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Abstract
A fundamental task in the analysis of data sets with many 
variables is screening for associations. This can be cast as a 
multiple testing task, where the objective is achieving high 
detection power while controlling type I error. We consider 
m hypothesis tests represented by pairs ((P

i
, X

i
))1≤i≤m

 of 
p- values P

i
 and covariates X

i
, such that P

i
⊥X

i
 if H

i
 is null. 

Here, we show how to use information potentially available 
in the covariates about heterogeneities among hypotheses to 
increase power compared to conventional procedures that 
only use the P

i
. To this end, we upgrade existing weighted 

multiple testing procedures through the independent hypoth-
esis weighting (IHW) framework to use data- driven weights 
that are calculated as a function of the covariates. Finite sam-
ple guarantees, for example false discovery rate control, are 
derived from cross- weighting, a data- splitting approach that 
enables learning the weight- covariate function without over-
fitting as long as the hypotheses can be partitioned into inde-
pendent folds, with arbitrary within- fold dependence. IHW 
has increased power compared to methods that do not use co-
variate information. A key implication of IHW is that hypoth-
esis rejection in common multiple testing setups should not 
proceed according to the ranking of the p- values, but by an al-
ternative ranking implied by the covariate- weighted p- values.

K E Y W O R D S

Benjamini– Hochberg, empirical Bayes, false discovery rate, 
Independent Hypothesis Weighting, multiple testing, p- value 
weighting

www.wileyonlinelibrary.com/journal/rssb
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wolfgang.huber@embl.org


   | 721IGNATIADIS and HUBER

1 |  INTRODUCTION

Screening large data sets for interesting associations is a basic operation in statistical data analysis. A 
frequently taken approach is to enumerate all potential associations, set up a hypothesis test for each 
of them, summarize the results by the p- values Pi, and select as discoveries all hypotheses with a small 
enough p- value; typically, this is a small fraction of all hypotheses. More formally, for some cut off t̂ : 

 The choice of the cut off t̂  may be data- driven and is determined by a multiple testing procedure, such 
as those proposed by Bonferroni (1935) or Benjamini and Hochberg (1995), which compute a t̂  that 
provides a defined level of protection against spurious discoveries. Common objectives are control of the 
family- wise error rate (FWER) or the false discovery rate (FDR).

These procedures operate solely on the list of p- values. Here, we consider situations in which 
beyond the p- value Pi, side information represented by a covariate Xi is available for each hypothesis. 
Such side information reflects heterogeneity among the tests and may— more or less directly— carry 
information about their different power, or the different prior probabilities of their null hypothesis 
being true. Suitable covariates are often apparent to domain scientists or to statisticians. We will see 
that procedures that take into account such side information often have higher power, in the sense that 
they make more discoveries at the same level of type I error.

To illustrate, we use a high- throughput genetics data set by Grubert et  al. (2015), who aimed 
to discover associations between genetic polymorphisms (single nucleotide polymorphisms [SNPs]) 
in the human genome and the activity of genomic regions (H3K27ac peaks). The main idea of the 
analysis of these data, which is presented in more detail in Section 6, is to carry out a hypothesis test 
for each pair of SNP and region on the same chromosome. On chromosomes 1 and 2, N1 = 645, 452 
and N2 = 699, 343 SNPs were recorded, and H3K27ac levels were measured in K1 = 12, 193 and 
K2 = 11, 232 regions, which amounts to nearly 16 billion (N1K1 + N2K2) tests. Figure 1 illustrates 
how the p- value distributions differ as a function of the genomic distance between SNP and region. 
These differences are consistent with biological domain knowledge: associations across shorter dis-
tances are a priori more plausible and empirically more frequent. Methods that are able to take into 
account this heterogeneity among the tests should be able to discover more associations at the same 
FDR, compared to Equation (1), which ignores such side information.

1.1 | Independent Hypothesis Weighting

In this paper, we present Independent Hypothesis Weighting (IHW), a flexible framework that can 
leverage hypothesis heterogeneity to improve power, while retaining finite sample type I error con-
trol. To explain the method, consider testing m hypotheses H1,…, Hm based on p- values P1,…, Pm in 
the situation where we also have access to covariates X1,…, Xm such that each Xi is independent of the 
p- value Pi if Hi is a null hypothesis; the codomain of the Xi can be any space (the same for all i). We 
propose to use a decision rule of the following form in place of (1): 

and I
�
,� = 1,…, K is a partition of the hypotheses into K disjoint folds, such that the (Pi, Xi) pairs are 

independent across folds.

(1)Reject hypothesis i ⟺ Pi ≤ t̂

(2)Reject hypothesis i ⟺ Pi ≤ t̂ ⋅ Ŵ
−𝓁

(Xi), where i ∈ I
𝓁
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There are two salient features to this rule: first, the decision boundary of hypothesis i does not 
only depend on its p- value Pi and the overall cutoff t̂ , but also on the weight function Ŵ

−�

: → ℝ
≥0 

of the covariate Xi, where  is the codomain of the Xi, and there is one such function for each fold 
I
�
. Second, the notation Ŵ

−�

 is used to denote that each of these functions is learned from the data 
with the proviso that only p-values from the K−1 folds excluding I

�
 are used. We call this proviso 

cross- weighting.
Conceptually, cross- weighting is related to cross- fitting (Schick, 1986), a method that has been 

successful in the fields of causal inference (Chernozhukov et al., 2017; Nie & Wager, 2020) and em-
pirical Bayes (Ignatiadis & Wager, 2019) for estimation with high- dimensional nuisance parameters. 
Analogous to findings in the cross- fitting literature, we will show that naively using plug- in estima-
tors to obtain the weight function tends to overfit, but cross- weighting salvages this at essentially no 
cost.

F I G U R E  1  Heterogeneous multiple hypothesis testing in a biological example: For each hypothesis, 
(i = 1, …, m), a p- value P

i
 is provided as well as a covariate X

i
, which here is the genomic distance between the two 

features tested for association: a single nucleotide polymorphism (SNP) and a biochemical chromatin modification. 
(a) Histogram of p- values: we recognize the peak close to the origin, corresponding to enrichment of alternative 
hypotheses, and a near- uniform tail for larger p- values. Note that the displayed p- values are right- censored at 10− 4,  
as is further explained in Section 6, which provides more context on the data. (b) Two- dimensional heatmap of bin 
counts of the joint empirical distribution 

(

− log10P
i
, X

i

)

: small p- values are enriched at lower distances. (c) Histograms 
of p- values stratified by the covariate: upon partitioning our hypotheses at the boundaries denoted by dashed lines 
in panel (b), we observe that at small distances the signal (peak at the left of the histograms) is pronounced, while 
for larger distances the histogram is dominated by background (uniform distribution of p- values from true null 
hypotheses). [Colour figure can be viewed at wileyonlinelibrary.com]
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1.2 | Related work

Previous work has shed light on optimal discovery thresholds in heterogeneous multiple testing. 
Similar to Equation (2), these thresholds may take the form {Pi ≤ t̂wi} parameterized in terms of 
weights wi that are optimal for controlling the family- wise error rate (FWER) (Dobriban et al., 2015; 
Peña et al., 2011; Roeder & Wasserman, 2009) or the FDR (Durand, 2019; Roquain & Van De Wiel, 
2009). Furthermore, in the case of FDR control, optimal decision thresholds are known to take the 
form of contours of equal local fdr (Cai & Sun, 2009; Cai et  al., 2019; Efron, 2010; Ferkingstad 
et al., 2008; Ochoa et al., 2015; Ploner et al., 2006; Scott et al., 2015). Nevertheless, all of these opti-
mal procedures are not implementable, as they depend on unknown properties of the data- generating 
mechanism. Instead, it has been proposed to apply a plug- in principle: the thresholds are estimated 
from the data at hand.

Such plug- in approaches, however, have no guarantees of type I error control or only do so in 
an asymptotic limit, as the number of tested hypotheses goes to infinity (Cai & Sun, 2009; Cai 
et al., 2019; Durand, 2019; Ignatiadis et al., 2016). More importantly, with finite samples, these 
plug- in methods often exceed the claimed type I error; we will demonstrate this in Sections 2.1 
and 5. This has motivated the provision of case- by- case, ad hoc modifications, which, however, 
still do not provide finite sample guarantees. For example, Durand (2017) recommends conducting 
a global test first and only proceeding with multiple testing if the global null hypothesis can be 
rejected. Cai et al. (2019) use a conservative modification of the density estimator employed by 
their (asymptotically valid) plug- in approach and show that this controls FDR in simulations with 
sparse signals. Furthermore, they suggest using the global screen of Durand (2017) first. Ignatiadis 
et al. (2016) use cross- weighting (described above) as a heuristic to maintain FDR control in finite 
samples.

Dispensing with heuristics, several authors have recently provided procedures that are formally 
justified under full independence of the hypotheses: Li and Barber (2019) propose SABHA, a data- 
driven, weighted procedure for FDR control which directly confronts potential overfitting. The 
authors prove finite sample FDR control at an elevated level compared to the nominal α; that is, 
at (1 + ɛ)α for some ɛ > 0. However, their guarantee only applies for their specific weighting 
scheme, which furthermore is suboptimal even under knowledge of the data- generating process (Lei 
& Fithian, 2018). Zhang et al. (2017) and Zhang et al. (2019) use a variant of hypothesis splitting 
to guarantee high- probability bounds on the false discovery proportion; however, their proposals re-
quire a minimum number of rejections, otherwise an empty list of discoveries is declared. Closer to 
our approach is AdaPT (Lei & Fithian, 2018), which uses covariate information to learn covariate- 
modulated decision boundaries and provides finite sample FDR guarantees. Its construction is 
based on a variant of the optimal stopping theorem developed by Barber and Candès (2015), which 
provides the analyst with considerable flexibility in learning these boundaries from the data, while 
masking information that could lead to overfitting. However, AdaPT has no theoretical guarantees 
outside of full p- value independence, is tied to FDR control and suffers from a large variance of the 
false discovery proportion (Korthauer et al., 2019).

Here we propose a general and flexible framework that goes beyond these previous approaches. 
We formalize hypothesis weighting with weights as a function of covariates Xi and demonstrate that 
such weights can be learned from the data without overfitting (i.e. losing type I error control) if we use 
cross- weighting as in Equation (2). Hence we build upon the hypothesis- splitting idea of Ignatiadis 
et al. (2016) and demonstrate that it can be used not merely as a heuristic, but instead as a theoretically 
grounded and principled way of conducting multiple testing with side information that has far reach-
ing applications. The IHW method provides finite sample guarantees for multiple type I measures, 
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such as the FDR, the FWER and the k- FWER, unlike previous proposals that are tied to the FDR. IHW 
provides a clean way to deal with dependent settings, as it allows arbitrary dependence within folds. 
Finally, IHW provides the researcher with flexibility in choosing any weighting scheme that would 
be appropriate for the data at hand, but we also recommend a default scheme and provide a software 
implementation in the form of an R package.

1.3 | Outline

In Section 2, we provide an overview of weighted multiple testing and explain our proposal in the 
context of FDR control under full independence of hypothesis tests. Section 3 extends the results to 
dependence, and to control of the k- FWER. Section 4 describes a framework for learning weighting 
rules. Section 5 provides simulation results, and Section 6 presents the high- throughput biology exam-
ple from Figure 1. Section 7 discusses further relationships to previous work, and Section 8 concludes 
with a discussion.

2 |  WEIGHTED AND CROSS- WEIGHTED 
MULTIPLE TESTING

A multiple testing procedure operates on data for m hypotheses H1,…, Hm and declares R hypotheses 
as rejections (‘discoveries’). Among these, V will be nulls, that is the procedure will commit V type 
I errors. The goal is to make as many discoveries as possible while retaining (stochastic) guarantees 
that V is acceptable. Concretely, one possible objective is to control the family- wise error rate, defined 
as FWER : = ℙ[V ≥ 1], or the k- FWER : = ℙ[V ≥ k]. In exploratory situations, a typically less strin-
gent objective is to control the FDR, that is, the expectation of the false discovery proportion (FDP), 
namely FDR: = �[FDP]: = �

[

V

R∨1

]

 (Benjamini & Hochberg, 1995).
Typically the data for each hypothesis are summarized into a single number, the p- value Pi, and 

a rule of form (1) is applied. However, in the presence of heterogeneity across tests, it might be 
suboptimal to use such a decision rule that treats all hypotheses exchangeably. Weighted multiple 
testing (Genovese et al., 2006) is a flexible way of encoding prior information and differentially pri-
oritizing the hypotheses. Multiple testing weights are defined as non- negative numbers wi such that 
∑

m
i=1

wi∕m = 1. Then, a weighted multiple testing decision rule takes the following form: 

 Here τ ∈ (0,1] is a fixed number, of which more below, and as in Equation (1), the cutoff t̂  may be 
data- driven. A larger wi implies that it is easier to reject hypothesis i. We first review two procedures for 
choosing t̂ .

Definition 1 (Weighted k- Bonferroni). The k- FWER can be controlled at level α ∈ (0,1) by applying 
the weighted k- Bonferroni procedure (Romano & Wolf, 2010), which takes the form (3) with 
deterministic cutoff t̂ = k�∕m and τ = 1. The case k=1 is the weighted Bonferroni procedure 
proposed by Genovese et al. (2006).

Definition 2 (τ- censored, weighted Benjamini– Hochberg). The FDR can be controlled at level 
α ∈ (0,1) by applying the τ- censored, weighted Benjamini– Hochberg (BH) procedure, which 
takes the form (3) with τ ∈ (0,1] fixed and data- driven cutoff t̂  specified as: 

(3)Reject hypothesis i ⟺ Pi ≤ min{wi ⋅ t̂, �}
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The weighted BH procedure of Genovese et al. (2006) is the special case τ = 1. The more 
general form was proposed by Li and Barber (2019) and will be employed for our theoretical 
guarantees in the following. The number of rejections of τ- censored BH is non- decreasing in τ, 
so that a procedure with smaller τ will never make more discoveries. However, for large τ, say 
τ ≥ 0.5, the discovery set will be equal to that with τ = 1, as long as weighted BH with τ = 1 did 
not reject a p- value ≥0.5.

In decision rule (3), the weights wi are denoted by lower case letters. This reflects the fact that ex-
isting results treat these weights as deterministic— as prior knowledge that a researcher has to specify 
before seeing the p- values (Blanchard & Roquain, 2008; Genovese et al., 2006; Habiger, 2017; Ramdas 
et al., 2019; Roquain & Van De Wiel, 2009). The main goal of this work is to let the weights depend on 
the data at hand— they are thus denoted as random variables Wi— while providing finite sample guar-
antees. Such data- dependent weighting has been recognized as an important open problem (Benjamini, 
2008; Roquain & Van De Wiel, 2009) that is essential for dealing with large scale multiple testing. 
To the best of our knowledge, no solution has been provided so far. Existing proposals for data- driven 
weighting either explicitly account for overfitting by establishing FDR control at an elevated level 
compared to nominal (Li & Barber, 2019) or only provide guarantees in the asymptotic limit (Durand, 
2019; Hu et al., 2010; Ignatiadis et al., 2016; Roeder et al., 2007; Wang, 2018; Zhao & Zhang, 2014).

2.1 | Example: Group Benjamini– Hochberg with cross- weighting

We first provide a rudimentary version of our method that is applicable to situations with categorical 
(or suitably categorized) covariates Xi ∈ {1,…, G}. This setting is called multiple testing with groups; 
each group consists of hypotheses whose covariate Xi takes on the same value. Our method builds 
upon the Group Benjamini– Hochberg (GBH) method proposed by Hu et al. (2010) to improve power 
compared to BH by using the group structure. GBH consists of first estimating the proportion of null 
hypotheses �0(g) in each group by ̂�0(g), weighting each hypothesis proportionally to (1 − �̂0(g))∕�̂0(g) 
and finally applying the weighted BH procedure. Algorithm 1 describes the method in detail1, using 
the estimator of Storey et al. (2004) applied to the grouped setting, analogous to Sankaran and Holmes 
(2014).

Hu et al. (2010) provide the following guarantees for GBH: in the oracle situation where the 
�0(g) are known, GBH controls the FDR. In the asymptotic limit where the number of groups is 
fixed, the number of hypotheses in each group grows to infinity and plimm→∞�̂0(g) ≥ �0(g) for 
all g, GBH controls the FDR. Furthermore, sufficient conditions are given so that asymptotically 
GBH is at least as powerful as BH. The asymptotics, however, do not necessarily apply for finite 
m/G, the number of hypotheses per group, as shown by simulations summarized in Figure 2. 
Intuitively, the reason is that some groups will randomly be enriched for smaller than expected 
p- values (and some for larger than expected ones), and the method further up- weights the former 
set of null p- values.

(4)t̂ =
�k̂

m
, k̂ = max

{

k ∈ ℕ
≥0 |Pi ≤

(

�wik

m

)

∧ � for at least k p-values

}

 1A simplification is that in Algorithm 1, the weights are specified so that ∑
i
W

i
= m. In contrast, in the original GBH paper 

(Hu et al., 2010), the weights are less conservative and satisfy ∑
i
�̂0(X

i
)W

i
= m. This inflation ensures that in the oracle case of 

known �0 ( ⋅ ), the FDR of GBH is exactly equal to α. We return to the issue of null proportion adaptivity in Section 2.3 and 
Theorem 2; in the case of GBH it may be regained by employing the optional step in Algorithm 1, cf. Ramdas et al. (2019).
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Algorithm 1: The Group Benjamini– Hochberg (GBH) algorithm

F I G U R E  2  The need for cross- weighting: We simulated under the global null with m = 10,000 independent 
P

i
∼ U[0, 1] and X

i
≡ i(mod G), where the number of groups G is a simulation parameter shown on the x- axis. Then 

we applied the GBH and IHW- GBH (with a random partition into five folds) methods (described in Algorithms 1 and 
2, with τ = 0.5 and without the null- proportion adaptivity step) at level α = 0.2. The plot shows the FDR (obtained 
by averaging over 12,000 Monte Carlo replicates) versus G. GBH does not control the FDR, and FDR increases as G 
increases, while IHW- GBH controls the FDR for all G. [Colour figure can be viewed at wileyonlinelibrary.com]
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Algorithm 2: The cross- weighted GBH (IHW- GBH) algorithm

Our solution is to use cross- weighting. We assign each hypothesis to one of K folds— randomly 
and independently of its p- value Pi and covariate Xi— and then calculate weights out- of- fold, as 
elaborated in Algorithm 2. With cross- weighting, a null p- value that is small by chance cannot 
lead to an upweighting of itself. FDR control is restored, as shown in Figure 2. In contrast, if the 
weights are determined not just by noise, but by true signal, then IHW- GBH, just as GBH, has in-
creased power compared to BH, as we show in a more comprehensive simulation study in Section 
5.1. If G furthermore remains fixed as m→∞, then GBH and IHW- GBH are asymptotically equiv-
alent (Corollary 2).
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2.2 | IHW: A family of multiple testing procedures

Algorithm 3: The general IHW algorithm

We now generalize the IHW- GBH procedure beyond categorical covariates, the GBH weighting scheme 
and the weighted BH procedure (Definition 2): we seek a general way of applying weighted multiple testing 
methods with data- driven weights Wi when covariates Xi— not necessarily categorical— are available. Our 
approach consists of two ingredients: first, we only consider weights that are functions of the covariates Xi, 
i.e., Wi = W(Xi). The second ingredient is cross- weighting: we partition our m  hypotheses into K disjoint 
folds2

I1,…, IK. Then, in determining the weight Wi for hypothesis i ∈ I
�
, we set Wi ∝ Ŵ

−�

(Xi), where the 
weight function Ŵ

−�

 is learned from data outside fold I
�
 and the weights are normalized, typically such that 

∑

i∈I
�

Wi = � I
�
�. This overall framework is summarized in Algorithm 3.

In Sections 2.3 and 3.2, we provide formal guarantees of finite sample type I error control for the 
IHW algorithm, under the condition that the weighted multiple testing procedure is weighted BH with 
τ- censoring or weighted k- Bonferroni. We will discuss how to learn weight functions for general (non- 
categorical) covariates in Section 4.

2.3 | Finite sample FDR control with cross- weighting under independence

To derive formal guarantees for Algorithm 3, we set out with a sufficient distributional assumption 
that contains several independence relationships. In Section 3, we will consider more general depend-
ence structures.

Assumption 1 (Distributional setting under independence). Let (Pi, Xi), i ∈ [m] be3 (p- value, covari-
ate) pairs and 0 ⊂ [m] the index set of null hypotheses. We assume that:

 2Our baseline proposal is to construct the partition by splitting the set [m]={1,…,m} into K (the default in the IHW software 
package is K=5) equally sized folds randomly. Alternatively, domain specific knowledge can be used to derive folds that 
minimize across- fold dependence, cf. the example in Section 6.

 3We use the notation [m]={1,…,m}.
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(a1) The null pairs ((Pi, Xi))i∈0
 are jointly independent.

(a2) The null pairs ((Pi, Xi))i∈0
 are independent of the alternative pairs ((Pi, Xi))i∉0

.
(b) For i ∈0, it holds that Pi is independent of Xi.
(c) For i ∈0, Pi is super- uniform, i.e., ℙ[Pi ≤ t] ≤ t for all t  ∈  [0,1].

To parse this assumption, let us first consider two important special cases: (i) marginalizing over 
the Xi, so that we only have access to p- values, and (ii) deterministic Xi. In both cases, Assumption 1 
reduces to (a′

1
) (Pi)i∈0

 are jointly independent, (a′
2
) independent of the alternative p- values (Pi)i∉0

 and 
(c). Of these, (a′

1
) and (a′

2
), while admittedly strong, are a typical starting point for proving finite sample 

results for multiple testing procedures, even in the absence of covariates: Liang and Nettleton (2012) call 
it the null independence assumption. In the setting with covariates, these are also assumptions made by 
Li and Barber (2019) (Theorem 1) and Lei and Fithian (2018) (Theorem 1). Cai et al. (2019) also assume 
full independence of hypotheses. The super- uniformity, also called conservativeness, of the null p- values 
(c) is also a standard assumption in multiple testing (Blanchard & Roquain, 2008). Li and Barber (2019) 
make a stronger assumption than (c).

The case of deterministic Xi is important, since, for example the genomic distance between SNPs 
and peaks in our motivating example in Figure 1 is a deterministic covariate (see Supplement S6.1 for 
additional examples). Nevertheless, we formulate results for the more general case to also handle situ-
ations in which the covariate Xi is calculated from the same data that are used to calculate the p- value 
Pi. For instance, Cai et al. (2019) consider simultaneous two- sample testing, and construct an ancillary 
Xi that is independent of the t- statistic (and thus also the p- value) under the null hypothesis; we revisit 
their construction in the simulation study of Section 5.3. Assumption 1(b) is crucial in ensuring that 
knowledge of Xi does not influence the null distribution. Cai et al. (2019) call it a ‘principle for infor-
mation extraction’; cf. Bourgon et al. (2010), Boca and Leek (2018) for further elaborations on this 
assumption and Supplement S6.2 for more examples of random covariates.

Next, we state two specifications on the weighting mechanism used. Unlike Assumption 1, the ap-
plicability of which depends on the generally unknown data- generating mechanism, these are entirely 
under the control of the analyst.

Specification 1 (Honest weighting). Consider a partition of [m] into K folds I1,…, IK, that is, 
⋃

�
I
�
= [m] and 

(

I
�

)

�
 are disjoint, and define Ic

�
= [m]�I

�. The partition is assigned indepen-
dently of ((Pi, Xi))i∈[m]. Then, the data- driven weights (Wi)i∈[m] are honest with respect to the 
partition I1,…, IK if:

(a) Wi is a function of only (Pj)j∈Ic
�

 and (Xj)j∈[m] for all ℓ  ∈  [K] and all i ∈ I
�
.

(b) The weights in fold I
�
 average to 1, i.e., 

∑

i∈I
�

Wi = � I
�
� for all ℓ ∈ [K].

(c)  Wi ≥ 0 for all i.

We call this specification ‘honest weighting’, borrowing terminology from the honest tree con-
struction of Wager and Athey (2018), who call a regression tree honest if the set of observations used 
to determine its structure is disjoint from the set of observations used for prediction in the leaves. 
Specification 1 encapsulates our idea of cross- weighting. Informally, it says that the weight Wi of hy-
pothesis i should not depend on its p- value Pi. As already shown in Figure 2, without honesty it is easy 
to overfit the data. Part (b) of the definition encapsulates a fixed weighting budget (Genovese et al., 
2006). Instead of merely requiring 

∑

m
i=1

Wi = m, the budget is restricted within each fold, to prevent 
information leakage across folds through the total magnitude of the weights.

Honesty suffices to guarantee type I error control in some cases, for example for the weighted 
k- Bonferroni procedure (Section 3.2 and Theorem 3). However, for the τ- censored, weighted BH 
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procedure with data- driven weights, we require one further condition on the weights, which was pro-
posed by Li and Barber (2019) and states that the magnitude of p- values less than or equal to τ must 
be concealed from the weighting algorithm.

Specification 2 (τ- censored weighting). The weights Wi are called τ- censored for τ ∈ (0,1] if they 
depend on the p- values (Pi)i∈[m] only through (Pi 1(Pi >𝜏))i∈[m].

Theorem 1 (IHW- BH controls the FDR under honesty and τ- censored weighting). Let ((Pi, Xi))i∈[m] 
satisfy Assumption 1. Furthermore, assume that we construct data- driven weights Wi that are 
honest (Specification 1) and τ- censored (Specification 2) for some τ ∈  (0,1]. Then the τ- 
censored, weighted BH procedure (Definition 2) with p- values Pi and weights Wi controls the 
FDR at the nominal level α.

The intuition for this theorem is the following: in the weighted BH algorithm (Definition 2), the 
rejection threshold of a null p- value Pi depends on its weight Wi and the total number of rejections 
R. Assumption 1 and honest weighting (Specification 1) ensure that a null p- value cannot influence 
its own weight. However, tests can coordinate adversarially by weighting each other in a way that 
increases R and potentially leads to their own rejection. Supplement S1.3 provides an example of 
how such adversarial coordination can break FDR- control guarantees, even though honesty holds. 
However, under τ- censoring, the only p- values that can coordinate through weight assignment are the 
ones > τ. These p- values are also excluded from being rejected and so FDR control is restored.

As a corollary, we get the following result:

Corollary 1 (IHW- GBH controls the FDR). Let ((Pi, Xi))i∈[m] satisfy Assumption 1, then the IHW- 
GBH procedure (without the null proportion adaptivity step) described in Algorithm 2 controls 
the FDR at the nominal level α.

Proof  By construction, the weights Wi of IHW- GBH are honest and τ- censored.

A shortcoming of IHW- BH with weights that satisfy 
∑

m
i=1

Wi = m is that FDR is controlled at 
�
′
0,W

� ≤ �, where ��
0,W

: = (
∑

i∈0
�[Wi])∕m and IHW- BH can thus be needlessly conservative. 

Motivated by null- proportion adaptive methods for unweighted BH (Storey et al., 2004) and weighted 
BH with deterministic weights (Habiger, 2017; Ramdas et al., 2019), we estimate �′

0,W
 within fold I

�
 

by4

and use these estimates to inflate the weights Wi. We have the following result:

Theorem 2 (IHW- Storey controls the FDR under honesty and τ- censored weighting). Assume that 
all assumptions of Theorem 1 are satisfied. Next let �̂′

0,W,�
 be defined as in (5) and define null- 

proportion adaptive weights as WStorey

i
: = Wi ∕ �̂

�

0,W,�
 for i ∈ I

�
. Then the τ- censored, weighted 

BH procedure (Definition 2) with p- values Pi and weights WStorey

i
 controls the FDR at the nom-

inal level α.

 4We suggest �� = 0.5 as a default choice.

(5)
�𝜋
�

0,W,�
=

�

max
i∈ I

�

Wi

�

+
∑

i∈ I
�

Wi 1(Pi > 𝜏
�)

� I
�
� (1 − 𝜏�)

with 𝜏
� ∈ [𝜏, 1),
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A direct application of this theorem is that the statement of Corollary 1 also holds for the null- 
proportion adaptive version of IHW- GBH (cf. Algorithm 2). This provides power gains in situations 
where the null proportion is substantially smaller than 1 at least in some regions of the covariate 
space, since then it will be the case that 

∑

W
Storey

i
>

∑

Wi, thus increasing the total weight budget.

2.4 | FDR asymptotics with cross- weighting under independence

While the primary focus of this paper is on finite sample guarantees and performance in simulations, 
in this section, we provide asymptotic results for m→∞ that serve three purposes: first, they demon-
strate how cross- weighting enables a streamlined proof of asymptotic FDR control under standard 
assumptions on (Pi, Xi) while dispensing of requirements on the class of weight functions. Second 
they show that in situations in which there is sufficient signal and the data- driven weight function has 
approached its asymptotic limit, no power is lost by using cross-weighting. Third they show that in an 
asymptotic regime, IHW- BH controls the FDR without a need for τ- censoring (Specification 2). On 
the other hand, our aim here is not to provide the sharpest asymptotics under the weakest conditions, 
but just to provide these conceptual insights.

We develop the asymptotics using the following Bayesian model (Deb et al., 2018; Ferkingstad 
et al., 2008; Lei & Fithian, 2018), which we call the conditional two- groups model and which extends 
the two- groups model of Storey (2003) and Efron et al. (2001): 

 We also define F(t |Xi = x) = �0(x)t + (1 − �0(x))Falt(t |Xi = x): the distribution of Pi given Xi = x. The 
distribution F(t |Xi = x) can vary from test to test because of varying null probabilities �0(x) and/or alter-
native distributions Falt( ⋅ |Xi = x), depending on the value of its covariate Xi.

Since m is a changing parameter in the asymptotics, it is useful to formalize what ‘learning a 
weight function’ entails and use more involved notation:

Specification 3 (Weighting scheme). A weighting scheme Ŵ
( ⋅ )

 is a mechanism that, for any finite 
subset I ⊂ ℕ

>0, uses samples ((Pi, Xi))i∈I to learn a weight function Ŵ
(I)

: → ℝ
≥0. We assume 

that the learned weight function Ŵ
(I) does not excessively upweight individual hypotheses, i.e., 

there exists Γ<∞ such that 

Given m independent draws (Pi, Xi) from (6) and a weighting scheme (Specification 3), we seek to 
apply learned weights in conjunction with weighted BH (Definition 2). We consider two possibilities:

1. Naive weighted BH: We use all data ((Pi, Xi))i∈[m] to learn Ŵ
([m])

 and let Wi ∝ Ŵ
([m])

(Xi) for 
i=1,…,m, such that the weights average to 1 (i.e. 

∑

m
i=1

Wi = m). Then we apply the weighted 
BH procedure with p- values Pi and weights Wi.

2. IHW- BH: We partition [m] into K disjoint folds I1,…, IK, independently of ((Pi, Xi))i∈[m]. Then we 
apply Algorithm 3 in conjunction with weighted BH, that is for each fold ℓ, we apply the weight-
ing scheme on [m]∖ I

�
 and for i ∈ I

�
 set weight Wi ∝ Ŵ

([m]� I
�

)
(Xi) and such that the weights average 

(6)Xi ∼ℙ
X , Hi|(Xi = x)∼Bernoulli(1−�0(x)),

Pi|(Hi =0, Xi = x)∼U[0, 1], Pi|(Hi =1, Xi = x)∼Falt( ⋅ |Xi = x)

(7)
�
�W

(I)
(x)2dℙX(x) ≤ Γ ⋅

(

�
�W

(I)
(x)dℙX(x)

)2

for all subsets I ⊂ ℕ.
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to 1 in that fold (i.e. 
∑

i∈I
�

Wi = 1). Then we apply weighted BH with p- values Pi and weights Wi.  
We note that the data- driven weights Wi are honest (Specification 1) by construction. However, 
for the asymptotics, we do not require τ- censoring (Specification 2), but instead require the mild 
technical condition (7).

Proposition 1 Let (Pi, Xi) be i.i.d. from the conditional two- groups model (6) satisfying regularity 
Assumption 3 (in Supplement S2). If the partition satisfies | I

�
|∕m → �

�
∈ (0, 1) as m → ∞ for all 

ℓ, then5: 
(a)  There exists a weighting scheme satisfying Specification 3, such that the naive weighted 

BH procedure asymptotically does not control the FDR.
(b)   For any weighting scheme satisfying Specification 3, the IHW- BH procedure asymptotically con-

trols the FDR.
(c)   Consider a weighting scheme that converges in probability to a deterministic limiting weight func-

tion W ∗ : → ℝ
≥0, 

Then, the naive weighted BH and IHW- BH procedures have the same power asymptotically.

Proof idea for (a) and (b):  The proof of Storey et al. (2004) for asymptotic FDR control of BH 
argues that by the Glivenko– Cantelli theorem, supt �

1

m

∑

m
i=1

�

1(Pi ≤ t) − ℙ[Pi ≤ t]
�

�

ℙ

→0 and 
similarly for the subset of null hypotheses. A consequence is that the BH estimator of the FDR is 
asymptotically uniformly conservative over all thresholds ≥δ > 0, which in turn implies asymp-
totic FDR control. Extending this argument to the weighted case requires uniform convergence: 
supt �

1

m

∑

m
i=1

�

1(Pi ≤ tWi) − ℙ[Pi ≤ tWi]
�

�

ℙ

→0.

For data- driven weights, this can be achieved by learning the weight function from a suitably 
restricted class . Du and Zhang (2014), Ignatiadis et al. (2016), Durand (2019) all use  such 
that the functions {(p, x) ↦ 1(p ≤ tW(x)) | t ∈ (0, 1], W( ⋅ ) ∈} are ℙ- Glivenko– Cantelli (van 
der Vaart, 2000). Similarly, Li and Barber (2019) consider  with low Rademacher complexity. 
On the other hand, if convergence is not uniform (e.g. if we are free to choose any weights satis-
fying Specification 3), then we can find regions of - space that are enriched for small p- values 
merely by chance, upweight them and violate FDR control (cf. Figure 2).

Instead, through cross- weighting, the richness of  is irrelevant: upon conditioning on other folds, 
Pi∕Ŵ

([m]� I
�

)
(Xi) in fold I

�
 are i.i.d., and thus the one- dimensional Glivenko– Cantelli result applies.

In words, while data- driven weights can lead to overfitting (a), cross- weighting universally allevi-
ates this (b). A further upshot of (b) is that it dispenses with the requirement for τ- censored weights 
(Specification 2). Finally, the objection may be raised to cross- weighting that it drops data and should 
thus be less powerful than a procedure that uses all the data. However, (c) shows that asymptotically 
one loses no power by using cross- weighting if the weighting procedure is well- behaved, that is, the 
weights asymptotically converge to a limit.

 5See Supplement S2 for the proof and formal statements.

‖

�W
([m])

( ⋅ ) − W ∗ ( ⋅ )‖∞
ℙ

⟶0 as m →∞,
∫

W ∗ (x)dℙX(x) = 1,
∫

W ∗ (x)2dℙX(x) <∞
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As a corollary of Proposition 1, we have that:

Corollary 2 (IHW- GBH asymptotics). Under the assumptions of Proposition 1 with  = [G] for 
fixed G ∈ ℕ, the GBH and IHW- GBH procedures without null proportion adaptivity, described 
in Algorithms 1 and 2, have the same power asymptotically.

Proof  In Supplement S2.4, we verify (7) and the condition from part (c) of Proposition 1.

At this point, we note that Durand (2019), motivated by a preprint version of this work, derived 
the following related and elegant result: in the setting with  a finite discrete space, Durand (2019) 
Theorem 7.1.) constructs a cross- weighted procedure that asymptotically controls the FDR and simul-
taneously achieves the power of the optimal weighted procedure.

3 |  Extension to dependence

3.1 | The key assumption: Independence across folds, dependence within

Assumption 1 made the strong assumption of joint independence of all null p- values and was suf-
ficient for the results presented in Section 2. Real data commonly deviate from this assumption. The 
consequences of such deviations on the applicability of results derived using independence assump-
tions are typically difficult to reason about. It is therefore desirable to construct guarantees that can be 
derived from weaker assumptions that are closer to realistic patterns of dependence.

Assumption 2 (Distributional setting with dependence). Let (Pi, Xi), i ∈ [m] be (p- value, covariate) 
pairs, I1,…, IK be folds of a partition of [m] that is defined based on information independent of 
((Pi, Xi))i∈[m], and let 0 ⊂ [m] be the index set of null hypotheses. We assume that: 

(a)   The (p- value, covariate) pairs are independent across folds I1,…, IK, but may be dependent 
within each fold. Formally, ((Pi, Xi))i∈I

�
,� ∈ [K] are jointly independent.

(b)   For i ∈0, it holds that Pi is independent of (Xj)j∈[m].
(c)    For i ∈0, Pi is super- uniform, that is ℙ[Pi ≤ t] ≤ t for all t ∈ [0,1].

Let us compare Assumption 2 to Assumption 1. Parts 2(b, c) are mild. Part 2(c) is identical to 1(c) and 
standard in multiple testing. Part 2(b) is analogous to 1(b), albeit stronger, since we are conditioning on 
the full vector of Xi. Nevertheless, 2(b) is implied by 1(a,b). In the important case where the Xi are deter-
ministic, 1(b) trivially holds. But it also allows for situations where, for instance, the Xi are random spatial 
locations. In this case, we may expect p- values with similar Xi to be correlated. Assumption 2(b) then means 
that knowing the locations Xi of all hypotheses provides no information about a single null p- value Pi.

The critical assumption is 2(a). Without covariates, the assumption implies that I1,…, IK is a par-
tition of p- values into independent blocks. This is not an assumption typically encountered in the 
multiple testing literature, although it has appeared, for example in Heesen and Janssen (2015), Guo 
and Sarkar (2019). It is fundamental to the cross- weighting approach, the core idea of which is to 
avoid any dependence between each individual null p- value Pi and its data- driven weight Wi. Cross- 
weighting ensures that Wi is determined based on Xi and p- values from the other folds, but not Pi. 
This would no longer be true with dependence across folds. This observation is analogous to a similar 
phenomenon in cross- validation. In Chapter 7.1 of the Elements of Statistical Learning, Hastie et al. 
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(2009) caution practitioners to split data into independent folds when evaluating a supervised learning 
method by cross- validation (CV): if the folds are not independent, the CV estimates of prediction error 
are not reliable.

From the application perspective, the assumption is practical: domain experts often have sufficient 
understanding of their data to find suitable partitions of the hypotheses into independent blocks. In 
the example from Figure 1, further detailed in Section 6, it is plausible to assume that the data for hy-
potheses located on different chromosomes are independent, or at least that any potential dependences 
are negligible. As another example, for covariates Xi that correspond to spatial or temporal positions, 
hypotheses that are sufficiently far away from each other will be independent if the dependences are 
mediated by spatial or temporal proximity.

We note that all other existing methods for multiple testing with covariates that provide FDR 
control assume either full independence (Cai et al., 2019; Lei & Fithian, 2018), weak dependence (Li 
& Barber, 2019) or the ability to consistently estimate the joint distribution of all hypotheses (Sun & 
Cai, 2009). Thus, Assumption 2 is a practical starting point towards dealing with common patterns of 
dependence encountered in real data.

Next, we describe two multiple testing methods with data- driven weights that have provable type 
I error guarantees under dependence.

3.2 | k- FWER control with cross- weighting under dependence

k- FWER control is achieved by applying cross- weighting in conjunction with the weighted k- 
Bonferroni procedure of Definition 1. We are not aware of existing procedures with data- driven 
weights and finite sample k- FWER control. Existing proposals provide asymptotic guarantees (Wang, 
2018).

The proof is direct and without technical complications. We provide it here in the main text, since 
it shows the key idea behind cross- weighting: each null p- value Pi is independent of its weight Wi, and 
this protects against overfitting.

Theorem 3 Let ((Pi, Xi))i∈[m] satisfy Assumption 2 (or Assumption 1) with respect to the partition 
I1,…, IK. Furthermore, assume that we construct data- driven weights Wi that are honest with 
respect to I1,…, IK (Specification 1). Then the weighted k- Bonferroni procedure (Definition 1) 
with p- values Pi and weights Wi controls the k- FWER at the nominal level α.

Proof  We first show that Pi is independent of Wi (Pi⊥Wi) for any i ∈0. Without loss of generality, 
i ∈0 ∩ I

�
. By honesty, Wi is a function only of the p- values in the other folds, (Pj)j∈Ic

�

 and all 
covariates X = (Xj)j∈[m]. It thus suffices to argue that Pi is independent of ((Pj)j∈Ic

�

, X). This fol-
lows from Assumption 2 (resp. Assumption 1). We next bound the k- FWER. 

 Note that in (*), we used the fact that for i ∈0 it holds that Pi is super- uniform and Pi is indepen-
dent of Wi. In the last step, we used that honesty ensures that 

∑

iWi = m.

k-FWER =ℙ[V ≥ k]≤
1

k
𝔼 [V] =

1

k

∑

i∈0

ℙ

[

P
i
≤

k�W
i

m

]

=
1

k

∑

i∈0

𝔼

[

ℙ

[

P
i
≤

k�W
i

m

|

|

|

|

W
i

]]

(∗)

≤
1

k

∑

i∈0

𝔼

[

k�W
i

m

]

=
�

m
𝔼

[

∑

i∈0

W
i

]

≤�.
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3.3 | FDR control with cross- weighting under dependence

We recall the basic procedure for controlling FDR with (deterministic) weights under arbitrary 
dependence:

Definition 3 (Weighted Benjamini– Yekutieli (wBY) (Benjamini & Yekutieli, 2001; Blanchard 
& Roquain, 2008)). Consider p- values P1,…, Pm with arbitrary dependence such that the 
null p- values are super- uniform. Furthermore, consider deterministic weights wi ≥ 0 such 
that 

∑

m
i=1

wi = m. Then the FDR is controlled at level α  ∈  (0,1) by applying the wBY 
procedure at level α, that is the weighted BH procedure (Definition 2) with τ=1 at level 
�∕

∑

m
k=1

1

k
.

We now show that applying the wBY procedure with cross- weighting controls the FDR under 
Assumption 2.

Theorem 4 (IHW- BY controls the FDR under honesty and independent folds). Let ((Pi, Xi))i∈[m] sat-
isfy Assumption 2 with respect to the partition I1,…, IK. Furthermore, assume that we construct 
data- driven weights Wi that are honest with respect to I1,…, IK (Specification 1). Then the wBY 
procedure (Definition 3) with p- values Pi and weights Wi controls the FDR at the nominal level α.

To demonstrate that honesty is essential for the result of Theorem 4, we next describe two plausible 
candidate methods for FDR control with covariates that do not control FDR:

Example 1 (BY with arbitrary data- driven weights does not control FDR under Assumption 2). 
Theorem 4 may appear as a consequence of Theorem 4.2. of Blanchard and Roquain (2008), 
who extended the results of Benjamini and Yekutieli (2001) and proved that the wBY proce-
dure (Definition 3) controls the FDR for any choice of weights and any p- value distribution. 
However, their result holds only for deterministic weights and not for data- driven weights, as 
we now demonstrate.

Proof  We generate ((Pi, Xi))i∈[m] satisfying Assumption 2 and under the global null as fol-
lows: fix m = 2m� for m� ∈ ℕ. We consider deterministic covariates Xi = i and the partition 
I1 = {1,…, m�}, I2 = {m� + 1,…, m}. We first draw a permutation σ from the uniform measure 
on the permutation group of {1,…, m�}. Next we independently draw: Ui ∼ U[(i − 1)∕m�, i∕m�] 
for i = 1,…, m� and let Pi = U

�(i). Finally, we draw independent Pm�+1,…, Pm ∼ U[0, 1]. Weights 
are chosen as follows: let i∗ ∈ argmini

{

Pi

}

 and then let Wi = W(Xi) = m1
(

Xi = i∗
)

. Then the 
FDR of wBY at α is equal to 1 as long as m∕

∑

m
k=1

1

k
> 2∕𝛼, as we now show. Since the smallest 

p- value in I1 is uniformly distributed on U[0, 1∕m�], it follows that with probability 1, Pi∗ ≤ 1∕m� 
and hence Pi∗∕Wi∗ ≤ 2∕m2

< 𝛼∕(m
∑

m
k=1

1

k
). Hi∗ gets rejected and so FDP=1 almost surely.

In contrast, FDR control would be guaranteed, had we used weights derived through cross- weighting. 
BY with τ- censored weights (Specification 2) also does not control FDR, cf. Supplement S1.6.

Example 2 (AdaPT with BY correction does not control FDR under Assumption 2). Lei and Fithian 
(2018) prove FDR control for AdaPT under full independence (cf. Assumption 1). Here we 
demonstrate that even with the BY correction, that is, at level �∕

∑

m
k=1

1

k
 and τ- censoring 

(Specification 2), AdaPT does not control FDR under Assumption 2.
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Proof  We generate ((Pi, Xi))i∈[m] satisfying Assumption 2 and under the global null as follows: we 
fix m = 2m�, m� ∈ ℕ and consider the partition I1 = {1,…, m�}, I2 = {m� + 1,…, m}. We take 
constant covariates Xi = 1 for all i and draw P1, Pm�+1

iid
∼U[0, 1]. Finally, we set P2,…, Pm� = P1 

and Pm�+2,…, Pm = Pm�+1. We then run the AdaPT algorithm at level �∕
∑

m
k=1

1

k
 with the initial-

ization specified in Lei and Fithian (2018). Then FDR≥0.2925 as long as m∕
∑

m
k=1

1

k
> 2∕𝛼,  

as we now show. As specified in Section 4.4.1 of Lei and Fithian (2018), the AdaPT algo-
rithm is initialized at threshold 0.45. Now call A the event that {P1 ≤ 0.45, Pm�+1 < 0.55}.  
On the event A, on the first step of the algorithm, AdaPT estimates the FDP (cf. (14)) as 
(1 +

∑

i1(Pi ≥ 1 − 0.45))∕
∑

i1(Pi ≤ 0.45), which is equal to 1∕m� if Pm�+1 > 0.45 and equal 
to 1/m otherwise. In both cases, the estimated FDP is less or equal than 1∕m� and thus less  
than �∕

∑

m
k=1

1

k
 under our assumption on m,α. Thus AdaPT immediately terminates, rejecting 

all p- values in I1, and so FDP = 1. Similarly FDP = 1 on the event A� = {P1 < 0.55, Pm�+1 ≤ 0.45} 
and FDR ≥ ℙ[A ∪ A�] = 0.2925. Finally, note that the above procedure is τ- censored with 
τ=0.45.

4 |  LEARNING POWERFUL WEIGHTING RULES

Sections 2 and 3 focused on sufficient conditions for type I error control, but did not address power. 
These conditions leave considerable flexibility in the choice of the class of possible weight functions, 
and in the method of selecting (or ‘learning’) these functions, given the data. This flexibility gives the 
analyst the opportunity to use domain- specific as well as statistical knowledge to make choices that 
have desirable type II error properties. Nevertheless, it is useful to provide a default algorithm that 
works well across a range of settings. To this end, here we describe two schemes for learning weight 
functions, one for weighted k- Bonferroni and one for weighted BH. Both rely on positing the approxi-
mate applicability of model (6), estimating quantities appearing therein and solving a convex program 
to find a weight function that optimizes the expected number of discoveries.

4.1 | Learning weights for IHW k- Bonferroni

The weighted k- Bonferroni procedure with weight function W(·) rejects hypotheses that satisfy 
Pi ≤ k�∕mW(Xi). Under Model (6), a weight function maximizing the expected number of discoveries 
is one that maximizes 

∑

iℙ[Pi ≤ k�∕mW(Xi) �Xi] =
∑

iF(k�∕mW(Xi) �Xi). To derive honest weights 
(Specification 1) that approximately maximize this objective, we learn Ŵ

−�

 for each fold ℓ separately 
as follows: first we estimate F(t |x) from Model (6) by F̂

−�

(t |x) using only p- values and covariates 
outside of fold ℓ. Next, identifying Ŵ

−𝓁

( ⋅ ) with the function’s values evaluated at the Xi, that is 
Wi = Ŵ

−�

(Xi), i ∈ I
�
 we solve the | I

�
|- dimensional problem with optimization variables w = (wi)i∈I

�
: 

 This setting allows for conditional distributions F̂
−�

(t |Xi) that are different for tests with different covari-
ates Xi. We consider estimators F̂

−�

(t |x) that are concave in t for all x. This has the advantage of turning 
(8) into a convex optimization program, which is often tractable. Concavity of the distribution of p- values 

(8)(W
i
)
i∈I

𝓁
∈ argmax

w∈[0,∞)|I𝓁 |

{

∑

i∈I
𝓁

F̂
−𝓁 (

k�∕m ⋅w
i
|X

i

)

|

|

|

|

|

|

w
i
≥0,

∑

i∈I
𝓁

w
i
= |I

𝓁
|

}

.
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is a reasonable assumption and often provides a good fit to multiple testing data sets (Genovese et al., 
2006; Strimmer, 2008b). However, the procedure works even when the concavity assumption does not 
hold: given any (potentially non- concave) pilot estimator of the conditional distribution function t ↦F(t | 
x), we can project it onto the set of concave distribution functions and solve the optimization problem with 
the projected distribution functions. We interpret the resulting procedure as a convex relaxation of (8) that 
makes computation tractable.

With this setup, we are ready to state a concrete weighting scheme, which proceeds in three steps: 
first, discretize the Xi into a finite number of bins defined, for example by quantile slicing or as the 
leaves of a tree. Second, estimate F̂

−�

(t |bin) by the Grenander estimator (Grenander, 1956), that is 
the least concave majorant of the empirical cumulative distribution function of the p- values Pi with 
i ∈ Ic

�
 and Xi ∈ bin. Third, solve (8) for each ℓ by linear programming. The reason that (8) may be 

expressed as a linear program is that the Grenander estimator is always concave in t and piecewise 
linear. We provide the details of the estimation and optimization procedures in Supplement S4.1; the 
computational complexity scales as O(log(m)·m).

An alternative Ansatz is to specify �0(x) and Falt( ⋅ |Xi = x) in the conditional two- groups model 
(6) parametrically. For instance, we may consider for Xi ∈ ℝ

p

 Such a beta- uniform mixture model has been considered in the setting without covariates, for example 
by Allison et al. (2002), Klaus and Strimmer (2011) and with covariates by Lei and Fithian (2018). In 
Supplement S4.2, we explain how to learn the parameters of the model using the expectation- maximization 
algorithm and how to optimize (8).

4.2 | Learning weights for IHW Benjamini– Hochberg

Our starting point for deriving powerful weight functions for the weighted BH procedure (Definition 
2) is again the conditional two- groups model (6). We seek a threshold function s: → [0, 1], such that 
the multiple testing procedure that rejects hypotheses with Pi ≤ s(Xi) satisfies the following two prop-
erties: first, the marginal FDR, defined as mFDR(s): = ℙ[Hi = 0 |Pi ≤ s(Xi)] is bounded by α, i.e., 
mFDR(s)≤α and second, the expected number of discoveries 

∑

F(s(Xi) � Xi) is large6. Similarly to 
our Bonferroni construction, we learn the threshold function ŝ

−� for each fold ℓ separately. To this 
end, we estimate F̂

−�

(t |x) and �̂ −�

0
(x) out of fold. Noting that mFDR(s)≤α is implied by 

∈
i
�0(X

i
)s(X

i
) ≤ �∈

i
F(s(X

i
) |X

i
), we propose solving: 

As our goal is to apply the weighted BH procedure, we convert these thresholds ti into weights 
Wi through normalization: for i ∈ I

�
, set Wi = � I

𝓁
� ⋅ ti∕(

∑

i∈I
𝓁

ti), unless the denominator is 0, in 
which case Wi = 1. A few remarks are in order: similarly to optimization problem (8), (10) is also a 

(9)𝜋0(x)= expit(a0+a
⊤

x), where expit(u)= exp(u)∕(1+exp(u))

Falt( ⋅ |Xi
= x)=Beta(𝛽(x), 1), 𝛽(x)=b0+b

⊤
x.

 6Such a Bayesian, Neyman– Pearson- type procedure is motivated by the asymptotic equivalence between the frequentist FDR 
and the mFDR (Cai & Sun, 2009; Cai et al., 2019; Genovese & Wasserman, 2004; Sun & Cai, 2007).

(10)t= (t
i
)
i∈I

�
∈ argmax

t∈[0,1]|I� |

{

∑

i∈I
�

F̂
−� (

t
i
|X

i

)

|

|

|

|

|

|

t
i
≥0,

∑

i∈I
�

�̂
−�

0
(X

i
)t

i
≤�

∑

i∈I
�

F̂
−� (

t
i
|X

i

)

}

.
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convex program if F̂
−�

(t |x) is  concave in t for all x, and may be expressed as a linear program if the 
Grenander estimator is used. We thus again suggest to discretize Xi and estimate distributions with 
the Grenander estimator. If the weights will be applied in conjunction with the weighted BH algo-
rithm, we suggest to simply set �̂0

−�
≡ 1. This optimization and estimation scheme was proposed by 

Ignatiadis et al. (2016). Alternatively, �̂0
−�

(x) may be estimated by applying Storey’s null proportion 
estimator (Storey et al., 2004) to all hypotheses outside fold I

�
 that fall into the same bin as x. Details 

of the estimation and optimization procedures are provided in Supplement S4.1.
The weights Wi constructed above are honest (Specification 1). Yet, in view of Theorems 1 and 2, it 

might appear unsatisfying that Wi do not satisfy the τ- censored weights condition (Specification 2). In our 
experience, the proposed procedure with the Grenander estimator does not overfit and controls the FDR. 
This is corroborated by extensive simulations below and by the asymptotic guarantees of Proposition 1.

Our alternative proposal, which satisfies τ- censoring (Specification 2), is to fit the Beta- Uniform mix-
ture model (9). The EM algorithm may be modified to accommodate for censored knowledge of Pi ≤ �; 
cf. Markitsis and Lai (2010) in the setting without covariates. Furthermore, under model (9), the solution 
to problem (10) lies on a contour of equal conditional local fdr (cf. Theorem 2 in Lei and Fithian (2018)), 
and this fact facilitates the optimization. We describe the steps in more detail in Supplement S4.2.

Finally, we use the same framework to derive weights for the weighted Benjamini- Yekutieli proce-
dure (Definition 3): we proceed as for weighted BH but solve (10) with α replaced by �∕

∑

m
k=1

1

k
. In 

this case, honesty suffices for FDR control (Theorem 4).

5 |  NUMERICAL EXPERIMENTS

Our goal in this section is to corroborate through simulations of three important settings— grouped multi-
ple testing, multiple testing with continuous covariates and simultaneous two- sample tests— the following 
claims: first, some methods with asymptotic FDR control guarantees do not control FDR in finite sam-
ples. Second, IHW is a flexible framework for multiple testing, its main advantage over other methods 
being finite sample error control (due to cross- weighting), while remaining competitive in terms of power. 
Throughout this section, we define power as 

 The expectation, just as the FDR, is evaluated through averaging over Monte Carlo replicates.

5.1 | Grouped multiple testing

We first consider the multiple testing problem with groups, that is with categorical covariates Xi ∈ [G].  
In each simulation, we generate (Pi, Hi, Xi), i = 1,…, 20000, independently, as follows: 

(11)Power : = �

� ∑

i∉0
1(i rejected)

max{1, m − �0�}

�

(12)

X̃i =⌊40 ⋅ (i−1)∕m⌋, Xi =⌈X̃i∕40 ⋅G⌉

Hi�X̃i ∼Bernoulli(1−�0(X̃i)), �0(X̃i)= (0.2+0.8X̃i∕36) ⋅1(X̃i =0 mod 4)+1(X̃i ≠0 mod 4)

Zi�Hi, X̃i ∼ (Hi ⋅�(X̃i), 1), �(X̃i)=2.5−2X̃i∕36

Pi =1−Φ(Zi), Φ is the standard Normal CDF
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 In words, there are 40 latent groups defined by X̃i, each with 500 hypotheses. A quarter of the groups 
has non- nulls, three quarters do not. The alternative signal strength μ(·) and null proportion π(·) vary lin-
early across non- null groups. Parameters are chosen so that the overall proportion of nulls is 0.9. We then 
coarsen X̃i to Xi = ⌈ X̃i∕40 ⋅ G⌉, with G varying across simulations; Xi is non- latent, that is visible to the 
algorithm. For example, for G = 2, Xi takes on only 2 levels (2 groups), while for G = 40, Xi = X̃i takes 
on all 40 levels. We also use the above configuration of covariates and simulate under the global null by 
drawing all p- values from the uniform distribution.

We compare the following seven methods:

1. The BH method (Benjamini & Hochberg, 1995), which ignores the covariates Xi.
2. The stratified BH procedure (SBH) (Sun et al., 2006, Efron, 2008), wherein the BH procedure is 

applied G times separately to p- values corresponding to different levels of Xi.
3. The Clfdr (conditional local fdr) procedure of Cai and Sun (2009), which applies an optimal de-

cision rule that rejects hypotheses with a low value of the group- wise local fdr (cf. Algorithm 4 in 
Supplement S3). We apply a data- driven version of the oracle rule by estimating local fdrs within 
each group with the fdrtool CRAN Package (Strimmer, 2008a), which estimates marginal den-
sities with the Grenander estimator.

4. The Group Benjamini– Hochberg (GBH) procedure of Hu et  al. (2010) with null- proportion 
adaptivity, as described in Algorithm 1 (τ = 0.5).

5. The IHW- GBH procedure with null- proportion adaptivity, as described in Algorithm 2 (τ = 0.5) 
with hypotheses randomly split into five folds.

6. The IHW- Storey- Grenander procedure: the IHW- Storey method (Theorem 2) with hypotheses 
randomly split into five folds and data- driven weights based on the Grenander estimator described 
in Section 4.2 and Supplement S4.1.

7. The Structure Adaptive Benjamini– Hochberg algorithm (SABHA) by Li and Barber (2019): 
SABHA first estimates �̂0( ⋅ ) for each group by solving a joint convex optimization problem. 
Then, the τ- censored, weighted BH procedure is applied with weights Wi = 1∕�̂0(Xi). We set the 
tuning parameters of group- wise SABHA to τ = 0.5, ɛ = 0.1 following Section 7.1 of Li and Barber 
(2019).

All of the above methods provably control FDR asymptotically, as m→∞, the number of groups 
remains fixed and there is signal in the data, but only BH and IHW- GBH have provable finite- sample 
FDR control at α and SABHA at �(1 + 10

√

G∕m) (Li & Barber, 2019, Lemma 2).
Results are shown in Figure 3. Under the global null (Figure 3(a)), SBH strongly overfits, since 

under the global null the FDR is equivalent to the FWER, so it would need to pay a Bonferroni cor-
rection to apply BH separately to each group. Clfdr has FDR much below nominal for a small number 
of groups (the oracle local fdr procedure would not reject anything under the global null), but as the 
number of groups increases, it no longer controls FDR. We further discuss this below. All other meth-
ods control FDR in this setting. For GBH, however, recall Figure 2 for a situation where it does display 
a pronounced loss of FDR control.

For the simulations with signal (Figure 3(b), (c)) we make the following observations: as G in-
creases, the covariates become more informative, hence in principle power can be increased. Indeed 
this is precisely what we observe (Figure 3(c)) for the grouped methods. The power of BH remains 
constant. After BH, the least powerful procedure appears to be SABHA; the suboptimality of its 
weighting scheme has been previously pointed out (Lei & Fithian, 2018). We also observe that IHW- 
GBH matches the power of GBH and has the added advantage of provable finite- sample FDR con-
trol. Regarding the methods that estimate the distribution, when G is small relative to m, then the 
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Grenander estimator can precisely estimate the distribution in each bin. This translates into the Clfdr 
procedure and IHW- Storey- Grenander outperforming the other methods at small G; indeed Clfdr is 
provably asymptotically the most powerful procedure in this setting. However, as G increases and the 
amount of data in each group decreases, the distributions are not estimated as accurately. The con-
sequence for Clfdr is loss of FDR control, while IHW- Storey- Grenander retains FDR control due to 
cross- weighting. In conclusion, in this set of simulations, IHW is the most powerful method of those 
that control FDR.

5.2 | Multiple testing with continuous covariates

In this section, we explore a setting with a two- dimensional, continuous covariate Xi. We seek to 
compare IHW, AdaPT and local fdr based methods with an emphasis on understanding behav-
ior under model- misspecification (to be made precise momentarily). We simulate independent 
(Xi, Hi, Pi), i = 1, … , 10000 from the conditional two- groups model (6) with the following choices 
for ℙX ,�0(x) and Falt( ⋅ |Xi = x): 

� ∈ [1, 3] is a parameter that varies across simulation settings. The two- dimensional covariates 
Xi modulate both the null proportion �0(Xi) and the signal in the alternative density. We compare six 
methods.

1. The BH (Benjamini & Hochberg, 1995) method ignoring Xi.
2. The oracle Clfdr procedure (Clfdr- oracle) that rejects hypotheses with a small condi-

tional local fdr, fdr(Pi |Xi): = ℙ[Hi = 0 |Xi, Pi] with a threshold chosen through Algorithm 4 in 
Supplement S3. This procedure achieves an optimal trade- off between the false nondiscovery 
rate and the false discovery rate, cf. Sun and Cai (2007), Cai and Sun (2009). Clfdr- oracle, 
however, would not be available to an analyst, as it assumes oracle knowledge of the compo-
nents (13) in model (6).

3. The IHW- BH- Grenander procedure, similarly to the previous section, but without null- proportion 
adaptivity (i.e. with IHW- BH instead of IHW- Storey). The covariates Xi ∈ [0, 1]2 are binned into 
5×5 equal volume bins.

(13)
ℙ

X =U[0, 1]2, 𝜋0(x)=0.98 ⋅1(x2
1
+x2

2
≤1)+0.6 ⋅1(x2

1
+x2

2
>1), (𝔼[𝜋0(Xi)]≈0.9)

Falt( ⋅ �Xi = x)=Beta(𝛽(x), 1), 𝛽(x)=1∕max{1.3, 𝛽 ⋅ (
√

x1+
√

x2)}

FIGURE 3  Grouped multiple testing simulation: (a) False discovery rate under the global null in Model (12) 
(averaged over 10,000 Monte Carlo replicates) for seven methods for multiple testing with groups. (b), (c) False discovery rate 
and power in Model (12) (averaged over 200 Monte Carlo replicates) when there is signal (average null proportion is 0.9) for 
the same seven methods. The nominal α is equal to 0.1 throughout. [Colour figure can be viewed at wileyonlinelibrary.com]
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Furthermore, we compare three methods that fit Model (9) as a misspecified working model for the 
true model (13) using the EM algorithm (details in Supplement S4.2).

1. Clfdr- EM: this is the same as Clfdr- oracle, but instead of true quantities we use the ones 
estimated by maximum likelihood on the misspecified model (9). We employ the EM algo-
rithm since the status Hi ∈ {0, 1} is unknown.

2. IHW- Storey- BetaMix: this is the IHW- Storey method with hypotheses split randomly into five 
folds and weights derived from optimization problem (10) based on the (out- of- fold) estimated 
working model (9). Here the EM algorithm deals with both unknown Hi and unknown value of 
censored p- values Pi ≤ � with τ = 0.1.

3. AdaPT, as implemented in the adaptMT CRAN package, wherein in each iteration the work-
ing model (9) is fitted. The EM algorithm deals with unknown Hi and for a subset of hypotheses 
(‘masked hypotheses’) the algorithm only has access to min{Pi, 1 − Pi} instead of Pi.

The results are shown in Figure 4. As expected from theory, Clfdr- oracle controls the FDR and is 
most powerful. Clfdr- EM is also powerful, however because of misspecification in model (9), it does 
not control the FDR. All other algorithms control the FDR. Among these, AdaPT is most powerful, 
closely followed by IHW- Storey- BetaMix and then by IHW- BH- Grenander; all of these procedures 
improve substantially upon BH.

Breaking AdaPT: Figure 4 demonstrates that AdaPT is very powerful for multiple testing in model (13). 
However, under two conditions (more of which, below), AdaPT’s power (but not FDR control guarantees) 
can be diminished, even under independence. To explain these two conditions, we first provide a summary 
of how AdaPT works. In iteration j of AdaPT, a candidate rejection function sj: → [0, 1] is maintained and 
hypotheses that satisfy Pi ≤ sj(Xi) are in the provisional rejection set. The false discovery proportion at step j 
is estimated by the Barber and Candès (2015) estimator (cf. Arias- Castro and Chen (2017)): 

 If F̂DPj ≤ �, the algorithm terminates and returns the current rejection set. Otherwise the rejection region 
sj is further shrunk to sj+1 with sj+1(x) ≤ sj(x) for all x. The iteration continues until either the stopping 
criterion is satisfied or the empty set is returned.

(14)F̂DPj =
1 + |{i: Pi ≥ 1 − sj(Xi)} |

|{i: Pi ≤ sj(Xi)} |
.

F I G U R E  4  Simulation for multiple testing with a continuous covariate: (a) False discovery rate in model (13) 
for six methods. The x- axis corresponds to a simulation parameter that is monotonically related to the strength of the 
signal for the alternatives. (b) Power in model (13) for the same six methods. The nominal α is equal to 0.1 throughout 
and results are averaged over 400 Monte Carlo replicates. [Colour figure can be viewed at wileyonlinelibrary.com]
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The first complication of (14) is that AdaPT must reject at least 1/α hypotheses or none at all. For 
example, for α=0.05, if there are 19 very small p- values, AdaPT may not be able to reject them, even 
if BH could. Hence AdaPT has low power in situations with very sparse signals, where the best one 
could hope for is to detect a handful of hypotheses. This is apparent in Figure 4, in the lowest signal 
situation (� = 1.0) . There, AdaPT has FDR substantially below the nominal α and furthermore has 
lower power than IHW- Storey- BetaMix.

The second complication is that AdaPT can be conservative when the null p- value distribution is 
strictly super- uniform instead of uniform, because the numerator in (14) will overestimate the false 
discoveries. In applications, a strictly super- uniform distribution is typically caused by discrete p- 
values or when the researcher is testing for a one- sided alternative using a test calibrated to effect 
size zero, but many nulls have an effect in the opposite direction. To explore such enrichment of large 
p- values, we repeat the previous simulation with Pi | (Hi = 0) ∼ (1 − �) U[0, 1] + � Beta(1, 0.5),  
varying κ  ∈ [0,0.1] and fixed � = 2. Our previous simulations correspond to κ=0, which yields the 
uniform null distribution. Figure 5(a) shows the null density as κ varies, and panels (b),(c) show the 
results of the simulation. We see that as κ increases, the FDR of AdaPT quickly drops below the nom-
inal α and as a consequence, power deteriorates.

5.3 | Simultaneous two- sample testing

In this section, we provide an example of a covariate Xi that is random and arises from statistical 
(rather than domain- specific) considerations. We study simultaneous two- sample testing for equality 
of means following Cai et al. (2019). For the i- th hypothesis, we observe 

(everything jointly independent). We are interested in testing Hi:�Y ,i = �V ,i, i = 1, …, m and assume the 
variances �2

i
 are known7. The optimal test statistic in single hypothesis testing (Lehmann & Romano, 

2005) for this situation is the two- sample z- statistic Zi: =
√

n∕2(Yi − Vi)∕�i, where Yi and Vi are the 
sample means in each group. The p- values can be calculated as Pi = 2(1 −Φ( |Zi | )), where Φ is the 
Standard Normal CDF. A basic multiple testing approach consists of applying BH to the p- values Pi.

(15)Yi,1,…, Yi,n ∼ (�Y ,i, �
2
i
) and Vi,1,…, Vi,n ∼ (�V ,i, �

2
i
)

 7The results extend to unequal sample sizes and to unknown variance. We refer the reader to Section S6.2.2 and Bourgon 
et al. (2010), Liu (2014), Cai et al. (2019).

F I G U R E  5  Simulation for multiple testing with a strictly super-uniform null distribution: (a) Density 
of null p- values drawn from (1−κ)U[0,1] + κBeta(1,0.5) for varying κ. (b), (c) FDR control and power under same 
simulation setting as Figure 4, but with � = 2 fixed and κ varying (Figure 4 corresponds to κ=0). [Colour figure can be 
viewed at wileyonlinelibrary.com]
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In addition, denote by �̂i: =
(

Yi + Vi

)

∕2 the pooled average and let Xi: =
√

2n�̂i∕�i. A direct 
covariance calculation reveals that Cov(Xi, Zi) = 0 , and so Xi and Zi are independent (note the joint 
normality). Hence we may apply the IHW framework with p- values Pi and covariates Xi.

In single hypothesis testing, there is nothing to be gained from Xi and its usefulness only emerges in 
the multiple testing setup. Xi is a test statistic for the null hypothesis �Y ,i = �V ,i = 0. If we believe a priori 
that for many of the hypotheses i with �Y ,i = �V ,i, a sparsity condition holds, so that in fact �Y ,i = �V ,i = 0, 
then large absolute values of this statistic are more likely to correspond to alternatives. Note that we did not 
actually re- specify our null hypothesis from �Y ,i = �V ,i to �Y ,i = �V ,i = 0. We just assumed properties of the 
null hypotheses to motivate a choice of covariate, and are still testing for �Y ,i = �V ,i.

In the simulation, which is similar to simulations in Cai et al. (2019), we generate data from model 
(15) with m =  10,000, n = 50, �i = 1 for all i. Furthermore, we vary m1, the number of alternatives and let 

 That is, only the first m1 hypotheses are alternatives. The next m − m1 hypotheses are nulls with the last 
m − 2m1 also being nulls with respect to the screening null �Y ,i = �V ,i = 0. We compare five methods.

1. The BH procedure applied to Pi and ignoring Xi.
2. The CARS procedure (covariate- assisted ranking and screening) (Cai et  al., 2019): CARS is a 

multiple testing procedure designed specifically for simultaneous two- sample tests based on Zi 
and Xi. At a high level, CARS learns a function (z,x)↦ ŝCARS(z, x) and a threshold t̂CARS and 
rejects all hypotheses such that ŝCARS(Zi, Xi)≤ t̂CARS. Asymptotically, CARS controls the FDR 
and learns the optimal decision boundary. We use the default settings of the CARS function 
(option="regular") in the CARS R package.

3. CARS- sparse: a modification of CARS, also proposed by Cai et  al. (2019), that is more con-
servative and empirically alleviates loss of FDR control in situations with sparse signals 
(option="sparse" in the CARS package).

4. IHW- Storey- CARS: we use IHW- Storey (Theorem 2) in conjunction with a honest (but not τ- 
censored) weighting heuristic based on CARS. We partition hypotheses randomly into five folds 
I1,…, I5. To choose weights for I

�
 we proceed as follows: first, we run CARS on the remaining four 

folds and get ŝ−𝓁

CARS
( ⋅ , ⋅ ) and t̂

−�

CARS
. Then, for i ∈ I

�
, we let ti be the smallest threshold at which Hi 

would get rejected,

Then we let W̃i = 2(1 −Φ(ti)), Wi = � I
�
� W̃i∕

∑

j∈I
�

W̃j and finally apply the IHW- Storey procedure 
from Theorem 2.

5. IHW- Storey- Grenander, as in the grouped multiple testing simulations of Section 5.1; we discre-
tize the covariate Xi into 10 groups with 1000 observations each.

The results are shown in Figure 6. With sparse signal (small m1), CARS fails to control the FDR. 
This observation had also been made by Cai et al. (2019), who therefore proposed a modification, 
CARS- sparse, which indeed controls FDR in our simulation, as do all other methods. On the other 
hand, IHW- Storey- CARS is easy to implement— using existing software for CARS— and turns out to 

�Y ,i =

⎧

⎪

⎨

⎪

⎩

0.5, i=1,…, m1

0.25, i=m1+1,…, 2m1

0, otherwise

, �V ,i =

⎧

⎪

⎨

⎪

⎩

0, i=1,…, m1

0.25, i=m1+1,…, 2m1

0, otherwise

ti: = inf{z ≥ 0: ŝ
−�

CARS
(z, Xi) ≤ t̂

−�

CARS
}.
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have more power in the simulations than CARS- sparse. IHW- Storey- Grenander also has more power 
than CARS- sparse.

6 |  APPLICATION EXAMPLE: BIOLOGICAL  
HIGH- THROUGHPUT DATA

Grubert et al. (2015) assayed cell lines derived from 75 human individuals for the status of their SNPs 
(i.e. differences that exist between the genome sequences of individuals) and a biochemical modifica-
tion of DNA- associated molecules called H3K27ac. We tested all within- chromosome associations by 
marginal regression of the quantitative readout from the ChiP- seq assay for H3K27ac on the polymor-
phisms, which are encoded as categorical variables with levels aa, ab, bb, using the software Matrix 
eQTL (Shabalin, 2012). Here we restrict ourselves to associations in Chromosomes 1 and 2, for which 
Grubert et al. reported the status of N1 = 645, 452 and N2 = 699, 343 SNPs and the H3K27ac levels at 
K1 = 12, 193 and K2 = 11, 232 genomic positions (‘peaks’) on these chromosomes. This results in a 
total of approximately 16 billion hypotheses (m = N1 × K1 + N2 × K2 ≈ 1.6 ⋅ 1010)8. Figure 1 shows 
the marginal histogram of the p- values and illustrates how these p- values are related to the genomic 
distance between SNP and H3K27ac peak. This covariate is motivated from biological domain knowl-
edge: associations across shorter distances are a priori more plausible and empirically more 
frequent.

We compare two different approaches of dealing with the multiplicity, while controlling the FDR:

1. The BY procedure on the m p- values (at level α  =  0.01): such a conservative procedure 
is justified, since p- values for the same H3K27Ac peak and different, but genetically linked 
SNPs will be strongly dependent.

2. The IHW- BY- Grenander method (at level α = 0.01) using as covariate the genomic distance be-
tween SNP and H3K27ac peak and weights based on the Grenander estimator after binning based 

 8We note that computing and storing 16 billion p- values puts notable demands on computing infrastructure. Therefore, a 
common choice made by implementations such as Matrix eQTL (Shabalin, 2012) to reduce storage requirements is to only 
report p- values below some threshold (e.g. in this case, below 10− 4). BH/BY and IHW- BH/BY can deal with this seamlessly 
by operating as if the right- censored p- values were equal to 1. In contrast, AdaPT depends on the large p- values to estimate 
the FDR, cf. (14).

F I G U R E  6  Simulation for simultaneous two- sample testing: (a) False discovery rate and (b) Power in model 
(15) for five methods for simultaneous two- sample testing. The nominal α is equal to 0.1 throughout, and results were 
averaged over 400 Monte Carlo replicates. [Colour figure can be viewed at wileyonlinelibrary.com]
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on genomic distance; cf. Section 4.2 and Supplement S4.1 for a description of the algorithm and 
Supplement S5 for application- specific details. To satisfy Assumption 2 and hence have guaran-
teed FDR control by Theorem 4, we partition p- values into two folds corresponding to the different 
chromosomes. The data for these are, to sufficient approximation, independent.

The results are shown in Figure 7. IHW more than doubles the discoveries compared to the un-
weighted procedure while maintaining all formal guarantees of FDR control. Panel (a) shows the 
learned weight functions for the two folds. Upon applying the wBY procedure, the weights translate 
into thresholds for rejection: hypothesis i is rejected if Pi ≤ Wi t̂

∗

IHW
 for some common choice of 

t̂
∗

IHW
 and hypothesis- dependent Wi (Panel (d)). In contrast, the BY procedure uses the same rejection 

threshold t̂
∗

BY
 for all hypotheses (Panel (c)). As a consequence, the BY procedure had to be rela-

tively stringent throughout, while IHW could be permissive at smaller and stringent only at higher 
distances.

There is another interpretation explaining why IHW increases power: it attempts to set thresholds 
in a way that balances the conditional local fdr (fdr), at least among the non- zero thresholds. This is 
shown in Panel (f). Indeed, under certain assumptions, the optimal decision boundary is one of con-
stant local fdr, cf. Lei and Fithian (2018) (Theorem 2). On the other hand, since BY thresholds only 
depend on the p- values, the local fdr varies widely and increases as a function of genomic distance, 
as seen in Panel (e).

Finally, we note that the estimation method for the local fdr in Panels (e) and (f) is the same that 
was used to derive the weights. The local fdr estimates appear to be noisy; even inaccurate estimates 
of the local fdr can lead to powerful weights (increase in number of discoveries). Furthermore, the 
frequentist guarantees of type I error control of IHW are independent of and unaffected by (in)accu-
racies of the local fdr estimate.

7 |  FURTHER RELATIONS TO PREVIOUS WORK

Throughout this manuscript we have emphasized the relationship of the present research to the 
previous work. In particular, in our numerical study in Section 5 we compared IHW to previously 
developed methods for grouped multiple testing, multiple testing with continuous covariates and 
simultaneous two- sample testing. In this section, we provide some further connections of IHW to 
previous work.

7.1 | Ignatiadis, Klaus, Zaugg and Huber (2016)

The idea of cross- weighting for FDR control was introduced as one of three empirically promis-
ing heuristics by Ignatiadis et al. (2016); the other two heuristics being convex relaxations and 
regularization of the weights towards unity and/or low total variation. The contribution of this 
paper relative to Ignatiadis et al. (2016) is to clarify essential versus circumstantial concepts (e.g. 
Ignatiadis et  al. (2016) only considered one possibility for weighting hypotheses through the 
Grenander estimator) and to establish formal, finite- sample FDR control for IHW- BH. We also 
show how the fundamental idea of cross- weighting applies beyond independence and introduce 
cross- weighted variants of the k- Bonferroni and BY procedures for k- FWER and FDR control 
under dependence.
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F I G U R E  7  Biological data example revisited: (a) Schematic representation of cross- weighting: we consider a 
multiple testing situation with m = m1 + m2 hypotheses that can be partitioned into two independent folds (here: two 
chromosomes). Besides the p- value P

i
, a covariate X

i
 is available for each hypothesis (i = 1, … m), which here is the 

genomic distance between SNP and peak. For each fold we learn the optimal weight function and assign weights to 
hypotheses from fold 1 using the function learned from the ((P

i
, X

i
))

i
 of fold 2, and vice versa. (b) Data- driven weighting 

increases power: upon merging the two tables of hypotheses, we apply the Benjamini- Yekutieli (BY) method at 
α = 0.01 to the p- values, or the weighted BY method with the learned weights (IHW- BY). Each method returns a list 
of rejected hypotheses. IHW more than doubles the total number of discoveries. (c), (d) Decision boundaries for BY 
and IHW- BY: BY rejects all hypotheses with p- value P

i
 below a fixed threshold, while IHW- BY rejects hypotheses 

with P
i
≤ s

l
(X

i
), where l ∈ {1,2} denotes the fold, and the threshold depends on the covariate X

i
. The threshold is 

more lenient for hypotheses with smaller genomic distance X
i
. For larger X

i
, the threshold becomes smaller (more 

stringent); in this example application, it reaches 0 for very large X
i
. (e), (f) Estimated conditional local fdr at the BY 

and IHW- BY rejection thresholds. We observe that for BY the conditional local fdr varies widely, while for IHW- BY 
it is approximately balanced at the non- zero thresholds (note the different scales of the y- axis in panels (e),(f)). The 
conditional density f(t|x) is estimated by binning along X

i
 and applying the Grenander estimator within each bin. We set 

f(0|x) = ∞, so that the conditional local fdr is 0 when s(x) = 0. [Colour figure can be viewed at wileyonlinelibrary.com]
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7.2 | Sample splitting

One of the initial attempts at data- driven weights (Rubin et  al., 2006) used another form of data- 
splitting: consider the setting where we start with a m×n data- matrix from which we get our p- values 
Pi by calculating the test statistic in a row- wise fashion, say by applying a t- test for each row. Then 
one can calculate m ‘prior’ p- values P ′′

i
 based on n1 < n columns and derive prior weights Wi based 

on P ′′
i

. The remaining n − n1 columns are used to compute p- values P′
i
. Finally, a weighted multiple 

testing procedure is applied with p- values P′
i
 and weights Wi. However, the authors then show that 

in this case it is more powerful to simply use an unweighted procedure with p- values Pi calculated 
based on the whole data set, rather than a weighted procedure with sample splitting. Habiger and Peña 
(2014) pursue a similar approach. For IHW, we instead split horizontally (on hypotheses) rather than 
vertically (on samples), and the p- values Pi are unaltered.

7.3 | The weighted false discovery rate

In this work, we have studied heterogeneous multiple testing with the aim of increasing power, while 
controlling the k- FWER or the FDR. However, in the light of non- exchangeability, the cost of a false 
discovery to the researcher may not be uniform, but vary across hypotheses; for example, it may be equal 
to ai ≥ 0 for hypothesis Hi. Then it is of scientific interest to control the weighted FDR of Benjamini and 
Hochberg (1997) defined as 

 Similarly, the utility (benefit) bi of a true discovery may vary across hypotheses. Then, instead of max-
imizing the expected number of discoveries (cf. Section 4), it may be more pertinent to maximize the 
expected total benefit. Basu et al. (2018) study optimal oracle procedures that achieve this optimization 
goal subject to control of wFDR(a), as well as data- driven procedures that achieve the same goal asymp-
totically. In future work, it would be of interest to study whether cross- weighting may be applied to derive 
flexible and powerful procedures with finite- sample control of wFDR(a). We expect this to be tractable— 
for example by leveraging the results of Ramdas et al. (2019)—  and useful if the utility bi is a function of 
the covariates, i.e., bi = b(Xi).

8 |  DISCUSSION

Despite the ubiquitous uptake by the natural sciences of the concepts of multiple testing (and in par-
ticular the FDR), and despite ever growing volumes of data and possible hypothesis tests, surprisingly 
little attention has been paid to systematic approaches to account for hypothesis heterogeneity in order 
to increase detection power. While this may be justifiable in situations where power is large anyway, 
in many cases, the costs of the underlying experiments or studies are substantial and increase with 
sample size, and the question of power decides over success or failure. In such cases, an approach that 
increases power compared to a baseline analysis, at no cost and by purely computational means, should 
be of interest.

wFDR(a): = �

� ∑

i∈0
ai1 (Hi rejected)

∑

m
i=1

ai1(Hi rejected)
1

�

m
�

i= 1

ai1(Hi rejected) > 0

��

.
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Our approach is an instance of the value of large scale data (Efron, 2010): due to data set size, 
modeling and inference opportunities open up that were previously irrelevant or impossible. In addi-
tion to the p- values Pi, our approach uses two further inputs: the covariates Xi and the fold assignment. 
These are different concepts and their construction is unrelated to each other. The Xi are informative 
about power and/or prior probability of the tests, but independent of Pi under the null hypothesis. 
Meanwhile, the folds are constructed as a device for the cross- weighting scheme, in order to achieve 
type I error control: we want independence of folds so that the weights do not lead to overfitting. 
Their choice is unrelated to power. Random folds are an easy default, but to get independent folds, it 
is then necessary to require global independence (Assumption 1). When global independence cannot 
be assumed, the dependences are in many application scenarios— loosely speaking— ‘local’ (under 
some suitable choice of metric on the set of hypotheses). This can be used to construct folds that are 
independent, at least to sufficient approximation. Making such loose speak more precise requires 
specification of individual application scenarios and the associated domain knowledge, as in the 
example of Section 6.

If, for a data set at hand, independent folds cannot be achieved by any available fold- splitting 
scheme, it is possibly better not to try to address the dependences at the level of the multiple testing 
procedure, but upstream: strong, data set- wide dependences often signal the need for a fundamental 
rethink of the analysis approach.

Sometimes, data set- wide dependences are caused by so- called batch effects. They are undesirable, 
uninteresting with respect to the scientific question, and can be reduced or avoided by good experi-
mental design (Leek et al., 2010). Once they are a matter of fact, it is sometimes possible to remove 
them by mapping the data to a new set of properly ‘normalized’ and ‘batch- corrected’ variables (Leek 
& Storey, 2008; Stegle et al., 2010; Wang et al., 2017).

If avoiding dependence by modifying the analysis upstream of the multiple testing treatment is not 
possible, the analyst should also consider whether multiple marginal hypothesis tests are indeed more 
appropriate than, say, dimension reduction, or a multivariate model with FDR guarantees (Candès 
et al., 2018; Ren & Candès, 2020; Sesia et al., 2019).

CODE AVAILABILITY AND REPRODUCIBILITY

The study is made fully third- party reproducible, and we provide its code in Github under the link 
https://github.com/Huber - group - EMBL/covar iate- power ed- cross - weigh ted- multi ple- testing. The Bio-
conductor package IHW (http://bioco nduct or.org/packa ges/IHW) provides a user- friendly implementa-
tion of IHW- BH/Storey based on the Grenander estimator.
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