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ATwo-level GREG Estimator for
Consistent Estimation in Household
Surveys

Anne Konrad , Jan Pablo Burgard and Ralf Münnich

Economic and Social Statistics Department, University of Trier, Trier, Germany
E-mail: konrada@uni-trier.de

Summary

Household surveys provide information on both person-level and household-level characteristics.
To ensure consistent estimates between both levels, statistical offices often use integrated weights
that are equal for all persons within a household and the household itself. However, these integrated
weights ignore the individual patterns of the persons, and the heterogeneity within a household is
no longer reflected. As an alternative to integrated weighting, we propose a two-level generalised
regression estimator that is capable of both ensuring consistent person and household estimates
and allowing for different weights for persons within a household. A Monte Carlo simulation sup-
ports the superiority of our two-level generalised regression estimator compared with integrated
weighting.

Key words: Integrated weighting; household surveys; generalised regression estimator; calibration;
consistent estimation.

1 Introduction

Household surveys are an important source of socio-economic and demographic data for sci-
entific researchers as well as for political decision makers. The provided data allow for the es-
timation of both person and household characteristics. Estimation is characterised by assigning
weights to the observed data to infer from the sample to the population (cf. Deville &
Särndal, 1992, p. 376). These weights are frequently composed of the design weights and mul-
tiple adjustments. The design weight, as the inverse of the inclusion probability, accounts for the
sampling design. To improve the efficiency of the resulting estimators, the design weights are
often adjusted such that the final estimates of the auxiliary variables agree with their known
population totals (cf. Särndal, 2007). A separate weight adjustment at the person and household
levels does not necessarily ensure that the estimates of variable that are common to person and
household data set coincide between both levels. However, survey users strive to obtain consis-
tent estimates for common variables. Consistent estimates in this context are defined as
obtaining the same estimates independent of using the person or the household data set. The vi-
tal role of consistency between person-level and household-level estimates is further
emphasised as one principle in the European Statistics Code of Practice (cf. Eurostat, 2011,
Principle 14).
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The current practice to ensure consistent estimates in household surveys is integrated
weighting originated by Lemaître & Dufour (1987). The method of integrated weighting pro-
duces one single weight for all persons within the same household. This single integrated person
weight is then assigned one to one to the household to which the person belongs. Consistency is
thereby ensured by using the same weights to estimate person and household characteristics.
The strict requirement of equal weights does no longer reflect the heterogeneity of the individual
persons within a household, and the individual patterns of the persons are lost. It is intuitive that
for very volatile variables, such as income, the resulting estimates might be significantly influ-
enced when the same weights are assigned to all persons within a household, independently of
whether they are top earners, children or inactive persons.

As a remedy, we propose a two-level generalised regression (GREG) estimator that ensures
consistent estimates while overcoming the strict requirement of equal weights for all persons
within the same household and the household itself. The underlying idea is to constrain the con-
sistency requirements to variables that are common to the person and household data set. For
this purpose, we adopt the idea of incorporating the common variables as additional auxiliaries
known from the literature on multiple independent surveys. In contrast to integrated weighting,
our proposed two-level GREG estimator uses the original auxiliary information and herein al-
lows for different weights for the persons within a certain household. As a result, consistency
is ensured directly and solely for the relevant variables instead of indirectly by aggregating
the individual information per household.

The paper is organised as follows: Section 2 briefly outlines the basic framework of cluster
sampling and GREG estimators. Section 3 introduces integrated weighting and discusses con-
sequences of the strict requirement of equal weights. In Section 4, we propose the two-level
GREG estimator as alternative to integrated weighting. As a benchmark to our proposed estima-
tor, we discuss in Section 5 the generalised least squares (GLS) adjustment algorithm, which
can also be adopted to ensure consistent estimates. A Monte Carlo (MC) simulation study
(Section 6) compares our proposed two-level GREG estimator with integrated weighting and
the GLS adjustment algorithm. Section 7 contains concluding remarks.

2 Basic Framework

Household surveys are often realised by means of single-stage cluster sampling,
characterised by sampling all units within a selected cluster. The sampling process of
single-stage cluster sampling consists of two stages. At the first stage, from a finite population
of households Uh ¼ f1; …; g; …; Mg, a sample sh is selected according to the sampling de-
sign p(·), where p(sh) is the probability of selecting sh. The size of the sample sh is denoted
by m. Subscript h refers to the household level. Let Ug be the population of persons within
household g of size Ng. The probability sampling design generates for every household a known
inclusion probability πg ¼ Prðg ∈ shÞ ¼ ∑ sh : g ∈ shpðshÞ with πg> 0. At the second stage, all
persons within a selected household are sampled. The finite population and the sample of per-
sons are denoted by Up ¼ ∪g ∈ UhUg ¼ f1; …; i; …; Ng and sp ¼ ∪g ∈ shUg , respectively.
Subscript p refers to the person level. The sample size is given by n ¼ ∑ g ∈ shNg. Because all
persons within a selected household are sampled, it follows that πi ¼ Prði ∈ spÞ ¼
Prðg ∈ shÞ ¼ πg. Let yi be a variable of interest of person i. For simplicity, we assume full re-
sponse. The objective is to estimate the unknown population total Ty; p ¼ ∑ i ∈ Upyi at the person
level. A basic design unbiased estimator for the population total Ty, p is the Horvitz–Thompson
(HT) estimator given by T̂HT

y; p ¼ ∑ i ∈ spπ
�1
i yi (cf. Horvitz & Thompson, 1952).
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A widely used model-assisted estimator incorporating available auxiliary variables is the
GREG estimator (cf. Cassel et al., 1997; Särndal, 1980; Isaki & Fuller, 1982, Wright, 1983).
The vector containing the auxiliary variables of person i is defined as xi ¼
ðxi1; …; xiq; …; xiQÞT where xi1 ¼ 1 determines the intercept. The corresponding total vector

T x ¼ ðTx1 ; …; Txq ; …; TxQÞT of dimension Q is known from censuses, registers or other reli-
able sources. The GREG estimator relies on a linear regression model that specifies the relation-
ship between the variable of interest and the auxiliaries. The person-level regression model ξ is
given by

yi ¼ xTi β þ ϵi for all i ∈ Up (1)

with EξðϵiÞ ¼ 0, V ξðϵiÞ ¼ viσ2 and EξðϵiϵjÞ ¼ 0 for all i ≠ j. Eξ and Vξ denote the expectation
and the variance with respect to the model ξ. The scale factor vi, with vi> 0, has to be known
and describes the residual pattern. Based on the assisting model (1), the linear GREG estimator
for the unknown population total Typ ¼ ∑ i ∈ Upyi is obtained from

T̂ GREG
y; p ¼ T̂HT

y; p þ B̂
T ðT x � T̂HT

x Þ; (2)

where B̂ ¼ ∑ i ∈ spπ
�1
i xix

T
i

� ��1
∑ i ∈ spπ

�1
i xiyi is an HT-type least squares estimate for β. It is as-

sumed that the matrix ∑ i ∈ spπ
�1
i xixTi

� ��1
is nonsingular. According to expression (2), the

GREG estimator can be interpreted as an HT estimator plus an adjustment term. This adjust-
ment term is composed by the difference of the known and the estimated totals of the auxiliaries
weighted by the magnitude of the relationship between the variable of interest and the auxiliary
variables. Alternatively to expression (2), the GREG estimator can be written in linearly
weighted form

T̂GREG
y; p ¼

P
i ∈ sp

wiyi

with

wGREG
i ¼ π�1

i þ π�1
i v�1

i xi

P
i ∈ sp

π�1
i v�1

i xix
T
i

� ��1

T x � T̂HT
x

� �
: (3)

An important property of the GREG estimator is that the sums of the auxiliary variables
weighted by (3) are consistent with the known totals, that is, ∑ i ∈ spw

GREG
i xi ¼ T x.

Based on the first-order Taylor linear approximation, the GREG estimator is approxi-
mately design unbiased under mild design conditions on the assisting model and on the sam-
pling design (cf. Särndal, 2007, p. 103). The design unbiasedness of the GREG estimator
does not depend on whether the population is really generated by the model ξ. The effi-
ciency is, indeed, influenced by the predictive power of the model (cf. Särndal et al.,
1992, p. 227, p. 239). The variance estimator of the GREG estimator under single-stage
cluster sampling approximated by Taylor linearisation is given in terms of the residuals
(cf. Särndal et al., 1992, p. 129, p. 235).
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V̂ ðT̂GREG
y; p Þ ¼

X
g ∈ sh

X
k ∈ sh

△gk

πgk

X
i ∈ sp

X
j ∈ sp

wGREG
i riw

GREG
j rj (4)

with residuals ri ¼ yi � xTi B̂,w
GREG
i defined in (3) and△gk : ¼ πgk � πgπk. Further correction

methods can be applied in order to stabilise and improve the variance estimates (cf. D’Arrigo &
Skinner, 2010; Kott, 2009).

The GREG estimator can be seen as a special case of a broader class of calibration estimators
where the calibrated weights are chosen as close as possible to the original design weights (cf.
Deville & Särndal, 1992; Deville et al., 1993). Closeness between both weights is measured via
a pre-specified distance function. For the requirements on the distance, see, for example, in
Haziza and Beaumont (2017, p. 213). The choice of the chi-squared distance function leads
to the GREG weights defined in (3). Further distance functions are discussed in Deville &
Särndal (1992), Deville et al. (1993), Huang & Fuller (1978), Alexander (1987), Singh &
Mohl (1996) and Stukel et al. (1996). The calibration estimator generated by different distance
functions asymptotically equals the GREG estimator (Deville & Särndal, 1992). Thus, for large
sample sizes, the choice of the distance function has only a minor impact on the properties of
the calibration estimator. Singh & Mohl (1996) and Stukel et al. (1996) extended this finding
to modest sample sizes. A current review of calibration methods and distance functions can
be found in Devaud & Tillé (2019).

3 Integrated Weighting

In the integrated weighting approach, introduced by Lemaître & Dufour (1987), consistency
between person-level and household-level estimates is ensured by calculating weights at one
level and then assigning these weights one to one to the respective other level. As a consequence
thereof, it is not necessarily guaranteed that the weights at the person level sum up to the number
of persons in the population and that simultaneously the weights at the household level sum up
to the total number of households in the population. As it is an important property, we call this
compliance at both levels of the sum of the weights with the population values as the integrated
property. To ensure the integrated property, an additional variable has to be incorporated into
the auxiliary variables xi. Therefore, we define at the person level

x∘i ¼ ðxi0; xi1; xi2; …; xiQÞT ¼ ðN�1
g ; 1; xi2; …; xiQÞT ¼ ðN�1

g ; xiÞT

as the integrated auxiliary vector of dimension (Q + 1), which sums up within each household
g to

x∘g ¼ ðxg0; xg1; xg2; …; xgQÞT ¼ ð1; Ng; xg2; …; xgQÞT :

Superscript ∘ indicates the integrated property. The corresponding known and estimated total

vectors of dimension (Q + 1) are denoted by T x∘ ¼ ðM ; T xÞT and T̂HT
x° ¼ ðT̂HT

x0
; T̂

HT

x
ÞT ,

respectively.

3.1 Point and Variance Estimator

To produce the same weights for all persons within the same household, the individual aux-
iliary variables are replaced by the household mean value. The household mean value is deter-
mined by �x∘g ¼ N�1

g ∑ i ∈ Ugx
∘
i , which is assigned to all persons within the household. At the
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person level, the household mean value is denoted as �x∘i . By the substitution of �x∘i as auxiliary
variables in the assisting model (1), the integrated GREG estimator results expressed by

T̂ INT
y; p ¼ T̂HT

y; p þ B̂∘T ðT x∘ � T̂HT
x° Þ (5)

with B̂
∘ ¼ ∑ i ∈ spπ

�1
i v�1

i �x∘i�x
∘
i
T� ��1

∑ i ∈ spπ
�1
i v�1

i �x∘i yi . The corresponding integrated person
weights are given by

wINT
i ¼ 1

πi
þ �x∘Ti
πivi

X
i ∈ sp

�x∘i�x
∘T
i

πgvg

 !�1

ðT x∘ � T̂HT
x° Þ; (6)

which are equivalent to the household weights

¼ 1

πg
þ �x∘Ti
πgvg

X
g ∈ sh

�x∘i�x
∘T
i

πgvg

 !�1

ðT x∘ � T̂HT
x° Þ

¼ wINT
g :

Note that vg ¼ ∑ i ∈ Ugvi. Inserting vi ¼ 1 into (6) results in the integrated GREG estimator in-

troduced by Lemaître & Dufour (1987). Inserting vi ¼ N�1
g , in turn, gives the integrated GREG

estimator proposed by Nieuwenbroek (1993). The choice vi ¼ N�1
g can be interpreted that the

variance of the variable of interest decreases with the household size (Nieuwenbroek, 1993, p.
9).
As the integrated GREG estimator is a special case of (2), it is also design unbiased. Its var-

iance estimator is approximated by Taylor linearisation that is given by

V̂ ðT̂ INT
y; p Þ ¼

X
g ∈ sh

X
k ∈ sh

△gk

πgk
wINT
g rINTg wINT

k rINTk (7)

with residuals rINTg ¼ yg � x∘g
T B̂

∘
.

As an alternative to integrated weighting, Zieschang (1986), Luery (1986) and Alexan-
der (1987) discussed a calibration estimator using the chi-squared distance function to produce
household weights. When these weights are applied for both person and household characteris-
tics, the calibration weights are asymptotically equivalent to the integrated weights defined
in (6) using vi ¼ N�1

g . Verma & Clémenceau (1996) proposed to extend the household-level
auxiliary variables in the calibration estimator by the person-level information. For this purpose,
the sample distribution of the person auxiliaries is inflated by the household size. Branson &
Wittenberg (2014) suggested a minimum cross-entropy approach to produce integrated weights.
Wittenberg (2010) showed that the minimum cross-entropy approach is equivalent to the raking
estimator introduced by Deming & Stephan (1940) and to the calibration estimator with a mul-
tiplicative distance function. Compared with the integrated weights defined in (6), the minimum
cross-entropy weights are prevented from being negative. Isaki et al. (2004) used quadratic pro-
gramming to produce household weights suitable for the estimation of person and household
characteristics. Park & Fuller (2005, p. 8) showed that quadratic programming is equal to the
calibration estimator with a truncated linear distance function. When dropping the bounds in
the distance function, quadratic programming generates weights that are asymptotically equiv-
alent to the integrated weights defined in (6) with vi ¼ N�1

g . Neethling & Galpin (2006) empir-
ically compared a calibration estimator with integrated weighting using a linear and a
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multiplicative distance function. Boonstra et al. (2003) and Houbiers (2004) introduced re-
peated weighting to enforce consistency among contingency tables of survey estimates. We
do not pursue repeated weighting because we focus on producing global weights that are suit-
able for all survey variables.

3.2 Consequences of Integrated Weighting

The requirement of equal weights for all person within and the household itself causes vari-
ous consequences. First, due to the aggregation of the individual auxiliary variables to con-
structed household mean values, the outcome values of the original auxiliary variables are
redistributed within a household. In explanation, suppose the original auxiliary xi indicates
whether the person is male or female. Whereas the original auxiliary has only two possible out-
come values, 0 or 1, the number of possible values in the integrated approach increases with the
number of household members: for a single-person household, it is 0 or 1; for a two-person
household, 0, 1/2 or 1; for a three-person household, 0, 1/3, 2/3 or 1; for a four-person house-
hold, 0, 1/4, 2/4 or 3/4; and so on. The increased number of outcome values in the integrated
weighting approach may enlarge the variation of the integrated weights.

Second, through the substitution of the original auxiliary variables by the household mean
values, the variances and covariances of the integrated auxiliaries only capture the variances
and covariances between the households. Ignoring the within variance and within covariance
implies that the heterogeneity of the persons within a household is not taken into account. Thus,
the integrated weighting approach does not exploit all available sample information when esti-
mating the coefficient vector in the estimator. The lower the variation of the auxiliaries, the less
stable the projection onto the space spanned by the auxiliaries and the higher the variance of the
integrated coefficients. Therefore, we expect that the integrated coefficients vary more com-
pared with the coefficients resulting from an ordinary GREG estimator defined in (2), which,
in turn, decreases the efficiency of the final estimates. This argumentation contradicts Steel &
Clark (2007) who stated that the correlation within households is not relevant to estimate pop-
ulation totals in single-stage cluster sampling because sampled and non-sampled persons live in
distinct households. In the simulation study, we examine which argument prevails.

Third, the one-to-one weight assignment in the integrated approach tacitly assumes that the
strength of the relationship between the variable of interest and the auxiliary variables is iden-
tical at both levels. However, Robinson (1950) showed that the correlations for the same vari-
ables can be different at the individual level than at the aggregated level. This phenomenon is
known as ecological fallacy. In case of ecological fallacy, the coefficients at both levels differ,
and in the extreme case, also their signs differ. The difference between the coefficients at both
levels affects the efficiency of the integrated estimates because the GREG estimator is model
assisted. Thus, even if its approximately design unbiasedness does not depend on the correct-
ness of the model, its efficiency, in turn, relies on the strength of the relationship between the
variable of interest and the auxiliaries.

Fourth, the integrated GREG estimator requires xi0 as additional auxiliary variable to ensure
the integrated property. The simulation study in Section 6 validates whether these consequences
of integrated weighting affect the quality of the final estimates.

4 Proposed Two-level Generalised Regression Estimator

As an alternative to integrated weighting, we propose a two-level GREG estimator that is ca-
pable of both ensuring consistent person and household estimates and allowing for different
weights for persons within a household.
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4.1 Core Idea

The idea underlying our proposed two-level GREG estimator is to constrain the consistency
requirements to variables that are common to the person and household data set. By incorporat-
ing the common variables as additional auxiliaries, our two-level GREG estimator produces
consistent estimates of these variables. Thus, consistency is ensured more directly and only
for the relevant variables, instead of indirectly by aggregating the individual information per
household as it is done in the integrated weighting approach. To implement the two-level
GREG estimator, we adapt the method given by Renssen & Nieuwenbroek (1997), known from
the literature on combining information from multiple independent surveys. However, there are
considerable differences between multiple independent surveys and household surveys in terms
of the definition of common variables, the dependence of the surveys and differing target
populations.
The main advantage of our two-level GREG estimator compared with integrated weighting is

that the original individual rather than the constructed aggregated auxiliaries are utilised. There-
fore, the individual pattern of the persons is retained. Furthermore, our two-level GREG estima-
tor consists of separate person-level and household-level estimators, providing two further
advantages. First, the different calculation levels of person and household characteristics, which
prevent the problems caused by ecological fallacy, are considered. Second, the variable selection
process is more flexible because different auxiliary variables can be incorporated in the
person-level estimator than in the household-level estimator. Finally, no additional auxiliary var-
iable is required to enforce the integrated property.
We propose two different two-level GREG estimators: a naïve and an extended two-level

GREG estimator. The difference is given by the estimator for the unknown common variable
totals. Whereas the naïve approach is easier to implement, because only the household-level es-
timator has to be adjusted by the common variables, the extended two-level GREG estimator
enables to insert the best available estimate of the unknown common variable totals.

4.2 Naïve Two-level Generalised Regression Estimator

In the naïve approach, consistency is ensured by incorporating the common variables in the
household-level estimator. The estimator at the person level, in turn, remains unaffected by the
consistency requirements between the levels. Let ci ¼ ðci1; …; cil; …; ciLÞT be the person-level
common variable vector of dimension L, which sums up per household to ∑ i ∈ Ugci ¼ cg ¼
ðcg1; …; cgl; …; cgLÞT . The totals of the common variables are unknown and have to be esti-
mated by ~T c. The subscript indicating the level of estimation is skipped, because due to the con-
sistency requirements, ~T c must be equal at the person and household levels.
At the person level, the naïve two-level GREG estimator (abbreviated with TL1) is given by

an ordinary GREG estimator as defined in (2); that is,

T̂ TL1
y; p ¼ T̂GREG

y; p ¼ T̂HT
y; p þ B̂

T ðT x � T̂HT
x Þ: (8)

Accordingly, T̂ TL1
y; p contains only the auxiliary variables xi, but not the common variables. The

corresponding weights wTL1
i ¼ wGREG

i are obtained from (3). For simplicity, we assume vi ¼ 1.
At the household level, a separate estimator is implemented. To emphasise that different aux-

iliary variables can be included at both levels, we denote ag ¼ ðag1; …; agk ; …; agKÞT as the K
dimensional auxiliary vector of household g. The known vector of the totals is given by Ta. To
ensure consistency between person-level and household-level estimates, the common variables
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have to be included into the estimator as additional auxiliaries. To estimate the unknown vector
of the common variable totals, we suggest the proposed person-level estimator (8) applied to the
common variables, because the common variables are originally person characteristics. Thus,

~T c ¼ T̂ TL1
c; p ¼ T̂ GREG

c; p ¼
X
i ∈ sp

wGREG
i ci: (9)

Given (9), the proposed two-level GREG estimator at the household level is obtained from

T̂ TL1
y; h ¼ T̂HT

y; h þ Ê
T
a Ta � T̂HT

a

� �þ Ê
T
c T̂ GREG

c; p � T̂ HT
c; p

� �
; (10)

where the coefficients Êa and Êc are simultaneously estimated by

Êa

Êc

 !
¼
X
g ∈ sh

π�1
g

ag

cg

 !
ag

cg

 !T" #�1 X
g ∈ sh

π�1
g

ag

cg

 !
yg: (11)

It is assumed that the matrix ∑ g ∈ sh π
�1
g

ag

cg

 !
ag

cg

 !T

is of full rank K + L.

To quantify the impact of ensuring consistency on our proposed estimator at the household
level, we decompose (10) into an ordinary GREG estimator, which does not ensure consistent
estimates, and an adjustment term capturing the effect caused by including the common vari-
ables as additional auxiliaries. For the decomposition, an orthogonal decomposition of the co-
efficients (cf. Seber, 1977) is applied, given by

Êa ¼ B̂a � F̂aÊc; (12)

where B̂a arises from

T̂GREG
y; h ¼ T̂HT

y; h þ B̂T
a ðTa � T̂ HT

a Þ (13)

as an ordinary GREG estimator solely containing ag as auxiliaries. Coefficient matrix F̂a is ob-
tained from T̂ GREG

c; h ¼ T̂ HT
c; h þ F̂ T

a Ta � T̂ HT
a

� �
. Coefficient vector Êc is defined in (11). Hence,

the product of F̂a andÊc captures the effects of the common variables on the variable of interest
neglected by B̂a.

Inserting the orthogonal decomposition (12) into (10), we obtain

T̂ TL1
y; h ¼ T̂GREG

y; h þ Ê
T
c T̂ GREG

c; p � T̂ GREG
c; h

� �
: (14)

According to (14), the adjustment term capturing the impact induced by the consistency re-
quirements depends on Êc and the difference between the person-level and household-level es-
timates for the common variable totals. The greater the difference between the two estimates, the
greater the adjustment term.

The partial coefficient Êc can, alternatively to (11), be expressed in terms of residuals as

Êc ¼
X
g ∈ sh

rFa
g rFa

g
T

 !�1 P
g ∈ sh

rFa
g rBa

g (15)

with rBa
g ¼ yg � B̂T

a ag and r
Fa
g ¼ cg � F̂ T

a ag resulting from regressing the variable of interest

642 KONRAD ET AL.

International Statistical Review (2021), 89, 3, 635–656
© 2021 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.



or common variables on the auxiliaries. This expression of Êc simplifies the expression of the
household weights given by

wTL1
g ¼ wGREG

g þ rFa
g

T X
g ∈ sh

rFa
g rFa

g
T

 !�1

T̂GREG
cp

� T̂ GREG
ch

� �
(16)

with wGREG
g obtained from (13).

The variance estimator of T̂ TL1
y; p is determined by (4). At the household level, the variance es-

timator should account for the additional source of randomness induced by inserting the esti-
mated common variable totals instead of known population totals. Using the Taylor
linearisation technique, we get

V̂ ðT̂ TL1
y; h Þ¼: V̂ 1 þ V̂ 2 þ V̂ 3 þ 2 · V̂ 12 � 2 · V̂13 � 2 · V̂23 (17)

with

V̂ 1 ¼ V̂ ðT̂GREG
y; h Þ; V̂12 ¼ Ê

T
c
dCovðT̂GREG

y; h ; T̂ GREG
c; p Þ;

V̂ 2 ¼ Ê
T
c V̂ ðT̂GREG

c; p ÞÊc; V̂13 ¼ Ê
T
c
dCovðT̂GREG

y; h ; T̂GREG
ch

Þ;
V̂ 3 ¼ Ê

T
c V̂ ðT̂GREG

c; h ÞÊc; V̂23 ¼ Ê
T
c
dCovðT̂ GREG

c; p ; T̂GREG
c; h ÞÊc;

where dCov denotes the estimated covariance. Estimated variances and covariances can be ob-
tained from (4) by inserting the appropriate residuals.
The additional effort to compute V̂ ðT̂ TL1

y; h Þ compared with the variance of an ordinary GREG

estimator, determined by V̂ 1, is limited to the calculation of the L-dimensional residual vectors
rFx
g ¼ ∑i ∈ Ugr

Fx
i ¼ ∑i ∈ Ugðci � FT

x xiÞ and rFa
g ¼ cg � FT

a xg . Both residual vectors are inde-
pendent from the variable of interest and thus have to be calculated only once per sample. Var-
iance components V̂ 2, V̂ 3, V̂ 12, V̂ 23 and V̂ 23 are computable by an appropriate combination of
these residuals. Hence, the additional computational effort depends on the number of variables
that are required to be consistent.

4.3 Extended Two-level Generalised Regression Estimator

In the extended approach, we strive to improve the estimates of the unknown common vari-
able totals ~T c. The underlying idea is that every common variable cl, with l ¼ 1; …; L, can be
modelled by a separate set of specialised auxiliary variables zl . The specialised auxiliary vari-
able set zl could be, for example, the auxiliary variable set with the highest explanatory power
for the respective common variable cl. Then the unknown totals of the common variables are
estimated by

~T c ¼ T̂ GREG
c∗p

¼ ðT̂GREG
c∗p; 1

; …; T̂GREG
c∗p; l

; …; T̂GREG
c∗p; L

ÞT ; (18)

where

T̂ GREG
c∗p; 1

¼ T̂HT
cp; l

þ B̂zlðT zl � T̂ HT
zl
Þfor l ¼ 1; …; L

is the estimator for the total of the common variable cl based on the specialised auxiliary vari-

able set zl and with B̂ zl ¼ ∑ i ∈ spπ
�1
i zilz

T
il

� ��1
∑ i ∈ spπ

�1
i zilcil.
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To ensure consistency between person-level and household-level estimates, the same esti-
mates for the unknown common variable totals resulting from (18) have to be inserted into
the estimators at both levels. At the person level, the estimator of our extended two-level GREG
estimator (abbreviated with TL2) is given by

T̂ TL2
y; p ¼ T̂HT

y; p þ D̂x
T ðT x � T̂ HT

x ÞþD̂c
T ðT̂GREG

c�; p � T̂HT
c; pÞ; (19)

where the coefficients D̂x and D̂c are simultaneously estimated by

D̂x

D̂c

 !
¼

P
i ∈ sp

π�1
i

xi

ci

� �
xi

ci

� �T
" #�1 P

i ∈ sp
π�1
i

xi

ci

� �
yi: (20)

It is assumed that the matrix ∑ i ∈ spπ
�1
i

xi

ci

� �
xi

ci

� �T

is of full rank Q + L.

To quantify the impact of the consistency requirements, we once more decompose T̂ TL2
y; p into

an ordinary GREG estimator and an adjustment term capturing the effect caused by ensuring
consistency. By inserting the orthogonal decomposition D̂x ¼ B̂x � F̂xD̂c into (19), we obtain

T̂ TL2
y; p ¼ T̂GREG

y; p þ D̂T
c T̂GREG

c�; p � T̂GREG
c; p

� �
; (21)

where

D̂c ¼
X
i ∈ sp

rFx
i rFx

i
T

 !�1 X
i ∈ sp

rFx
i rBx

i (22)

with residuals rFx
i ¼ ci � F̂T

x xi and r
Bx
i ¼ yi � B̂T

x xi resulting from regressing the common var-
iables and the variable of interest on the auxiliaries. Coefficient matrix F̂x is obtained from
T̂GREG

c; p ¼ T̂HT
c; p þ F̂T

x ðT x � T̂HT
x Þ, a vector containing the person-level GREG estimators for

the common variable totals with xi as auxiliaries.
At the household level, a separate estimator is implemented, which is obtained from

T̂ TL2
y; h ¼ T̂GREG

y; h þ Ê
T
c T̂ GREG

c�; p � T̂ GREG
c; h

� �
(23)

withÊc already defined in (15).We learn from (21) and (23) that the higher the difference between
the estimated common variable totals, utilising a specialised auxiliary sets zil compared with xi or
ag , the higher the adjustment term. For the special case of zil ¼ zi ¼ xi for all l ¼ 1; …; L, the
estimators of our naïve approach coincide with the estimators of our extended approach.

The corresponding weights are obtained from

wTL2
i ¼ wGREG

i þ rFx
i

T X
i ∈ sp

rFx
i rFx

i
T

 !�1

T̂ GREG
c�; p � T̂ GREG

c; p

� �
and

wTL2
g ¼ wGREG

g þ rFa
g

T X
g ∈ sh

rFa
g rFa

g
T

 !�1

T̂ GREG
c�; p � T̂ GREG

c; h

� �
:

In the extended approach, both the person-level and household-level estimators are affected by
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the common variables inducing an additional source of randomness. Using the Taylor
linearisation technique, the variance estimators are given by

V̂ ðT̂ TL2
y; t Þ¼: V̂ 1 þ V̂ 2 þ V̂ 3 þ 2 · V̂ 12 � 2 · V̂ 13 � 2 · V̂ 23 for t ¼ fp; hg: (24)

At the person level, the variance components are

V̂ 1 ¼ V̂ ðT̂GREG
y; p Þ; V̂12 ¼ D̂T

c
dCovðT̂GREG

y; p ; T̂GREG
c�; p Þ;

V̂ 2 ¼ D̂T
c V̂ ðT̂GREG

c�; p ÞD̂c; V̂13 ¼ D̂T
c
dCovðT̂GREG

y; p ; T̂GREG
c; p Þ;

V̂ 3 ¼ D̂T
c V̂ ðT̂GREG

c; p ÞD̂c; V̂23 ¼ D̂T
c
dCovðT̂GREG

c�; p ; T̂GREG
c; p ÞD̂c:

(25)

At the household level, the variance components are obtained from

V̂ 1 ¼ V̂ ðT̂GREG
y; h Þ; V̂12 ¼ Ê

T
c
dCovðT̂GREG

y; h ; T̂GREG
c�; p Þ;

V̂ 2 ¼ Ê
T
c V̂ ðT̂GREG

c�; p ÞÊc; V̂13 ¼ Ê
T
c
dCovðT̂GREG

y; h ; T̂GREG
c; h Þ;

V̂ 3 ¼ Ê
T
c V̂ ðT̂GREG

c; h ÞÊc; V̂23 ¼ Ê
T
c
dCovðT̂ GREG

c�; p ; T̂GREG
c; h ÞÊc:

(26)

The variance components in (25) depend solely on the person level, whereas the variance
components in (26) are influenced by both person-level and household-level estimates.

4.4 Comparison of the Naïve and Extended Two-level Generalised Regression Estimator

The implementation expense of the naïve two-level GREG estimator is lower compared with
the extended two-level GREG estimator, because to ensure consistency, only the household-level
estimator is adjusted by the common variables. As estimator for the unknown totals, our pro-
posed estimator at the person level is applied. The implementation expense of our extended
two-level GREG estimator, on the other side, is more demanding, because both the
person-level and household-level estimators are affected by the consistency requirements. More-
over, the estimation of ~T c ¼ T̂GREG

c�; p increases the implementation effort compared with the naïve
two-level GREG estimator because for every single common variable, the specialised auxiliary
variables zl have to be determined. However, we expect a precision gain for the estimates of
the common variables and for all variables correlated with the common variables. To conclude,
the choice between our naïve and extended two-level GREG estimators is characterised by a
trade-off between the implementation expense and the quality of the final estimates.

4.5 Further Remarks

Both the naïve and extended two-level GREG estimators can also be applied under two-stage
cluster sampling where only a subset of the persons within a household are sampled. The point
estimators remain unaffected by the two-stage design. Only the variance estimators (17)
and (24) have to be adjusted by a term that captures the additional randomness introduced by
the sampling process at the second stage. We refer to Särndal et al. (1992, p. 126) and Estevao
& Särndal (2006, p. 140) for more details on the variance formula under two-stage cluster sam-
pling. The weights produced by the GREG estimator, and thus also by the proposed two-level
GREG estimator, can be very large or negative. The reasons for this might be small sample sizes
or a variety of auxiliaries, or both. Even if negative weights do not affect the statistical proper-
ties of the estimator, they are undesirable for most survey users. Large weights, in turn, can
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cause unstable estimations. Fortunately, considerable literature exists on methods to reduce the
range of the weights. Huang & Fuller (1978) first proposed a procedure that prevents extreme
weights. Deville et al. (1993) introduced generalised raking estimators as a subclass of calibra-
tion estimators based on a multiplicative distance function. The subclass of generalised raking
estimators contains the classical raking estimator originated by Deming & Stephan (1940).
Deville & Särndal (1992) and Deville et al. (1993) introduced the truncated linear and logit dis-
tance function that produce weights that lie within a given range. Singh & Mohl (1996) com-
pared several bounded distances by means of numerical examples. Husain (1969) and Isaki
et al. (2004) used quadratic programming as an optimisation method to set the weights bound-
ary within a certain interval. Théberge (2000) deduced conditions under which a solution of the
optimisation problem ensuring non-extreme weights exists. Tillé (1998) and Park &
Fuller (2005) proposed a procedure that produces weights that are positive for the most samples.
Chambers (1996) considered a ridge-type optimisation problem under a certain coefficient ma-
trix to produce non-negative weights. Another possibility for avoiding extreme weights is to re-
lax some of the calibration constraints. Rao & Singh (1997) studied a ridge shrinkage method
for range-restricted weights, where the calibration constraints are satisfied within certain
tolerances.

Each common variable for which consistency is desired increases the number of auxiliary
variables in the two-level GREG estimator. Increasing the number of auxiliary variables might
reduce the efficiency improvements compared with integrated weighting. However, in the con-
text of household surveys, it is unlikely that the same item is simultaneously requested in the
person and in the household questionnaire. Instead, it is more prevalent that for some person
characteristics, their corresponding values at the household level are of interest. For such person
characteristics, the per-household aggregated variables are computed and supplementarily
added to the household data set. Plausible examples include household income, purchases or
the number of employees in a household. The decision for which variable consistency is desired
should be well balanced so that the consistency achievements are not counterbalanced by a loss
in precision of the estimates of the other variables in the survey.

Benchmarking methods according to Cholette (1984) that are used to agree annual and
sub-annual estimates in business surveys can be considered as special case of the two-level
GREG estimator.

5 Further Weighting Approaches

The GLS weighting adjustment algorithm introduced by Zieschang (1990) can also be
adopted to ensure consistent estimates between person-level and household-level estimates.
The original intention of the GLS adjustment algorithm was to link the estimates of two inde-
pendent surveys. The collected information obtained from the different surveys overlaps for
some items. To link the estimates of the overlapping variables, the auxiliary information of both
surveys is pooled and additional linear constraints are imposed into the weighting adjustment
algorithm. Merkouris (2004) modified the GLS adjustment algorithm to account for different
sample sizes. The GLS adjustment algorithm is equivalent to a calibration estimator with a
chi-squared distance function.

5.1 Generalised Least Squares Adjustment Algorithm According to Zieschang (1990)

To conform the GLS adjustment algorithm to our two-level GREG estimator, we embed the
GLS adjustment algorithm into the GREG estimation framework. Then the GLS adjustment al-
gorithm introduced by Zieschang (1990) can be expressed as
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T̂ ZIE
y; p ¼ T̂GREG

y; p � D̂ZIE
c

T
T̂GREG

c; p � T̂GREG
c; h

� �
(27)

and

T̂ ZIE
y; h ¼ T̂GREG

y; h þ Ê
ZIE
c

T
T̂GREG

c; p � T̂GREG
c; h

� �
: (28)

The person-level and household-level coefficients are obtained from

D̂ZIE
c ¼

X
i ∈ sp

rFx
i rFx

i
T þ

X
g ∈ sh

rFa
g rFa

g
T

 !�1 X
i ∈ sp

rFx
i rBx

i (29)

and

Ê
ZIE
c ¼

X
i ∈ sp

rFx
i rFx

i
T þ

X
g ∈ sh

rFa
g rFa

g
T

 !�1 X
g ∈ sh

rFa
g rBa

g ; (30)

respectively. Superscript ZIE refers to Zieschang. Therefore, according to (29) and (30), both
estimators T̂ ZIE

y; p and T̂
ZIE
y; h use the same pooled auxiliary information from the person and house-

hold levels. The only difference between both estimators is given by the variable of interest. The
impact of ensuring consistency is quantified by the respective second terms and depends on the
difference between the estimated common variable totals.
The weights of the estimators (27) and (28) are obtained from

wZIE
i ¼ wGREG

i � rFx
i

X
i ∈ sp

rFx
i rFx

i
T þ

X
g ∈ sh

rFa
g rFa

g
T

 !�1

T̂GREG
c; p � T̂GREG

c; h

� �
and

wZIE
g ¼ wGREG

g þ rFa
g

X
i ∈ sp

rFx
i rFx

i
T þ

X
g ∈ sh

rFa
g rFa

g
T

 !�1

T̂GREG
c; p � T̂GREG

c; h

� �
:

Given ∑i ∈ spxir
Fx
i

T ¼ 0 as well as ∑g ∈ shagr
Fa
g

T ¼ 0, it is easy to show that the weights simul-

taneously satisfy ∑i ∈ spw
ZIE
i xi ¼ T x and ∑g ∈ shw

ZIE
g ag ¼ Ta. This implies that the sums of the

weighted auxiliaries meet the known totals at both levels. Moreover, Merkouris (2004) showed
that

T̂ ZIE
c; p ¼ 1−D̂ZIET

c

� �
T̂ GREG

c; p þ D̂ZIET

c T̂ GREG
c; h ;

¼ Ê
ZIET

c T̂ GREG
c; p þ 1−Ê

ZIET

c

� �
T̂ GREG

c; h

¼ T̂ ZIE
c; h:

(31)

Accordingly, the GLS adjustment algorithm produces the same estimates for the common

variable totals at both levels. The equality Ê
ZIE
c ¼ 1 � D̂ZIE

c

� �
is valid because

∑i ∈ spcir
Fx
i

T ¼ ∑i ∈ spr
Fx
i rFx

i
T. Due to the weighted average form of (31), the GLS adjustment al-

gorithm is also called composite estimator (cf. Merkouris, 2004).
The variance estimator of (27) using the Taylor linearisation technique is given by
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V̂ ðT̂ ZIE
y; pÞ¼: V̂ 1 þ V̂ 2 þ V̂ 3 � 2V̂12 þ 2V̂13 � 2V̂23; (32)

with

V̂ 1 ¼ V̂ ðT̂ GREG
y; p Þ; V̂12 ¼ D̂T

K
dCovðT̂GREG

y; p ; T̂GREG
c; p Þ;

V̂ 2 ¼ D̂T
KV̂ ðT̂GREG

c; p ÞD̂K ; V̂13 ¼ D̂T
K
dCovðT̂GREG

y; p ; T̂GREG
c; h Þ;

V̂ 3 ¼ D̂T
KV̂ ðT̂GREG

c; h ÞD̂K ; V̂23 ¼ D̂T
K
dCovðT̂GREG

c; p ; T̂GREG
c; h ÞD̂K :

The corresponding variance estimator at the household level is obtained from

V̂ ðT̂ ZIE
y; hÞ¼: V̂ 1 þ V̂ 2 þ V̂ 3 þ 2V̂12 � 2V̂13 � 2V̂23 (33)

with

V̂ 1 ¼ V̂ ðT̂GREG
y; h Þ; V̂12 ¼ Ê

T
K
dCovðT̂GREG

y; h ; T̂GREG
c; p Þ;

V̂ 2 ¼ Ê
T
KV̂ ðT̂GREG

c; p ÞÊK ; V̂13 ¼ Ê
T
K
dCovðT̂GREG

y; h ; T̂GREG
c; h Þ;

V̂ 3 ¼ Ê
T
KV̂ ðT̂GREG

c; h ÞÊK ; V̂23 ¼ Ê
T
K
dCovðT̂GREG

c; p ; T̂GREG
c; h ÞÊK :

5.2 Generalised Least Squares Adjustment Algorithm According to Merkouris (2004)

Merkouris (2004) modified the GLS adjustment algorithm to account for the effective sample
sizes of the independent multiple surveys. Then the estimators are defined as

T̂MER
y; p ¼ T̂GREG

y; p � D̂
MERT

c ðT̂ GREG
c; p � T̂ GREG

c; h Þ (34)

and

T̂MER
y; h ¼ T̂GREG

y; h þ Ê
MERT

c ðT̂ GREG
c; p � T̂ GREG

c; h Þ: (35)

Superscript MER refers to Merkouris. The coefficients are obtained from

D̂MER
c ¼ ð1 � qÞ

X
i ∈ sp

rFx
i rFx

T

i þ q
X
g ∈ sh

rFa
g rFa

T

g

 !�1

ð1 � qÞ
X
i ∈ sp

rFx
i rBx

g (36)

and

Ê
MER
c ¼ ð1 � qÞ

X
i ∈ sp

rFx
i rFx

T

i þ q
X
g ∈ sh

rFa
g rFa

g
T

 !�1

q
X
g ∈ sh

rFa
g rBa

g ; (37)

where weighting factor

q ¼ V ðT̂MER
c; h Þ � CovðT̂MER

c; p ; T̂MER
c; h Þ

V ðT̂MER
c; h ÞþV ðT̂MER

c; h Þ � 2CovðT̂MER
c; p ; T̂MER

c; h Þ
minimises the variance of the composite estimator for the common variables. If the samples

were independent, q approximately equals to q ¼ n=deff p
n=deff p þ m=deff h

with deff as design effect.

In this case, q is proportional to the effective sample size. The modified estimators suggested by
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Merkouris (2004) differ from the original GLS adjustment algorithm (27) and (28) only with
respect to weighting factor q. Guandalini & Tillé (2017) showed that (36) and (37) are the op-
timal coefficients if the samples were independent and the sample size is very large. The vari-
ance estimators arise considering the weighting factor q in (32) and (33), as done in (36)
and (37).

5.3 Comparison of the Two-level Generalised Regression Estimator and the Generalised
Least Squares Adjustment Algorithm

The differences between our two-level GREG estimator and the GLS adjustment algorithm
arise from how consistency is conceptually ensured and the estimation of the common variable
totals. Our two-level GREG estimator uses the same estimated common variable totals in the
person-level and household-level estimators. As estimator for the unknown common variable
totals, we propose a person-level estimator, because in household surveys, it is more prevalent
that the common variables are originally person characteristics that are assigned in aggregated
form to household-level data set. In contrast, the GLS adjustment algorithm enforces consistent
person-level and household-level estimates more indirectly through the pooling of the auxiliary
information. The final estimates of the unknown common variable totals are determined by a
weighted average of the single person-level and household-level estimates. Therefore, the same
common variable information is used twice, once in its initial form at the person level and once
in aggregated form at the household level. However, it is questionable to what extent the aggre-
gated household-level information, supplementary to the person-level information, helps to pre-
dict the common variable totals.
Furthermore, when comparing the coefficients in the two-level GREG estimators (15)

and (22) with the coefficient in the GLS adjustment algorithm (29), (30), (36) and (37), it be-
comes evident that the latter coefficients simultaneously use person-level and household-level

information by the term ∑i ∈ spr
Fx
i rFx

T

i þ ∑g ∈ shr
Fa
g rFa

T

g

� �
. However, as mentioned in the previ-

ous paragraph, in the context of household surveys, it seems questionable to what extent the
household-level auxiliary information helps to predict the person-level variables.
Finally, the variance estimators of the common variables differ. In the two-level GREG esti-

mator, the variance of the common variable totals depends solely on the person-level variance
estimator. In contrast, in the GLS adjustment algorithm, the variance estimation for the common
variable totals (31) is more demanding, because the variances at both levels and their covari-
ances are required.

6 Simulation Study

An MC simulation study compares the performance of the naïve (TL1) and extended
two-level GREG estimators (TL2) with the integrated GREG estimator with scale factors vi ¼
1 (INT1) and vi ¼ N�1

g (INT2) and with the GLS weighting algorithm according to
Zieschang (1990) (ZIE) and according to Merkouris (2004) (MER). The simulation study is
based on the synthetic and open accessible data set AMELIA, which is derived from
EU-SILC (cf. Burgard et al., 2017). To reduce computational burden, we use the data of only
one out of four regions. The population consists of approximately 2.6 million persons and
0.9 million households. We draw R ¼ 1000MC samples via simple random sampling. As sam-
pling size, we choose m ¼ 200. The MC average sample size of persons is ∑ 1000

r¼1 nr ¼ 577.
The auxiliaries consist of 18 indicator variables and an intercept: two sex categories, four age

categories and four marital status categories plus the cross-classification of sex by age (four
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categories) and sex by marital status (four categories). Within the integrated GREG estimators,
we also include the additional auxiliary, N�1

g , required to ensure the integrated property. The
choice of solely categorical variables induces that the GREG estimator is equivalent to a
post-stratification estimator (cf. Zhang, 2000). For a fair comparison, we also incorporate the
household size as further auxiliary variable into the two-level GREG estimator and into the
GLS adjustment algorithm. We chose three types of variables of interest at the person level.
Firstly, classical person-level characteristics: personal income inc and social income soc. Sec-
ondly, a variable related with household size: personal income by household size inc_hs. In
practice, estimates for subgroups or domains are often of as much interest as population totals.
Thus, thirdly, we analyse some cross-classifications of age by sex by marital status:
age2_sex1_ms4(age class 20–39 years, female, widowed) and age4_sex0_ms2(male,
age class 60 years and older, married) as well as the cross-classifications of employment by
sex: act1_sex0 (at work, male) and act1_sex1(at work, female). Note that age, sex and
marital status are used as auxiliary variables in the assisting model. The variables of interest
at the household level are regular taxes on wealth taxes, total disposable household income
disp_inc and regular inter-household cash transfer received cash_trans. We compare
two different sets of common variables. In case 1 (L ¼ 2), the common variables are inc and
soc. In case 2, there are L ¼ 10 common variables including inc, soc, dou as degree of ur-
banisation with three categories (densely populated area, intermediate area and thinly populated
area), basic activity status act with three categories (at work, unemployed and inactive per-
sons) and four different income components.

In order to explore the quality of the point estimates, we compare the empirical mean squared
error (RRMSE). Suppose T̂ yr as the resulting total estimate for the r-th MC replication with r ¼
1; …; R. Define EMCðT̂ Þ ¼ R�1∑R

r¼1T̂ r, where the quantity EMCðT̂ Þ denotes the empirical ex-
pectation of the estimator T̂ . Let T be the true value. Then RRMSE is defined as

RRMSEðT̂ Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R
∑
R

r¼1

T̂ r � T
� �2

T2

s
:

To examine the spread of the weights, Table 1 outlines the summary statistics for the weights of
the competing methods divided by the design weight for all R = 1 000 MC samples (about 577

Table 1. Summary statistics for the weights.

L ¼ 2 common variables L ¼ 10 common variables

Mean SD Min Max Range Mean SD Min Max Range

Person level
INT1 1.00 0.28 �1.30 8.24 9.54 1.00 0.28 �1.30 8.24 9.54
INT2 1.00 0.32 �0.85 5.32 6.17 1.00 0.32 �0.85 5.32 6.17
TL1 1.00 0.22 0.01 5.09 5.07 1.00 0.22 0.01 5.09 5.07
TL2 1.00 0.23 �0.22 5.12 5.34 1.00 0.24 �1.95 5.11 7.05
ZIE 1.00 0.22 0.03 5.11 5.08 1.00 0.73 �1.15 5.74 6.88
MER 1.00 0.22 0.03 5.11 5.08 1.00 0.73 �1.15 5.74 6.88
Household level
INT1 1.00 0.33 �1.30 8.24 9.54 1.00 0.33 �1.30 8.24 9.54
INT2 1.00 0.29 �0.85 5.32 6.17 1.00 0.29 �0.85 5.32 6.17
TL1 1.00 0.32 �1.16 5.19 6.36 1.00 2.79 �8.38 8.92 17.31
TL2 1.00 0.33 �1.20 5.21 6.41 1.00 2.79 �8.66 9.23 17.89
ZIE 1.00 0.32 �1.16 5.18 6.35 1.00 0.75 �1.94 6.07 8.02
MER 1.00 0.32 �1.16 5.18 6.35 1.00 0.75 �1.94 6.07 8.02
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000 values). It becomes apparent that at the person level, both integrated GREG estimators
INT1 and INT2 have the highest ranges. Note that INT1 and INT2 show the same minimum
and maximum at the person and household levels because of the one-to-one weight assignment
between the levels. Moreover, both integrated approaches remain unaffected by the increase of
the number of common variables. The same is true for TL1, which is at the person level equal to
an ordinary GREG estimator. For L ¼ 2, the weights of both proposed two-level GREG estima-
tors TL1 and TL2 have a considerably smaller range than the integrated weights. For TL1 as
ordinary GREG estimator, this observation confirms with the results found by Lemaître &
Dufour (1987) and Rottach & Hall (2005). Moreover, the standard deviation is lower for TL1
and TL2 than for both integrated approaches. The higher variation of the integrated weights
is caused by the increased number of outcome values of the auxiliary variables as described in
Section 7. However, even if the weights of TL2 vary less, their range increases with the number
of common variables. This means that in some MC samples, extreme weights emerge. The
household weights vary more than the person weights except for INT2, which weights are
modelled at the household level. At the household level, TL1 and TL2 suffer from the increase
of the common variables. As mentioned in Section 4.4, there is a considerable literature on
methods to reduce the range of the weights. Accordingly, all estimators under consideration
can be adjusted using other calibration distance functions than the chi-squared distance func-
tion. However, because negative weights do not affect the statistical properties of the resulting
estimators, we refrain focusing on these methods in this paper.
Figures 1 and 2 plot the ratios of the MSEs of integrated weighting relative to our two-level

GREG estimators and relative to the GLS adjustment algorithm. Both plots give almost the

Figure 1. Ratios of INT1 relative to the two-level generalised regression estimator and the generalised least squares adjust-
ment algorithm.
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similar pictures on the efficiency of the estimators relative to INT1 and INT2. With respect to
the person level, it becomes evident that all squares and circles indicating TL1 and TL2 lie
nearby or to the right of the red line. Therefore, TL1 and TL2 perform at least as well as inte-
grated weighting independent from the number of common variables. The greatest gains in pre-
cision are realised for TL2. Here, all variables benefit from inserting improved estimates for the
common variable totals estimated by a specialised auxiliary variable set for each common var-
iable. Actually, for the common variable inc, the variance of integrated weighting exceeds the
variance of the two-level GREG estimator up to 73%. There are also significant efficiency gains
realised for the subdomains of inc and hs, because of the correlation structure with the com-
mon variables in the assisting model. Interestingly, these precision gains are less pronounced for
smaller and larger households. This observation confirms with the different explanatory power
of the assisting models, which ranges from 0.19 to 0.22 for smaller and larger households and
from 0.39 to 0.44 for the medium-size households. The high efficiency gains with respect to in-
come and income-related variables are a hint that the proposed two-level GREG estimators bet-
ter capture the heterogeneity within a household for variables that are differently distributed
within a household. The efficiency improvements of the two-level GREG estimator compared
with integrated weighting are a hint that the within variance of the households should not be
ignored.

Because the person-level TL1 estimator is equivalent with an ordinary GREG estimator, the
ratios of INT1/TL1 or INT2/TL1 are comparable with the results given in the literature on in-
tegrated weighting. Except for the cross-classification of inc and hs, our results are in line
with the statement given by Lemaître & Dufour (1987), Steel & Clark (2007) and van den

Figure 2. Ratios of INT2 relative to the two-level generalised regression estimator and the generalised least squares adjust-
ment algorithm.
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Brakel (2013,2016) that the inefficiencies of integrated weighting would be limited compared
with an ordinary GREG estimator.
MER and ZIE perform in all scenarios nearly identical. Even if the common variables are in-

cluded as additional auxiliaries, no considerable efficiency gains are realised with respect to
inc and soc. For the cross-classifications of inc and hs, ZIE and MER perform more effi-
cient than integrated weighting. Therefore, the explanatory power of household size outweighs
the explanatory power of income with the variable of interest in the assisting model. However,
the efficiency of ZIE and MER suffers with increasing number of common variables.
At the household level and for L ¼ 2, our two-level GREG estimators outperform integrated

weighting; however, there are considerably efficiency losses forL ¼ 10and taxes, disp_inc
and cash_trans. Therefore, in order to avoid an efficiency loss for the estimation of house-
hold characteristics, the number of common variables should be chosen with caution. Neverthe-
less, the efficiency gains at the person level of our proposed two-level GREG estimator are
convincing, in particular for variables related to the common variables.

7 Conclusion

Consistent person-level and household-level estimates are a major concern of statistical of-
fices. Integrated weighting produces consistent estimates by using the same weights for all per-
sons within a household and the household itself. The consequences of equal weights are an
increased number of factor values of the auxiliaries and the ignorance of heterogeneity of the
persons within households. As remedy, we proposed a two-level GREG estimator to achieve
consistency without the strict requirement of equal weights for all household members. To en-
sure consistent estimates, we restrain the consistency requirements to the variables common to
the person-level and household-level data sets. By using the same estimated total for the com-
mon variables at both levels, consistency is ensured more directly and only for the relevant var-
iables. In many household surveys, only few variables are provided on both the person and
household levels such that the number of additional auxiliary variables is limited.
Our MC simulation study supports the superiority of our proposed two-level GREG estimator

compared with integrated weighting in particular with respect to the common variables and var-
iables correlated with them. However, the number of variables for which consistency is required
should be chosen carefully in order to avoid inefficiencies for some household estimates. The
choice between the naïve and extended two-level GREG estimators is characterised by a
trade-off between of the implementation expenses and quality of the final estimates. In case
of the extended two-level GREG estimator, specialised variables have to be specified and the
variance estimation is more demanding, but there are significant efficiency gains possible.
These efficiency gains depend on the strength of the relation between the common variables
and variables of interest. With this two-level GREG estimator, we contradict the assumption
prevailing in the literature that equal weights of persons within the same household and the
household itself are indispensable to ensure consistent person and household estimates (cf.
Lavallée, 1995, p. 27 Estevao & Särndal, 2006, p. 139; Steel & Clark, 2007, p. 51; Branson
& Wittenberg, 2014, p. 20; van den Brakel, 2016, p. 149).
Another application field for our proposed two-level GREG estimator is integrated surveys

where several smaller surveys are integrated in a core sample. In this context, consistent esti-
mates between the core sample and the subsample are desired. However, in integrated surveys,
the number of common variables might be large. This enlarges the range of the weights and re-
sults in less stable estimates. Therefore, the two-level GREG estimator has to be extended to
handle with a variety of auxiliary variables. The combination with generalised calibration using
soft constraints may additionally be considered in this case (Burgard et al., 2019).
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For most survey practitioner, negative weights may be undesirable. Therefore, further re-
search should focus on methods that prevent negative weights within the two-level GREG esti-
mator framework. A possible starting point would be the substitution of the chi-squared distance
function by a linear truncated or multiplicative distance function. However, an extension to var-
ious other calibration functions seems straightforward but urges using adequate numerical iter-
ation methods.

Further future research should address the effects of consistency requirements on
non-response adjustment. In general, methods to prevent a non-response bias proceed at the per-
son level. Hence, the adjusted person weights are no longer necessarily equal within a house-
hold. In order to still guarantee consistency, Eurostat (cf. European Commission, 2014, p. 40)
recommends averaging the adjusted person weights within a household and assigning this aver-
age weight to all household members. In contrast, our two-level GREG estimator allows a
non-response adjustment at the person level without the need for a subsequent averaging pro-
cess of the resulting weights. The incorporation of the common variables guarantees consis-
tency even in the case of non-response adjustment. Therefore, individual response patterns
are retained. This flexibility reinforces the superiority of our two-level GREG estimator com-
pared with integrated weighting.
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