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Abstract
In	 this	 study,	 we	 employ	 a	 dynamic	 treatment	 effect	
approach	 to	 analyze	 heterogeneity	 in	 returns	 to	 farm-
ers	at	different	stages	of	adoption	of	a	newly	introduced	
inoculant	technology,	using	a	recent	survey	data	of	600	
soybean	farmers	from	northern	Ghana.	Although	farm-
ers	differ	 in	 their	 returns	 to	adoption	of	new	 technolo-
gies,	many	empirical	studies	often	fail	to	account	for	this	
heterogeneity.	The	empirical	results	reveal	that	farmers	
who	 are	 at	 advanced	 stages	 of	 adoption	 appear	 to,	 on	
average,	more	than	double	their	yields	and	farm	net	re-
turns,	suggesting	that	 the	 inoculant	 technology	may	be	
a	game	changer	 in	the	fight	against	extreme	poverty	 in	
the	 region,	 where	 poverty	 is	 endemic	 and	 crop	 yields	
are	 persistently	 below	 the	 average	 potential	 yield	 tar-
get.	 Our	 findings	 further	 reveal	 that	 extension	 services	
as	well	as	efficient	input	and	output	markets	are	key	to	
the	 adoption	 process,	 by	 influencing	 knowledge	 acqui-
sition,	 adoption,	 and	 continued	 adoption.	 Our	 findings	
also	show	significant	impact	heterogeneity	at	each	adop-
tion	stage,	with	 the	 long-	term	benefits	of	 the	 inoculant	
technology	outweighing	its	short-	term	benefits.
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1 |  INTRODUCTION

Low	 agricultural	 productivity	 and	 perennial	 food	 insecurity	 are	 major	 global	 concerns	 facing	
low-	income	countries,	particularly	countries	in	sub-	Saharan	Africa	(SSA).	Central	to	tackling	the	
problem	are	increasing	crop	yields	and	sustaining	gains	through	the	adoption	of	improved	agri-
cultural	technologies	(Takahashi	et al., 2020).	Yet	the	technology	adoption	rate	among	farmers	
in	these	countries	appears	to	be	very	low	(Macours, 2019;	Sheahan	&	Barrett, 2017;	Suri, 2011).	
While	some	analysts	partly	attribute	the	phenomenon	to	factors	such	as	lack	of	information,	low	
education,	and	credit	constraints,	others	question	the	empirical	and	theoretical	adoption	models	
used	 to	analyze	 farmers’	adoption	decisions	 (Besley	&	Case,	1993;	Feder	et al., 1985;	Lindner	
et	al.,	1982).	In	particular,	Besley	and	Case (1993)	note	that	technology	adoption	is	a	dynamic	
process	 in	which	 farmers	make	a	 series	of	decisions	over	multiple	 stages	or	 seasons.	Lindner	
et al. (1982)	succinctly	summarized	the	adoption	process	into	three	broad	categories:	discovery 
stage,	evaluation stage,	and	trial stage.	Each	stage	in	the	adoption	process	collects	different	sets	
of	vital	information	for	the	farmer	to	update	subsequent	decisions.	However,	classical	studies	on	
technology	adoption	mostly	consider	farmers’	adoption	decisions	as	static,	ignoring	the	dynamic	
processes	embedded	in	farmers’	decision-	making.	As	a	result,	important	information	on	farmers’	
adoption	behavior	relevant	to	policy	formulation	is	lost,	and	their	decisions	are	misinterpreted.	
Thus,	it	is	not	uncommon	for	analysts	to	find	farmers’	adoption	decisions	at	odds	with	rationality	
and	sometimes	counterintuitive	(Besley	&	Case,	1993).

This	study	departs	from	the	classical	approach	and	analyzes	farmers’	adoption	decisions	in	
a	dynamic	framework.	Previous	studies	that	examined	farmers’	technology	adoption	decision-	
making	in	a	dynamic	framework	mainly	focused	on	adoption	determinants,	patterns	of	diffu-
sion,	and	intensity	of	adoption	(e.g.,	Abdulai	&	Huffman, 2005;	Feder	&	Slade, 1984;	Lambrecht	
et al., 2014;	Simtowe	et al., 2016),	while	some	studies	employed	it	to	explain	farmers’	learning	
behavior,	risk	preferences,	and	uncertainties	(Ghadim	&	Pannell,	1999).	The	missing	link	in	the	
dynamic	adoption	literature	is	the	impact	of	adoption	on	output	levels	and	other	welfare	indica-
tors,	such	as	yields	and	farm	net	returns,	which	underlie	farmers’	adoption	and	continued	adop-
tion	decisions.	These	indicators	also	drive	adoption	patterns	and	clarify	risks	and	uncertainties	
that	may	surround	a	given	technology	(Besley	&	Case,	1993;	Feder	et al., 1985).	We	contribute	to	
the	literature	by	analyzing	farmers’	adoption	decision-	making	process	as	a	multi-	stage	decision	
problem	and	how	adoption	impacts	on	farm	outcomes.	One	in	which	each	stage	of	adoption	is	
characterized	by	different	margins	of	payoffs	or	gains	that	accrue	to	farmers	at	that	stage.	We	
apply	 this	approach	to	analyze	 farmers’	adoption	decisions	of	a	new	Rhizobia	 inoculant	 tech-
nology	among	600	soybean	farmers	in	northern	Ghana,	considering	that	farmers’	returns	from	
adoption	may	be	heterogeneous	and	stage	dependent.

Few	studies	in	the	technology	adoption	literature	have	analyzed	heterogeneity	in	returns	to	
adoption	of	agricultural	technologies	(Abdul	Mumin	&	Abdulai, 2021;	Shahzad	&	Abdulai, 2021).	

K E Y W O R D S

dynamic	treatment	effect,	impact	heterogeneity,	
inoculant technology	adoption,	multistage	decision-	making

J E L  C L A S S I F I C A T I O N

C32;	D83;	O33;	Q10;	Q16



   | 325MOHAMMED and ABDULAI

However,	adoption	at	different	stages	were	not	considered.	As	argued	by	Heckman	et al. (2018),	
individuals	differ	in	their	returns	to	treatment,	and	failure	to	account	for	this	heterogeneity	can	
lead	to	confusion	in	interpreting	the	estimated	effects	of	treatment,	particularly	when	the	indi-
viduals	may	be	at	different	stages	of	treatment.	In	this	study,	we	employ	a	dynamic	treatment	
effects	model	to	account	for	heterogeneity	in	returns	to	adoption	for	farmers	at	different	stages	
of	adoption.	Thus,	we	analyze	the	relationship	between	the	farmers’	state	of	adoption	and	the	
final	outcomes	(which	in	our	case	are	yields	and	farm	net	returns)	obtained	from	adoption.	The	
adoption	stages	considered	 in	 this	study	 include	awareness	and	knowledge	acquisition	about	
the	inoculant	technology,	trying	the	technology,	and	adopting	and	continuous	adoption	of	the	
technology.	The	inoculant	technology	is	a	recently	developed	agricultural	input	by	research	sci-
entists	to	improve	productivity	of	grain	legumes	in	SSA.	The	technology	exploits	the	symbiotic	
relationship	of	an	elite	strain	of	bacteria	known	as	Bradyrhizobium spp	as	an	inoculant	to	en-
hance	nitrogen	fixation	in	legumes.	One	crop	that	has	received	much	attention	in	this	process	
is	soybean	(see	Chibeba	et	al.,	2018;	van	Heerwaarden	et al., 2018).	Field	experiments	of	the	in-
oculant	show	promising	results,	with	a	potential	to	increase	average	soy	grain	yield	by	20%–	29%	
in	African	soils	(Chibeba	et al., 2018).	The	technology	was	recently	introduced	to	smallholder	
farmers	in	northern	Ghana	by	a	number	of	organizations1	and	their	partners	working	together	
to	improve	soybean	production	in	the	region.	As	a	newly	introduced	technology	with	incom-
plete	diffusion,	it	is	imperative	to	investigate	what	factors	drive	the	adoption	of	the	inoculant	
technology	and	to	what	extent	information	from	one	stage	of	adoption	decision	can	influence	
further	adoption	decisions	in	the	process,	as	well	as	the	impact	of	adoption	on	yields	and	farm	
net	returns.

Our	findings	reveal	that	farmers	who	are	at	advanced	stages	of	adoption	appear	to,	on	average,	
more	than	double	their	yields	and	farm	net	returns,	suggesting	that	the	new	inoculant	technol-
ogy	has	the	potential	to	contribute	to	poverty	reduction	in	the	region,	where	poverty	is	endemic	
and	crop	yields	are	below	the	potential	yield	target.	Our	findings	further	reveal	that	the	long-	term	
effects	are	much	stronger	than	the	short-	term	effects,	conditional	on	the	markets	being	able	to	
absorb	the	excess	supply	that	may	result	from	higher	yields.	Finally,	we	also	found	that	extension	
services	as	well	as	efficient	input	and	output	markets	are	key	to	the	inoculant	adoption	process,	
by	influencing	knowledge	acquisition,	adoption,	and	continued	adoption.

The	rest	of	the	paper	is	organized	as	follows.	Sections 2	and	3	present	the	theoretical	frame-
work	and	empirical	specification,	respectively,	while	Sections 4	and	5	present	the	identification	
and	estimation	strategy	and	the	study	context,	respectively.	Section 6	presents	the	data	used	in	
the	study,	while	Section 7	contains	our	empirical	results.	Section 8	presents	the	conclusions	and	
policy	implications	of	the	study.

2 |  THEORETICAL FRAMEWORK

We	assume	that	farmers	are	risk	neutral	and	their	technology	adoption	decisions	are	guided	by	
expected	net	benefits	from	adoption	(Kleemann	&	Abdulai, 2013).	Farmers’	adoption	decisions	
of	 a	 new	 technology	 are	 conceptualized	 as	 a	 decision	 tree	 consisting	 of	 five	 decision-	making	
nodes	along	adoption	path	T	(see	Figure	A1	in	Appendix	A1).	Let	N	represent	a	finite	adoption	
decision-	making	node	along	the	entire	adoption	path	with	a	finite	decision	horizon	(s, s),	where	
s	is	the	lowest	adoption	state	and	s	is	the	highest-	attainable	adoption	state;An(s)	be	the	choice	
indicator	for	adoption	state	s	for	a	farmer	at	adoption	decision-	making	node	n;	and	Wn(s)	be	the	
expected	net	benefits	for	a	farmer	in	adoption	state	s.
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In	line	with	Heckman	et	al.	(2016),	the	farmer's	current	adoption	state	s	net	benefits	can	be	
expressed	as	follows:

where	W (s)	is	the	current	net	benefits	for	a	farmer	in	adoption	state	s	and	all	other	notations	remain	
as	defined	earlier.

Under	autonomy,	when	the	discrete	choices	made	by	a	decision-	maker	at	the	decision-	making	
node	 are	 known	 to	 the	 econometrician,	 the	 dynamic	 discrete	 choice	 model	 can	 be	 employed	
to	 understand	 the	 decision-	maker's	 intertemporal	 behavior	 and	 its	 consequences	 (Heckman	
et al., 2016).	We	assume	that	the	farmer's	adoption	state	decision	at	any	decision-	making	node	
is	autonomous.	A	farmer	may	decide	to	stop	at	any	adoption	state	or	continue	to	the	next	state	
if	the	expected	net	benefits	for	continuing	to	the	next	adoption	state	are	lower	than	the	current	
adoption	state's	net	benefits.	Let	ℋ(s)	be	the	individual	farmer's	perceived	state	value	of	the	net	
benefits	for	continuing	to	the	next	adoption	state.	The	individual	farmer's	perceived	value	func-
tion	for	continuing	to	any	adoption	state	s	along	the	adoption	path	t 	can	be	represented	as	follows	
(Heckman	et al., 2016):

where	Å (s)	is	the	set	of	feasible	current	and	future	adoption	state	choices	available	to	the	farmer	at	
the	decision-	making	node,	�	is	the	farmer's	assumed	discount	factor	for	valuing	the	perceived	net	
benefits	across	the	decision	horizon,2	and	all	other	notations	remain	as	defined	earlier.

The	 farmer's	 valuation	 of	 the	 state	 net	 benefits	 from	 adoption	 at	 any	 adoption	 decision-	
making	node	consists	of	the	current	state	s	benefits	and	that	of	the	future	adoption	state	s + 1	
benefits	if	they	continue	to	the	next	adoption	state.3	To	reflect	this	relationship	in	the	farmer's	
value	function	at	each	decision-	making	node	n,	we	follow	Heckman	et al. (2016)	and	express	the	
state-	specific	value	function	in	terms	of	Equations 1	and	2	as	follows:

where	Wn (. , . )	is	the	farmer's	current	adoption	state	s	value	function	and	�E[V (. ) ]	is	the	farmer's	
expected	value	function	if	the	farmer	continues	to	the	next	adoption	state	s + 1.

However,	the	expected	net	benefits	from	adoption	at	any	state	are	latent	and	cannot	be	ob-
served,	but	the	actual	adoption	choices	made	by	the	farmer	can	be	observed.	We	set	the	adoption	
choice	indicator	An (s)	equal	to	1	if	a	farmer	at	decision	node	n	choses	to	be	in	adoption	state	s,	
and	0	otherwise.

Based	on	the	state-	specific	perceived	net	benefit	value	function,	the	farmer's	adoption	state	
choice4	at	any	decision-	making	node	n	can	be	represented	as	follows	(Heckman	et al., 2016):

(1)W (s) =

N∑
n=1

An(s)Wn(s),

(2)V (ℋ (s) , s) = max
An(t)∈ Å(s)

E

[
s∑
t=s

𝛿t−s
N∑
n=1

An (t)Wn (t) |ℋ (s)

]
,

(3)Vn (ℋ (s) , s) =Wn (ℋ (s) , s) + �E
[
V (ℋ (s + 1) , s + 1) |ℋ (s) ,An (s) = 1

]
,

(4)
An (s) =1, if

[
n= argmax

j∈{1,…,N}

{
Vj (ℋ (s) , s)

}]

An (s) =0, otherwise

,
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As	noted	by	Heckman	et al. (2016,	2018),	the	specification	of	the	decision	rule	in	Equation	
4	 differs	 from	 conventional	 decision-	making	 rules	 in	 the	 dynamic	 discrete	 choice	 literature.	
When	no	specific	choice	rule	is	assumed,	it	imposes	neither	rational	expectation	assumption	nor	
forward-	looking	behavior	on	agents	at	any	decision	node.	Therefore,	agents	may	be	myopic,	time	
inconsistent,	and	subjected	to	surprises.	For	instance,	it	is	possible	under	a	myopic	decision	rule,	
as	inherent	in	the	Bellman's	decision	rules,	for	a	farmer	who	obtains	negative	returns	at	early	
stages	of	adoption	to	abandon	the	technology	and	similarly,	under	a	forward-	looking	behavior,	
as	inherent	in	the	Euler	decision	rule,	for	a	farmer	to	continue	to	adopt	the	technology	with	the	
expectation	of	getting	higher	returns	in	the	long	term,	despite	obtaining	negative	returns	at	the	
early	stages	of	adoption.5

Aguirregabiria	and	Mira	(2010)	note	that	farmers	at	different	adoption	states	differ	in	both	
observed	 and	 unobserved	 characteristics	 (i.e.,	 s = (x , �)),	 indicating	 that	 the	 farmers’	 adop-
tion	 choice	 decisions	 as	 expressed	 in	 Equation	 4	 may	 be	 random	 and	 subject	 to	 shocks.	 The	
farmer's	optimal	choice	decision	at	any	adoption	state	can	be	expressed	 in	 terms	of	 the	state-	
specific	variables	that	enter	the	farmer's	conditional	choice	probability	function	(Aguirregabiria	
&	Mira, 2010;	Arcidiacono	&	Ellickson, 2011)	as	follows	:

where	aj	is	the	farmer's	optimal	choice	indicator;	pj	is	the	conditional	choice	probability	function	
of	choosing	adoption	state	 j;	x	is	a	vector	of	observed	characteristic;	�	is	the	unobserved	state	fac-
tors	that	influence	state-	specific	value	function	(i.e.,	the	error	term);	y	is	a	parameterized	vector	of	
payoffs	or	outcomes	(e.g.,	yield	and	farm	net	returns	in	our	case),	consisting	of	the	flow	payoff	at	
a	particular	adoption	state	(yj)	and	the	transition	state	(yj+1)	(i.e.,	y ≡ {yj, yj + 1});	I	is	an	indicator	
function;	g(. )	is	the	distribution	function	of	the	state-	specific	error	term;	and	other	symbols	remain	
as	defined	earlier.

The	expected	payoff	function	for	farmers’	optimal	adoption	choice	decisions	can	be	approxi-
mated	(Aguirregabiria	&	Mira, 2010;	Arcidiacono	&	Ellickson, 2011)	as	follows:

where	 ŷ	 is	 the	 expected	 outcome	 from	 optimal	 adoption	 choice	 decision,	ℕ	 is	 the	 number	 of	
farmers,	 f (. )	is	the	state	transition	probability	function,	and	all	other	symbols	remain	as	defined	
earlier.

Equation	6	consists	of	two	additive	separable	components,	that	is,	the	adoption	state	choice	
component	(i.e.,	pj(. ))	and	the	state	transition	component	(i.e.,	 f (. )).	The	additive	separability	
assumption	enables	each	of	the	components	to	be	empirically	estimated	separately,	thus	saving	
computational	time	and	complexity	(Arcidiacono	&	Ellickson, 2011).	The	following	sections	pro-
vide	detailed	empirical	specifications	of	each	component	as	separate	models.

(5)
pj
(
aij|xij, y

)
=∫ I(�

(
xij, �ij;y

)
g
(
�ij
)
d�ij

=∫ I
{
argmax

j

[
vj
(
xij, aij;y

)
+�ij

(
aj
)]

=aij

}
g
(
�ij
)
d�ij,

(6)ŷ = argmax
j

ℕ∑
i=1

N∑
j=1

(
ln

[
pj
(
aj|xj;y

)]
+ ln

[
f
(
xj+1|xj, aj;yj+1

)])
,
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3 |  EMPIRICAL SPECIFICATIONS

3.1 | Adoption state choice decision

Let	Yi	denote	the	individual	farmer's	net	benefits	from	soybean	production	and	Ai	be	the	indica-
tor	for	the	farmer's	inoculant	adoption	choice	decision.	The	farmer's	expected	outcomes	from	the	
inoculant	adoption	choice	decision	can	be	expressed	as	follows:

where	Xi	is	a	vector	of	observed	characteristics	(farm-		and	household-	level	characteristics),	�i	and	� i	
are	vectors	of	parameters	of	interest,	�i	is	a	constant,	and	Ui	is	an	error	term.

Conventional	static	adoption	decision	analysis	often	treats	Ai	as	a	single	binary	decision	(e.g.,	
Kleemann	&	Abdulai, 2013).	However,	farmers	tend	to	evaluate	the	performance	of	the	technol-
ogy	over	many	 seasons	before	making	 final	adoption	decisions.	Therefore,	 the	adoption	deci-
sion	indicator	Ai	may	not	be	a	onetime	binary	decision	but	several	binary	decisions	across	many	
seasons	or	transitions.	In	this	setting,	we	assume	that	the	farmer's	adoption	decision	follows	a	
dynamic	process,	one	in	which	the	farmer	is	assumed	to	make	finite	adoption	decisions	in	an	
irreversible	sequential	order	over	multiple	stages.

Let	ℐ = {1,⋯, s − 1} ∀N	be	a	set	of	all	possible	terminal	adoption	states,	and	S = {1,…, s}	
denote	an	ordered	set	of	all	stopping	states	(i.e.,	all	states	that	a	farmer	is	observed	to	make	a	
stop	during	the	process),	with	s	as	the	highest-	attainable	state.	A	farmer	at	each	node	makes	a	
binary	decision,	 to	either	remain	at	node	 j(j ≠ 0)	or	 transit	 to	 the	next	node	 j + 1 (j ≠ j + 1)	
and	 j ∈ ℐ	.	We	assume	the	farmer	operates	in	a	time-	stationary	decision	environment,	and	past	
choices	reveal	the	farmer's	transition	decisions.	Let	D	represent	a	finite	set	of	all	possible	transi-
tion	decisions	that	a	farmer	can	make	over	the	decision	horizon	Dj ∈ D,	Ds	be	the	farmer's	stop-
ping	state	decision	for	all	s ∈ S,	and	Qj	be	the	history	of	all	states	the	farmer	visited	and	assumed	
to	be	binary	(i.e.,	Qj = 1	if	the	farmer	visits	a	state,	otherwise	Qj = 0).	We	fixed6Dj = 0(Ds ≠ 1)	
if	a	farmer	at	j	does	not	stop	but	moves	to	 j + 1	and	Dj = 1(Ds = 1)	if	the	farmer	stops	at	state	 j	
(Heckman	et al., 2016,	2018).

The	farmer	must	make	a	transition	decision,	to	either	remain	at	 j	or	move	from	 j	to	 j + 1.	We	
assume	that	the	net	benefits	differ	from	state	to	state,	and	the	farmer	compares	the	current	state	
benefits	to	the	net	benefits	of	moving	to	the	next	state,	before	making	a	transition	decision.	We	
specify	the	farmer's	transition	decision	(Dj)	as	follows:

where	Ij	is	the	indicator	of	the	farmer's	perceived	state-	specific	value	function	for	a	farmer	consider-
ing	a	move	from	j(j ≠ 0)	to	 j + 1.

At	each	adoption	state,	the	perceived	value	function	Ij	is	assumed	to	cross	a	threshold	value	
for	the	farmer	to	move	from	one	state	to	another.	To	understand	the	farmer's	choice	decision	at	
each	adoption	state,	we	specify	the	empirical	state-	specific	value	function	Ij	in	a	separable	model	
as	follows	(Heckman	et al., 2016,	2018):

(7)Yi = �i + �iAi + � iXi +Ui,

(8)Dj =

{
0, if Ij≥0, j∈ I ={1,…, s−1}

1, otherwise

}
for Qj = 1, j ∈ℐ = {1,…, s − 1} ,

(9)Ij = ∅j (Z) − �j, j ∈ℐ = {1,⋯, s − 1} ,
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where	Z	 is	 a	vector	of	observed	characteristics	 that	 include	an	 instrument	 for	 identification	not	
included	in	Xi	and	�j	represents	the	unobserved	factors	that	affect	the	farmer's	transitional	ability.

Due	to	observed	and	unobserved	factors	that	characterize	different	adoption	transitions,	each	
transition	decision	 that	 the	 farmer	makes	has	a	range	of	potential	outcomes.	By	 indexing	 the	
state-	specific	potential	outcomes	as	k	(where	k ∈ Ks	and	Ks	is	a	set	of	all	possible	outcomes),	a	
farmer	at	adoption	state	s	potential	outcomes	from	inoculant	adoption	can	be	denoted	as	Yk

s .	The	
individual	farmer's	state-	specific	potential	outcomes	equation	for	any	adoption	state	can	then	be	
expressed	in	a	separable	model	as	follows	(Heckman	et al., 2016,	2018):

where	Yk
s 	is	the	state-	specific	potential	outcome;	X	is	a	vector	of	observed	characteristics	that	de-

termine	 the	 outcome	 at	 a	 particular	 state;	�ks 	 is	 a	 parameter	 of	 interest;	 and	Uk
s 	 is	 state-	specific	

unobserved	factors.	Conditional	on	the	number	of	adoption	states	that	a	farmer	visits	during	the	
transitional	process,	the	observed	potential	outcome	common	across	all	adoption	states	(Yk)	visited	
can	be	expressed	in	a	switching	regression	framework	(Quandt,	1972)	as	follows:

where	Ds	is	the	stopping	decision	indicator;	D0	(i.e.,	for	Ds ≠	1)	is	the	transition	decision	indicator;	
Yk
s 	is	as	defined	earlier;	and	Yk

0
	is	the	counterfactual	outcome	if	the	farmer	decides	to	remain	at	the	

current	adoption	state.

4 |  IMPACT IDENTIFICATION AND 
ESTIMATION STRATEGY

The	 identification	 of	 dynamic	 technology	 adoption	 decisions	 must	 consider	 heterogeneity	 in	
observed	and	unobserved	 farmer	characteristics	 (Benhabib	et al.,  2019;	Fagereng	et al.,  2020;	
Gabaix	et al., 2016).	In	particular,	farmers	differ	in	wealth	endowment,	which	is	potentially	en-
dogenous	 to	 their	 transitional	ability.	Let	�	denote	 the	 finite	dimensional	vector	of	a	 farmer's	
unobserved	wealth	endowments	 (e.g.,	 financial	ability	 for	 farm	investment)	 that	can	be	prox-
ied	by	observables	(e.g.,	household	assets,	livestock	holding,	and	nonfarm	income	sources)	in	a	
measurement	equation.	Intuitively,	the	financial	ability	of	a	farmer	determines	the	scale	of	farm	
operations	and	investment	in	production	inputs,	thus	generating	a	potential	correlation	between	
the	farmer's	transition	decision	and	the	potential	outcomes.7	We	respecify	both	the	state-	specific	
value	function	and	the	potential	outcome	equations	(Equations 7	and	8,	respectively)	controlling	
for	unobserved	wealth	endowment	as	follows:

where	�j	and	�k
s 	are	the	vectors	of	parameters	of	interest,	respectively;	vj	and	�k

s 	are	the	error	terms,	
respectively;	and	Z	and	X	are	as	defined	previously.

(10)Yk
s = �ks (X ) +Uk

s , k ∈ Ks, s ∈ Ss,

(11)Yk =

( ∑
S�{s}

DsY
k
s

)(
1 −D0

)
+
(
Yk
0

)
D0,

(12)Ij = ∅j (Z) + �
��j − vj, j ∈ℐ = {1,…, s − 1} ,

(13)Yk
s = �ks (X ) + �

��k
s + �k

s , k ∈ Ks, s ∈ Ss,
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We	assume	there	could	be	problems	with	measurement	errors,	because	�	is	not	directly	ob-
served	but	proxied	with	observable	indicators.	Let	M	be	a	system	of	measurement	equations	that	
relate	a	vector	of	NM	measurement	indicators	of	�	to	Equations 12	and	13.	Parsimoniously,	the	
measurement	equation	M	can	be	specified	as	follows	(Heckman	et al., 2016,	2018):

where	X	is	a	vector	of	observed	variables,	�	is	a	vector	of	endowment	factors,	and	e	is	a	vector	of	
error	terms	that	ensure	orthogonality	(e_ ‖X ,Z, �, v,�)	with	the	error	terms	in	Equations 12	and	13,	
respectively	(Heckman	et al., 2016,	2018).

By	conditioning	on	(Di,	Mi, Xi,Zi),	a	parsimonious	maximum	likelihood	function	(ℒ)8	for	an	
individual	farmer	can	be	specified	as	follows:

where	 fY (. ),	 fD(. ),	and	 fM(. )	are	the	probability	density	functions	for	the	potential	outcomes,	adop-
tion	decision,	and	measurement	equations,	respectively,	and	all	other	notations	remain	as	defined	
earlier.

Equation	15	consists	of	 three	components,	which	are	estimated	simultaneously	 in	a	 factor	
structural	discrete	choice	model.	The	factor	model	 fM(. )	is	estimated	in	the	first	stage	and	in	the	
second	stage,	the	adoption	decision	model	 fD(. )	is	estimated	with	the	inclusion	of	an	instrument	
(Z)	to	account	for	selection	bias,	and	a	factor	score	(�)	is	predicted	from	the	measurement	model	
in	the	first	stage	to	account	for	unobserved	ability	or	wealth	endowment	effect	on	the	farmer's	
adoption	decision.	In	the	final	stage,	the	potential	outcomes	(i.e.,	both	the	treated	case	and	the	
counterfactual	case)	model	 fY (. )	is	estimated	conditional	on	the	first	two	stages.	The	model	is	es-
timated	using	a	mixture	of	normals	in	a	Gauss-	Hermite	quadrature	approach,	sampling	10	point	
grids	each	time	to	numerically	evaluate	the	integral	in	a	joint	estimation	process.9

4.1 | Estimation of treatment effects

In	 this	 section,	 we	 provide	 the	 econometric	 relationship	 between	 the	 treatment	 and	 the	 out-
comes.	The	treatment	refers	to	the	various	transitional	states,	while	the	outcomes	are	the	state-	
specific	benefits.	Let	Tk

j
	denote	the	farmer-	specific	treatment	effect	for	being	at	state	j.	The	Tk

j
	of	

an	 individual	 farmer	 selected	 at	 random	 from	 the	 population	 of	Qj = 1	 with	 characteristics,	
X = x, Z = z, � = �,	making	a	decision	whether	to	transit	from	 j	to	 j + 1	or	remain	at	 j	can	be	
represented	as	follows:

(14)M = � (X ,�, e) =

⎛
⎜⎜⎜⎝

M1

⋮

MNM

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

Φ1

�
X , �, e1

�
⋮

ΦNM

�
X , �, eNM

�

⎞
⎟⎟⎟⎠
,

(15)
ℒ=

∏
i

f
(
Yi,Di,Mi|Xi,Zi

)

=
∏
i

∫ fY
(
Yi|Di,Xi,Zi, �

)
fD

(
Di,Mi|Xi,Zi, �

)
fM (�) d�,

(16)

Tk
j =

(
Yk|X = x,Z = z,� = �,Qj = 1, Fix Dj = 0

)
−
(
Yk|X = x,Z = z, � = �, Qj = 1, Fix Dj = 1

)
.
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Unlike	the	classical	treatment	effect	models,	the	individual-	level	treatment	effects	can	be	de-
composed	into	two	components.	The	first	component	is	the	direct	effect	of	making	a	transition	
from	 j	to	 j + 1.	For	a	known	population	of	farmers,	the	population-	level	direct	average	treatment	
effect	 (ATE)	 for	 farmers	 at	 state	 j,	 conditional	 on	 (Qj = 1)	 and	 integrating	 over	 the	 vector	 of	
X = x,Z = z,� = �	is	obtained	as	follows:

The	same	procedure	is	followed	to	obtain	the	treatment	effect	for	both	treated	(ATT)	and	un-
treated	(ATUT)	farmers	at	each	transition	state.

The	second	component	is	the	continuation	effect	for	a	farmer	going	beyond	 j + 1	to	l	(where	
l	is	the	subsequent	states	after	 j + 1),	which	evaluates	the	long-	term	impact	of	technology	adop-
tion	(Heckman	et al., 2016,	2018).	The	continuation	effect	(Ck

j + 1
)	component	of	the	treatment	

effect	is	derived	by	conditioning	on	(Qj = 1),	of	the	population	of	farmers	at	 j + 1,	using	the	law	
of	iterated	expectations	as	follows10:

where	Pr	is	the	transition	probability	of	moving	beyond	 j + 1	to	l	(where	l	is	the	subsequent	states	
after	 j + 1).

The	 average	 marginal	 treatment	 effect	 (AMTE),	 which	 provides	 more	 in	 depth	 into	 the	
decision-	making	behavior	of	a	decision-	maker,	is	also	obtained	as	follows:

The	economic	intuition	of	the	AMTE	is	that	it	represents	a	fair	measurement	of	the	ex	post	
gross	marginal	benefits	of	moving	from	one	adoption	state	to	the	next	state	for	a	population	of	
farmers	at	a	decision-	making	node,	who	may	be	indifferent	in	their	transition	decision	(|Ij| ≤ �)	
(Heckman	et al., 2016,	2018).	Thus,	the	AMTE	represents	an	empirically	well-	identified	marginal	
benefit	from	adoption	that	an	indifferent	farmer	considers	before	making	an	adoption	transition	
decision.11

4.2 | Estimation of state transition probabilities

The	state	transition	component	of	the	farmer's	conditional	choice	probability	is	estimated	para-
metrically	within	the	generalized	ordered	conditional	probability	framework.	In	particular,	we	
estimate	the	discrete	state	transition	probabilities	as	a	continuation-	ratio	model,	using	a	probit	
link	function.	The	continuation-	ratio	model,	unlike	proportional	odd	models,	specifies	the	con-
ditional	probability	of	a	farmer	being	above	a	particular	adoption	state	given	that	a	farmer	has	at-
tained	that	particular	adoption	state	(Bauldry	et al., 2018;	Fullerton	&	Xu, 2016;	Liu	&	Bai, 2019).	
The	probability	for	any	given	value	(w)	of	outcome	(y)	conditional	on	farmer's	characteristics	is	

(17)ATEkj : = ∫ … ∫ E
(
Tk
j

[
Yk|X = x,Z = z,� = �

])
dFX ,Z,�

(
x, z, �|Qj = 1

)
.

(18)
EX ,Z,�

(
Ck
j+1

)
=EX ,Z,�

[
s−1∑
l=j+1

{
E
(
Yk
l+1

−Yk
l
|X = x,Z = z,�=�,Ql+1=1,FixQj+1=1

)

.Pr
(
Ql+1=1|X = x,Z = z,�=�,Qj=1,FixQj+1=1

)} |Qj=1
]
,

(19)AMTEkj : = � E
[
Tk
j

(
Yk|X = x,Z = z,� = �

)]
dFX ,Z,�

(
x, z, �|Qj = 1,

|||Ij
||| ≤ �

)
.
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the	product	of	the	probability	that	yj = w	for	the	current	adoption	state	 j	and	the	probability	that	
yj+1 > w	for	all	earlier	adoption	states,	which	can	be	specified	as	follows:

where	Pr	is	the	transition	probability,	yj + 1	is	the	transition	state	with	payoff	categories	(w =	1,…,W),	
F(. )	is	a	cumulative	distribution	function	with	probit	link,	h (. )	is	a	function	of	state	variables	x,	�w	
is	a	vector	of	threshold	indexes,	and	any	other	symbols	remain	as	defined	earlier.

5 |  CONTEXT OF STUDY

Soil	fertility	constitutes	a	critical	production	input	in	agriculture	and	plays	an	important	role	in	the	
welfare	of	poor	subsistent	agricultural	societies	(Kim	&	Bevis, 2019;	Kleemann	&	Abdulai, 2013).	
With	about	90%	of	the	farming	population	in	Ghana	being	subsistent	and	cultivating	less	than	
2 ha	of	land	(Ministry	of	Food	and	Agriculture,	2017),	degradable	soil	conditions	present	a	major	
challenge	to	food	productivity	and	farm	livelihoods,	especially	when	80%	of	Ghana's	total	agri-
cultural	output	depends	on	this	category	of	farmers	(Ministry	of	Food	and	Agriculture,	2017).	
To	 maintain	 the	 productive	 capacity	 of	 soils	 in	 Ghana,	 scientific	 research	 organizations	 such	
as	the	International	Institute	of	Tropical	Agriculture	(IITA)	and	the	Council	for	Scientific	and	
Industrial	Research-	Savannah	Agricultural	Research	Institute	(CSIR-	SARI)	and	their	partner	or-
ganizations	introduced	the	Rhizobia	inoculant	technology	to	smallholder	grain	legume	farmers.	
One	key	crop	that	is	targeted	among	other	crops	is	soybean.	The	crop	is	targeted	due	to	its	po-
tential	to	undergo	sustainable	intensification	and	the	ability	to	provide	large	amounts	of	protein	
and	other	essential	amino	acids	useful	for	consumption	by	humans	and	animals	and	for	biofuel	
(Chibeba	et al., 2018;	Foyer	et al., 2018;	van	Heerwaarden	et al., 2018).	The	inoculant	technology	
is	an	organic	input	containing	isolates	of	an	elite	strain	of	a	bacterial	(Bradyrhizobium	spp.)	and	
an	organic	carrier	material	(Lupwayi	et al., 2000).	The	inoculant	technology	is	regarded	as	a	cost-	
effective	alternative	to	rehabilitating	poor	soils	by	enhancing	the	buildup	of	biological	nitrogen	
fixation	organisms	in	the	soil	(Giller, 2001).

The	inoculant	technology	is	expected	to	cost-	effectively	improve	smallholder	farmers’	wel-
fare	by	sustainably	increasing	productivity,	while	minimizing	the	cost	of	production,	compared	
to	inorganic	inputs	such	as	mineral	fertilizers,	which	is	sometimes	priced	out	of	reach	for	most	
smallholder	farmers.	The	inoculant	dissemination	program	was	centered	in	the	three	regions	
(northern,	upper	east,	and	upper	west)	of	northern	Ghana,	due	to	their	soybean	production	
potential	in	the	country	as	well	as	the	high	incidence	of	extreme	poverty	in	these	parts	of	the	
country.	The	northern	region,	which	is	the	focus	of	this	study,	is	the	second-	poorest	(30.7%)	
region	in	the	country	in	terms	of	extreme	poverty	incidence	followed	by	the	upper-	east	region	
(27.7%),	 with	 the	 upper-	west	 region	 (45.2%)	 ranking	 first	 in	 the	 country	 (Ghana	 Statistical	
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Service, 2018).	With	soybean	being	a	cash	crop,	it	is	expected	that	an	increase	in	productivity	
will	lead	to	an	increase	in	the	household	income,	which	can	contribute	to	poverty	reduction	
for	the	poor	households	who	depend	on	agriculture	for	income	as	well	as	food	and	nutrition	
security.

6 |  SURVEY PROCEDURE AND DATA SOURCE

We	use	primary	data	from	a	recent	survey	of	farm	households	in	the	northern	region	of	Ghana,	
which	 was	 conducted	 from	 June	 to	 August	 2018.	 The	 sample	 was	 drawn	 using	 a	 multi-	stage	
sampling	technique.	The	northern	region	was	purposively	selected	because	it	is	a	major	soybean	
growing	hub	 in	 the	country	and	also	happens	 to	be	 the	 largest	beneficiary	of	 the	agricultural	
extension	 program	 that	 disseminated	 the	 novel	 inoculant	 technology.	 Cluster	 sampling	 tech-
nique	was	employed	to	zone	the	region	into	two	clusters,	consisting	of	the	Eastern	Corridor	Zone	
(ECZ)	and	Western	Corridor	Zone	(WCZ).	Based	on	the	districts’	participation	in	the	dissemina-
tion	program	and	the	intensity	of	soybean	production	in	the	districts	within	the	clusters,	eight	
districts,	comprising	four	from	each	cluster,	were	purposively	sampled.	From	the	ECZ,	Yendi,	
Saboba,	Chereponi,	and	Karaga	districts	were	selected,	while	in	the	WCZ,	East	Mamprusi,	East	
Gonja,	Savelugu,	and	Kumbungu	districts	were	selected.	In	consultation	with	the	field	officers	
and	agriculture	extension	agents	in	the	selected	districts,	five	to	seven	communities	were	pro-
portionally	sampled	based	on	the	dissemination	channel	received,	program	participation,	and	
farmer	population.	Because	the	dissemination	program	was	implemented	through	farmer-	based	
organizations	(FBOs),	one	FBO	was	randomly	selected	from	a	list	of	treated	FBOs	for	each	treated	
community	and	another	randomly	selected	FBO	from	a	list	of	untreated	FBOs	for	each	untreated	
community.	 Using	 a	 lottery	 approach,	 we	 randomly	 drew	 five	 farmers	 from	 each	 FBO.	 After	
a	 preliminary	 interview	 session	 with	 each	 of	 the	 selected	 farmers,	 using	 a	 computer-	assisted	
personal	interview	(CAPI),	a	list	of	the	farmers’	 information	network	members	(INMs)	in	the	
community	was	compiled.	The	CAPI	random	number	generator	then	used	farmers’	unique	iden-
tification	numbers	 to	 randomly	sample	 three	network	members	 from	each	 farmer's	 INMs	 for	
interview.	A	total	of	600	farm	households,	comprising	325	participants	and	275	nonparticipants,	
were	interviewed	in	a	face-	to-	face	session.

We	also	collected	detailed	data	on	the	farm	household	inoculant	usage,	capital	assets,	par-
ticipation	in	nonfarm	income	generation	activities,	and	livestock	value,	in	addition	to	sociode-
mographic	and	farm	characteristics.	Table 1	presents	the	definition	and	descriptive	statistics	of	
the	variables	used	in	the	analysis.	A	mean	difference	comparison	in	(Table	A1	in	the	Appendix)	
reveals	significant	differences	in	socioeconomic	characteristics	between	the	dissemination	pro-
gram	participants	and	nonparticipants.	In	particular,	program	participants	significantly	differ	
in	 gender,	 age,	 previous	 extension	 contacts,	 soil-	quality	 conditions,	 and	 mode	 of	 inoculant	
acquisition	compared	to	nonparticipants.	Program	participants	also	appear	to	have	shorter	dis-
tances	to	the	nearest	extension	office	and	have	amenities	such	as	electricity	and	radio	signals	
in	 their	communities.	However,	 it	appears	 that	program	participants	operate	smaller	 farms,	
use	less	labor,	experience	lower	level	of	rainfall,	and	live	in	smaller	households	compared	to	
nonparticipants.

Using	 recall	 information	 from	 our	 cross-	sectional	 survey,	 we	 constructed	 dynamic	 multi-	
stage	adoption	data,	which	is	used	for	this	analysis.	In	the	absence	of	longitudinal	data,	farmers’	
recall	 information	may	be	used	 to	approximate	 the	dynamic	pattern	of	 the	adoption	process	
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T A B L E  1  Descriptive	statistics

Variables Definition and measurement Mean (SD)

Outcome variables

Yield Soybean	yield	per	hectare	(kg/ha) 829.64	(888.24)

Farm	net	returns Gross	revenue	less	variable	cost	(GHC/ha) 840.26	(762.11)

Decision variables

Aware Farmer	is	aware	of	inoculant = 1;	otherwise = 0 0.84	(0.37)

Acknow Farmer	acquires	knowledge	on	inoculant = 1;	
otherwise = 0

0.66	(0.47)

Tryout Farmer's	first	use	of	inoculant = 1;	otherwise = 0 0.32	(0.47)

Adopt Farmer's	second	use	of	inoculant = 1;	otherwise = 0 0.265	(0.44)

Cont-	Adopt Farmer's	use	inoculant	at	least	for	the	third	time = 1;	
otherwise = 0

0.26	(0.44)

Control variables

Gender Male = 1;	female = 0 0.71	(0.46)

Age Number	of	years 41.56	(13.32)

HHize Number	of	people 5.78	(3.05)

Edu Years	of	schooling 2.79	(4.69)

Farmsize Number	of	hectares 5.05	(4.37)

Agrochem Amount	of	active	ingredient	in	gram	used	per	hectare 4.00	(7.19)

Agrochemcost Total	cost	of	agrochemicals	used	per	hectare	(GHC) 57.67	(81.83)

Labor Person's	day	worked	per	hectare 7.81	(24.23)

Laborcost Total	cost	of	person's	day	worked	per	hectare	(GHC) 102.06	(155.36)

Extcont At	least	one	prior	extension	visit	before	inoculant = 1;	
otherwise = 0

0.54	(0.50)

Credit Credit	constraint = 0;	otherwise = 1 0.83	(0.38)

District fixed effects

WCZ District	is	in	the	Western	Corridor	Zone = 1;	Eastern	
Corridor	Zone = 0

0.57	(0.50)

Measurement variables

lnendwt Log	monetary	value	of	household	capital	asset	
endowment	in	(GHC)

7.27	(1.79)

Asset_index Household	physical	assets	index 82.93	(122.59)

Nonfarminco Farmer	engaged	in	nonfarm	work = 1;	otherwise = 0 0.63	(0.48)

Livestock Household	livestock	value	(TLU) 1.18	(2.44)

Plot- level fixed effects

Rainfall Amount	of	rainfall	(%) 61.63	(16.24)

Soil Soil	quality	(scale	0–	1) 0.623	(0.20)

Instruments

Elradsig Electricity	and	radio	signal	are	in	farmer's	
community = 1,	otherwise = 0

0.95	(0.23)

(Continues)	
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(Besley	&	Case,	1993).	We	asked	farmers	the	year	they	first	heard	of	the	inoculant	technology	
and	the	year	they	first	used	the	technology	on	their	own	farms.	We	also	conducted	an	inoculant	
knowledge	test	and	obtained	farmers’	inoculant	knowledge	test	scores,	a	threshold	of	which	we	
use	to	proxy	for	passive	information	acquisition	(i.e.,	knowledge	acquisition)	in	the	adoption	
process.	We	gathered	information	on	farmers’	active	participation	in	any	field	trial/demonstra-
tion	on	the	use	of	 the	 inoculant	 technology.	Farmers	who	participated	in	field	trials/demon-
strations	are	deemed	to	have	tried	the	technology12	and	therefore	said	to	have	acquired	active	
information.	Past	studies	that	focused	on	adoption	as	a	dynamic	process	failed	to	distinguish	
between	the	role	played	by	active	information	acquisition	and	passive	information	acquisition.	
Intuitively,	each	of	these	modes	of	information	acquisition	may	generate	different	learning	out-
comes	and	impacts	on	the	adoption	process	(Feder	&	Slade, 1984).	Exploiting	farmers’	repeated	
inoculant	usage	history	and	time	differentials	among	farmers	in	our	data,	we	constructed	five	
ordered	 nodes	 of	 farmers’	 sequential	 adoption	 decisions13	 based	 on	 the	 synthetic	 cohort	 as-
sumption	(SCA).14

Table 2	presents	the	subsamples	and	characteristics	of	farmers	at	each	cohort	across	the	var-
ious	stages	of	inoculant	adoption.	About	84%	of	farmers	are	at	awareness	stage;	66%	at	knowl-
edge	acquisition	stage;	32%	at	trial	stage;	and	27%	and	26%	at	adoption	and	continued	adoption	
stages,	respectively.	Farmers	at	each	cohort	also	appear	to	differ	significantly	in	their	observed	
characteristics.

Figure 1	 shows	 the	diffusion	and	adoption	curves	of	 the	 inoculant	 from	2014	 to	2018,	 the	
self-	reporting	period	covered	in	the	survey.	As	observed	in	Figure 1,	no	farmer	 in	our	sample	
either	 heard	 or	 used	 the	 inoculant	 technology	 in	 2014.	 It	 appears	 the	 dissemination	 program	
intensified	in	2015	and	peaked	in	2016,	when	many	farmers	became	aware	of	the	technology.	
Within	this	period,	adoption	was	slow	until	2017,	when	most	farmers	began	using	the	inoculant,	
an	indication	that	diffusion	of	the	inoculant	technology	may	still	be	incomplete	and	farmers	may	
be	at	different	stages	in	the	adoption	process,	justifying	our	argument	to	depart	from	the	classical	
static	adoption	approach.

Variables Definition and measurement Mean (SD)

Comextoff Presence	of	extension	agent	in	farmer's	community = 1;	
otherwise = 0

0.63	(0.49)

Distexttof Distance	to	nearest	extension	office/district	capital	(km) 18.86	(23.53)

Minac Mode	of	inoculant	acquisition:	purchase = –	1;	gift = 1	
and	not	available = 0

0.26	(0.67)

Unculand Households	have	at	least	1 ha	of	uncultivated	land = 1;	
otherwise = 0

0.67	(0.47)

Commarkt Presence	of	local	market	in	farmer's	community = 1;	
otherwise = 0

0.19	(0.39)

Observations	(N) 600

Notes: The	table	shows	the	definition,	measurement,	and	descriptive	statistics	of	the	farm	households.	With	the	inoculant	
technology	being	new	to	farmers,	we	employed	a	hybrid	coding	structure	of	Cooper	et al. (2011)	to	give	it	direction	for	policy	
relevance.	Therefore,	farmers	who	acquire	the	technology	without	paying	anything	are	coded	as	positive	(+1),	while	those	who	
purchased	it	are	coded	negative	(–	1)	and	no	availability	as	zero	(0).	SD,	standard	deviation;	WCZ,	Western	Corridor	Zone.

T A B L E  1  (Continued)
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7 |  EMPIRICAL RESULTS

7.1 | Determinants of adoption transition decisions

Table 3	presents	the	results	on	factors	that	determine	farmers’	decision	to	transit	from	one	adop-
tion	 state	 to	 the	 other,	 as	 expressed	 in	 Equation	 20	 of	 the	 empirical	 specifications.	 The	 table	
contains	the	estimates	of	two	different	specifications	of	the	equation	(models	1	and	2).	Model	1	
assumed	homogeneity	in	farmers’	characteristics	as	well	as	benefits	across	adoption	states	(i.e.,	it	
implies	the	parallel	line/proportional-	odd	assumption).	That	is,	model	1	constraints	coefficients	
across	all	transitions	to	be	equal.	Model	2	relaxes	the	parallel	line	assumption	to	account	for	het-
erogeneity	that	exists	among	farmers	and	the	benefits	accruing	to	farmers	at	different	adoption	
states.	The	specification	in	model	2	is	important	because	when	a	farmer	makes	sequential	adop-
tion	decisions,	but	are	misspecified	as	a	single	dichotomous	decision,	 that	can	lead	to	serious	
statistical	bias	and	inconsistent	estimates	(Buis, 2017;	Williams, 2016).	A	log-	likelihood	ratio	test	
(reported	in	the	last	row	of	Table 3)	between	the	two	models	shows	that	model	2	is	a	better	fit	of	
the	farmers’	adoption	decision-	making	problem,	compared	to	model	1.	Therefore,	we	restrict	the	
discussion	in	this	section	to	the	estimates	of	model	2.

First,	we	discuss	the	threshold-	crossing	indexes	describing	the	adoption	transition	behavior	of	
farmers,	reported	in	the	last	row	of	Table 3.	The	table	shows	that	all	the	threshold	indexes	across	
the	 two	models	are	positive.	 In	particular,	 the	estimates	 in	model	1	are	significantly	different	
from	zero	(at	5%	and	1%	levels,	respectively)	across	all	the	adoption	states,	suggesting	that	farmer	
characteristics	as	well	as	adoption	states	are	heterogeneous,	contrary	to	the	model's	assumption.	
Compared	to	model	2,	the	threshold	estimates	of	model	1	are	generally	downward	biased,	indi-
cating	that	farmers	make	sequential	adoption	decisions,	which	if	ignored	could	underestimate	
farmers’	adoption	behavior.	In	particular,	the	threshold	index	reveals	that	farmers	at	knowledge	
acquisition	state	expect	1.3%	probability	of	yield	increment	to	move	to	trial	state	and	2%	yield	in-
crement	for	farmers	at	trial	state	to	move	to	adoption	state.	Interestingly,	farmers	who	moved	into	

F I G U R E  1  Inoculant	technology	diffusion	and	adoption	in	northern	region,	2014–	2018	[Colour	figure	can	
be	viewed	at	wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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adoption	state	expect	5%	yield	increment	to	continue	their	adoption,	suggesting	that	after	trial	
and	adoption	of	a	new	technology,	high-	benefit	expectations	could	be	a	driving	factor	for	farm-
ers’	continued	adoption	of	the	technology.	This	finding	is	in	line	with	Lambrecht	et al. (2014),	
who	made	similar	observations	 in	 their	 study	of	mineral	 fertilizer	adoption	 in	eastern	Congo	
that	higher	expectations	of	potential	 returns	 from	adoption	by	 farmers	after	 trials	have	nega-
tive	influence	on	continued	adoption.	Intuitively,	this	means	that	farmers’	perception	of	gaining	
an	additional	unit	benefit	is	very	high	in	arriving	at	a	final	adoption	decision.	In	addition,	the	
threshold	 index	 is	monotonic	across	adoption	states,	 indicating	heterogeneity	 in	state-	specific	
marginal	benefits	as	well	as	sorting	in	the	adoption	behavior	of	farmers	(Buis, 2017;	Lindeboom	
&	van	Doorslaer, 2004).	To	the	extent	that	agents	sort	on	gains,	this	implies	that	farmers’	adoption	
decisions	are	sequential,	as	captured	in	our	dynamic	specification,	rather	than	dichotomous,	as	
often	assumed	in	classical	adoption	models	(see	Buis, 2017;	Mare, 2006,	2011).

Table 3,	last	row,	also	reports	the	average	transition	probabilities	at	each	adoption	state.	The	
transition	probability	measures	the	chances	that	a	farmer	who	attains	a	particular	adoption	state	
passes	on	to	the	next	higher	adoption	state.	The	intuition	is	that	farmers	at	higher	adoption	states	
obtain	higher	benefits	compared	to	farmers	at	lower	states	(Buis, 2017).	The	results	show	that,	on	
average,	90%	of	farmers	at	awareness	state	pass	through	to	knowledge	acquisition	state	and	67%	
of	farmers	at	knowledge	acquisition	state	pass	through	to	the	trial	state,	underscoring	the	impor-
tance	of	extension	information	provision	and	promotion	campaigns	in	the	diffusion	and	adop-
tion	process	of	new	agricultural	technologies	(Anderson	&	Feder, 2007;	Takahashi	et al., 2020).	
The	table	further	reveals	that	92%	of	trial	farmers	pass	to	adoption	state	and	77%	of	the	farmers	
at	adoption	 state	pass	 to	continued	adoption	 state,	 suggesting	 that	more	 farmers	are	 likely	 to	
demand	the	inoculant	technology	after	two	rounds	of	usage	due	to	higher	benefits.	In	addition,	
because	benefits	differ	between	farmers	who	attain	a	particular	adoption	state	and	those	who	
did	not,	it	means	that,	at	each	stage,	farmers	can	learn	more	about	average	benefits	of	the	new	
technology	 from	 other	 farmers.	Therefore,	 the	 probability	 of	 more	 farmers	 adopting	 the	 new	
technology	increases	due	to	learning,	as	information	acquisition	and	adoption	decisions	of	new	
agricultural	technologies	are	often	jointly	determined	(Abdulai	et al., 2008).

In	lieu	of	the	fact	that	determinants	of	adoption	have	been	extensively	discussed	in	the	con-
ventional	technology	adoption	literature,	we	focus	the	present	discussion	on	the	determinants	
of	 farmers’	 transition	 decisions	 along	 the	 adoption	 chain.	 Understanding	 these	 factors	 will	
be	helpful	 in	revealing	farmers’	 technology	adoption	behavior	and	can	contribute	to	the	de-
sign	and	implementation	of	targeted	extension	dissemination	policies	to	maximize	resources.	
However,	the	estimates	for	the	discrete	adoption	choice	decisions	(i.e.,	Equations 8	and	9)	are	
presented	 in	 Appendixes	 A1	 and	 A2.	The	 individual	 predictors	 in	 model	 2	 are	 discussed	 as	
factors	influencing	farmers’	decisions	to	transit	from	one	adoption	state	to	another.	A	positive	
coefficient	of	a	predictor	is	interpreted	as	the	conditional	probability	of	being	at	a	particular	
adoption	state	and	moving	beyond	to	the	next	higher	state	where	margins	of	benefits	are	per-
ceived	to	be	greater,	while	the	reverse	is	true	for	a	negative	coefficient	(Bauldry	et al., 2018;	Liu	
&	Bai, 2019).

Table 3	shows	that	the	coefficient	of	extension	contact	(Extcont)	is	positive	and	statistically	
significant	in	all	adoption	states,	suggesting	that	extension	is	central	to	the	transition	decisions	
of	farmers	at	all	phases	of	adoption.	The	implication	is	that	continued	extension	support	to	farm-
ers	is	required	right	from	awareness	creation	and	technical	knowledgeable	supply	until	farmers	
adopt	and	continue	to	use	the	technology,	a	 finding	that	 is	consistent	with	the	argument	that	
knowledge-	intensive	 agricultural	 technologies	 require	 skilled	 extension	 staff	 to	 facilitate	 the	
adoption	process	(Issahaku	&	Abdulai, 2019;	Takahashi	et al., 2020).
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Table 3	further	reveals	that	the	mode	of	technology	acquisition	(Minac)	plays	an	important	
role	in	farmers’	adoption	transition	decisions.	The	results	reveal	that	farmers	who	acquire	the	in-
oculant	free	are	more	likely	to	move	from	awareness	state	to	trial	state	but	are	less	likely	to	get	to	
adoption	and	continued	adoption	states.	This	implies	that	free	distribution	of	new	divisible	tech-
nologies	to	farmers	during	dissemination	programs	has	high	probability	in	creating	awareness,	
getting	farmers	to	acquire	knowledge,	and	trying	the	technology	but	may	not	lead	to	adoption	
and	 continued	 adoption.	 Conversely,	 farmers	 whose	 mode	 of	 acquisition	 is	 by	 purchase	 have	
high	 probability	 of	 getting	 to	 continued	 adoption,	 compared	 to	 farmers	 who	 had	 free	 supply	
or	no	access	to	the	technology.	This	indicates	that	input	markets	to	ensure	constant	supply	of	
the	new	technology	to	farmers	may	be	indispensable	in	getting	farmers	into	adoption	and	con-
tinued	adoption	states	of	 the	 technology.	This	 finding	agrees	with	Shiferaw	et al.  (2015),	who	
found	input	supply	constraints	to	be	responsible	for	nonadoption	of	improved	groundnut	variety	
among	adoption-	willing	farmers	in	Uganda.

Table 3	also	shows	that	farmers’	location	(WCZ)	has	a	positive	effect	on	their	adoption	tran-
sition	decisions,	suggesting	that	farmers	located	in	close	proximity	to	the	source	of	supply	of	the	
technology	are	more	likely	to	move	beyond	knowledge	acquisition	state	to	adoption	and	contin-
ued	adoption	states	compared	to	farmers	living	far	from	the	source.	In	particular,	farmers	living	
closer	to	the	nearest	extension	office	(Distextof)	are	more	likely	to	move	beyond	trial	and	adoption	
states	to	continued	adoption	state,	suggesting	that	access	to	better	infrastructure,	such	as	infor-
mation	 and	 good	 road	 networks,	 positively	 influences	 farmers’	 adoption	 transition	 decisions,	
a	 finding	that	 is	 in	 line	with	Suri’s	(2011)	suggestion	that	removing	supply	and	infrastructure	
constraints	 may	 be	 a	 cost-	effective	 method	 to	 facilitate	 the	 adoption	 of	 improved	 agricultural	
technologies	among	farmers.

Table 3	also	shows	 that	soil	quality	 (significant	at	 the	1%	 level)	plays	an	 important	 role	 in	
farmers’	adoption	 transition	decisions,	especially	when	 the	 technology	has	positive	 long-	term	
effects	on	maintaining	the	productive	capacity	of	the	soil.	The	results	reveal	that	farmers	who	
perceived	the	quality	of	soil	in	their	farm	plots	to	be	fertile	or	good	are	more	likely	to	move	be-
yond	 the	 inoculant	 knowledge	 acquisition	 state	 to	 adoption	 and	 continued	 adoption	 states.15	
However,	 the	 coefficient	 of	 rainfall	 at	 the	 continued	 adoption	 state	 is	 negative	 (significant	 at	
the	10%	level),	indicating	that	inadequate	rainfall	may	negatively	influence	farmers’	continued	
adoption	decision.	This	finding	is	similar	to	that	of	Shahzad	and	Abdulai	(2021),	who	found	the	
average	 daily	 rainfall	 to	 have	 a	 negative	 influence	 on	 farmers’	 adoption	 decisions	 of	 climate-	
smart	farm	practices	in	Pakistan.

Furthermore,	Table 3	shows	that	the	coefficient	of	age	is	positive	and	statistically	significant	
in	all	adoption	states	(except	at	the	continued	adoption	state),	while	the	squared	term	has	a	nega-
tive	and	statistically	significant	coefficient	across	all	adoption	states	but	positive	at	the	continued	
adoption	state.	This	finding	suggests	that	at	younger	ages,	an	increase	in	age	increases	the	prob-
ability	of	adoption,	with	the	maximum	effect	occurring	at	approximately	46 years,	while	at	older	
ages,	the	probability	of	adoption	decreases	with	increasing	age.	However,	once	adoption	occurs,	
older	farmers	who	are	more	experienced	are	likely	to	benefit	from	the	new	technology	more	than	
younger	 farmers	and	are	 therefore	more	 likely	 to	 remain	 in	continued	adoption.	This	 finding	
corroborates	Lambrecht	et al. (2014),	who	found	older	and	more	experienced	farmers	to	be	more	
efficient	and	better	judges	of	expected	returns	than	less-	experienced	younger	farmers,	resulting	
in	higher	continued	adoption	rates	of	mineral	fertilizer	among	older	farmers	in	eastern	Congo.

Table 3	also	shows	that	education	is	positive	in	the	transition	decision	of	farmers	from	aware-
ness	 to	 knowledge	 acquisition	 and	 trial	 states	 (significant	 at	 the	 10%	 level,	 respectively)	 but	
negative	at	adoption	and	continued	adoption	states	(significant	at	the	1%	level),	suggesting	that	



   | 343MOHAMMED and ABDULAI

increasing	levels	of	education	increase	the	probability	of	learning	about	the	new	technology	at	
the	early	stages	in	the	technology	adoption	or	diffusion	process	and	decrease	at	later	stages	after	
farmers	have	learnt	more	about	the	new	technology.

7.2 | Impact on returns to inoculant adoption

In	this	section,	we	present	the	results	on	the	impact	of	inoculant	adoption	on	yields	and	farm	net	
returns	in	Tables 4	and	5,	respectively.	The	results	are	obtained	from	the	estimates	of	Equation	
15	and	computed	using	Equation 16.	The	estimated	 impacts	 represent	 the	observed	case	 that	
the	farmer	makes	a	transition	to	a	particular	adoption	stage	and	the	counterfactual	case	that	the	
farmer	did	not	make	the	transition.	Therefore,	the	results	are	the	direct	average	effects	on	yields	
and	farm	net	returns	at	each	adoption	state	that	the	farmer	attained.16	For	brevity,	we	focus	the	
discussion	on	the	yields	(Table 4)	and	extend	it	to	the	farm	net	returns	(Table 5).	Both	Tables 4	
and	5	show	a	positive	and	statistically	 significant	 impact	of	 inoculant	adoption	on	yields	and	
farm	net	returns,	respectively,	across	all	adoption	states.	The	results	in	Table 4	reveal	that,	on	av-
erage,	the	yield	for	farmers	who	used	the	inoculant	for	the	first	season	(i.e.,	at	the	trial	state)	was	
108 kg/ha	of	soybeans,	with	the	yields	increasing	to	151	and	191 kg/ha	for	farmers	who	used	it	for	
at	least	two	seasons	(i.e.,	at	the	adoption	state)	and	farmers	who	used	it	for	at	least	three	seasons	
(i.e.,	at	the	continued	adoption	state),	respectively.	We	observe	a	pattern	of	marginal	incremental	
benefits	as	farmers	move	from	one	adoption	state	to	the	other,	suggesting	that	farmers	may	still	
be	learning	about	the	inoculant	technology,	and	the	benefits	are	heterogeneous,	depending	on	
the	adoption	state	of	the	farmer.	This	finding	is	consistent	with	van	Heerwaarden	et al. (2018),	
who	found	the	average	yields	to	be	in	the	range	of	102–	180 kg/ha	in	an	on-	farm	experimental	
trial	of	the	inoculant	across	10	countries	in	SSA.	On	the	contrary,	the	average	farm	net	returns	
for	farmers	are	56 GHC/ha	at	the	trial	state,	51 GHC/ha	at	the	adoption	state,	and	49 GHC/ha	at	
the	continued	adoption	state	(see	Table 5),	suggesting	that	early	adopters	of	the	inoculant	benefit	
more	in	terms	of	revenue	due	to	marginal	increases	in	their	yields	in	those	seasons.	This	observa-
tion	is	consistent	with	the	literature	on	diffusion	and	adoption	of	new	technologies,	where	early	

T A B L E  4  Impact	on	yield	(kg/ha)

Treatment effects Acknow (1) Tryout (2) Adopt (3) Cont- Adopt (4)

ATE† 0.66***	(0.29) 0.94***	(0.03) 1.35***	(0.04) 1.73***	(0.07)

ATE 0.73***	(0.03) 1.08***	(0.03) 1.51***	(0.05) 1.91***	(0.08)

ATT 0.75***	(0.03) 1.06***	(0.04) 1.45***	(0.06) 2.08***	(0.11)

ATUT 0.34***	(0.13) 1.11***	(0.06) 2.06***	(0.13) 1.70***	(0.13)

AMTE† 1.58***	(0.07) 1.60***	(0.08) 1.57***	(0.08) 1.69***	(0.09)

AMTE 1.96***	(0.07) 1.87***	(0.09) 1.77***	(0.10) 2.09***	(0.13)

Notes: ***,	**,	and	*	are	1%,	5%,	and	10%	significance	levels,	respectively;	values	in	brackets	are	standard	errors.	The	table	shows	
the	estimates	of	the	treatment	effects	(without	continuation	values)	of	the	adoption	process	on	soybean	net	returns.	ATE	is	the	
average	treatment	effects	for	farmers	at	each	adoption	state;	ATE†	is	the	average	treatment	effects	for	the	full	population	of	
farmers;	ATT	is	the	average	treatment	effects	for	farmers	who	chose	to	transit	to	a	higher	adoption	state;	ATUT	is	the	average	
treatment	effects	for	farmers	who	chose	not	to	transit	to	a	higher	adoption	state.	The	average	marginal	treatment	effect	(AMTE)	
is	the	average	effects	for	farmers	at	an	adoption	transition	state	who	are	indifferent	between	transiting	and	not	transiting	to	
a	higher-	level	adoption	state.	AMTE†	is	the	average	marginal	effects	for	the	full	population	of	farmers	who	are	indifferent	
between	transiting	and	not	transiting	to	a	higher-	level	adoption	state.
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adopters	tend	to	get	the	greatest	returns,	thereby	triggering	the	race	to	high-	order	adoption	(e.g.,	
Karshenas	&	Stoneman, 1993).

Table 4	further	shows	that	the	AMTE	for	farmers	at	various	margins	of	indifference	deciding	
whether	to	make	the	next	transition	or	remain	where	they	are,	in	terms	of	yields,	is	187 kg/ha	
for	 farmers	at	 the	 trial	state,	177 kg/ha	at	 the	adoption	state,	and	209 kg/ha	at	 the	continued	
adoption	state.	The	AMTE	for	farm	net	returns	(Table 5)	is	50 GHC/ha	for	farmers	at	the	trial	
state,	45 GHC	at	the	adoption	state,	and	67 GHC/ha	at	the	continued	adoption	state.	The	AMTE	
estimates	 for	both	outcome	measures	are	positive	across	all	adoption	states	and	significant	at	
the	1%	level,	suggesting	that	farmers	with	unobserved	factors	(e.g.,	wealth	endowment)	that	in-
crease	their	ability	to	make	further	adoption	investment	decisions	stand	to	gain	more	from	such	
investment	decisions.	In	other	words,	farmers	who	tried	the	inoculant	technology	and	have	the	
financial	ability	to	continue	to	use	the	inoculant	benefit	more	from	their	continued	adoption.	We	
also	observe	from	the	results	in	Tables 4	and	5	that	the	impact	gap	is	wider	for	yields,	compared	
to	that	of	farm	net	returns,	which	can	be	attributed	to	differences	in	prices	faced	by	farmers	(both	
input	and	output	prices),	timing,	and	place	of	sales.

Figures 2	and	3	present	the	distributions	of	impacts	at	the	subpopulation	level	of	farmers	at	
each	adoption	state.	We	find	that	farmers	who	are	observed	to	make	a	transition	at	each	adoption	
state	(i.e.,	 the	treated	case—	TT)	obtain	higher	yields	and	farm	net	returns	compared	to	 if	 the	
same	farmers	did	not	make	the	transition	(i.e.,	the	untreated	case—	TUT).	The	results	reveal	that	
the	impact	distributions	at	the	subpopulation	means	for	both	outcomes	are	positive	and	above	
the	subpopulation	means	at	zero.	Examining	the	pattern	of	the	impact	distributions	at	the	sub-
population	means	reveals	an	interesting	finding.	In	particular,	we	observe	a	positive	pattern	of	
selection	on	gains	(i.e.,	TT > ATE > TUT)	at	the	knowledge	and	continued	adoption	states	and	a	
negative	or	reverse	pattern	of	selection	(i.e.,	TUT > ATE > TT)	at	the	trial	and	adoption	states.17	
The	negative	selection	on	gains	at	the	trial	and	adoption	states	suggests	that	farmers	who	would	
have	benefited	from	further	investment	in	the	new	technology	are	unable	to	transit	to	the	contin-
ued	adoption	state	due	to	low	levels	of	unobserved	factors	(i.e.,	wealth	endowment).	Intuitively,	
the	implication	is	that	further	investment	in	the	inoculant	dissemination	program	activities	that	
provide	subsidized	access	to	the	inoculant	technology	for	this	category	of	farmers	has	a	high	po-
tential	of	increasing	their	productivity	as	well	as	moving	them	into	the	continued	adoption	state.	

T A B L E  5  Impact	on	farm	net	returns	(GHC/ha)

Treatment effects Acknow (1) Tryout (2) Adopt (3) Cont- Adopt (4)

ATE† 0.43***	(0.03) 0.46***	(0.03) 0.48***	(0.04) 0.51***	(0.05)

ATE 0.50***	(0.02) 0.56***	(0.03) 0.51***	(0.04) 0.49***	(0.04)

ATT 0.54***	(0.02) 0.51***	(0.03) 0.47***	(0.04) 0.62***	(0.06)

ATUT 0.02	(0.05) 0.67***	(0.04) 0.85***	(0.13) 0.34***	(0.06)

AMTE† 0.48***	(0.05) 0.49***	(0.06) 0.49***	(0.06) 0.58***	(0.07)

AMTE 0.60***	(0.04) 0.50***	(0.05) 0.45***	(0.05) 0.67***	(0.07)

Notes: ***,	**,	and	*	are	1%,	5%,	and	10%	significance	levels,	respectively;	values	in	brackets	are	standard	errors.	The	table	shows	
the	estimates	of	the	treatment	effects	(without	continuation	values)	of	the	adoption	process	on	soybean	net	returns.	ATE	is	the	
average	treatment	effects	for	farmers	at	each	adoption	state;	ATE†	is	the	average	treatment	effects	for	the	full	population	of	
farmers;	ATT	is	the	average	treatment	effects	for	farmers	who	chose	to	transit	to	a	higher	adoption	state;	ATUT	is	the	average	
treatment	effects	for	farmers	who	chose	not	to	transit	to	a	higher	adoption	state.	The	average	marginal	treatment	effect	(AMTE)	
is	the	average	effects	for	farmers	at	an	adoption	transition	state	who	are	indifferent	between	transiting	and	not	transiting	to	
a	higher-	level	adoption	state.	AMTE†	is	the	average	marginal	effects	for	the	full	population	of	farmers	who	are	indifferent	
between	transiting	and	not	transiting	to	a	higher-	level	adoption	state.
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Conversely,	the	positive	selection	on	gains	suggests	that	the	category	of	farmers	who	transition	
into	the	continued	adoption	state	due	to	high	wealth	endowment	attained	high	benefits	from	the	
technology.	However,	the	extent	of	the	benefits	would	have	been	much	higher	for	the	category	of	
farmers	who	are	unable	to	transit	into	the	continued	adoption	state,	suggesting	that	the	inoculant	
technology	may	be	more	beneficial	to	poor	farmers	compared	to	wealthy	farmers.

7.3 | Long- term impact of returns to inoculant adoption

In	this	section,	we	present	the	results	derived	from	the	estimates	of	Equation	17	in	the	empirical	
specification	in	Tables 6	and	7	for	yields	and	farm	net	returns,	respectively.	The	results	repre-
sent	the	long-	term	impact	of	technology	adoption,	which	approximates	ex	post	valuation	of	op-
portunities	that	farmers’	current	adoption	decisions	open	up	for	them.	As	noted	by	Besley	and	

F I G U R E  2  Treatment	effect	distributions	at	each	adoption	transition	(subpopulation	level) –	 yield	(kg/
ha).	ACK,	knowledge	acquisition	state;	TRY,	trial	state;	ADO,	adoption	state;	CON,	continued	adoption	state;	
TT,	treated	state;	TUT,	untreated	state.	ATE,	average	treatment	effect	curve;	ATT,	average	treatment	effect	
on	the	treated	curve;	ATUT,	average	treatment	effect	on	the	untreated	curve	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Case (1993),	current	adoption	choices	have	future	consequences	and	have	to	be	considered	when	
analyzing	farmers’	adoption	choices.	Intuitively,	farmers	who	try	a	technology	are	more	likely	
to	adopt,	and	those	who	adopt	conditional	on	the	benefits	are	more	likely	to	sustain	their	adop-
tion.	This	valuation	of	the	dynamic	impact	of	opportunities	constitutes	the	long-	term	forecast	of	
benefits	informing	farmers’	adoption	decisions	but	is	often	overlooked	in	traditional	technology	
adoption	impact	studies.

The	results	in	Tables 6	and	7	show	similar	patterns	in	the	distribution	of	benefits,	similar	to	
those	computed	without	the	inclusion	of	the	continuation	values	presented	in	Tables 4	and	5.	
All	the	estimated	coefficients	are	positive	and	statistically	significant	at	the	1%	level,	indicating	
that	 farmers’	valuation	of	expected	 long-	term	benefits	at	each	adoption	state	 is	 important	 in	
the adoption	decisions	they	make.	The	estimates	of	ATE	presented	in	row	2	of	Table 6	suggest	
that	the	average	total	effect	on	yields	for	farmers	at	the	trial	state	is	204 kg/ha.	Similarly,	the	
effects	for	farmers	at	the	adoption	and	continued	adoption	states	are	298	and	329 kg/ha,	respec-
tively.	In	terms	of	farm	net	returns,	presented	in	Table 7,	we	find	the	average	total	effect	to	be	

F I G U R E  3  Treatment	effect	distributions	at	each	adoption	transition	(subpopulation	level) –	 net	returns	
(GHC/ha).	ACK,	knowledge	acquisition	state;	TRY,	trial	state;	ADO,	adoption	state;	CON,	continued	adoption	
state;	TT,	treated	state;	TUT,	untreated	state.	ATE,	average	treatment	effect	curve;	ATT,	average	treatment	effect	
on	the	treated	curve;	ATUT,	average	treatment	effect	on	the	untreated	curve	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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91 GHC/ha	for	farmers	at	the	trial	state,	85 GH/ha	at	the	adoption	state,	and	78 GHC/ha	at	the	
continued	adoption	state.	Tables 6	and	7	also	show	that	the	total	AMTE	estimates	at	all	adoption	
states	are	positive	and	statistically	significant	at	 the	1%	level.	 In	particular,	 the	results	reveal	
that	the	total	AMTE	for	farmers	at	the	margin	of	trial	is	901 kg/ha,	for	farmers	at	the	margins	of	
adoption	is	861 kg/ha,	and	for	farmers	at	the	margins	of	continued	adoption	is	880 kg/ha.	These	
estimates	are	close	to	the	experimental	results	of	van	Heerwaarden	et al. (2018),	who	found	the	
average	total	yield	of	1,343 kg/ha	obtained	by	inoculant	users	in	an	on-	farm	experiment	in	10	
countries	of	SSA.	A	plot	of	the	full	distributions	of	the	total	treatment	effects	at	both	population	
and	subpopulation	levels	reveals	similar	distributions	of	impacts18	and	selection	on	gains	pat-
tern	among	the	farmers.	The	implication	of	this	finding	is	that	there	exist	potential	long-	term	
benefits	from	the	adoption	of	inoculant	technology	as	farmers’	yields	and	farm	net	returns	ap-
pear	to	more	than	double,	compared	to	the	short-	term	benefits.	This	observation	resonates	with	

T A B L E  6  Impact	on	yield	estimates	with	continuation	values	(kg/ha)

Treatment effects Acknow (1) Tryout (2) Adopt (3) Cont- Adopt (4)

ATE† 1.09***	(0.04) 1.76***	(0.07) 2.55***	(0.10) 2.93***	(0.13)

ATE 1.14***	(0.04) 2.04***	(0.06) 2.98***	(0.11) 3.29***	(0.14)

ATT 1.17***	(0.04) 2.02***	(0.07) 2.83***	(0.11) 3.57***	(0.19)

ATUT 0.78***	(0.19) 2.09***	(0.10) 4.33***	(0.20) 2.95***	(0.13)

AMTE† 6.64***	(0.40) 7.65***	(0.36) 7.68***	(0.39) 7.55***	(0.40)

AMTE 8.19***	(0.35) 9.01***	(0.36) 8.61***	(0.39) 8.80***	(0.64)

Notes: ***,	**,	and	*	are	1%,	5%,	and	10%	significance	levels,	respectively;	values	in	brackets	are	standard	errors.	The	table	
shows	the	estimates	of	the	total	dynamic	treatment	effects	(including	continuation	values)	of	the	adoption	process	on	soybean	
yields.	ATE	is	the	average	treatment	effects	for	farmers	at	each	adoption	state;	ATE†	is	the	average	treatment	effects	for	the	full	
population	of	farmers;	ATT	is	the	average	treatment	effects	for	farmers	who	chose	to	transit	to	a	higher	adoption	state;	ATUT	
is	the	average	treatment	effects	for	farmers	who	chose	not	to	transit	to	a	higher	adoption	state.	The	average	marginal	treatment	
effect	(AMTE)	is	the	average	effects	for	farmers	at	an	adoption	transition	state	who	are	indifferent	between	transiting	and	not	
transiting	to	a	higher-	level	adoption	state.	AMTE†	is	the	average	marginal	effects	for	the	full	population	of	farmers	who	are	
indifferent	between	transiting	and	not	transiting	to	a	higher-	level	adoption	state.

T A B L E  7  Impact	on	farm	net	returns	estimates	with	continuation	values	(GHC/ha)

Treatment effects Acknow (1) Tryout (2) Adopt (3) Cont- Adopt (4)

ATE† 0.66***	(0.05) 0.71***	(0.06) 0.76***	(0.08) 0.79***	(0.10)

ATE 0.77***	(0.04) 0.91***	(0.04) 0.85***	(0.07) 0.78***	(0.08)

ATT 0.86***	(0.04) 0.82***	(0.05) 0.76***	(0.07) 0.99***	(0.01)

ATUT –	0.14	(0.19) 1.09***	(0.07) 1.67***	(0.21) 0.52***	(0.11)

AMTE† 2.70***	(0.32) 2.71***	(0.35) 2.66***	(0.35) 3.16***	(0.40)

AMTE 3.56***	(0.22) 2.98***	(0.27) 2.59***	(0.27) 3.95***	(0.39)

Notes: ***,	**,	and	*	are	1%,	5%,	and	10%	significance	levels,	respectively;	values	in	brackets	are	standard	errors.	The	table	shows	
the	estimates	of	the	total	dynamic	treatment	effects	(including	continuation	values)	of	the	adoption	process	on	soybean	net	
returns.	ATE	is	the	average	treatment	effects	for	farmers	at	each	adoption	state;	ATE†	is	the	average	treatment	effects	for	the	
full	population	of	farmers;	ATT	is	the	average	treatment	effects	for	farmers	who	chose	to	transit	to	a	higher	adoption	state;	
ATUT	is	the	average	treatment	effects	for	farmers	who	chose	not	to	transit	to	a	higher	adoption	state.	The	average	marginal	
treatment	effect	(AMTE)	is	the	average	effects	for	farmers	at	an	adoption	transition	state	who	are	indifferent	between	transiting	
and	not	transiting	to	a	higher-	level	adoption	state.	AMTE†	is	the	average	marginal	effects	for	the	full	population	of	farmers	who	
are	indifferent	between	transiting	and	not	transiting	to	a	higher-	level	adoption	state.



348 |   MOHAMMED and ABDULAI

the	benefit	stream	of	organic	agricultural	inputs	that	have	long-	term	impacts	on	improving	soil	
fertility.19

7.4 | Robustness check

The	validity	of	our	treatment	effects	depends	on	proper	identification	of	the	unobserved	wealth	
endowment	effect	on	farmers’	transitional	ability,	as	expressed	in	the	factor	model	in	Equation	
12	of	 the	empirical	specification.	In	the	 interest	of	brevity,	we	discuss	 the	distributions	of	 the	
unobserved	factors	as	well	as	the	heterogeneity	of	the	factors	across	each	adoption	state	but	pre-
sent	the	results	in	the	appendix,	by	way	of	robustness	check.	Figure	A6	presents	the	combination	
of	two	normal	distributions	of	the	unobserved	wealth	endowment	for	farmers	at	each	adoption	
state	(see	Appendix	A8).	The	results	show	evidence	of	sorting	into	adoption	states	by	unobserved	
wealth	endowment,	with	this	endowment	having	significant	impact	on	the	distributions	of	farm	
outcomes.	The	distributions	around	the	zero	mean	confirm	our	findings	of	the	existence	of	two	
heterogeneous	groups	of	farmers	based	on	selection	on	gains,	that	is,	the	negative	and	positive	
selection	on	gains	groups	of	farmers.

Figure	A7	in	Appendix	A9	presents	the	distributions	of	the	unobserved	wealth	endowments	
for	farmers	at	each	adoption	state.	We	observe	that	the	distributions	of	the	endowment	are	het-
erogeneous	across	each	adoption	state,	indicating	that	farmers’	wealth	endowment	may	play	an	
important	role	in	moving	them	from	one	adoption	state	to	the	next	adoption	state.

Finally,	Table	A3	presents	the	results	of	exogeneity	test	for	the	instrumental	variables	(IVs)	
employed	as	exclusion	restriction	variables	for	the	identification	of	farmers’	adoption	choice	de-
cisions	 at	 each	 adoption	 state	 as	 expressed	 in	 Equation	 12	 of	 the	 empirical	 specifications.	 In	
line	with	Heckman	et al. (2018),	we	employed	state-	dependent	IVs	to	identify	each	autonomous	
adoption	decision,	while	controlling	for	farmer's	wealth	endowment	at	each	adoption	state.	We	
assume	that	different	adoption	states	are	identified	by	different	instruments	that	are	important	
to	that	state.	As	observed	in	Table	A3,	the	Anderson–	Rubin	test	statistic	of	the	IVs	in	both	the	
yields	and	the	farm	net	returns	models	is	not	statistically	significant	at	any	conventional	level,	
indicating	that	the	IVs’	use	for	the	exclusion	restriction	satisfies	the	exogeneity	requirements	and	
that	the	instruments	do	not	have	direct	influence	on	yields	and	farm	net	returns,	except	through	
the	different	states	of	adoption	that	they	identify.20

8 |  CONCLUSIONS AND IMPLICATIONS

In	this	study,	we	address	the	question	of	what	drives	the	dynamic	pattern	of	farmers’	technology	
adoption	decisions	over	time.	Using	farm-	level	data	of	soybean	farmers	in	Ghana,	we	analyzed	
technology	adoption	as	a	multi-	stage	dynamic	decision	problem	and	how	adoption	influences	
farm	outcomes	such	as	yields	and	net	returns.	We	employed	the	dynamic	treatment	effect	model,	
a	novel	procedure,	to	examine	heterogeneity	in	returns	to	adoption	of	newly	introduced	technol-
ogies,	focusing	on	the	newly	introduced	inoculant	technology.	Our	findings	reveal	new	insights	
into	the	role	of	information	in	farmers’	adoption	decisions,	the	distribution	of	returns	in	the	en-
tire	chain	of	the	adoption	process,	and	factors	that	influence	continued	adoption,	or	otherwise,	
of	new	agricultural	 technologies.	Consistent	with	Besley	and	Case (1993),	we	find	substantial	
impact	heterogeneity	at	each	adoption	state,	which,	we	contend,	drives	the	adoption	process.
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Our	empirical	 results	 suggest	 that	 farmers	have	high-	benefit	 expectation	 stream	 for	newly	
introduced	 agricultural	 technologies	 and	 exhibit	 sorting	 behavior	 in	 their	 adoption	 decisions.	
As	a	result,	farmers	may	discontinue	their	adoption	if	the	returns	are	below	their	expectations	
at	any	point	 in	 time	due	to	disappointment.	 It	 is	 therefore	 important	 that	 technology	dissem-
ination	 programs	 employ	 different	 strategies	 that	 maximize	 farmers’	 returns	 at	 each	 stage	 in	
the	adoption	process	 to	sustain	farmers’	adoption	inertia.	Moreover,	expectation	management	
should	be	built	into	new	technology	dissemination	and	promotion	campaigns	to	minimize	farm-
ers’	disappointments.

The	 findings	 also	 suggest	 that	 although	 the	 free	 distribution	 of	 newly	 developed	 divisible	
agricultural	technologies	to	farmers	during	dissemination	programs	increases	farmer	technology	
awareness,	knowledge	acquisition,	trial,	and	implementation,	it	does	not	guarantee	continued	
adoption	as	argued	by	Lambrecht	et al. (2014).	In	contrast,	the	results	indicate	that	the	existence	
of	efficient	 input	markets	and	continued	 information	supply	 tends	 to	drive	 the	probability	of	
continued	adoption.	Therefore,	extension	programs	aimed	at	promoting	new	agricultural	tech-
nologies	should	provide	information	on	market	outlets	for	accessing	the	technology	to	ensure	
continued	 adoption.	The	 results	 further	 revealed	 that	 the	 long-	term	 benefits	 of	 the	 inoculant	
technology	 are	 higher	 than	 the	 short-	term	 benefits,	 conditional	 on	 the	 markets	 being	 able	 to	
absorb	the	excess	supply	that	may	result	from	higher	yields.	In	addition,	the	findings	suggest	that	
subsidizing	the	inoculant	technology	to	poor	farmers	will	have	an	enormous	impact	on	poverty	
reduction,	through	farmers’	yields	and	farm	net	returns	improvement.

Furthermore,	the	study	revealed	that	continued	extension	support	to	farmers	at	all	phases	in	
the	adoption	process,	provision	of	rural	infrastructure	such	as	information	and	communication,	
and	good	road	networks	contribute	significantly	to	maintaining	farmers’	adoption	inertia.	The	
findings	also	reveal	that	education	plays	a	significant	role	at	the	early	stages	of	new	technology	
adoption	but	diminishes	at	higher	levels	of	adoption	due	to	learning	from	experience.

In	conclusion,	contrary	to	static	adoption	analysis	as	in	the	conventional	technology	adoption	
literature,	the	dynamic	adoption	analysis	approach	could	be	a	useful	tool	for	identifying	diverse	
subpopulation-	level	farmer	needs	for	specific	extension	policies	targeting	farmers	in	those	cate-
gories.	The	policy-	specific	targeting	approach	will	save	resources	to	expand	extension	outreach	
to	benefit	more	farmers,	thereby	increasing	productivity	at	least	cost.
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ENDNOTES
	1	 Notable	organizations	that	farmers	identified	include	CSIR-	SARI,	IITA,	and	USAID-	ADVANCE	Project.

	2	 In	our	calculation	of	the	continuation	value,	we	used	Weisbrod's	procedure,	which	uses	the	transition	probabil-
ity	as	the	discount	factor.	This	takes	away	the	discretion	of	assuming	any	arbitrary	discount	factor	which	is	hard	
to	observe	in	reality	compounded	by	the	difficulty	in	assessing	its	heterogeneity	among	any	group	of	decision-	
makers	(Fagereng	et al., 2020).

	3	 This	implies	that	the	farmer	at	each	stage	of	adoption	is	able	to	forecast	the	net	benefits	of	the	next	stage.

	4	 This	specification	does	not	assume	any	choice	decision	rules;	 therefore,	 it	 imposes	neither	rational	expecta-
tion	assumption	nor	forward-	looking	behavior	on	agents	as	in	traditional	discrete	choice	literature.	Therefore,	
agents	may	be	myopic,	time	inconsistent,	and	subjected	to	surprises	(Heckman	et al., 2016,	2018).

	5	 We	thank	an	anonymous	reviewer	for	making	this	suggestion	on	the	theoretical	explanation	of	the	decision-	
making	mechanisms.

	6	 Fixed,	as	used	here,	refers	to	constraining	the	farmer	to	a	point	(either	0	or	1)	conditional	on	the	farmer's	further	
decisions	along	the	adoption	chain.	This	is	necessary	because	a	farmer	who	has	made	a	further	transition	to	
a	higher	state	will	not	be	available	to	make	a	decision	at	the	lower	state.	Therefore,	fixing	makes	it	possible	to	
derive	the	counterfactual	outcomes	of	not	being	at	a	particular	state	(see	Heckman	et al., 2016,	2018).

	7	 First,	�correlates	with	the	unobservable	factors	 in	the	outcome	equation	as	a	result	of	heterogeneities	 in	re-
turns	to	farmers’	wealth	endowment,	due	to	differences	in	the	levels	of	investment	in	their	scale	of	produc-
tion	and	intensity	of	input	use.	We	approximate	this	correlated	effect	in	a	linear-	in-	parameter	factor	model	as	
(Uk

s = ���k
s + �k

s).	Second,	�also	correlates	with	the	unobservable	factors	in	the	transitional	choice	decision	due	
to	inadequate	financial	ability	to	undertake	further	investment	in	the	production	cycle.	This	correlated	effect	is	
also	approximated	in	a	linear-	in-	parameter	factor	model	as	(�j = −

(
���j − vj

)
)	(see	Heckman	et al., 2016,	2018,	

for	more	details).

	8	 We	do	not	intend	to	reproduce	the	full	likelihood	equation	as	captured	in	Heckman	et al. (2016,	2018),	so	inter-
ested	readers	can	refer	to	Heckman	et al. (2016,	2018)	for	the	full	specification	of	the	likelihood	function	as	well	
as	the	measurement	equation.

	9	 The	 estimation	 codes	 for	 STATA	 implementation	 and	 other	 software	 requirements	 are	 publicly	 available	 at	
https://www.journ	als.uchic	ago.edu/doi/suppl/	10.1086/698760	(see	Heckman	et al., 2018).

	10	 The	direct effect	is	the	expected	net	benefits	that	accrue	to	a	farmer	for	transiting	to	the	next-	adjacent	adoption	
decision	node	such	as	from	j	to	j + 1,	whereas	the	continuation effect	is	the	expected	net	benefits	that	accrue	to	a	
farmer	for	transiting	beyond	the	next-	adjacent	adoption	decision	node	such	as	transiting	from	j	to	j + 1	to	j + 2	
to	j + 3,	…,	to	j + l.

	11	 The	AMTE	is	different	from	the	local	average	treatment	effect	(LATE),	in	the	sense	that	LATE	is	not	defined	
for	any	specific	margin	of	choice	and	also	depends	on	the	population	of	instrument	compliers	to	measure	the	
treatment	effect.

	12	 Farmers	who	use	the	inoculant	only	once	are	also	considered	as	trial	even	without	participation	in	field	demon-
stration	exercises.

	13	 See	the	farmers’	adoption	decision	tree	in	Appendix	A1.

	14	 The	SCA	is	a	standard	practice	in	the	dynamic	discrete	choice	literature	(Heckman	et al., 2016,	2018).

	15	 Majority	of	the	farmers	in	our	sample	were	indigenous	land	owners	and	not	renters;	therefore,	this	observation	
is	consistent	with	the	economic	theory	of	owner-	operated	lands,	as	farmers	have	an	incentive	to	maintain	pro-
ductivity	of	their	lands	into	the	future.

	16	 Note	that	due	to	the	disadvantages	inherent	in	using	onetime	cross-	sectional	observation	data	in	this	analysis,	
the	impact	measures	reported	in	this	study	do	not	represent	causality.	We	thank	an	anonymous	reviewer	for	this	
comment.

https://orcid.org/0000-0001-8260-0162
https://orcid.org/0000-0001-8260-0162
https://www.journals.uchicago.edu/doi/suppl/10.1086/698760
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	17	 Selection on gains	 in	this	literature	refers	to	a	case	where	farmers	who	have	higher	or	lower	values	of	unob-
served	ability	(i.e.,	unobserved	factors,	such	as	wealth	endowment,	that	pose	a	resistance	to	a	farmer	to	make	a	
transition)	to	transit	obtain	higher-	than-	average	(positive	selection	on	gain)	or	lower-	than-	average	(negative	or	
reserve	selection	on	gain)	net	benefits	from	making	an	adoption	transition.

	18	 See	Appendixes	A5,	A6,	and	A7	for	population-		and	subpopulation-	level	distributions,	respectively.

	19	 See	Appendix	A4	for	mean	plot	of	AMTE	and	ATE	compared	for	both	outcomes.

	20	 Another	important	robustness	check	of	the	results	that	we	are	unable	to	perform	due	to	data	limitations	(on	
pre-	intervention	 factors)	 is	 the	assumption	of	 forward-	looking	behavior	on	the	adoption	state	 transition	de-
cisions	of	 farmers,	as	often	implicitly	assumed	in	conventional	dynamic	optimization	analysis.	As	such,	 the	
estimates	reported	in	this	study	assumed	implicitly	that	farmers	may	be	prone	to	surprises	and	regrets	in	their	
adoption	state	transition	decisions,	though	the	approach	employed	in	this	study	is	robust	to	deviations	from	
conventional	decision	rules	by	agents	(Heckman	et al., 2016).	We	are	grateful	to	an	anonymous	reviewer	for	
making	this	observation.
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