions 

reduction3. This indicates the significance of phasing out coal for climate protection efforts, even if 

only replaced with a fuel of a lower carbon footprint.   

The range from 40 – 300 EUR/tCO2 can be described as the transformation phase. In this price range, 

large-scale VRE investment enters the market, changing the structure of the system from primarily 

based on dispatchable generation to a system which is based on VRE generation and storage. The 

transformation is driven by increased contribution margins for VRE and storage, which are generated 

when carbon-intensive power plants are dispatched, due to the high carbon price. As both, VRE and 

storage, are imperfect substitutes for dispatchable generation, the transformation does not occur as 

suddenly as the coal-to-gas switch. Instead, two adverse effects are at play which reach a new 

equilibrium with every increase of the carbon price: The carbon price increases the profitability of VRE. 

Additional VRE investment, however, reduces the number of hours during which the carbon price is 

relevant, i.e. when a carbon-intensive power plant is setting the price.  

The role of dispatchables shifts to providing ancillary services and back-up/peak-time capacity during 

the transformation phase. Towards the end of said phase, the efficiency of the carbon price in driving 

additional clean investments is decreasing substantially, as the number of hours during which carbon-

intensive resources are still setting the price is very limited. The system enters a saturation phase.  

At 1000 EUR/tCO2, a system based on 96% VRE is reached. While increasing the carbon price from 0 to 

300 EUR/tCO2 induces a VRE share of 83% in the electricity mix, an additional increase by 700 EUR/tCO2 

delivers only additional 13%. Only investment in hydrogen storage remains more dynamic, starting at 

the end of the transformation phase and continuously displacing dispatchable generation throughout 

                                                           
3 Considering a lignite-based system as the starting point and an almost fully decarbonized system as the target. 
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the saturation phase. Most of the results will therefore focus on the transformation phase and the 

early saturation phase, as the changes later on are much smaller.  

It is further noticeable that a constant level of capacity from technologies remains throughout the 

whole transition process that can provide capacity at least somewhat on demand – dispatchable and 

storage. The capacity level of these combined remains between 85 and 110 GW. 

 

Figure 2: Renewable electricity share at market equilibrium, as well as carbon intensity of the electricity mix at different CO2 
prices. 
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Figure 3: Capacity development in the EOM at long-term market equilibrium with different CO2-prices.  No capacities for 
hard coal, run-of-river and pumped hydro shown, as no investment in these technologies occurred. Technologies: battery 

storage (BATS), combined-cycle gas turbines (COMC), open-cycle gas turbines (GAST), pumped hydro storage (HPHS), hard 
coal (HRD), run of river (HROR), hydrogen storage (HYDR), lignite (LIG), solar PV (PHOT), onshore (WTON) and offshore 

(WTOF) wind. 

 

4.2 Impact of well-calibrated reliability policies 

Figure 4 shows the investment in VRE and storage in the different regulatory scenarios and under 

different CO2-prices, while Figure 5 displays the VRE share, as well as the level of curtailment that 

occurs. The VRE share describes the complement to the share of load satisfied by fossil energy sources 

and therefore takes VRE generation into account, which is temporarily stored and fed back to the grid 

later, while considering all losses that occur during that process. It was calculated as 1 −
𝐺𝑓𝑜𝑠𝑠𝑖𝑙.𝑡𝑜𝑡

𝐿𝑡𝑜𝑡
, with 

the total generation from fossil-fuel-driven power plants 𝐺𝑓𝑜𝑠𝑠𝑖𝑙.𝑡𝑜𝑡 and the total load 𝐿𝑡𝑜𝑡 .  

As we can see, all markets achieve similar investment in storage. While EOMs achieve a higher level of 

storage deployment at carbon prices below 100 EUR/tCO2, the CM achieves more deployment when 

CO2 prices reach 250 EUR/tCO2 or higher. These differences do not appear to be significant, and might 
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change with a slightly different calibration – for example of the capacity credits, as investigated in 

section 4.3.1.  

One can further note a clear relationship between storage investment, curtailment and – ultimately – 

VRE investment. Additional storage does not only reduce curtailment, by integrating more of the 

available VRE generation into the grid. It further generates additional incentives for VRE, leading to 

additional deployment. Hence, we see higher VRE shares and lower curtailment in EOMs when storage 

deployment is higher (below 100 EUR/tCO2) than in the CM. Once storage investment occurs more in 

the CM, this reverses. At this stage, storage appears to become more competitive in the CM, as carbon 

intensive dispatchable generation gets more expensive. The capacity credit appears to be favorable 

for storage investments as well at this stage, resulting in a beneficial capacity payment. These 

conditions lower the entry barrier, as less revenue has to be generated through arbitrage.  

 

  

Figure 4: Investment in VRE and storage in the CM (left) and with an ORDC implemented (right). Selected CO2-prices are 
indicated through black lines and markers. 

The relationship between storage and VRE deployment reflects the additional demand for low-cost 

electricity that is connected with storage deployment. In hours in which VRE supply is insufficient to 

satisfy the entire demand for storage charging, the competition for this scarce VRE supply is then 
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driving up prices. This allows VRE generation to generate additional margins that improve their market 

value and lead to additional market-based investment.  

 

Figure 5: Relationship between curtailment and VRE share under different market rules and at different carbon prices. 
Curtailment is given as the amount of VRE production which was curtailed. The VRE share is defined as the amount of load, 

which was satisfied by VRE, directly and indirectly through temporarily storing the energy in storage units. 

Figure 6 shows the development of power prices and the effect of the different market designs on it4. 

At 200 EUR/tCO2, the electricity price reaches 101 EUR/MWh, which fits well with the findings of 

(Scheller et al., 2019) who estimated a price between 95 and 125 EUR/MWh for the same carbon price 

in a 2030 scenario for Germany. 

                                                           
4 The average power prices were calculated with respect to all payments in the spot, the balancing and the CM 
(if implemented), and can therefore be interpreted as the average cost of providing electricity to the consumer. 
In this case study, we are not considering grid charges and other levies and taxes that might still apply.  
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Figure 6: Development of electricity prices under an EOM design (left) and price difference between the other market 
designs compared to EOM (right). 

The largest price increase does not result from the choice of market design, but rather from reducing 

the carbon footprint. Furthermore, the steepest price increase, from 38 to 69 EUR/MWh occurs in the 

fuel-switch phase, due to gas plants replacing coal, without any VRE deployment. During the complete 

transformation phase, power prices rise another 39 EUR/MWh. The coal-to-gas switch is therefore 

almost as expensive to the end consumer as the transformation of the power system to a VRE share 

of 82%. At 1000 EUR/tCO2, power prices in the EOM are reaching 128 EUR/MWh at a VRE share of 96%. 

Power prices in the CM are higher than those in the EOMs: The observed price increase due to the 

implementation of a CM is up to 1.77 EUR/MWh, while there are no substantial price increases due to 

the implementation of an ORDC. It hints that the CM incentivizes additional capacity in the system, 

which is mainly financed through the capacity payment. This is further confirmed by the fact that the 

CM clearing price5 remains at the cost of new entry above 100 EUR/tCO2 which indicates that the 

marginal unit of capacity is purely financed through the capacity payment. It could indicate an 

undervaluation of the reliability provided by storage capacity, as this is the point when storage enters 

the system.  

                                                           
5 The shadow price of the capacity market constraint (see section 3.2.3). 
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4.3 Impact of suboptimal calibration of reliability policies 

In this sensitivity analysis, we investigate the impact of reliability policies that are imperfectly 

calibrated. Our focus lies not on the impact on reliability, which could well be substantial in both 

investigated cases. As we investigate market-based decarbonisation processes, we focus rather on 

whether wrong calibrations could have substantial implications beyond the security of supply, but on 

the overall generation mix of the system.  

4.3.1 Impact of a “wrong” capacity credit on CMs 

As the capacity credit for batteries is the only credit which evolves dynamically – while the others 

remain constant (compare Appendix C)  – we chose to perform a sensitivity analysis to assess the 

impact of selecting a wrong capacity credit for this technology. The two scenarios, one over- and one 

underestimating the credit, are described in Appendix B. The development of the battery capacity 

credit in the both scenarios, as well as the reference case, can be seen in Figure 7. 

  

Figure 7: Sensitivities for the calculation of the capacity credit of batteries 

This sensitivity is relevant, because as the capacity credit of storage cannot easily be deduced from 

primary inputs – such as the credit for VRE, which can be calculated from historic generation 
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timeseries. Instead, the EFC approach has to rely on power system modelling, which is sensitive to 

primary data inputs, as well as the scope and formulation of the model6.  

Figure 8 shows the changes in investment for both cases, compared to the reference case. We observe 

that the market outcome is highly sensitive to the capacity credit that is selected for batteries. If the 

credit is overestimated, we see much additional battery deployment. Likewise, we see more 

dispatchable capacity and hydrogen storage deployed when the credit is underestimated. This is a 

direct result of batteries being less competitive in the capacity market. In addition, more solar PV 

capacity is deployed if the credit is higher, confirming our previous observation that VRE deployment 

is directly related to the amount of investment in batteries. At the same time, wind capacity is reduced 

– only little in the transformation phase but more substantially in the saturation phase. In this phase, 

batteries replace mostly hydrogen storage. The model shifts between the combination of batteries and 

PV, as well as of wind and hydrogen storage to maintain a reliable system. 

                                                           
6 As systems are considered, which are more complex than the stylized example presented in this case study, it 
can be increasingly difficult to determine an accurate EFC. Not least because these assessments have to rely on 
uncertain projections for the electricity demand and the evolution of the capacity mix, resulting in an EFC that 
changes over the lifetime of a storage plant (Burke, 2017). Results might further vary, depending on which market 
sessions are considered. Batteries will likely perform better if, for example, balancing markets are considered, 
due to their fast response capabilities. Considering only day-ahead markets might therefore undervalue the 
actual contribution to the system’s security. 



 

24 
 

 

Figure 8: Impact of an overestimation (left) and an underestimation (right) of the capacity credit on the capacity mix at 
market equilibrium. Only results beyond 90 EUR/tCO2 are shown, as this is the point when storage deployment starts in our 

case study. 

Changes in the capacity mix translate as well to the generation mix, as can be seen in Figure 9. 

Additional battery and solar PV deployment increases the amount of VRE generation integrated into 

the grid throughout the whole transformation phase. In this phase, any reduction in onshore wind 

generation is more than offset by additional PV generation. Higher battery investment also 

incorporates more offshore wind generation into the grid on some occasions, even though investment 

remained stable as the resource potential was already exhausted. This can be attributed to lower 

curtailment rates. Likewise, a lower battery capacity credit, and lower resulting battery investment, 

increases the reliance on fossil generation from gas-fired power plants, as less investment in VRE 

generation occurs, and battery capacity is missing to integrate readily-available VRE generation into 

the grid.  

In the saturation phase, a higher battery credit does not primarily result in solar generation replacing 

gas-fired generation – as is the case in the transformation phase. They increasingly replace onshore 

wind generation in combination with hydrogen storage. This is indicated by the fact that PV generation 

increases much less than wind generation is reduced, likely due to the lower efficiency of hydrogen-
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based electricity storage, which is associated with higher energy losses. The fact that a small amount 

of additional gas-fired generation occurs when the battery credit is higher indicates that batteries 

alone are not sufficient to achieve the same reliability as the replaced hydrogen-storage capacity. 

While a higher battery credit leads to higher VRE shares throughout the transformation phase, it may 

therefore slightly reduce the VRE share in the saturation phase.   

 

Figure 9: Impact of an overestimation (left) and an underestimation (right) of the capacity credit on the generation mix at 
market equilibrium. Calculated as the difference between the generation at market equilibrium of the sensitivity minus the 

one generation of the reference run. 

4.3.2 Impact of over- and underestimating the LOLP on the EOM+ORDC 

To assess the risk of a wrongly calibrated ORDC, we chose to assess the impact of over- or 

underestimating the uncertainty in the grid, which affects the LOLP (compare section 1.1)7. As the LOLP 

is calculated with the help of past reserve availability, the ORDC’s calibration can be generally 

considered as less prone to errors compared to the CM, where capacity credits for several 

technologies, as well as the general capacity target have to be calculated based on projections of the 

system in the future.  

                                                           
7 We selected the LOLP, as we assume that the VOLL is the same as the market-specific scarcity price (the price 
cap).  
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The LOLP is usually determined through a mean and a standard deviation (STD) that describe the 

likelihood of a loss-of-load event in a certain hour if a given level of reserves is available (Equation 2). 

Taking an 𝜎 value that is too high or too small therefore allows us to model states when the uncertainty 

in the grid is either underestimated or overestimated, leading to too-low or too-high LOLP estimates. 

An underestimation could, for example, occur in a situation when a lot of new VRE capacity came on 

line in a very short time, as VRE generation increases the uncertainty in the grid, and therefore the 

LOLP (Thomaßen and Bruckner, 2024). If the LOLP parameters are not updated in time, this could result 

in an underestimated LOLP. An overestimation, on the other hand, could occur if, for example, 

forecasting of VRE production improved faster than anticipated. We therefore investigated one case 

in which the applied STD was half the actual value and one where it is twice as large. These values 

appear quite unrealistic for real world systems, as they imply that the system operator overestimates 

imbalances in the grid by 100%, or underestimated them by 50%. This appears to be highly unlikely in 

a real-world setting.  

The results show that the calculation of the LOLP does indeed affect the market equilibrium. A higher 

LOLP seems to increase the reliance on the combination of storage and VRE in transformation phase, 

while it leads to rearrangements between individual VRE and storage technologies in the saturation 

phase. Overall, the changes – compared to the sensitivity analysis conducted for the CM – are, 

however, much smaller. While changing the capacity credit of batteries regularly resulted in changed 

investment decisions that affected 20 – 30 GW of capacity (or even beyond), doubling or halving 𝜎 

results only in changed investment volumes of up to 8 GW, with most values below 5 GW.  

Given that the sensitivities investigated for the EOM+ORDC scenario imply an extreme deviation 

between observed and actual system behaviour, we conclude that ORDCs provides quite a stable 

market equilibrium.  
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Figure 10: Impact of an overestimation (left) and an underestimation (right) of the LOLP on the capacity mix at market 
equilibrium. 

 

 

Figure 11: Impact of an overestimation (left) and an underestimation (right) of the LOLP on the generation mix at market 
equilibrium. 
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4.4 Limitations to the approach 

There are several limitations to the approach chosen for this case study. The first is the fact that we 

look at the long-term market equilibrium for different stages of decarbonization. In reality, the 

decarbonisation process takes place as a constant transformation, with additional VRE and storage 

deployment occurring each year. The system is therefore not able to reach the long-term equilibrium. 

It will at best reach a short term equilibrium at which the deployment of new technologies might be 

limited, for example because incumbent plants remain more competitive. These will remain in the 

market for as long as they recover their fixed costs, therefore this short-run market equilibrium might 

be skewed towards existing plants. Deployment might further be limited due to non-financial 

constraints, such as limited availability of skilled workers or production capacities or long planning 

procedures. Further, fuel and carbon prices evolve dynamically, reaching new levels before the long-

term equilibrium can be reached.  

These dynamic conditions make it generally harder to predict in which direction electricity markets will 

evolve. While we assume perfect foresight, these circumstances can hinder investors to assess 

accurately what an investment will earn in the market. We therefore cannot assume that an 

investment will automatically be made if the associated revenues exceed a certain threshold. Investors 

will rather err in their assessments to a certain degree, investing also in technologies that turn out to 

be unprofitable or not investing as much in new technologies as would be profitable.  

The issue of limited foresight applies as well to the regulation of electricity markets, which is 

particularly relevant for the CM design. Deriving accurate capacity target to achieve a certain LOLE 

value is much harder in reality, since it involves forecasting the evolution of the system accurately. This 

relates further to the capacity credit as this credit can change throughout the lifetime of the asset 

depending, for example, on future penetration levels of the associated technology (Burke, 2017). 

Further, calculating these credits relies on historical weather data. In times of climate change, these 

patterns will change to a certain degree, which can further complicate assessing the contribution of 

VRE and storage to resource adequacy.  
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We further did not include demand response in our model. From a modelling perspective, demand 

response would behave similar to either a generator (for load shaving), or a storage unit (for load 

shifting). Some implications for demand response investments can therefore be derived from our 

results. Flexible demand might, however, further complicate determining an accurate capacity target 

in a CM, as it requires knowledge of the amount of “implicit” demand response, for example load from 

smaller consumers that are reacting to market prices – without taking part in interruptibility or other 

demand-response schemes. Not considering implicit demand response can lead to a capacity target 

that is too high, while overestimating its contribution bears the risk of setting an insufficient target.  

5 Conclusions and policy recommendations 

In this paper, we investigate how market-based decarbonization takes place, both in a conventional 

EOM, as well as in the presence of reliability policies. One focus was the question whether the EOM 

remains functional throughout a completely market-driven decarbonization process without the help 

of OOM measures that compensate potential missing-money issues, as this possibility has been 

questioned in the past (see section 2).  

Our results suggest that market-based decarbonization is feasible without OOM measures and that 

the EOM is capable of delivering conclusive market outcomes throughout the whole transformation 

process. At a carbon price of 1000 EUR/tCO2, the modeled system achieved a VRE share of 96%8. This 

is of relevance as well to systems that rely on OOM measures to deploy VRE, as it means that policy 

makers can phase out these measures at a later point, if either the carbon price is high enough to 

support the revenues of the existing VRE investments, or the system is fully decarbonized (rendering 

the carbon price meaningless). A potential strategy could focus on increasing the market values of low-

                                                           
8 The fact that we stop short of achieving a fully decarbonized system is due to omitting the carbon-neutral 
dispatchable generation in the setup of the study. This allow us to investigate the shift from a system based on 
dispatchable generation to one where the main source of electricity is VRE – without predicting the final share 
of VRE in the system. At each stage, the cost of fossil generation (including the cost of carbon) can therefore be 
seen as a proxy for the equivalent cost of carbon-neutral dispatchable generation to achieve full decarbonization. 
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carbon resources by strengthening the carbon price until OOM measures become unnecessary, letting 

auction clearing prices drop to zero, as proposed in (Thomaßen et al., 2022). 

We observe that the transformation process takes place in three phases: The first phase is the coal-to-

gas-switch. In our case study, this phase is responsible for 65% of the carbon reduction9. This highlights 

the importance of coal phase outs for carbon-reduction efforts. At 40 EUR/tCO2, the coal-to-gas switch 

is concluded and the second phase of the transition starts, with VRE starting to enter the system. 

Throughout this transformation phase, the system transforms from one based on dispatchable 

generation to one based largely on VRE and storage. Large-scale market-based deployment of storage 

technologies starts to occur at carbon prices beyond 90 EUR/tCO2, as the VRE-gas spread is large 

enough to allow for sufficient arbitrage opportunities. Beyond carbon prices of 300 EUR/tCO2 and a 

VRE share of 83%, the carbon price’s efficiency in driving further decarbonization was much reduced. 

An additional increase of 700 EUR/tCO2 was needed to increase the VRE share by another 13%. In this 

context, the cost of fossil dispatchable generation can be seen as a proxy for what cost carbon neutral 

dispatchable generation would need to achieve for another fuel switch. This fuel switch would then 

conclude the decarbonization process. It is likely that this switch would occur in the saturation phase 

at the latest, as the cost of fossil-driven generation is extremely high due to the high carbon prices. If 

this switch should not materialize, other policies could be better suited to complete the transformation 

in the saturation phase, such as potentially bans on remaining carbon-intensive technologies.   

For as long as reliability policies, i.e. ORDCs and CMs, are calibrated well, we find that they have little 

effect on the general generation mix, which indicates that they can achieve decarbonization as 

efficiently as an EOM10. The CM resulted in up to 1.77 EUR/MWh higher costs, than EOM and 

EOM+ORDC, which achieved very similar costs for the provision of electricity.  

                                                           
9 Taking a lignite-based system as the starting point and a fully decarbonized system as the end. 
10 We rely on a cost minimization approach, where the EOM model is the base model, to which additional 
constraints have been added for the EOM+ORDC scenario and the CM scenario. Therefore, the transformation 
in the two latter scenarios can only be as efficient, but not more efficient than the transformation in the EOM, 
since the additional constraints further limit the solution space.  
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Under suboptimal parametrization, however, we find that CMs achieve less stable market outcomes 

than ORDCs. Varying only one of several design parameters – the capacity credit of batteries – had a 

large impact on the generation mix, and affected the carbon footprint. Throughout the transformation 

phase, a higher credit lead to additional deployment of batteries, but also of VRE as the additional 

batteries increase the demand for low cost electricity. A lower credit, on the other hand, increased the 

reliance on fossil generation, as dispatchable technologies were more competitive. We found that 

changed investment decisions affected 20 – 30 GW of capacity for several sensitivities in the CM, while 

most shifts remained below 5 GW in the sensitivities assessed for the EOM+ORDC case.  

This instability with regard to the CM is concerning, given that CMs rely on a multitude of design 

parameters, such as the general capacity target, as well as capacity credits for each storage and VRE 

technology. The capacity credits appear especially prone to errors, as, for example, the number of 

weather years considered in the calculation process can have a large impact on the credit itself 

(compare section 3.2.3.1 and Figure 1). Similarly, the storage credit has to rely on modeling exercises, 

which are affected by the data used to parametrize the model, as well as the scope11 and the 

formulation of the model. Other parameters, such as the capacity target, are derived from projections 

on how electricity demand and generation mix might evolve. These circumstances might further 

provide a basis for extensive lobbying, as profitability in the market might is directly connected to how 

the capacity credit of one’s project is being calculated. 

The parametrization process of ORDCs is much more straightforward, as it relies on historical data of 

system imbalances. For as long as the system evolves without extreme disruptions, ORDC parameters 

will remain well representative of its state, if they are continuously updated12. Yet even under these 

extreme disruptions, the general market outcome proved to be more stable. This indicates that 

investors can predict an EOM with ORDC better, as competition between the different technologies is 

                                                           
11 For example which market sessions are considered in the modelling exercise.  
12 Massive VRE capacities going on line all at once could be an event that suddenly increases the uncertainty in 
the grid, as VRE generation is a source of imbalances. Likewise, a sudden breakthrough in forecasting methods 
could potentially decrease uncertainty.  
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less affected by the instrument and its concrete design. In addition, the associated price increase was 

lower in the EOM+ORDC than the one associated with the CM, while CM clearing prices suggested the 

presence of some overcapacities as soon as batteries entered the system. Previous work has further 

shown that ORDCs can be calibrated to achieve any level of reliability, even in high VRE systems, 

meaning that they can fulfill the same purpose as a CM (Thomaßen and Bruckner, 2024). We therefore 

recommend relying on ORDCs to maintain resource adequacy in low-carbon electricity systems, and 

systems in transition towards low-carbon electricity sources.  
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Annex A – Data  

5.1 Timeseries data 

We use load and weather data from Germany to conduct the model runs (Pfenninger and Staffell, 

2016; Staffell and Pfenninger, 2016). A full year is modeled at hourly resolution, as a time-series 

reduction could distort the impact of scarcity-pricing events, which rarely occur.  

5.2 Costs 

Table 3 displays the specific parameters for each fuel considered. The specific CO2 emissions per fuel 

were taken from (Umweltbundesamt, 2016). Table 4 presents the assumed costs for the different 

technologies. Since most power systems will likely undergo the transformation process over a time-

span of at least 15-20 years, we assumed 2030 costs, based on (Brown et al., 2018a; Schröder et al., 

2013). All investment are undertaken based on annuitized investment costs. We assume a discount 

rate of 4%, a lifetime of 20 years for all technologies and an 85% availability for dispatchable power 

plants and hydrogen storage. To reflect resource limitations, capacity investment cannot exceed 4 GW 

for run-of-river plants and 9 GW for pumped-hydro. The limit for offshore wind was set to 50 GW. No 

other limits were imposed, as we assume that the investment in solar PV and onshore wind stays below 

technical resource limits. 

Table 3: Specific cost and emissions for fossil generators. 

 
Fuel costs 

[EUR/MWh] 
Emission intensity 

[tCO2/MWhth] 

Gas 21.6 0.19 
Lignite 4.0 0.36 

Hard coal 10.3 0.34 
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Table 4:  Technology specific costs and parameters based on (Brown et al., 2018a; Schröder et al., 2013), if not indicated 
differently 

Abbreviation Technology 
Overnight 

capital 
cost 

Fixed O&M Variable O&M 
Power 

Production 
Efficiency 

Charging 
efficiency 

 - [EUR/MW] [EUR/MW/a] [EUR/MWh/a] -  

WTON Onshore wind 1,182,000 35,000 0 100% - 

WTOF Offshore wind 2,506,000 40,000 0 100% - 

PHOT Solar PV 600,000 25,000 0 100% - 

HPHS 
Pumped 

hydro storage 
2,000,000 20,000 0 80% 80% 

HROR Run-of-river 3,000,000 60,000 0 90% - 

GAST 
Open cycle 
gas turbine 

400,000 15,000 3 39% - 

COMC 
Combined 
cycle gas 
turbine 

800,000 20,000 2 55% - 

LIGT Lignite plant 1,500,000 37,000 2.6 38% - 

HRDT 
Hard coal 

plant 
1,200,000 30,000 2 43% - 

BATS 
Battery 
storage 

800,000 12,000 0 90% 90% 

HYDR13 
Hydrogen 

storage 
1,555,749 20,000 0 58% 70% 

 

Annex B – Calculation of the equivalent firm capacity 

We determined the EFC for each storage technology, investment level and carbon price by running a 

capacity optimization based on the results of the EOM runs. The levels of VRE generation are fixed to 

                                                           
13 Hydrogen-storage costs are based on the costs for electrolysis, fuel cell and storage in steel tanks for 50 hours. 
The ratio between electrolyser and fuel-cell capacity has been selected in a way that if both components were 
to operate at full capacity, the process would be stationary, meaning hydrogen produced through electrolysis 
would equal hydrogen consumption by the fuel cell. The cost of electrolyser capacity has been based on the 
lowest cost estimate achieved today (IRENA, 2019), while the costs for fuel-cell and storage capacity have been 
taken from (Brown et al., 2018b). 
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the investment level seen in the EOM run. Only one storage technology is added to the model – the 

one for which the capacity credit is being calculated.  

In addition, there is one perfectly reliable dispatchable technology added to the model which serves 

as the basis for the calculation of the EFC. This technology is based on an OCGT, yet has a much higher 

investment cost, as to avoid deployment based on economic considerations. To ensure that the same 

reliability level is achieved in each run, we selected perfect reliability, and therefore did not include an 

option to shed load.  

The model then determines only investment in perfectly reliable capacity endogenously, while all 

storage and VRE capacities are predetermined based on the EOM runs. The capacity of the respective 

storage technology is then incrementally increased, solving the model for each capacity level. The 

decrease in investment in perfectly reliable capacity that occurs at each of these steps determines the 

EFC. 

The resulting capacity credit curve for batteries can be seen in Figure 12. For storage capacity values 

lower than 5GW, we use 0.816 as the capacity credit. The capacity credit for larger installed capacities 

is approximated by the function 𝑎 ∙ 𝑏𝐶𝑎𝑝𝑠 + 𝑐, using the values 𝑎 =  0.982017, 𝑏 = 0.999956 and 

𝑐 = −0.018. 

For the sensitivity analysis, we applied a 𝑏 value of 0.999975 to model a case in which the capacity 

credit was overestimated, as well as a 𝑏 value of 0.9999 for a case in which the credit was 

underestimated.  
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Figure 12: Battery capacity credits determined with EFC approach, as well as fitting function applied. CO2 prices between 0 
and 1000 EUR/tCO2 indicated color of scatter plot. 

 

6 Appendix C – Observed capacity credits for all technologies in the 

reference case  

Throughout the whole decarbonization process, the capacity credits for most technologies remain 

stable, as shown in Figure 13. Neither onshore nor offshore wind reach installed capacities at which 

the capacity credit would drop below the initial value (compare Figure 1)14. Only the credit for batteries 

changes, dropping from 0.81 down to around 0.15, at which the credit stabilizes for higher CO2 prices. 

                                                           
14 In the case of offshore wind, this is due to resource limitations. Onshore wind does not achieve the necessary 
deployment as its market performance is not sufficient to reach the enormous investment volumes required for 
a lower capacity credit.  
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Figure 13: Capacity credit for different technologies. Carbon price interval between 100 and 400 EUR/t shown. 
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