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Abstract
In this study, we employ a dynamic treatment effect 
approach to analyze heterogeneity in returns to farm-
ers at different stages of adoption of a newly introduced 
inoculant technology, using a recent survey data of 600 
soybean farmers from northern Ghana. Although farm-
ers differ in their returns to adoption of new technolo-
gies, many empirical studies often fail to account for this 
heterogeneity. The empirical results reveal that farmers 
who are at advanced stages of adoption appear to, on 
average, more than double their yields and farm net re-
turns, suggesting that the inoculant technology may be 
a game changer in the fight against extreme poverty in 
the region, where poverty is endemic and crop yields 
are persistently below the average potential yield tar-
get. Our findings further reveal that extension services 
as well as efficient input and output markets are key to 
the adoption process, by influencing knowledge acqui-
sition, adoption, and continued adoption. Our findings 
also show significant impact heterogeneity at each adop-
tion stage, with the long-term benefits of the inoculant 
technology outweighing its short-term benefits.
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1  |   INTRODUCTION

Low agricultural productivity and perennial food insecurity are major global concerns facing 
low-income countries, particularly countries in sub-Saharan Africa (SSA). Central to tackling the 
problem are increasing crop yields and sustaining gains through the adoption of improved agri-
cultural technologies (Takahashi et al., 2020). Yet the technology adoption rate among farmers 
in these countries appears to be very low (Macours, 2019; Sheahan & Barrett, 2017; Suri, 2011). 
While some analysts partly attribute the phenomenon to factors such as lack of information, low 
education, and credit constraints, others question the empirical and theoretical adoption models 
used to analyze farmers’ adoption decisions (Besley & Case, 1993; Feder et al., 1985; Lindner 
et al., 1982). In particular, Besley and Case (1993) note that technology adoption is a dynamic 
process in which farmers make a series of decisions over multiple stages or seasons. Lindner 
et al. (1982) succinctly summarized the adoption process into three broad categories: discovery 
stage, evaluation stage, and trial stage. Each stage in the adoption process collects different sets 
of vital information for the farmer to update subsequent decisions. However, classical studies on 
technology adoption mostly consider farmers’ adoption decisions as static, ignoring the dynamic 
processes embedded in farmers’ decision-making. As a result, important information on farmers’ 
adoption behavior relevant to policy formulation is lost, and their decisions are misinterpreted. 
Thus, it is not uncommon for analysts to find farmers’ adoption decisions at odds with rationality 
and sometimes counterintuitive (Besley & Case, 1993).

This study departs from the classical approach and analyzes farmers’ adoption decisions in 
a dynamic framework. Previous studies that examined farmers’ technology adoption decision-
making in a dynamic framework mainly focused on adoption determinants, patterns of diffu-
sion, and intensity of adoption (e.g., Abdulai & Huffman, 2005; Feder & Slade, 1984; Lambrecht 
et al., 2014; Simtowe et al., 2016), while some studies employed it to explain farmers’ learning 
behavior, risk preferences, and uncertainties (Ghadim & Pannell, 1999). The missing link in the 
dynamic adoption literature is the impact of adoption on output levels and other welfare indica-
tors, such as yields and farm net returns, which underlie farmers’ adoption and continued adop-
tion decisions. These indicators also drive adoption patterns and clarify risks and uncertainties 
that may surround a given technology (Besley & Case, 1993; Feder et al., 1985). We contribute to 
the literature by analyzing farmers’ adoption decision-making process as a multi-stage decision 
problem and how adoption impacts on farm outcomes. One in which each stage of adoption is 
characterized by different margins of payoffs or gains that accrue to farmers at that stage. We 
apply this approach to analyze farmers’ adoption decisions of a new Rhizobia inoculant tech-
nology among 600 soybean farmers in northern Ghana, considering that farmers’ returns from 
adoption may be heterogeneous and stage dependent.

Few studies in the technology adoption literature have analyzed heterogeneity in returns to 
adoption of agricultural technologies (Abdul Mumin & Abdulai, 2021; Shahzad & Abdulai, 2021). 

K E Y W O R D S

dynamic treatment effect, impact heterogeneity, 
inoculant technology adoption, multistage decision-making

J E L  C L A S S I F I C A T I O N

C32; D83; O33; Q10; Q16



      |  325MOHAMMED and ABDULAI

However, adoption at different stages were not considered. As argued by Heckman et al. (2018), 
individuals differ in their returns to treatment, and failure to account for this heterogeneity can 
lead to confusion in interpreting the estimated effects of treatment, particularly when the indi-
viduals may be at different stages of treatment. In this study, we employ a dynamic treatment 
effects model to account for heterogeneity in returns to adoption for farmers at different stages 
of adoption. Thus, we analyze the relationship between the farmers’ state of adoption and the 
final outcomes (which in our case are yields and farm net returns) obtained from adoption. The 
adoption stages considered in this study include awareness and knowledge acquisition about 
the inoculant technology, trying the technology, and adopting and continuous adoption of the 
technology. The inoculant technology is a recently developed agricultural input by research sci-
entists to improve productivity of grain legumes in SSA. The technology exploits the symbiotic 
relationship of an elite strain of bacteria known as Bradyrhizobium spp as an inoculant to en-
hance nitrogen fixation in legumes. One crop that has received much attention in this process 
is soybean (see Chibeba et al., 2018; van Heerwaarden et al., 2018). Field experiments of the in-
oculant show promising results, with a potential to increase average soy grain yield by 20%–29% 
in African soils (Chibeba et al., 2018). The technology was recently introduced to smallholder 
farmers in northern Ghana by a number of organizations1 and their partners working together 
to improve soybean production in the region. As a newly introduced technology with incom-
plete diffusion, it is imperative to investigate what factors drive the adoption of the inoculant 
technology and to what extent information from one stage of adoption decision can influence 
further adoption decisions in the process, as well as the impact of adoption on yields and farm 
net returns.

Our findings reveal that farmers who are at advanced stages of adoption appear to, on average, 
more than double their yields and farm net returns, suggesting that the new inoculant technol-
ogy has the potential to contribute to poverty reduction in the region, where poverty is endemic 
and crop yields are below the potential yield target. Our findings further reveal that the long-term 
effects are much stronger than the short-term effects, conditional on the markets being able to 
absorb the excess supply that may result from higher yields. Finally, we also found that extension 
services as well as efficient input and output markets are key to the inoculant adoption process, 
by influencing knowledge acquisition, adoption, and continued adoption.

The rest of the paper is organized as follows. Sections 2 and 3 present the theoretical frame-
work and empirical specification, respectively, while Sections 4 and 5 present the identification 
and estimation strategy and the study context, respectively. Section 6 presents the data used in 
the study, while Section 7 contains our empirical results. Section 8 presents the conclusions and 
policy implications of the study.

2  |   THEORETICAL FRAMEWORK

We assume that farmers are risk neutral and their technology adoption decisions are guided by 
expected net benefits from adoption (Kleemann & Abdulai, 2013). Farmers’ adoption decisions 
of a new technology are conceptualized as a decision tree consisting of five decision-making 
nodes along adoption path T (see Figure A1 in Appendix A1). Let N represent a finite adoption 
decision-making node along the entire adoption path with a finite decision horizon (s, s), where 
s is the lowest adoption state and s is the highest-attainable adoption state;An(s) be the choice 
indicator for adoption state s for a farmer at adoption decision-making node n; and Wn(s) be the 
expected net benefits for a farmer in adoption state s.
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In line with Heckman et al. (2016), the farmer's current adoption state s net benefits can be 
expressed as follows:

where W (s) is the current net benefits for a farmer in adoption state s and all other notations remain 
as defined earlier.

Under autonomy, when the discrete choices made by a decision-maker at the decision-making 
node are known to the econometrician, the dynamic discrete choice model can be employed 
to understand the decision-maker's intertemporal behavior and its consequences (Heckman 
et al., 2016). We assume that the farmer's adoption state decision at any decision-making node 
is autonomous. A farmer may decide to stop at any adoption state or continue to the next state 
if the expected net benefits for continuing to the next adoption state are lower than the current 
adoption state's net benefits. Let ℋ(s) be the individual farmer's perceived state value of the net 
benefits for continuing to the next adoption state. The individual farmer's perceived value func-
tion for continuing to any adoption state s along the adoption path t  can be represented as follows 
(Heckman et al., 2016):

where Å (s) is the set of feasible current and future adoption state choices available to the farmer at 
the decision-making node, � is the farmer's assumed discount factor for valuing the perceived net 
benefits across the decision horizon,2 and all other notations remain as defined earlier.

The farmer's valuation of the state net benefits from adoption at any adoption decision-
making node consists of the current state s benefits and that of the future adoption state s + 1 
benefits if they continue to the next adoption state.3 To reflect this relationship in the farmer's 
value function at each decision-making node n, we follow Heckman et al. (2016) and express the 
state-specific value function in terms of Equations 1 and 2 as follows:

where Wn (. , . ) is the farmer's current adoption state s value function and �E[V (. ) ] is the farmer's 
expected value function if the farmer continues to the next adoption state s + 1.

However, the expected net benefits from adoption at any state are latent and cannot be ob-
served, but the actual adoption choices made by the farmer can be observed. We set the adoption 
choice indicator An (s) equal to 1 if a farmer at decision node n choses to be in adoption state s, 
and 0 otherwise.

Based on the state-specific perceived net benefit value function, the farmer's adoption state 
choice4 at any decision-making node n can be represented as follows (Heckman et al., 2016):

(1)W (s) =

N∑
n=1

An(s)Wn(s),

(2)V (ℋ (s) , s) = max
An(t)∈ Å(s)

E

[
s∑
t=s

𝛿t−s
N∑
n=1

An (t)Wn (t) |ℋ (s)

]
,

(3)Vn (ℋ (s) , s) =Wn (ℋ (s) , s) + �E
[
V (ℋ (s + 1) , s + 1) |ℋ (s) ,An (s) = 1

]
,

(4)
An (s) =1, if

[
n= argmax

j∈{1,…,N}

{
Vj (ℋ (s) , s)

}]

An (s) =0, otherwise

,
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As noted by Heckman et al. (2016, 2018), the specification of the decision rule in Equation 
4 differs from conventional decision-making rules in the dynamic discrete choice literature. 
When no specific choice rule is assumed, it imposes neither rational expectation assumption nor 
forward-looking behavior on agents at any decision node. Therefore, agents may be myopic, time 
inconsistent, and subjected to surprises. For instance, it is possible under a myopic decision rule, 
as inherent in the Bellman's decision rules, for a farmer who obtains negative returns at early 
stages of adoption to abandon the technology and similarly, under a forward-looking behavior, 
as inherent in the Euler decision rule, for a farmer to continue to adopt the technology with the 
expectation of getting higher returns in the long term, despite obtaining negative returns at the 
early stages of adoption.5

Aguirregabiria and Mira (2010) note that farmers at different adoption states differ in both 
observed and unobserved characteristics (i.e., s = (x , �)), indicating that the farmers’ adop-
tion choice decisions as expressed in Equation 4 may be random and subject to shocks. The 
farmer's optimal choice decision at any adoption state can be expressed in terms of the state-
specific variables that enter the farmer's conditional choice probability function (Aguirregabiria 
& Mira, 2010; Arcidiacono & Ellickson, 2011) as follows :

where aj is the farmer's optimal choice indicator; pj is the conditional choice probability function 
of choosing adoption state j; x is a vector of observed characteristic; � is the unobserved state fac-
tors that influence state-specific value function (i.e., the error term); y is a parameterized vector of 
payoffs or outcomes (e.g., yield and farm net returns in our case), consisting of the flow payoff at 
a particular adoption state (yj) and the transition state (yj+1) (i.e., y ≡ {yj, yj + 1}); I is an indicator 
function; g(. ) is the distribution function of the state-specific error term; and other symbols remain 
as defined earlier.

The expected payoff function for farmers’ optimal adoption choice decisions can be approxi-
mated (Aguirregabiria & Mira, 2010; Arcidiacono & Ellickson, 2011) as follows:

where ŷ is the expected outcome from optimal adoption choice decision, ℕ is the number of 
farmers, f (. ) is the state transition probability function, and all other symbols remain as defined 
earlier.

Equation 6 consists of two additive separable components, that is, the adoption state choice 
component (i.e., pj(. )) and the state transition component (i.e., f (. )). The additive separability 
assumption enables each of the components to be empirically estimated separately, thus saving 
computational time and complexity (Arcidiacono & Ellickson, 2011). The following sections pro-
vide detailed empirical specifications of each component as separate models.

(5)
pj
(
aij|xij, y

)
=∫ I(�

(
xij, �ij;y

)
g
(
�ij
)
d�ij

=∫ I
{
argmax

j

[
vj
(
xij, aij;y

)
+�ij

(
aj
)]

=aij

}
g
(
�ij
)
d�ij,

(6)ŷ = argmax
j

ℕ∑
i=1

N∑
j=1

(
ln

[
pj
(
aj|xj;y

)]
+ ln

[
f
(
xj+1|xj, aj;yj+1

)])
,
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3  |   EMPIRICAL SPECIFICATIONS

3.1  |  Adoption state choice decision

Let Yi denote the individual farmer's net benefits from soybean production and Ai be the indica-
tor for the farmer's inoculant adoption choice decision. The farmer's expected outcomes from the 
inoculant adoption choice decision can be expressed as follows:

where Xi is a vector of observed characteristics (farm- and household-level characteristics), �i and � i 
are vectors of parameters of interest, �i is a constant, and Ui is an error term.

Conventional static adoption decision analysis often treats Ai as a single binary decision (e.g., 
Kleemann & Abdulai, 2013). However, farmers tend to evaluate the performance of the technol-
ogy over many seasons before making final adoption decisions. Therefore, the adoption deci-
sion indicator Ai may not be a onetime binary decision but several binary decisions across many 
seasons or transitions. In this setting, we assume that the farmer's adoption decision follows a 
dynamic process, one in which the farmer is assumed to make finite adoption decisions in an 
irreversible sequential order over multiple stages.

Let ℐ = {1,⋯, s − 1} ∀N be a set of all possible terminal adoption states, and S = {1,…, s} 
denote an ordered set of all stopping states (i.e., all states that a farmer is observed to make a 
stop during the process), with s as the highest-attainable state. A farmer at each node makes a 
binary decision, to either remain at node j(j ≠ 0) or transit to the next node j + 1 (j ≠ j + 1) 
and j ∈ ℐ . We assume the farmer operates in a time-stationary decision environment, and past 
choices reveal the farmer's transition decisions. Let D represent a finite set of all possible transi-
tion decisions that a farmer can make over the decision horizon Dj ∈ D, Ds be the farmer's stop-
ping state decision for all s ∈ S, and Qj be the history of all states the farmer visited and assumed 
to be binary (i.e., Qj = 1 if the farmer visits a state, otherwise Qj = 0). We fixed6Dj = 0(Ds ≠ 1) 
if a farmer at j does not stop but moves to j + 1 and Dj = 1(Ds = 1) if the farmer stops at state j 
(Heckman et al., 2016, 2018).

The farmer must make a transition decision, to either remain at j or move from j to j + 1. We 
assume that the net benefits differ from state to state, and the farmer compares the current state 
benefits to the net benefits of moving to the next state, before making a transition decision. We 
specify the farmer's transition decision (Dj) as follows:

where Ij is the indicator of the farmer's perceived state-specific value function for a farmer consider-
ing a move from j(j ≠ 0) to j + 1.

At each adoption state, the perceived value function Ij is assumed to cross a threshold value 
for the farmer to move from one state to another. To understand the farmer's choice decision at 
each adoption state, we specify the empirical state-specific value function Ij in a separable model 
as follows (Heckman et al., 2016, 2018):

(7)Yi = �i + �iAi + � iXi +Ui,

(8)Dj =

{
0, if Ij≥0, j∈ I ={1,…, s−1}

1, otherwise

}
for Qj = 1, j ∈ℐ = {1,…, s − 1} ,

(9)Ij = ∅j (Z) − �j, j ∈ℐ = {1,⋯, s − 1} ,
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where Z is a vector of observed characteristics that include an instrument for identification not 
included in Xi and �j represents the unobserved factors that affect the farmer's transitional ability.

Due to observed and unobserved factors that characterize different adoption transitions, each 
transition decision that the farmer makes has a range of potential outcomes. By indexing the 
state-specific potential outcomes as k (where k ∈ Ks and Ks is a set of all possible outcomes), a 
farmer at adoption state s potential outcomes from inoculant adoption can be denoted as Yk

s . The 
individual farmer's state-specific potential outcomes equation for any adoption state can then be 
expressed in a separable model as follows (Heckman et al., 2016, 2018):

where Yk
s  is the state-specific potential outcome; X is a vector of observed characteristics that de-

termine the outcome at a particular state; �ks  is a parameter of interest; and Uk
s  is state-specific 

unobserved factors. Conditional on the number of adoption states that a farmer visits during the 
transitional process, the observed potential outcome common across all adoption states (Yk) visited 
can be expressed in a switching regression framework (Quandt, 1972) as follows:

where Ds is the stopping decision indicator; D0 (i.e., for Ds ≠ 1) is the transition decision indicator; 
Yk
s  is as defined earlier; and Yk

0
 is the counterfactual outcome if the farmer decides to remain at the 

current adoption state.

4  |   IMPACT IDENTIFICATION AND 
ESTIMATION STRATEGY

The identification of dynamic technology adoption decisions must consider heterogeneity in 
observed and unobserved farmer characteristics (Benhabib et al.,  2019; Fagereng et al.,  2020; 
Gabaix et al., 2016). In particular, farmers differ in wealth endowment, which is potentially en-
dogenous to their transitional ability. Let � denote the finite dimensional vector of a farmer's 
unobserved wealth endowments (e.g., financial ability for farm investment) that can be prox-
ied by observables (e.g., household assets, livestock holding, and nonfarm income sources) in a 
measurement equation. Intuitively, the financial ability of a farmer determines the scale of farm 
operations and investment in production inputs, thus generating a potential correlation between 
the farmer's transition decision and the potential outcomes.7 We respecify both the state-specific 
value function and the potential outcome equations (Equations 7 and 8, respectively) controlling 
for unobserved wealth endowment as follows:

where �j and �k
s  are the vectors of parameters of interest, respectively; vj and �k

s  are the error terms, 
respectively; and Z and X are as defined previously.

(10)Yk
s = �ks (X ) +Uk

s , k ∈ Ks, s ∈ Ss,

(11)Yk =

( ∑
S�{s}

DsY
k
s

)(
1 −D0

)
+
(
Yk
0

)
D0,

(12)Ij = ∅j (Z) + �
��j − vj, j ∈ℐ = {1,…, s − 1} ,

(13)Yk
s = �ks (X ) + �

��k
s + �k

s , k ∈ Ks, s ∈ Ss,
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We assume there could be problems with measurement errors, because � is not directly ob-
served but proxied with observable indicators. Let M be a system of measurement equations that 
relate a vector of NM measurement indicators of � to Equations 12 and 13. Parsimoniously, the 
measurement equation M can be specified as follows (Heckman et al., 2016, 2018):

where X is a vector of observed variables, � is a vector of endowment factors, and e is a vector of 
error terms that ensure orthogonality (e_ ‖X ,Z, �, v,�) with the error terms in Equations 12 and 13, 
respectively (Heckman et al., 2016, 2018).

By conditioning on (Di, Mi, Xi,Zi), a parsimonious maximum likelihood function (ℒ)8 for an 
individual farmer can be specified as follows:

where fY (. ), fD(. ), and fM(. ) are the probability density functions for the potential outcomes, adop-
tion decision, and measurement equations, respectively, and all other notations remain as defined 
earlier.

Equation 15 consists of three components, which are estimated simultaneously in a factor 
structural discrete choice model. The factor model fM(. ) is estimated in the first stage and in the 
second stage, the adoption decision model fD(. ) is estimated with the inclusion of an instrument 
(Z) to account for selection bias, and a factor score (�) is predicted from the measurement model 
in the first stage to account for unobserved ability or wealth endowment effect on the farmer's 
adoption decision. In the final stage, the potential outcomes (i.e., both the treated case and the 
counterfactual case) model fY (. ) is estimated conditional on the first two stages. The model is es-
timated using a mixture of normals in a Gauss-Hermite quadrature approach, sampling 10 point 
grids each time to numerically evaluate the integral in a joint estimation process.9

4.1  |  Estimation of treatment effects

In this section, we provide the econometric relationship between the treatment and the out-
comes. The treatment refers to the various transitional states, while the outcomes are the state-
specific benefits. Let Tk

j
 denote the farmer-specific treatment effect for being at state j. The Tk

j
 of 

an individual farmer selected at random from the population of Qj = 1 with characteristics, 
X = x, Z = z, � = �, making a decision whether to transit from j to j + 1 or remain at j can be 
represented as follows:

(14)M = � (X ,�, e) =

⎛
⎜⎜⎜⎝

M1

⋮

MNM

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

Φ1

�
X , �, e1

�
⋮

ΦNM

�
X , �, eNM

�

⎞
⎟⎟⎟⎠
,

(15)
ℒ=

∏
i

f
(
Yi,Di,Mi|Xi,Zi

)

=
∏
i

∫ fY
(
Yi|Di,Xi,Zi, �

)
fD

(
Di,Mi|Xi,Zi, �

)
fM (�) d�,

(16)

Tk
j =

(
Yk|X = x,Z = z,� = �,Qj = 1, Fix Dj = 0

)
−
(
Yk|X = x,Z = z, � = �, Qj = 1, Fix Dj = 1

)
.
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Unlike the classical treatment effect models, the individual-level treatment effects can be de-
composed into two components. The first component is the direct effect of making a transition 
from j to j + 1. For a known population of farmers, the population-level direct average treatment 
effect (ATE) for farmers at state j, conditional on (Qj = 1) and integrating over the vector of 
X = x,Z = z,� = � is obtained as follows:

The same procedure is followed to obtain the treatment effect for both treated (ATT) and un-
treated (ATUT) farmers at each transition state.

The second component is the continuation effect for a farmer going beyond j + 1 to l (where 
l is the subsequent states after j + 1), which evaluates the long-term impact of technology adop-
tion (Heckman et al., 2016, 2018). The continuation effect (Ck

j + 1
) component of the treatment 

effect is derived by conditioning on (Qj = 1), of the population of farmers at j + 1, using the law 
of iterated expectations as follows10:

where Pr is the transition probability of moving beyond j + 1 to l (where l is the subsequent states 
after j + 1).

The average marginal treatment effect (AMTE), which provides more in depth into the 
decision-making behavior of a decision-maker, is also obtained as follows:

The economic intuition of the AMTE is that it represents a fair measurement of the ex post 
gross marginal benefits of moving from one adoption state to the next state for a population of 
farmers at a decision-making node, who may be indifferent in their transition decision (|Ij| ≤ �) 
(Heckman et al., 2016, 2018). Thus, the AMTE represents an empirically well-identified marginal 
benefit from adoption that an indifferent farmer considers before making an adoption transition 
decision.11

4.2  |  Estimation of state transition probabilities

The state transition component of the farmer's conditional choice probability is estimated para-
metrically within the generalized ordered conditional probability framework. In particular, we 
estimate the discrete state transition probabilities as a continuation-ratio model, using a probit 
link function. The continuation-ratio model, unlike proportional odd models, specifies the con-
ditional probability of a farmer being above a particular adoption state given that a farmer has at-
tained that particular adoption state (Bauldry et al., 2018; Fullerton & Xu, 2016; Liu & Bai, 2019). 
The probability for any given value (w) of outcome (y) conditional on farmer's characteristics is 
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the product of the probability that yj = w for the current adoption state j and the probability that 
yj+1 > w for all earlier adoption states, which can be specified as follows:

where Pr is the transition probability, yj + 1 is the transition state with payoff categories (w = 1,…,W), 
F(. ) is a cumulative distribution function with probit link, h (. ) is a function of state variables x, �w 
is a vector of threshold indexes, and any other symbols remain as defined earlier.

5  |   CONTEXT OF STUDY

Soil fertility constitutes a critical production input in agriculture and plays an important role in the 
welfare of poor subsistent agricultural societies (Kim & Bevis, 2019; Kleemann & Abdulai, 2013). 
With about 90% of the farming population in Ghana being subsistent and cultivating less than 
2 ha of land (Ministry of Food and Agriculture, 2017), degradable soil conditions present a major 
challenge to food productivity and farm livelihoods, especially when 80% of Ghana's total agri-
cultural output depends on this category of farmers (Ministry of Food and Agriculture, 2017). 
To maintain the productive capacity of soils in Ghana, scientific research organizations such 
as the International Institute of Tropical Agriculture (IITA) and the Council for Scientific and 
Industrial Research-Savannah Agricultural Research Institute (CSIR-SARI) and their partner or-
ganizations introduced the Rhizobia inoculant technology to smallholder grain legume farmers. 
One key crop that is targeted among other crops is soybean. The crop is targeted due to its po-
tential to undergo sustainable intensification and the ability to provide large amounts of protein 
and other essential amino acids useful for consumption by humans and animals and for biofuel 
(Chibeba et al., 2018; Foyer et al., 2018; van Heerwaarden et al., 2018). The inoculant technology 
is an organic input containing isolates of an elite strain of a bacterial (Bradyrhizobium spp.) and 
an organic carrier material (Lupwayi et al., 2000). The inoculant technology is regarded as a cost-
effective alternative to rehabilitating poor soils by enhancing the buildup of biological nitrogen 
fixation organisms in the soil (Giller, 2001).

The inoculant technology is expected to cost-effectively improve smallholder farmers’ wel-
fare by sustainably increasing productivity, while minimizing the cost of production, compared 
to inorganic inputs such as mineral fertilizers, which is sometimes priced out of reach for most 
smallholder farmers. The inoculant dissemination program was centered in the three regions 
(northern, upper east, and upper west) of northern Ghana, due to their soybean production 
potential in the country as well as the high incidence of extreme poverty in these parts of the 
country. The northern region, which is the focus of this study, is the second-poorest (30.7%) 
region in the country in terms of extreme poverty incidence followed by the upper-east region 
(27.7%), with the upper-west region (45.2%) ranking first in the country (Ghana Statistical 
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Service, 2018). With soybean being a cash crop, it is expected that an increase in productivity 
will lead to an increase in the household income, which can contribute to poverty reduction 
for the poor households who depend on agriculture for income as well as food and nutrition 
security.

6  |   SURVEY PROCEDURE AND DATA SOURCE

We use primary data from a recent survey of farm households in the northern region of Ghana, 
which was conducted from June to August 2018. The sample was drawn using a multi-stage 
sampling technique. The northern region was purposively selected because it is a major soybean 
growing hub in the country and also happens to be the largest beneficiary of the agricultural 
extension program that disseminated the novel inoculant technology. Cluster sampling tech-
nique was employed to zone the region into two clusters, consisting of the Eastern Corridor Zone 
(ECZ) and Western Corridor Zone (WCZ). Based on the districts’ participation in the dissemina-
tion program and the intensity of soybean production in the districts within the clusters, eight 
districts, comprising four from each cluster, were purposively sampled. From the ECZ, Yendi, 
Saboba, Chereponi, and Karaga districts were selected, while in the WCZ, East Mamprusi, East 
Gonja, Savelugu, and Kumbungu districts were selected. In consultation with the field officers 
and agriculture extension agents in the selected districts, five to seven communities were pro-
portionally sampled based on the dissemination channel received, program participation, and 
farmer population. Because the dissemination program was implemented through farmer-based 
organizations (FBOs), one FBO was randomly selected from a list of treated FBOs for each treated 
community and another randomly selected FBO from a list of untreated FBOs for each untreated 
community. Using a lottery approach, we randomly drew five farmers from each FBO. After 
a preliminary interview session with each of the selected farmers, using a computer-assisted 
personal interview (CAPI), a list of the farmers’ information network members (INMs) in the 
community was compiled. The CAPI random number generator then used farmers’ unique iden-
tification numbers to randomly sample three network members from each farmer's INMs for 
interview. A total of 600 farm households, comprising 325 participants and 275 nonparticipants, 
were interviewed in a face-to-face session.

We also collected detailed data on the farm household inoculant usage, capital assets, par-
ticipation in nonfarm income generation activities, and livestock value, in addition to sociode-
mographic and farm characteristics. Table 1 presents the definition and descriptive statistics of 
the variables used in the analysis. A mean difference comparison in (Table A1 in the Appendix) 
reveals significant differences in socioeconomic characteristics between the dissemination pro-
gram participants and nonparticipants. In particular, program participants significantly differ 
in gender, age, previous extension contacts, soil-quality conditions, and mode of inoculant 
acquisition compared to nonparticipants. Program participants also appear to have shorter dis-
tances to the nearest extension office and have amenities such as electricity and radio signals 
in their communities. However, it appears that program participants operate smaller farms, 
use less labor, experience lower level of rainfall, and live in smaller households compared to 
nonparticipants.

Using recall information from our cross-sectional survey, we constructed dynamic multi-
stage adoption data, which is used for this analysis. In the absence of longitudinal data, farmers’ 
recall information may be used to approximate the dynamic pattern of the adoption process 
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T A B L E  1   Descriptive statistics

Variables Definition and measurement Mean (SD)

Outcome variables

Yield Soybean yield per hectare (kg/ha) 829.64 (888.24)

Farm net returns Gross revenue less variable cost (GHC/ha) 840.26 (762.11)

Decision variables

Aware Farmer is aware of inoculant = 1; otherwise = 0 0.84 (0.37)

Acknow Farmer acquires knowledge on inoculant = 1; 
otherwise = 0

0.66 (0.47)

Tryout Farmer's first use of inoculant = 1; otherwise = 0 0.32 (0.47)

Adopt Farmer's second use of inoculant = 1; otherwise = 0 0.265 (0.44)

Cont-Adopt Farmer's use inoculant at least for the third time = 1; 
otherwise = 0

0.26 (0.44)

Control variables

Gender Male = 1; female = 0 0.71 (0.46)

Age Number of years 41.56 (13.32)

HHize Number of people 5.78 (3.05)

Edu Years of schooling 2.79 (4.69)

Farmsize Number of hectares 5.05 (4.37)

Agrochem Amount of active ingredient in gram used per hectare 4.00 (7.19)

Agrochemcost Total cost of agrochemicals used per hectare (GHC) 57.67 (81.83)

Labor Person's day worked per hectare 7.81 (24.23)

Laborcost Total cost of person's day worked per hectare (GHC) 102.06 (155.36)

Extcont At least one prior extension visit before inoculant = 1; 
otherwise = 0

0.54 (0.50)

Credit Credit constraint = 0; otherwise = 1 0.83 (0.38)

District fixed effects

WCZ District is in the Western Corridor Zone = 1; Eastern 
Corridor Zone = 0

0.57 (0.50)

Measurement variables

lnendwt Log monetary value of household capital asset 
endowment in (GHC)

7.27 (1.79)

Asset_index Household physical assets index 82.93 (122.59)

Nonfarminco Farmer engaged in nonfarm work = 1; otherwise = 0 0.63 (0.48)

Livestock Household livestock value (TLU) 1.18 (2.44)

Plot-level fixed effects

Rainfall Amount of rainfall (%) 61.63 (16.24)

Soil Soil quality (scale 0–1) 0.623 (0.20)

Instruments

Elradsig Electricity and radio signal are in farmer's 
community = 1, otherwise = 0

0.95 (0.23)

(Continues) 
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(Besley & Case, 1993). We asked farmers the year they first heard of the inoculant technology 
and the year they first used the technology on their own farms. We also conducted an inoculant 
knowledge test and obtained farmers’ inoculant knowledge test scores, a threshold of which we 
use to proxy for passive information acquisition (i.e., knowledge acquisition) in the adoption 
process. We gathered information on farmers’ active participation in any field trial/demonstra-
tion on the use of the inoculant technology. Farmers who participated in field trials/demon-
strations are deemed to have tried the technology12 and therefore said to have acquired active 
information. Past studies that focused on adoption as a dynamic process failed to distinguish 
between the role played by active information acquisition and passive information acquisition. 
Intuitively, each of these modes of information acquisition may generate different learning out-
comes and impacts on the adoption process (Feder & Slade, 1984). Exploiting farmers’ repeated 
inoculant usage history and time differentials among farmers in our data, we constructed five 
ordered nodes of farmers’ sequential adoption decisions13 based on the synthetic cohort as-
sumption (SCA).14

Table 2 presents the subsamples and characteristics of farmers at each cohort across the var-
ious stages of inoculant adoption. About 84% of farmers are at awareness stage; 66% at knowl-
edge acquisition stage; 32% at trial stage; and 27% and 26% at adoption and continued adoption 
stages, respectively. Farmers at each cohort also appear to differ significantly in their observed 
characteristics.

Figure 1 shows the diffusion and adoption curves of the inoculant from 2014 to 2018, the 
self-reporting period covered in the survey. As observed in Figure 1, no farmer in our sample 
either heard or used the inoculant technology in 2014. It appears the dissemination program 
intensified in 2015 and peaked in 2016, when many farmers became aware of the technology. 
Within this period, adoption was slow until 2017, when most farmers began using the inoculant, 
an indication that diffusion of the inoculant technology may still be incomplete and farmers may 
be at different stages in the adoption process, justifying our argument to depart from the classical 
static adoption approach.

Variables Definition and measurement Mean (SD)

Comextoff Presence of extension agent in farmer's community = 1; 
otherwise = 0

0.63 (0.49)

Distexttof Distance to nearest extension office/district capital (km) 18.86 (23.53)

Minac Mode of inoculant acquisition: purchase = –1; gift = 1 
and not available = 0

0.26 (0.67)

Unculand Households have at least 1 ha of uncultivated land = 1; 
otherwise = 0

0.67 (0.47)

Commarkt Presence of local market in farmer's community = 1; 
otherwise = 0

0.19 (0.39)

Observations (N) 600

Notes: The table shows the definition, measurement, and descriptive statistics of the farm households. With the inoculant 
technology being new to farmers, we employed a hybrid coding structure of Cooper et al. (2011) to give it direction for policy 
relevance. Therefore, farmers who acquire the technology without paying anything are coded as positive (+1), while those who 
purchased it are coded negative (–1) and no availability as zero (0). SD, standard deviation; WCZ, Western Corridor Zone.

T A B L E  1   (Continued)
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7  |   EMPIRICAL RESULTS

7.1  |  Determinants of adoption transition decisions

Table 3 presents the results on factors that determine farmers’ decision to transit from one adop-
tion state to the other, as expressed in Equation 20 of the empirical specifications. The table 
contains the estimates of two different specifications of the equation (models 1 and 2). Model 1 
assumed homogeneity in farmers’ characteristics as well as benefits across adoption states (i.e., it 
implies the parallel line/proportional-odd assumption). That is, model 1 constraints coefficients 
across all transitions to be equal. Model 2 relaxes the parallel line assumption to account for het-
erogeneity that exists among farmers and the benefits accruing to farmers at different adoption 
states. The specification in model 2 is important because when a farmer makes sequential adop-
tion decisions, but are misspecified as a single dichotomous decision, that can lead to serious 
statistical bias and inconsistent estimates (Buis, 2017; Williams, 2016). A log-likelihood ratio test 
(reported in the last row of Table 3) between the two models shows that model 2 is a better fit of 
the farmers’ adoption decision-making problem, compared to model 1. Therefore, we restrict the 
discussion in this section to the estimates of model 2.

First, we discuss the threshold-crossing indexes describing the adoption transition behavior of 
farmers, reported in the last row of Table 3. The table shows that all the threshold indexes across 
the two models are positive. In particular, the estimates in model 1 are significantly different 
from zero (at 5% and 1% levels, respectively) across all the adoption states, suggesting that farmer 
characteristics as well as adoption states are heterogeneous, contrary to the model's assumption. 
Compared to model 2, the threshold estimates of model 1 are generally downward biased, indi-
cating that farmers make sequential adoption decisions, which if ignored could underestimate 
farmers’ adoption behavior. In particular, the threshold index reveals that farmers at knowledge 
acquisition state expect 1.3% probability of yield increment to move to trial state and 2% yield in-
crement for farmers at trial state to move to adoption state. Interestingly, farmers who moved into 

F I G U R E  1   Inoculant technology diffusion and adoption in northern region, 2014–2018 [Colour figure can 
be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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adoption state expect 5% yield increment to continue their adoption, suggesting that after trial 
and adoption of a new technology, high-benefit expectations could be a driving factor for farm-
ers’ continued adoption of the technology. This finding is in line with Lambrecht et al. (2014), 
who made similar observations in their study of mineral fertilizer adoption in eastern Congo 
that higher expectations of potential returns from adoption by farmers after trials have nega-
tive influence on continued adoption. Intuitively, this means that farmers’ perception of gaining 
an additional unit benefit is very high in arriving at a final adoption decision. In addition, the 
threshold index is monotonic across adoption states, indicating heterogeneity in state-specific 
marginal benefits as well as sorting in the adoption behavior of farmers (Buis, 2017; Lindeboom 
& van Doorslaer, 2004). To the extent that agents sort on gains, this implies that farmers’ adoption 
decisions are sequential, as captured in our dynamic specification, rather than dichotomous, as 
often assumed in classical adoption models (see Buis, 2017; Mare, 2006, 2011).

Table 3, last row, also reports the average transition probabilities at each adoption state. The 
transition probability measures the chances that a farmer who attains a particular adoption state 
passes on to the next higher adoption state. The intuition is that farmers at higher adoption states 
obtain higher benefits compared to farmers at lower states (Buis, 2017). The results show that, on 
average, 90% of farmers at awareness state pass through to knowledge acquisition state and 67% 
of farmers at knowledge acquisition state pass through to the trial state, underscoring the impor-
tance of extension information provision and promotion campaigns in the diffusion and adop-
tion process of new agricultural technologies (Anderson & Feder, 2007; Takahashi et al., 2020). 
The table further reveals that 92% of trial farmers pass to adoption state and 77% of the farmers 
at adoption state pass to continued adoption state, suggesting that more farmers are likely to 
demand the inoculant technology after two rounds of usage due to higher benefits. In addition, 
because benefits differ between farmers who attain a particular adoption state and those who 
did not, it means that, at each stage, farmers can learn more about average benefits of the new 
technology from other farmers. Therefore, the probability of more farmers adopting the new 
technology increases due to learning, as information acquisition and adoption decisions of new 
agricultural technologies are often jointly determined (Abdulai et al., 2008).

In lieu of the fact that determinants of adoption have been extensively discussed in the con-
ventional technology adoption literature, we focus the present discussion on the determinants 
of farmers’ transition decisions along the adoption chain. Understanding these factors will 
be helpful in revealing farmers’ technology adoption behavior and can contribute to the de-
sign and implementation of targeted extension dissemination policies to maximize resources. 
However, the estimates for the discrete adoption choice decisions (i.e., Equations 8 and 9) are 
presented in Appendixes A1 and A2. The individual predictors in model 2 are discussed as 
factors influencing farmers’ decisions to transit from one adoption state to another. A positive 
coefficient of a predictor is interpreted as the conditional probability of being at a particular 
adoption state and moving beyond to the next higher state where margins of benefits are per-
ceived to be greater, while the reverse is true for a negative coefficient (Bauldry et al., 2018; Liu 
& Bai, 2019).

Table 3 shows that the coefficient of extension contact (Extcont) is positive and statistically 
significant in all adoption states, suggesting that extension is central to the transition decisions 
of farmers at all phases of adoption. The implication is that continued extension support to farm-
ers is required right from awareness creation and technical knowledgeable supply until farmers 
adopt and continue to use the technology, a finding that is consistent with the argument that 
knowledge-intensive agricultural technologies require skilled extension staff to facilitate the 
adoption process (Issahaku & Abdulai, 2019; Takahashi et al., 2020).
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Table 3 further reveals that the mode of technology acquisition (Minac) plays an important 
role in farmers’ adoption transition decisions. The results reveal that farmers who acquire the in-
oculant free are more likely to move from awareness state to trial state but are less likely to get to 
adoption and continued adoption states. This implies that free distribution of new divisible tech-
nologies to farmers during dissemination programs has high probability in creating awareness, 
getting farmers to acquire knowledge, and trying the technology but may not lead to adoption 
and continued adoption. Conversely, farmers whose mode of acquisition is by purchase have 
high probability of getting to continued adoption, compared to farmers who had free supply 
or no access to the technology. This indicates that input markets to ensure constant supply of 
the new technology to farmers may be indispensable in getting farmers into adoption and con-
tinued adoption states of the technology. This finding agrees with Shiferaw et al.  (2015), who 
found input supply constraints to be responsible for nonadoption of improved groundnut variety 
among adoption-willing farmers in Uganda.

Table 3 also shows that farmers’ location (WCZ) has a positive effect on their adoption tran-
sition decisions, suggesting that farmers located in close proximity to the source of supply of the 
technology are more likely to move beyond knowledge acquisition state to adoption and contin-
ued adoption states compared to farmers living far from the source. In particular, farmers living 
closer to the nearest extension office (Distextof) are more likely to move beyond trial and adoption 
states to continued adoption state, suggesting that access to better infrastructure, such as infor-
mation and good road networks, positively influences farmers’ adoption transition decisions, 
a finding that is in line with Suri’s (2011) suggestion that removing supply and infrastructure 
constraints may be a cost-effective method to facilitate the adoption of improved agricultural 
technologies among farmers.

Table 3 also shows that soil quality (significant at the 1% level) plays an important role in 
farmers’ adoption transition decisions, especially when the technology has positive long-term 
effects on maintaining the productive capacity of the soil. The results reveal that farmers who 
perceived the quality of soil in their farm plots to be fertile or good are more likely to move be-
yond the inoculant knowledge acquisition state to adoption and continued adoption states.15 
However, the coefficient of rainfall at the continued adoption state is negative (significant at 
the 10% level), indicating that inadequate rainfall may negatively influence farmers’ continued 
adoption decision. This finding is similar to that of Shahzad and Abdulai (2021), who found the 
average daily rainfall to have a negative influence on farmers’ adoption decisions of climate-
smart farm practices in Pakistan.

Furthermore, Table 3 shows that the coefficient of age is positive and statistically significant 
in all adoption states (except at the continued adoption state), while the squared term has a nega-
tive and statistically significant coefficient across all adoption states but positive at the continued 
adoption state. This finding suggests that at younger ages, an increase in age increases the prob-
ability of adoption, with the maximum effect occurring at approximately 46 years, while at older 
ages, the probability of adoption decreases with increasing age. However, once adoption occurs, 
older farmers who are more experienced are likely to benefit from the new technology more than 
younger farmers and are therefore more likely to remain in continued adoption. This finding 
corroborates Lambrecht et al. (2014), who found older and more experienced farmers to be more 
efficient and better judges of expected returns than less-experienced younger farmers, resulting 
in higher continued adoption rates of mineral fertilizer among older farmers in eastern Congo.

Table 3 also shows that education is positive in the transition decision of farmers from aware-
ness to knowledge acquisition and trial states (significant at the 10% level, respectively) but 
negative at adoption and continued adoption states (significant at the 1% level), suggesting that 
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increasing levels of education increase the probability of learning about the new technology at 
the early stages in the technology adoption or diffusion process and decrease at later stages after 
farmers have learnt more about the new technology.

7.2  |  Impact on returns to inoculant adoption

In this section, we present the results on the impact of inoculant adoption on yields and farm net 
returns in Tables 4 and 5, respectively. The results are obtained from the estimates of Equation 
15 and computed using Equation 16. The estimated impacts represent the observed case that 
the farmer makes a transition to a particular adoption stage and the counterfactual case that the 
farmer did not make the transition. Therefore, the results are the direct average effects on yields 
and farm net returns at each adoption state that the farmer attained.16 For brevity, we focus the 
discussion on the yields (Table 4) and extend it to the farm net returns (Table 5). Both Tables 4 
and 5 show a positive and statistically significant impact of inoculant adoption on yields and 
farm net returns, respectively, across all adoption states. The results in Table 4 reveal that, on av-
erage, the yield for farmers who used the inoculant for the first season (i.e., at the trial state) was 
108 kg/ha of soybeans, with the yields increasing to 151 and 191 kg/ha for farmers who used it for 
at least two seasons (i.e., at the adoption state) and farmers who used it for at least three seasons 
(i.e., at the continued adoption state), respectively. We observe a pattern of marginal incremental 
benefits as farmers move from one adoption state to the other, suggesting that farmers may still 
be learning about the inoculant technology, and the benefits are heterogeneous, depending on 
the adoption state of the farmer. This finding is consistent with van Heerwaarden et al. (2018), 
who found the average yields to be in the range of 102–180 kg/ha in an on-farm experimental 
trial of the inoculant across 10 countries in SSA. On the contrary, the average farm net returns 
for farmers are 56 GHC/ha at the trial state, 51 GHC/ha at the adoption state, and 49 GHC/ha at 
the continued adoption state (see Table 5), suggesting that early adopters of the inoculant benefit 
more in terms of revenue due to marginal increases in their yields in those seasons. This observa-
tion is consistent with the literature on diffusion and adoption of new technologies, where early 

T A B L E  4   Impact on yield (kg/ha)

Treatment effects Acknow (1) Tryout (2) Adopt (3) Cont-Adopt (4)

ATE† 0.66*** (0.29) 0.94*** (0.03) 1.35*** (0.04) 1.73*** (0.07)

ATE 0.73*** (0.03) 1.08*** (0.03) 1.51*** (0.05) 1.91*** (0.08)

ATT 0.75*** (0.03) 1.06*** (0.04) 1.45*** (0.06) 2.08*** (0.11)

ATUT 0.34*** (0.13) 1.11*** (0.06) 2.06*** (0.13) 1.70*** (0.13)

AMTE† 1.58*** (0.07) 1.60*** (0.08) 1.57*** (0.08) 1.69*** (0.09)

AMTE 1.96*** (0.07) 1.87*** (0.09) 1.77*** (0.10) 2.09*** (0.13)

Notes: ***, **, and * are 1%, 5%, and 10% significance levels, respectively; values in brackets are standard errors. The table shows 
the estimates of the treatment effects (without continuation values) of the adoption process on soybean net returns. ATE is the 
average treatment effects for farmers at each adoption state; ATE† is the average treatment effects for the full population of 
farmers; ATT is the average treatment effects for farmers who chose to transit to a higher adoption state; ATUT is the average 
treatment effects for farmers who chose not to transit to a higher adoption state. The average marginal treatment effect (AMTE) 
is the average effects for farmers at an adoption transition state who are indifferent between transiting and not transiting to 
a higher-level adoption state. AMTE† is the average marginal effects for the full population of farmers who are indifferent 
between transiting and not transiting to a higher-level adoption state.
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adopters tend to get the greatest returns, thereby triggering the race to high-order adoption (e.g., 
Karshenas & Stoneman, 1993).

Table 4 further shows that the AMTE for farmers at various margins of indifference deciding 
whether to make the next transition or remain where they are, in terms of yields, is 187 kg/ha 
for farmers at the trial state, 177 kg/ha at the adoption state, and 209 kg/ha at the continued 
adoption state. The AMTE for farm net returns (Table 5) is 50 GHC/ha for farmers at the trial 
state, 45 GHC at the adoption state, and 67 GHC/ha at the continued adoption state. The AMTE 
estimates for both outcome measures are positive across all adoption states and significant at 
the 1% level, suggesting that farmers with unobserved factors (e.g., wealth endowment) that in-
crease their ability to make further adoption investment decisions stand to gain more from such 
investment decisions. In other words, farmers who tried the inoculant technology and have the 
financial ability to continue to use the inoculant benefit more from their continued adoption. We 
also observe from the results in Tables 4 and 5 that the impact gap is wider for yields, compared 
to that of farm net returns, which can be attributed to differences in prices faced by farmers (both 
input and output prices), timing, and place of sales.

Figures 2 and 3 present the distributions of impacts at the subpopulation level of farmers at 
each adoption state. We find that farmers who are observed to make a transition at each adoption 
state (i.e., the treated case—TT) obtain higher yields and farm net returns compared to if the 
same farmers did not make the transition (i.e., the untreated case—TUT). The results reveal that 
the impact distributions at the subpopulation means for both outcomes are positive and above 
the subpopulation means at zero. Examining the pattern of the impact distributions at the sub-
population means reveals an interesting finding. In particular, we observe a positive pattern of 
selection on gains (i.e., TT > ATE > TUT) at the knowledge and continued adoption states and a 
negative or reverse pattern of selection (i.e., TUT > ATE > TT) at the trial and adoption states.17 
The negative selection on gains at the trial and adoption states suggests that farmers who would 
have benefited from further investment in the new technology are unable to transit to the contin-
ued adoption state due to low levels of unobserved factors (i.e., wealth endowment). Intuitively, 
the implication is that further investment in the inoculant dissemination program activities that 
provide subsidized access to the inoculant technology for this category of farmers has a high po-
tential of increasing their productivity as well as moving them into the continued adoption state. 

T A B L E  5   Impact on farm net returns (GHC/ha)

Treatment effects Acknow (1) Tryout (2) Adopt (3) Cont-Adopt (4)

ATE† 0.43*** (0.03) 0.46*** (0.03) 0.48*** (0.04) 0.51*** (0.05)

ATE 0.50*** (0.02) 0.56*** (0.03) 0.51*** (0.04) 0.49*** (0.04)

ATT 0.54*** (0.02) 0.51*** (0.03) 0.47*** (0.04) 0.62*** (0.06)

ATUT 0.02 (0.05) 0.67*** (0.04) 0.85*** (0.13) 0.34*** (0.06)

AMTE† 0.48*** (0.05) 0.49*** (0.06) 0.49*** (0.06) 0.58*** (0.07)

AMTE 0.60*** (0.04) 0.50*** (0.05) 0.45*** (0.05) 0.67*** (0.07)

Notes: ***, **, and * are 1%, 5%, and 10% significance levels, respectively; values in brackets are standard errors. The table shows 
the estimates of the treatment effects (without continuation values) of the adoption process on soybean net returns. ATE is the 
average treatment effects for farmers at each adoption state; ATE† is the average treatment effects for the full population of 
farmers; ATT is the average treatment effects for farmers who chose to transit to a higher adoption state; ATUT is the average 
treatment effects for farmers who chose not to transit to a higher adoption state. The average marginal treatment effect (AMTE) 
is the average effects for farmers at an adoption transition state who are indifferent between transiting and not transiting to 
a higher-level adoption state. AMTE† is the average marginal effects for the full population of farmers who are indifferent 
between transiting and not transiting to a higher-level adoption state.
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Conversely, the positive selection on gains suggests that the category of farmers who transition 
into the continued adoption state due to high wealth endowment attained high benefits from the 
technology. However, the extent of the benefits would have been much higher for the category of 
farmers who are unable to transit into the continued adoption state, suggesting that the inoculant 
technology may be more beneficial to poor farmers compared to wealthy farmers.

7.3  |  Long-term impact of returns to inoculant adoption

In this section, we present the results derived from the estimates of Equation 17 in the empirical 
specification in Tables 6 and 7 for yields and farm net returns, respectively. The results repre-
sent the long-term impact of technology adoption, which approximates ex post valuation of op-
portunities that farmers’ current adoption decisions open up for them. As noted by Besley and 

F I G U R E  2   Treatment effect distributions at each adoption transition (subpopulation level) – yield (kg/
ha). ACK, knowledge acquisition state; TRY, trial state; ADO, adoption state; CON, continued adoption state; 
TT, treated state; TUT, untreated state. ATE, average treatment effect curve; ATT, average treatment effect 
on the treated curve; ATUT, average treatment effect on the untreated curve [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Case (1993), current adoption choices have future consequences and have to be considered when 
analyzing farmers’ adoption choices. Intuitively, farmers who try a technology are more likely 
to adopt, and those who adopt conditional on the benefits are more likely to sustain their adop-
tion. This valuation of the dynamic impact of opportunities constitutes the long-term forecast of 
benefits informing farmers’ adoption decisions but is often overlooked in traditional technology 
adoption impact studies.

The results in Tables 6 and 7 show similar patterns in the distribution of benefits, similar to 
those computed without the inclusion of the continuation values presented in Tables 4 and 5. 
All the estimated coefficients are positive and statistically significant at the 1% level, indicating 
that farmers’ valuation of expected long-term benefits at each adoption state is important in 
the adoption decisions they make. The estimates of ATE presented in row 2 of Table 6 suggest 
that the average total effect on yields for farmers at the trial state is 204 kg/ha. Similarly, the 
effects for farmers at the adoption and continued adoption states are 298 and 329 kg/ha, respec-
tively. In terms of farm net returns, presented in Table 7, we find the average total effect to be 

F I G U R E  3   Treatment effect distributions at each adoption transition (subpopulation level) – net returns 
(GHC/ha). ACK, knowledge acquisition state; TRY, trial state; ADO, adoption state; CON, continued adoption 
state; TT, treated state; TUT, untreated state. ATE, average treatment effect curve; ATT, average treatment effect 
on the treated curve; ATUT, average treatment effect on the untreated curve [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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91 GHC/ha for farmers at the trial state, 85 GH/ha at the adoption state, and 78 GHC/ha at the 
continued adoption state. Tables 6 and 7 also show that the total AMTE estimates at all adoption 
states are positive and statistically significant at the 1% level. In particular, the results reveal 
that the total AMTE for farmers at the margin of trial is 901 kg/ha, for farmers at the margins of 
adoption is 861 kg/ha, and for farmers at the margins of continued adoption is 880 kg/ha. These 
estimates are close to the experimental results of van Heerwaarden et al. (2018), who found the 
average total yield of 1,343 kg/ha obtained by inoculant users in an on-farm experiment in 10 
countries of SSA. A plot of the full distributions of the total treatment effects at both population 
and subpopulation levels reveals similar distributions of impacts18 and selection on gains pat-
tern among the farmers. The implication of this finding is that there exist potential long-term 
benefits from the adoption of inoculant technology as farmers’ yields and farm net returns ap-
pear to more than double, compared to the short-term benefits. This observation resonates with 

T A B L E  6   Impact on yield estimates with continuation values (kg/ha)

Treatment effects Acknow (1) Tryout (2) Adopt (3) Cont-Adopt (4)

ATE† 1.09*** (0.04) 1.76*** (0.07) 2.55*** (0.10) 2.93*** (0.13)

ATE 1.14*** (0.04) 2.04*** (0.06) 2.98*** (0.11) 3.29*** (0.14)

ATT 1.17*** (0.04) 2.02*** (0.07) 2.83*** (0.11) 3.57*** (0.19)

ATUT 0.78*** (0.19) 2.09*** (0.10) 4.33*** (0.20) 2.95*** (0.13)

AMTE† 6.64*** (0.40) 7.65*** (0.36) 7.68*** (0.39) 7.55*** (0.40)

AMTE 8.19*** (0.35) 9.01*** (0.36) 8.61*** (0.39) 8.80*** (0.64)

Notes: ***, **, and * are 1%, 5%, and 10% significance levels, respectively; values in brackets are standard errors. The table 
shows the estimates of the total dynamic treatment effects (including continuation values) of the adoption process on soybean 
yields. ATE is the average treatment effects for farmers at each adoption state; ATE† is the average treatment effects for the full 
population of farmers; ATT is the average treatment effects for farmers who chose to transit to a higher adoption state; ATUT 
is the average treatment effects for farmers who chose not to transit to a higher adoption state. The average marginal treatment 
effect (AMTE) is the average effects for farmers at an adoption transition state who are indifferent between transiting and not 
transiting to a higher-level adoption state. AMTE† is the average marginal effects for the full population of farmers who are 
indifferent between transiting and not transiting to a higher-level adoption state.

T A B L E  7   Impact on farm net returns estimates with continuation values (GHC/ha)

Treatment effects Acknow (1) Tryout (2) Adopt (3) Cont-Adopt (4)

ATE† 0.66*** (0.05) 0.71*** (0.06) 0.76*** (0.08) 0.79*** (0.10)

ATE 0.77*** (0.04) 0.91*** (0.04) 0.85*** (0.07) 0.78*** (0.08)

ATT 0.86*** (0.04) 0.82*** (0.05) 0.76*** (0.07) 0.99*** (0.01)

ATUT –0.14 (0.19) 1.09*** (0.07) 1.67*** (0.21) 0.52*** (0.11)

AMTE† 2.70*** (0.32) 2.71*** (0.35) 2.66*** (0.35) 3.16*** (0.40)

AMTE 3.56*** (0.22) 2.98*** (0.27) 2.59*** (0.27) 3.95*** (0.39)

Notes: ***, **, and * are 1%, 5%, and 10% significance levels, respectively; values in brackets are standard errors. The table shows 
the estimates of the total dynamic treatment effects (including continuation values) of the adoption process on soybean net 
returns. ATE is the average treatment effects for farmers at each adoption state; ATE† is the average treatment effects for the 
full population of farmers; ATT is the average treatment effects for farmers who chose to transit to a higher adoption state; 
ATUT is the average treatment effects for farmers who chose not to transit to a higher adoption state. The average marginal 
treatment effect (AMTE) is the average effects for farmers at an adoption transition state who are indifferent between transiting 
and not transiting to a higher-level adoption state. AMTE† is the average marginal effects for the full population of farmers who 
are indifferent between transiting and not transiting to a higher-level adoption state.
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the benefit stream of organic agricultural inputs that have long-term impacts on improving soil 
fertility.19

7.4  |  Robustness check

The validity of our treatment effects depends on proper identification of the unobserved wealth 
endowment effect on farmers’ transitional ability, as expressed in the factor model in Equation 
12 of the empirical specification. In the interest of brevity, we discuss the distributions of the 
unobserved factors as well as the heterogeneity of the factors across each adoption state but pre-
sent the results in the appendix, by way of robustness check. Figure A6 presents the combination 
of two normal distributions of the unobserved wealth endowment for farmers at each adoption 
state (see Appendix A8). The results show evidence of sorting into adoption states by unobserved 
wealth endowment, with this endowment having significant impact on the distributions of farm 
outcomes. The distributions around the zero mean confirm our findings of the existence of two 
heterogeneous groups of farmers based on selection on gains, that is, the negative and positive 
selection on gains groups of farmers.

Figure A7 in Appendix A9 presents the distributions of the unobserved wealth endowments 
for farmers at each adoption state. We observe that the distributions of the endowment are het-
erogeneous across each adoption state, indicating that farmers’ wealth endowment may play an 
important role in moving them from one adoption state to the next adoption state.

Finally, Table A3 presents the results of exogeneity test for the instrumental variables (IVs) 
employed as exclusion restriction variables for the identification of farmers’ adoption choice de-
cisions at each adoption state as expressed in Equation 12 of the empirical specifications. In 
line with Heckman et al. (2018), we employed state-dependent IVs to identify each autonomous 
adoption decision, while controlling for farmer's wealth endowment at each adoption state. We 
assume that different adoption states are identified by different instruments that are important 
to that state. As observed in Table A3, the Anderson–Rubin test statistic of the IVs in both the 
yields and the farm net returns models is not statistically significant at any conventional level, 
indicating that the IVs’ use for the exclusion restriction satisfies the exogeneity requirements and 
that the instruments do not have direct influence on yields and farm net returns, except through 
the different states of adoption that they identify.20

8  |   CONCLUSIONS AND IMPLICATIONS

In this study, we address the question of what drives the dynamic pattern of farmers’ technology 
adoption decisions over time. Using farm-level data of soybean farmers in Ghana, we analyzed 
technology adoption as a multi-stage dynamic decision problem and how adoption influences 
farm outcomes such as yields and net returns. We employed the dynamic treatment effect model, 
a novel procedure, to examine heterogeneity in returns to adoption of newly introduced technol-
ogies, focusing on the newly introduced inoculant technology. Our findings reveal new insights 
into the role of information in farmers’ adoption decisions, the distribution of returns in the en-
tire chain of the adoption process, and factors that influence continued adoption, or otherwise, 
of new agricultural technologies. Consistent with Besley and Case (1993), we find substantial 
impact heterogeneity at each adoption state, which, we contend, drives the adoption process.
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Our empirical results suggest that farmers have high-benefit expectation stream for newly 
introduced agricultural technologies and exhibit sorting behavior in their adoption decisions. 
As a result, farmers may discontinue their adoption if the returns are below their expectations 
at any point in time due to disappointment. It is therefore important that technology dissem-
ination programs employ different strategies that maximize farmers’ returns at each stage in 
the adoption process to sustain farmers’ adoption inertia. Moreover, expectation management 
should be built into new technology dissemination and promotion campaigns to minimize farm-
ers’ disappointments.

The findings also suggest that although the free distribution of newly developed divisible 
agricultural technologies to farmers during dissemination programs increases farmer technology 
awareness, knowledge acquisition, trial, and implementation, it does not guarantee continued 
adoption as argued by Lambrecht et al. (2014). In contrast, the results indicate that the existence 
of efficient input markets and continued information supply tends to drive the probability of 
continued adoption. Therefore, extension programs aimed at promoting new agricultural tech-
nologies should provide information on market outlets for accessing the technology to ensure 
continued adoption. The results further revealed that the long-term benefits of the inoculant 
technology are higher than the short-term benefits, conditional on the markets being able to 
absorb the excess supply that may result from higher yields. In addition, the findings suggest that 
subsidizing the inoculant technology to poor farmers will have an enormous impact on poverty 
reduction, through farmers’ yields and farm net returns improvement.

Furthermore, the study revealed that continued extension support to farmers at all phases in 
the adoption process, provision of rural infrastructure such as information and communication, 
and good road networks contribute significantly to maintaining farmers’ adoption inertia. The 
findings also reveal that education plays a significant role at the early stages of new technology 
adoption but diminishes at higher levels of adoption due to learning from experience.

In conclusion, contrary to static adoption analysis as in the conventional technology adoption 
literature, the dynamic adoption analysis approach could be a useful tool for identifying diverse 
subpopulation-level farmer needs for specific extension policies targeting farmers in those cate-
gories. The policy-specific targeting approach will save resources to expand extension outreach 
to benefit more farmers, thereby increasing productivity at least cost.
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ENDNOTES
	1	 Notable organizations that farmers identified include CSIR-SARI, IITA, and USAID-ADVANCE Project.

	2	 In our calculation of the continuation value, we used Weisbrod's procedure, which uses the transition probabil-
ity as the discount factor. This takes away the discretion of assuming any arbitrary discount factor which is hard 
to observe in reality compounded by the difficulty in assessing its heterogeneity among any group of decision-
makers (Fagereng et al., 2020).

	3	 This implies that the farmer at each stage of adoption is able to forecast the net benefits of the next stage.

	4	 This specification does not assume any choice decision rules; therefore, it imposes neither rational expecta-
tion assumption nor forward-looking behavior on agents as in traditional discrete choice literature. Therefore, 
agents may be myopic, time inconsistent, and subjected to surprises (Heckman et al., 2016, 2018).

	5	 We thank an anonymous reviewer for making this suggestion on the theoretical explanation of the decision-
making mechanisms.

	6	 Fixed, as used here, refers to constraining the farmer to a point (either 0 or 1) conditional on the farmer's further 
decisions along the adoption chain. This is necessary because a farmer who has made a further transition to 
a higher state will not be available to make a decision at the lower state. Therefore, fixing makes it possible to 
derive the counterfactual outcomes of not being at a particular state (see Heckman et al., 2016, 2018).

	7	 First, �correlates with the unobservable factors in the outcome equation as a result of heterogeneities in re-
turns to farmers’ wealth endowment, due to differences in the levels of investment in their scale of produc-
tion and intensity of input use. We approximate this correlated effect in a linear-in-parameter factor model as 
(Uk

s = ���k
s + �k

s). Second, �also correlates with the unobservable factors in the transitional choice decision due 
to inadequate financial ability to undertake further investment in the production cycle. This correlated effect is 
also approximated in a linear-in-parameter factor model as (�j = −

(
���j − vj

)
) (see Heckman et al., 2016, 2018, 

for more details).

	8	 We do not intend to reproduce the full likelihood equation as captured in Heckman et al. (2016, 2018), so inter-
ested readers can refer to Heckman et al. (2016, 2018) for the full specification of the likelihood function as well 
as the measurement equation.

	9	 The estimation codes for STATA implementation and other software requirements are publicly available at 
https://www.journ​als.uchic​ago.edu/doi/suppl/​10.1086/698760 (see Heckman et al., 2018).

	10	 The direct effect is the expected net benefits that accrue to a farmer for transiting to the next-adjacent adoption 
decision node such as from j to j + 1, whereas the continuation effect is the expected net benefits that accrue to a 
farmer for transiting beyond the next-adjacent adoption decision node such as transiting from j to j + 1 to j + 2 
to j + 3, …, to j + l.

	11	 The AMTE is different from the local average treatment effect (LATE), in the sense that LATE is not defined 
for any specific margin of choice and also depends on the population of instrument compliers to measure the 
treatment effect.

	12	 Farmers who use the inoculant only once are also considered as trial even without participation in field demon-
stration exercises.

	13	 See the farmers’ adoption decision tree in Appendix A1.

	14	 The SCA is a standard practice in the dynamic discrete choice literature (Heckman et al., 2016, 2018).

	15	 Majority of the farmers in our sample were indigenous land owners and not renters; therefore, this observation 
is consistent with the economic theory of owner-operated lands, as farmers have an incentive to maintain pro-
ductivity of their lands into the future.

	16	 Note that due to the disadvantages inherent in using onetime cross-sectional observation data in this analysis, 
the impact measures reported in this study do not represent causality. We thank an anonymous reviewer for this 
comment.

https://orcid.org/0000-0001-8260-0162
https://orcid.org/0000-0001-8260-0162
https://www.journals.uchicago.edu/doi/suppl/10.1086/698760
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	17	 Selection on gains in this literature refers to a case where farmers who have higher or lower values of unob-
served ability (i.e., unobserved factors, such as wealth endowment, that pose a resistance to a farmer to make a 
transition) to transit obtain higher-than-average (positive selection on gain) or lower-than-average (negative or 
reserve selection on gain) net benefits from making an adoption transition.

	18	 See Appendixes A5, A6, and A7 for population- and subpopulation-level distributions, respectively.

	19	 See Appendix A4 for mean plot of AMTE and ATE compared for both outcomes.

	20	 Another important robustness check of the results that we are unable to perform due to data limitations (on 
pre-intervention factors) is the assumption of forward-looking behavior on the adoption state transition de-
cisions of farmers, as often implicitly assumed in conventional dynamic optimization analysis. As such, the 
estimates reported in this study assumed implicitly that farmers may be prone to surprises and regrets in their 
adoption state transition decisions, though the approach employed in this study is robust to deviations from 
conventional decision rules by agents (Heckman et al., 2016). We are grateful to an anonymous reviewer for 
making this observation.
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