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ORIGINAL ARTICLE

GENERALIZED BINARY VECTOR AUTOREGRESSIVE PROCESSES

CARSTEN JENTSCHa* AND LENA REICHMANNa,b

aDepartment of Statistics, TU Dortmund University, Dortmund, Germany
bMathematical Institute, University of Mannheim, Mannheim, Germany

Vector-valued extensions of univariate generalized binary auto-regressive (gbAR) processes are proposed that enable the joint
modeling of serial and cross-sectional dependence of multi-variate binary data. The resulting class of generalized binary vec-
tor auto-regressive (gbVAR) models is parsimonious, nicely interpretable and allows also to model negative dependence. We
provide stationarity conditions and derive moving-average-type representations that allow to prove geometric mixing proper-
ties. Furthermore, we derive general stochastic properties of gbVAR processes, including formulae for transition probabilities.
In particular, classical Yule–Walker equations hold that facilitate parameter estimation in gbVAR models. In simulations, we
investigate the estimation performance, and for illustration, we apply gbVAR models to particulate matter (PM10, ‘fine dust’)
alarm data observed at six monitoring stations in Stuttgart, Germany.
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1. INTRODUCTION

Categorical data are collected in many fields of applications. When such data are observed over time, serial depen-
dence is often present that has to be taken into account, for example, for modeling purposes or for statistical
inference. Hence, the statistical research focusing on such data structures evolved considerably over the last years.
With the collection of huge amounts of data nowadays, this leads particularly to a growing interest in statistical
methods for the analysis of multi-variate categorical time series. As an important special case, multi-variate binary
time series, that correspond to categorical time series data with just two categories, occur in many different con-
texts such as agriculture, biology, economy, engineering, environmetrics, genetics, geography, geology, medical
science, natural language processing or sports; see, for example, Jentsch and Reichmann (2019) for some uni-
variate examples. For instance, recent related literature addresses the detection of dependent Bernoulli sequences
in Ritzwoller and Romano (2020) or the efficient generation of high-dimensional binary data with specified cor-
relation structures in Jiang et al. (2020). Often, binary time series are obtained from binarization of observed
real-valued data, when, for example, the interest is, whether some event occurs (or not) or a certain threshold is
crossed (or not) instead of the actual value. Although simplified, this transformation will generally contain a great
amount of the information and the dynamics of the original data.

Multi-variate binary time series obtained from a suitable thresholding procedure are for instance of much interest
in economics, where periods of recession and of economic growth (no-recession) are considered; see for exam-
ple, Bellégo and Ferrara (2009) and Startz (2006) on forecasting recessions in the Euro area and in the United
States respectively, and Candelon et al. (2012), who use multi-variate dynamic probit models to study predictive
relationships in binary processes with applications to financial crises.

*Correspondence to: Carsten Jentsch, Department of Statistics, TU Dortmund University, D-44221 Dortmund, Germany. E-mail:
jentsch@statistik.tu-dortmund.de
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Figure 1. Quarterly time series indicating periods of recessions (black dots) and of economic growth (no dots) for the G7
countries Canada (CA), France (FR), Germany (DE), Italy (IT), Japan (JP), United Kingdom (GB), and United States (US)

from Q2/1960 to Q1/2017

Considering jointly such recession time series of several countries, a multi-variate analysis allows to study not
only the serial, but also the cross-sectional dependence in the data. In turn, this allows to investigate the spillover
effects between several countries, that is, how a recession in one country will affect the economy in other countries
in the future. In Figure 1, we show quarterly time series indicating periods of recessions and of economic growth
for the G7 countries Canada, France, Germany, Italy, Japan, United Kingdom, and the United States from Q2/1960
to Q1/2017.

In signal processing, large numbers of nodes, that is, inexpensive sensors, are employed to make binary decisions
whenever a signal is above a certain threshold or not, see for example, Cheng et al. (2013). Hence, multiple
two-state time series with states ‘detection’ and ‘no detection’ are observed. In such applications, binarization of
the original signal is particularly beneficial as binary data are inexpensive to store.

In recent years, there is increasing interest in air pollution in European cities and metropolitan areas. The EU
established the European emission standards, which include limits for particulates in the air. Whenever the amount
of PM10 (coarse particles with a diameter between 2.5 and 10 μm, ‘fine dust’) exceeds the threshold of 50 μg/m3

at a monitoring station, this causes a ‘fine dust alarm’. Hence, for each monitoring station, this results in a binary
sequence with states ‘exceedance’ and ‘no exceedance’. In fact, the current public discourse centers to a large
extent around whether the threshold is exceeded or not, and less about the actual amount of fine dust measured.
Typically, several monitoring stations in one city allow for a joint analysis of the fine dust pollution. In Figure 2,

Fine dust data
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Figure 2. Daily time series indicating fine dust alarms (black dots) and no fine dust alarms (no dots) at six monitoring sta-
tions: Arnulf-Klett Platz (AKP), Bad Cannstatt (BC), Hauptstätter Straße (HS), Hohenheimer Straße (HH), Neckartor (NRT),

Stadtgarten (SG) in Stuttgart, Germany from 1 March 2016 to 31 July 2018

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 43: 285–311 (2022)
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we show the recorded fine dust alarms at six monitoring stations in the urban area of Stuttgart, Germany from 1
March 2016 to 31 July 2018. The occurrences of alarms tend to cluster, but a closer inspection reveals that the
station Neckartor often shows an alarm before the others. Hence, a multi-variate analysis of this pattern might be
helpful to allow for an improved prediction of future exceedances. In Section 4, we discuss this data set in more
detail.

Typically, Markovian models are used to describe the dependence structure of categorical time series, see for
example, Kedem (1980). Such models are very flexible and allow to capture a broad range of serial dependence,
but the number of parameters grows exponentially with the order of the Markov model. As indicated by McKenzie
(2003), already in the univariate case, this likely leads to over-parametrization. For a K-dimensional multi-variate
binary time series, this problem is even much more intricate as the fitting of an unrestricted Markov model of order
p requires the estimation of 2Kp parameters. Hence, Markov models are not feasible, when the time series dimension
or the model order become large. Alternatively, regression-based approaches such as logit and probit models are
useful to study binary data; see for example Fokianos and Kedem (2003). Multi-variate regression analysis of
panel data with binary outcomes has been studied in Czado (2000). Using nonlinear vector autoregressive models
for latent variables associated with correlated binary time-series data, multi-variate dynamic probit models have
been considered in Candelon et al. (2012). Estimation inference and identification issues in multi-variate dynamic
panel data logit models are considered by Honoré and Kyriazidou (2019a) and Honoré and Kyriazidou (2019b).
Such models allow for parsimonious and flexible modeling of serial dependence in binary time series. However, in
contrast to classical autoregressive models, estimation in multi-variate dynamic panel models is no longer explicit
and may cause identification issues in small samples as discussed, for example, in Honoré Kyriazidou (2019a,
2019b).

In the following, we develop a flexible and nicely interpretable autoregressive model framework for binary time
series data which satisfies classical Yule–Walker equations such that an explicit estimation of the model parameters
via Yule–Walker estimation becomes possible.

1.1. The Univariate Case: NDARMA versus gbARMA

In the univariate case, to avoid the estimation of a large number of parameters, Jacobs and Lewis (1983) proposed
the class of (New) Discrete Autoregressive Moving-Average (NDARMA) models for categorical time series. To
make sure that the process (Xt, t ∈ ℤ) takes only values contained in a discrete state space  , their idea is to
choose Xt randomly either from the past values of the time series Xt−1,… ,Xt−p or from one of the innovations
et, et−1,… , et−q with certain probabilities respectively. This random selection mechanism is described by i.i.d.
random vectors (Pt, t ∈ ℤ) with

Pt ∶=
[
a(1)

t ,… , a(p)
t , b(0)

t ,… , b(q)
t

]
∼ Mult (1;) , t ∈ ℤ, (1.1)

where Mult (1;) denotes the multinomial distribution with parameter 1 and probability vector
 ∶=

[
𝛼(1),… , 𝛼(p), 𝛽(0),… , 𝛽(q)

]
with 𝛼(1),… , 𝛼(p) ∈ [0, 1), 𝛽(0) ∈ (0, 1] and 𝛽(1),… , 𝛽(q) ∈ [0, 1) such that∑p

i=1 𝛼
(i) +

∑q
j=0 𝛽

(j) = 1. Then, the NDARMA(p, q) model equation is given by

Xt =
p∑

i=1

a(i)
t Xt−i +

q∑
j=0

b(j)
t et−j, t ∈ ℤ, (1.2)

where
(
et, t ∈ ℤ

)
is an i.i.d. innovation process taking values in the state space  .

NDARMA models are contained as special cases in the broad class of Markov models, but are considerably
more parsimonious and still nicely interpretable due to their ARMA-type structure. In this spirit, Weiß and Göb
(2008) showed that Yule–Walker-type equations hold and Weiß (2009a) discussed the connection of NDARMA
models to general Markov chains.

J. Time Ser. Anal. 43: 285–311 (2022) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12614 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



288 C. JENTSCH AND L. REICHMANN

It is important to note that the probability vector  of the multinomial distribution in (1.1) contains the
NDARMA model parameters, which are naturally restricted to satisfy two conditions: all entries of  have to lie in
the unit interval and they have to sum-up to one. Hence, in contrast to general Markov chains, NDARMA models
are particularly restricted to capture exclusively non-negative serial dependence. To address this lacking flexibility
of the NDARMA model class, Jentsch and Reichmann (2019) proposed a simple and straightforward extension of
the original idea of Jacobs and Lewis (1983) that allows also to capture negative serial dependence in univariate
binary time series. In the resulting generalized binary ARMA (gbARMA) model class, in contrast to NDARMA
models, the parameters 𝛼(i) and 𝛽(j) are allowed to be either positive or negative. Precisely, gbARMA models allow
for 𝛼(1),… , 𝛼(p) ∈ (−1, 1) and 𝛽(1),… , 𝛽(q) ∈ (−1, 1), with 𝛽(0) ∈ (0, 1] , such that

∑p
i=1 |𝛼(i)|+𝛽(0)+

∑q
j=1 |𝛽(j)| = 1.

The parameter vector  =
[
𝛼(1),… , 𝛼(p), 𝛽(0),… , 𝛽(q)

]
has to be modified to contain valid probabilities in [0, 1] for

the selection mechanism. We define

|⋅| ∶= [|𝛼(1)|,… , |𝛼(p)|, 𝛽(0), |𝛽(1)|,… , |𝛽(q)|] . (1.3)

As in NDARMA models, the random selection mechanism for gbARMA models is again described by i.i.d. multi-
nomial random vectors (Pt, t ∈ ℤ) with

Pt ∶=
(

a(1)
t ,… , a(p)

t , b(0)
t ,… , b(q)

t

)
∼ Mult

(
1;|⋅|) , t ∈ ℤ.

Then, the gbARMA(p,q) process (Xt, t ∈ ℤ) follows the model equation

Xt =
p∑

i=1

[
a(+,i)

t Xt−i + a(−,i)
t

]
+ b(0)

t et +
q∑

j=1

[
b(+,j)

t et−j + b(−,j)
t

]
, t ∈ ℤ, (1.4)

where (et, t ∈ ℤ) is an i.i.d. innovation process which takes values in {0, 1}. In the above, we set
a(+,i)

t ∶= a(i)
t

(
𝟙{𝛼(i)≥0} − 𝟙{𝛼(i)<0}

)
and a(−,i)

t ∶= a(i)
t 𝟙{𝛼(i)<0}, i = 1,… , p, with analogous definitions for b(+,j)

t and

b(−,j)
t , j = 1,… , q. A detailed description of the gbARMA model class and its properties can be found in Jentsch

and Reichmann (2019).

1.2. An Example: NDAR(1) versus gbAR(1)

In a nutshell, the benefit of a gbARMA model in comparison to an NDARMA model for binary data, is that it
allows to pick systematically the opposite value of a predecessor if the corresponding model parameter is negative.
To illustrate this, let us consider the simplest case of a gbAR(1) model with  = [𝛼, 𝛽] following

Xt = a(+)
t Xt−1 + a(−)

t + btet, t ∈ ℤ, (1.5)

where a(+)
t ∶= at

(
𝟙{𝛼≥0} − 𝟙{𝛼<0}

)
and a(−)

t ∶= at𝟙{𝛼<0} such that Pt ∶=
(
at, bt

)
∼ Mult

(
1;|⋅|)with|⋅| = [|𝛼|, 𝛽]

and |𝛼| + 𝛽 = 1. Equation (1.5) can be rewritten to get

Xt =

{
atXt−1 + btet,

[
at, bt

]
∼ Mult (1; 𝛼, 𝛽) , 𝛼 ∈ [0, 1)

at

(
1 − Xt−1

)
+ btet,

[
at, bt

]
∼ Mult (1; |𝛼|, 𝛽) , 𝛼 ∈ (−1, 0)

. (1.6)

Hence, depending on the sign of the parameter 𝛼 ∈ (−1, 1), either the predecessor Xt−1 or its opposite value
1 − Xt−1 can be systematically picked by the random selection mechanism. Actually, the first equation in (1.6),
that allows for 𝛼 ∈ [0, 1), corresponds to an NDAR(1) model with a binary state space, which is contained in
a gbAR(1) model as a special case. Hence, the gbAR(1) model is way more flexible and captures the full set

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 43: 285–311 (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12614



GENERALIZED BINARY VAR PROCESSES 289

of possible parametrizations of a binary Markov chain (of first order). As derived by Jentsch and Reichmann
(2019), the formula for the stationary mean 𝜇X = E(Xt) of a gbAR(1) process fulfills 𝜇X = 𝜇e if 𝛼 ∈ [0, 1) and
𝜇X = (−𝛼+(1+𝛼)𝜇e)∕(1−𝛼) if 𝛼 ∈ (−1, 0). Hence, when 𝛼 is parametrized in the marginal success probability 𝜇X ,

it can be shown that the possible range of 𝛼 is

[
max

(
−𝜇X

1−𝜇X
,− 1−𝜇X

𝜇X

)
; 1

)
; see also Weiß (2009a, Remark 12.2.1.2).

In particular, for 𝜇X = 1∕2, the lower bound of the possible range for 𝛼 becomes −1.
Similarly, in view of the operations atXt−1 and at

(
1 − Xt−1

)
in (1.6), that take the value of the time series from

the time point before or its opposite value, respectively, it seems plausible to combine them and allow both at the
same time. That is, we could think of a model equation of the form

Xt = at,=Xt−1 + at,≠

(
1 − Xt−1

)
+ bt,=𝜖t, t ∈ ℤ, (1.7)

where ([at,=, at,≠, bt,=], t ∈ ℤ) are i.i.d. with [at,=, at,≠, bt,=] ∼ Mult(1; 𝛼=, 𝛼≠, 𝛽=) such that 𝛼=, 𝛼≠ ∈ [0, 1], 𝛽= ∈
(0, 1] and 𝛼= + 𝛼≠ + 𝛽= = 1 as well as E(𝜖t) = 𝜇𝜖 ∈ (0, 1). However, the model (1.7) is not identified as it is
indistinguishable from the gbAR(1) model (1.6) with

𝛼 = 𝛼= − 𝛼≠, 𝛽 = 1 − |𝛼= − 𝛼≠| (1.8)

and

𝜇e =
𝛼≠𝟙{𝛼=−𝛼≠≥0} + 𝛼=𝟙{𝛼=−𝛼≠<0} + 𝛽=𝜇𝜖

1 − |𝛼= − 𝛼≠| . (1.9)

We refer to the Supporting Information for a proof of (1.8) and (1.9).
In Figure 3, we show realizations and corresponding autocorrelation functions (ACRs) of a gbAR(1) process

with positive parameter 𝛼 ∈ [0, 1) (i.e. an NDAR(1) process) and a gbAR(1) process with negative parameter
𝛼 ∈ (−1, 0). Whereas the NDAR(1) process with positive 𝛼 shows long runs of the same value and a non-negative
ACR, the gbAR(1) process with negative 𝛼 shows an oscillating pattern and an alternating ACR.

Figure 3. NDAR(1) vs. gbAR(1): Realizations and ACR of an NDAR(1) process (i.e. of a gbAR(1) process with positive 𝛼
in the first line of (1.6)) (upper panel) with  = [0.7, 0.3] and of a gbAR(1) process (1.5) (lower panel) with  = [−0.7, 0.3].

In both cases, we used P
(
et = 1

)
= 0.5

J. Time Ser. Anal. 43: 285–311 (2022) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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290 C. JENTSCH AND L. REICHMANN

1.3. Toward a Multi-variate Analysis: A Bivariate gbVAR(1)

In the case, when more than just one binary time series is observed, as, for example, for the G7 recession data in
Figure 1 or the fine dust alarm data in Figure 2, a multi-variate (i.e. joint) analysis is desirable.

For categorical time series data, Möller and Weiß (2020) proposed a multi-variate extension of the NDARMA
class with (non-negative) scalar model parameters that control the multinomial selection mechanism. This
approach restricts the flexibility of the resulting Generalized DARMA (GDARMA) class to model joint depen-
dence to some large extent. Instead, GDARMA models make use of a variation function applied to lagged
observations and innovations to increase the entry-wise variation over time. However, the proposed variation func-
tion does not modify the past time series values in a systematical way, neither is the resulting process suitable to
capture any negative dependence structure.

To achieve more model flexibility, let us first consider the case of two independent gbAR(1) processes (Xt, t ∈ ℤ)
and (Yt, t ∈ ℤ). By stacking them, we get a bivariate process

(
Xt

Yt

)
=

(
a(+)

t,X Xt−1 + a(−)
t,X + bt,Xet,X

a(+)
t,Y Yt−1 + a(−)

t,Y + bt,Yet,Y

)

=

(
a(+)

t,X 0

0 a(+)
t,Y

)(
Xt−1

Yt−1

)
+

(
a(−)

t,X 0

0 a(−)
t,Y

)(
1

1

)
+
(bt,X 0

0 bt,Y

)(et,X

et,Y

)
. (1.10)

However, due to the diagonal structure of the (random) coefficient matrices, such a model in (1.10) is not yet
sufficient to study the cross-sectional dependence between two binary time series. Naturally, this can be achieved
by allowing the off-diagonal elements of the coefficient matrices in (1.10) to be non-zero. This leads to the bivariate
gbVAR(1) model

(Xt,1

Xt,2

)
=

(
a(+)

t,11 a(+)
t,12

a(+)
t,21 a(+)

t,22

)(Xt−1,1

Xt−1,2

)
+

(
a(−)

t,11 a(−)
t,12

a(−)
t,21 a(−)

t,22

)(
1

1

)
+
(bt,11 0

0 bt,22

)(et,1

et,2

)
, (1.11)

which can be compactly written as

Xt = A(+)
t Xt−1 + A(−)

t 𝟙2 + Btet, (1.12)

where (et, t ∈ ℤ) is an i.i.d. innovation process taking values in {0, 1}2. Note that Cov(et) = Σe is allowed to
be non-diagonal, whereas Bt is imposed to be diagonal for identification reasons; compare also Remark 2.13.
For comprehensive discussions of multi-variate Bernoulli distributions allowing for dependence leading to
non-diagonal Σe, we refer to the classical article by Bahadur (1961) and the more recent work by Dai et al. (2013).

The model parameters of the process (1.12) are summarized in the matrix  ∶= [,] with  ∶=
(
𝛼kl

)
k,l=1,2

and  ∶= diag(𝛽11, 𝛽22) and |⋅| ∶= [
|⋅|,] with |⋅| ∶= (|𝛼kl|)k,l=1,2

, where 𝛼kl ∈ (−1, 1), 𝛽kk ∈ (0, 1] for all
k, l = 1, 2, such that |𝛼k1| + |𝛼k2| + 𝛽kk = 1 for k = 1, 2.

The natural approach is to adopt row-wise the random (multinomial) selection mechanism leading to mutually
independent i.i.d. vector-valued processes (Pt,1•, t ∈ ℤ) and (Pt,2•, t ∈ ℤ), where

Pt,1• ∶=
[
at,11, at,12, bt,11, 0

]
∼ Mult

(
1;|⋅|,1•) , (1.13)

Pt,2• ∶=
[
at,21, at,22, 0, bt,22

]
∼ Mult

(
1;|⋅|,2•) . (1.14)

Here, |⋅| is defined to contain entry-wise the absolute values of  with row-sums equal to one such that |⋅|,k•
become valid arguments for the multinomial distributions in (1.13) and (1.14). Note also the desirable redundancy

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 43: 285–311 (2022)
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GENERALIZED BINARY VAR PROCESSES 291

in the above notation obtained by including the off-diagonal zeros of Bt in Pt,k•, but this allows to use the whole
rows |⋅|,k• as arguments of the multinomial distributions.

1.4. Outline

In the spirit of the gbVAR(1) model (1.11) as a natural extension of the univariate gbAR(1) model in (1.5), we pro-
vide a full description and investigation of the corresponding generalized binary vector AR (gbVAR) model class in
this article. In Section 2, we define generalized binary VAR processes of order p ∈ ℕ and derive general stochastic
properties including formulae for the mean vector, stationarity conditions, moving-average representations, geo-
metric mixing properties, Yule–Walker equations and transition probabilities. Furthermore, we discuss possible
extensions and identification issues and address parameter estimation in gbVAR models based on Yule–Walker
estimation. In Section 3, we examine the finite sample performance of these parameter estimators by means of
different criteria in simulations. For illustration, we use gbVAR models to analyze a six-dimensional binary time
series that indicates fine dust alarms in the urban area of Stuttgart, Germany, in Section 4. We conclude in Section 5.
All proofs, additional simulation results and an extension to gbVARMA processes by adding a moving-average
part are deferred to the Supporting Information.

2. THE GBVAR MODEL CLASS

In Section 2.1, we define gbVAR processes as multi-variate extensions of (univariate) gbAR models as introduced
by Jentsch and Reichmann (2019). The definition naturally extends the bivariate gbVAR(1) model (1.11) to arbi-
trary order p ∈ ℕ and dimension K ∈ ℕ. Stochastic properties are derived in Section 2.2. Identification issues and
parameter estimation are discussed in Sections 2.3 and 2.4 respectively.

2.1. gbVAR Models

For a K-dimensional binary time series (Xt, t ∈ ℤ), let the matrix

 ∶=
[
(1),… ,(p),

]
(2.1)

contain the autoregressive coefficient matrices (i) = (𝛼(i)
kl )k,l=1,…,K , i = 1,… , p and  = diag(𝛽11,… , 𝛽KK) of a

gbVAR(p) model. As the gbVAR model allows for 𝛼(i)
kl ∈ (−1, 1), the entries of  have to satisfy

∑p
i=1

∑K
l=1 |𝛼(i)

kl |+
𝛽kk = 1, k = 1,… ,K, and  has to be modified to serve as a parameter matrix containing (row-wise)
valid probabilities of multinomial distributions. This is achieved by taking entry-wise absolute values in  and
we define

|⋅| ∶=
[(|𝛼(1)

kl |)k,l=1,…,K
,… ,

(|𝛼(p)
kl |)k,l=1,…,K

, diag(𝛽11,… , 𝛽KK)
]

=∶
[


(1)|⋅| ,… ,(p)|⋅| ,
]
. (2.2)

These prerequisites enable us to give the definition of the generalized binary vector AR model of order p ∈ ℕ.

Definition 2.1 (gbVAR(p) processes). Let (Xt, t ∈ ℤ) be a stationary K-dimensional process taking values
in {0, 1}K . Let (et, t ∈ ℤ) be an i.i.d. K-dimensional binary innovation process, such that et is independent
of (Xs, s < t) with mean vector 𝜇e = (𝜇e,1,… , 𝜇e,K)′ = E(et), where 𝜇e,i = P(et,i = 1), i = 1,… ,K, and
variance–covariance matrix Σe = (𝜎e,kl)k,l=1,…,K = Cov(et), where 𝜎e,ii = 𝜇e,i(1−𝜇e,i). For p ∈ ℕ let  be the param-
eter matrix as in (2.1) with diagonal matrix , (p) ≠ OK×K , and |⋅| as in (2.2) such that |⋅|𝟙K(p+1) = 𝟙K , where

𝟙M = (1,… , 1)′ denotes the M-dimensional vector of ones. Furthermore, let (Pt, t ∈ ℤ)with Pt = [A(1)
t ,… ,A(p)

t ,Bt]
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292 C. JENTSCH AND L. REICHMANN

be a K × K(p + 1)-dimensional i.i.d. process with mutually independent rows (Pt,k•, t ∈ ℤ), k = 1,… ,K,
such that

Pt,k• ∶=
[
a(1)

t,k•,… , a(p)
t,k•, bt,k•

]
∼ Mult

(
1;|⋅|,k•) ,

which are independent of (et, t ∈ ℤ) and (Xs, s < t). Here, we set A(i)
t = (a(i)

t,kl)k,l=1,…,K and Bt = (bt,kl)k,l=1,…,K =
diag(bt,11,… , bt,KK) with a(i)

t,k• = (a(i)
t,k1,… , a(i)

t,kK) for i = 1,… , p and bt,k• defined similarly.
Then the process (Xt, t ∈ ℤ) is said to be a generalized binary vector AR process of order p (gbVAR(p)), if it

follows the recursion

Xt =
p∑

i=1

[
A(+,i)

t Xt−i + A(−,i)
t 𝟙K

]
+ Btet, t ∈ ℤ, (2.3)

with

A(+,i)
t ∶=

{
a(i)

t,kl, 𝛼(i)
kl ≥ 0

−a(i)
t,kl, 𝛼(i)

kl < 0

}
k,l=1,…,K

=
(

a(i)
t,kl

(
𝟙{𝛼(i)kl ≥0} − 𝟙{𝛼(i)kl <0}

))
k,l=1,…,K

,

A(−,i)
t ∶=

{
0, 𝛼(i)

kl ≥ 0

a(i)
t,kl, 𝛼(i)

kl < 0

}
k,l=1,…,K

=
(

a(i)
t,kl𝟙{𝛼(i)kl <0}

)
k,l=1,…,K

for i = 1,… , p.

It is worth noting that the Definition 2.1 does not restrict the innovation distribution and explicitly allows for
degenerate distributions of et with singular Σe caused, for example, by Var(et,k) = 0 for some k ∈ {1,… ,K} or
deterministic relationships between the et,k, k = 1,… ,K. In the same way, it does not exclude degenerate (joint)
distributions of (Xt, t ∈ ℤ). Merely, it only imposes stationarity of the process (Xt, t ∈ ℤ). A necessary and
sufficient conditions ensuring stationarity will be discussed below in Section 2.2. Nevertheless, by not exclud-
ing degenerate cases that correspond to parameters lying on the boundary of the parameter space, we encounter
identification issues that will be discussed in detail in Section 2.3.

It is possible to rewrite the gbVAR(p) model according to the alternative presentation of the univariate gbAR(1)
model in (1.6). However, for the multi-variate case, this becomes cumbersome and the main benefit of the presen-
tation of the gbVAR model in (2.3) is the closed-form expression using an autoregressive-type model equation.
Note that Xt is equal to the sum of lagged time series observations Xt−i multiplied in a familiar fashion with
(random) matrices A(+,⋅)

t , that is,
∑p

i=1 A(+,i)
t Xt−i (as in VAR-type models), plus an additional term

∑p
i=1 A(−,i)

t 𝟙K

(related to negative coefficients) plus an innovation-type term Btet.
In the following, we pick up the introductory example from Section 1.2 and consider a bivariate gbVAR(1)

model in more detail to illustrate the class of gbVAR models.

Example 2.2 (Bivariate gbVAR(1) model). Let (Xt, t ∈ ℤ) follow a two-dimensional gbVAR(1) model

Xt = A(+)
t Xt−1 + A(−)

t 𝟙K + Btet, (2.4)

with parameter matrix  = [,] and |⋅| = [|⋅|,], where

 =
(

0.49 0.35

−0.43 −0.39

)
, |⋅| =

( |0.49| |0.35||−0.43| |−0.39|
)
, and  =

(
0.16 0.00

0.00 0.18

)
,
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Figure 4. Realization and ACR of the bivariate gbVAR(1) process as specified in Example 2.2

such that |⋅|𝟙4 = 𝟙2 holds. Hence, for the (mutually independent) multinomial selection mechanisms, we have

Pt,1• =
[
at,11, at,12, bt,11, 0

]
∼ Mult (1; (|0.49|, |0.35|, 0.16, 0)) ,

Pt,2• =
[
at,21, at,22, 0, bt,22

]
∼ Mult (1; (|−0.43|, |−0.39|, 0, 0.18)) .

Taking the negative signs of the entries in  into account, the gbVAR(1) process follows the model equation(Xt,1

Xt,2

)
=

(
at,11Xt−1,1 +at,12Xt−1,2 +bt,11et,1

at,21

(
1 − Xt−1,1

)
+at,22

(
1 − Xt−1,2

)
+bt,22et,2

)
.

Hence, in the second dimension the opposite values of the predecessors Xt−1,1 or Xt−1,2 are selected, whenever at,21

or at,22 become 1 respectively.
Suppose the innovation process (et, t ∈ ℤ) consists of two independent Bernoulli processes (et,1, t ∈ ℤ) and

(et,2, t ∈ ℤ) with 𝜇e,1 = P(et,1 = 1) = 0.4 and 𝜇e,2 = P(et,2 = 1) = 0.8 leading to Σe = diag(0.24, 0.16).
In Figure 4, we show a realization of the bivariate gbVAR(1) process with the above specification together with
the corresponding serial and cross-sectional autocorrelation structure. By allowing for positive as well as nega-
tive entries in the non-diagonal parameter matrix , the gbVAR(1) model becomes rather flexible and allows to
describe diverse serial and cross-sectional dependence structures.

2.2. Stochastic Properties of gbVAR Models

First, we consider the expectation of the random matrices A(+,i)
t and A(−,i)

t , i = 1,… , p. Note that, by construction,
we have E

(
A(i)

t

)
= 

(i)|⋅| and E
(
Bt

)
= . Hence, from the definitions of A(+,i)

t and A(−,i)
t , we get

E
(
A(+,i)

t

)
=
[
𝛼(i)

kl

]
k,l=1,…,K

= (i), (2.5)

E
(
A(−,i)

t

)
=
[|𝛼(i)

kl |𝟙{𝛼(i)kl <0}

]
k,l=1,…,K

=∶ (−,i) (2.6)

such that (i)|⋅| = (i) +2(−,i). This enables us to compute the stationary mean vector 𝜇X ∶= E
(
Xt

)
of a gbVAR(p)

process.
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Lemma 2.3 (Stationary mean of gbVAR processes). Let (Xt, t ∈ ℤ) be a stationary K-dimensional gbVAR(p)
process. Then, we have

𝜇X =
(

I −
p∑

i=1

(i)
)−1( p∑

j=1

(−,j)𝟙K + 𝜇e

)
. (2.7)

The latter result reflects the relationship between the mean vector of the time series 𝜇X , the mean vector 𝜇e of
the innovation process and the autoregressive parameters  =

[
(1),… ,(p),

]
. In comparison to the univariate

NDAR(p) process (see e.g. Weiß (2009a)), additional matrices (−,⋅) appear in the formula for the mean that
correspond to potentially negative model parameters. Further note that, in contrast to univariate gbAR(p) processes
discussed in Jentsch and Reichmann (2019), we do not get 𝜇X = 𝜇e in the special case when the parameter matrices
in  contain exclusively non-negative entries, such that all (−,j) vanish. This is due to the diagonal structure
of  leading to I −

∑p
i=1 

(i) ≠  in general.
In view of Definition 2.1, which supposes the gbVAR(p) process (Xt, t ∈ ℤ) to be stationary and to fulfill

the gbVAR recursion (2.3), its stationary solution can be derived in form of a moving-average-type gbVMA(∞)
process. As for classical AR processes, the case p = 1 allows for a direct approach to construct the moving-average
representation by recursively plugging-in the gbVAR(1) model equation. For all d ∈ ℕ0, by recursively plugging-in
(2.3), we get

Xt = A(+)
t Xt−1 + A(−)

t 𝟙K + Btet

= A(+)
t

(
A(+)

t−1Xt−2 + A(−)
t−1𝟙K + Bt−1et−1

)
+ A(−)

t 𝟙K + Btet

⋮ (2.8)

=
d∏

j=0

A(+)
t−j Xt−(d+1) +

d∑
i=0

(
i−1∏
j=0

A(+)
t−j

)(
A(−)

t−i𝟙K + Bt−iet−i

)
= 𝜁t,dXt−(d+1) +

d∑
i=0

𝜁t,i−1𝜂t−i,

= 𝜁t,dXt−(d+1) + X(d)
t

with an obvious notation for X(d)
t , where 𝜁t,i ∶=

∏i
j=0 A(+)

t−j , i ∈ ℕ0, 𝜁t,−1 = IK , and 𝜂t−i ∶= A(−)
t−i𝟙K + Bt−iet−i.

For gbVAR(p) processes of general order p ∈ ℕ, we follow the common approach described, for example, in
Lütkepohl (2005, Chap. 11.3.2) to rewrite the K-dimensional gbVAR(p) process as a Kp-dimensional gbVAR(1)
process (X̃t, t ∈ ℤ). Precisely, by defining the Kp-dimensional vectors

X̃t ∶= (X′
t ,… ,X′

t−p+1)
′ and ẽt ∶= (e′t , 0,… , 0)′ (2.9)

and the (Kp × Kp)-dimensional matrices

Ã(+)
t ∶=

⎛⎜⎜⎜⎜⎝
A(+,1)

t … A(+,p−1)
t A(+,p)

t

IK 0K×K 0K×K

⋱ ⋮

0K×K … IK 0K×K

⎞⎟⎟⎟⎟⎠
, Ã(−)

t ∶=

⎛⎜⎜⎜⎜⎝
A(−,1)

t … A(−,p−1)
t A(−,p)

t

0K×K 0K×K 0K×K

⋱ ⋮

0K×K … 0K×K 0K×K

⎞⎟⎟⎟⎟⎠
,

B̃t ∶=
( Bt 0K×K(p−1)

0K(p−1)×K 0K(p−1)×K(p−1)

)
,
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where IK denotes the K-dimensional unity matrix and 0r×s the (r × s)-dimensional zero matrix, we get an autore-
gressive representation for the process (X̃t, t ∈ ℤ). That is, the K-dimensional gbVAR(p) process (Xt, t ∈ ℤ) can
be represented as a Kp-dimensional gbVAR(1) process (X̃t, t ∈ ℤ) as follows

X̃t = Ã(+)
t X̃t−1 + Ã(−)

t 𝟙Kp + B̃tẽt, t ∈ ℤ, (2.10)

where 𝟙Kp is the one vector of length Kp. Note that the first K entries of (X̃t, t ∈ ℤ) equal the gbVAR(p) process

(Xt, t ∈ ℤ). By exploiting the above representation (2.10) of X̃t as a gbVAR(1) process, analogous to (2.8), we get

X̃t = 𝜁t,dX̃t−(d+1) +
d∑

i=0

𝜁t,i−1𝜂t−i = 𝜁t,dX̃t−(d+1) + X̃(d)
t , (2.11)

with 𝜁t,i ∶=
∏i

j=0 Ã(+)
t−j , i ∈ ℕ0, 𝜁t,−1 = IKp, and 𝜂t ∶= Ã(−)

t−i𝟙Kp + B̃t−iẽt−i. Now, to establish moving-average-type

representations of gbVAR processes, we have to assure that 𝜁t,d

P
→ OK×K and 𝜁t,d

P
→ OKp×Kp holds, if we let d → ∞

on the right-hand sides of (2.8) and (2.11) respectively. For p = 1, a sufficient condition familiar from (causal)
vector-valued autoregressive processes is

det
(
IK −|⋅|z) ≠ 0 ∀z ∈ ℂ ∶ |z| ≤ 1, (2.12)

and, for general p ∈ ℕ,

det
(

IKp − ̃|⋅|z
)
≠ 0 ∀z ∈ ℂ ∶ |z| ≤ 1, (2.13)

where ̃|⋅| = E(Ãt) and Ãt defined as Ã(+)
t with A(+,i)

t replaced by A(i)
t , i = 1,… , p. Note that (2.13) is equivalent to

the condition that all eigenvalues of ̃|⋅| have modulus smaller than one, and to the condition that all roots of the
characteristic matrix polynomial lie outside the unit circle, that is,

det
(

IK −
(1)|⋅| z − · · · −

(p)|⋅| zp
)
≠ 0 ∀z ∈ ℂ ∶ |z| ≤ 1. (2.14)

The following result extends Theorem 1 in Jentsch and Reichmann (2019) to the multi-variate case.

Theorem 2.4 (Moving-average representation of gbVAR processes). Let (Xt, t ∈ ℤ) be a K-dimensional
gbVAR(p) process that fulfills (2.3) for all t ∈ ℤ which is equivalent to (X̃t, t ∈ ℤ) fulfilling (2.10) for all t ∈ ℤ.

(i) If p = 1 and condition (2.12) holds, the gbVAR(1) model has a gbVMA(∞)-type representation

Xt =
∞∑

i=0

𝜁t,i−1𝜂t−i, t ∈ ℤ, (2.15)

converging in L1.
(ii) If p ∈ ℕ and condition (2.14) holds, the gbVAR(p) model has a gbVMA(∞)-type representation

Xt = JX̃t = J

( ∞∑
i=0

𝜁t,i−1𝜂t−i

)
, t ∈ ℤ, (2.16)

converging in L1, where J ∶= [IK , 0K×Kp].

In comparison to classical vector autoregressive processes, the moving-average representation of gbVAR pro-
cesses contains an additional term Ã(−)

t−i𝟙Kp in 𝜂t−i = Ã(−)
t−i𝟙Kp + B̃t−iẽt−i that takes control of potential negative
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parameters. If all entries in the parameter matrix  = [(1),… ,(p),] are non-negative, this additional term van-
ishes. It is also important to note that the conditions in (2.12)–(2.14) are sufficient, but not necessary for the gbVAR
process to be stationary as they rely on the modified coefficient matrices (1)|⋅| ,… ,(p)|⋅| instead of (1),… ,(p).

The stationarity condition (2.12) for gbVAR(1) processes is illustrated in the following example.

Example 2.5 (Stationarity of gbVAR(1) models). Let K = 2 and consider the bivariate gbVAR(1) process with
parameter matrix  = [,], where

 =
(
𝛼11 𝛼12

𝛼21 𝛼22

)
and  =

(
𝛽11 0

0 𝛽22

)
such that |𝛼11| + |𝛼12| + 𝛽11 = 1 and |𝛼21| + |𝛼22| + 𝛽22 = 1. Let us consider four cases:

(i) If 𝛽11, 𝛽22 > 0, both innovations et,1 and et,2 are allowed to enter the gbVAR(1) model. From |𝛼11|+ |𝛼12| < 1
and |𝛼21| + |𝛼22| < 1, we get that all eigenvalues of |⋅| and of  have modulus smaller than one. Hence,
condition (2.12) holds.

(ii) If 𝛽11 = 0, 𝛽22 > 0 and 𝛼12 ≠ 0, only the innovation et,2 is allowed to enter the gbVAR(1) model, but as
𝛼12 ≠ 0, it may reach Xt1 after one time step as well. Indeed, in this case, it can be checked that all eigenvalues
of |⋅| and of  have modulus smaller than one and condition (2.12) holds.

(iii) If 𝛽11 = 0, 𝛽22 > 0 and 𝛼12 = 0, only the innovation et,2 is allowed to enter the gbVAR(1) model, but it will
never reach {Xt,1}. In this case, where |𝛼11| = 1− |𝛼12|−𝛽11 = 1, the largest (in modulus) eigenvalues of both
matrices |⋅| and  are equal to one such that condition (2.12) does not hold. Indeed, this scenario leads to
a reducible Markov chain (of order one) with equivalence classes {(0, 0), (0, 1)} and {(1, 0), (1, 1)}.

(iv) If 𝛽11 = 𝛽22 = 0 and 𝛼ij ≠ 0, i, j = 1, 2, such that

 =
(
𝛼11 1 − 𝛼11

𝛼22 −(1 − 𝛼21)

)
, |⋅| =

(
𝛼11 1 − 𝛼11

𝛼21 1 − 𝛼21,

)
, and  =

(0 0

0 0

)
,

no innovations at all are allowed to enter the gbVAR(1) model. In this case, the eigenvalues of  are (in
modulus) smaller than one and this bivariate gbVAR(1) model describes an irreducible, aperiodic Markov
chain (of order one) with states {(0, 0), (0, 1), (1, 0), (1, 1))}. For example, if 𝛼11 = 𝛼21 = 0, the eigenvalues of
 compute to 𝜆1,2 = ±0.7071 leading to a Markov chain with transition matrix P and stationary distribution
𝜋 according to

P =

⎛⎜⎜⎜⎜⎝
0.5 0.5 0 0

0.5 0 0.5 0

0 0.5 0 0.5

0 0 0.5 0.5

⎞⎟⎟⎟⎟⎠
and 𝜋 =

⎛⎜⎜⎜⎜⎝
0.25

0.25

0.25

0.25

⎞⎟⎟⎟⎟⎠
.

Nevertheless, the largest eigenvalue (in modulus) of |⋅| is always one, such that condition (2.12) does not
hold.

The latter example illustrates that 𝛽kk > 0 for all k = 1,… ,K is a sufficient, but not a necessary condition for
(2.12) (and also for (2.14)) to hold.

For the derivation of asymptotic theory, (strong) mixing concepts are very helpful to quantify the serial depen-
dence structure of time series processes; see, for example Doukhan (1994), Dedecker et al. (2007), or Bradley
(2005) for overviews. As given in Billingsley (1968), when defined on a suitable probability space (Ω,,P), a
process (Zt, t ∈ ℤ) is called 𝜓-mixing, if for all subsets 1 ∈ 𝜎(Zt,Zt−1,…) and 2 ∈ 𝜎(Zt+h,Zt+h+1,…) of the
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induced 𝜎-fields, and a non-negative sequence (fh, h ∈ ℕ) with fh → 0 for h → ∞, we have|||P (1 ∩ 2

)
− P

(
1

)
P
(
2

) ||| ≤ fhP
(
1

)
P
(
2

)
. (2.17)

If the right-hand side of the inequality (2.17) is replaced by fhP
(
1

)
, we get the definition of the 𝜑-mixing

property. If fh ≤ const.𝜌h for all h ∈ ℕ, the process (Zt, t ∈ ℤ) is called geometrically 𝜓-mixing or 𝜑-mixing
respectively.

In contrast to Jacobs and Lewis (1983) or Weiß (2009a), who employ a suitable Markov chain representation
and take a detour by showing primitivity first to deduce (strong) mixing properties, we can make direct use of the
moving-average-type representation derived in Theorem 2.4 for gbVAR(p) processes to prove (geometric) 𝜓-and
𝜑-mixing.

Theorem 2.6 (Mixing properties of gbVAR processes). Let (Xt, t ∈ ℤ) be a K-dimensional gbVAR(p) process
that fulfills (2.3) for all t ∈ ℤ which is equivalent to (X̃t, t ∈ ℤ) fulfilling (2.10) for all t ∈ ℤ and suppose that
(2.13) holds. Then, the processes (X̃t, t ∈ ℤ) and (Xt, t ∈ ℤ) are ergodic and geometrically 𝜓- and 𝜑-mixing.

Note that gbVAR processes are of autoregressive-type, but they are nonlinear due to the random coefficient
matrices. Nevertheless, we can show that the autocovariance structure of gbVAR processes coincides with that of
classical VAR processes in the sense that the same Yule–Walker equations hold. For this purpose, we denote by
ΓX(h) = Cov(Xt+h,Xt), h ∈ ℤ, the corresponding autocovariance matrices of the gbVAR(p) process (Xt, t ∈ ℤ).

Theorem 2.7 (Yule–Walker equations for gbVAR(p) models, h > 0). Let (Xt, t ∈ ℤ) be a K-dimensional
gbVAR(p) process that fulfills (2.14). Then, for all h ∈ ℕ (with h ≠ 0), we have

ΓX (h) =
p∑

i=1

(i)ΓX (h − i) (2.18)

leading to the system of Yule–Walker equations

[(1),… ,(p)]
( ΓX(i − j)

i, j = 1,… , p

)
= [ΓX(1),… ,ΓX(p)]. (2.19)

By replacing the autocovariancesΓX(h) by sample versions Γ̂X(h), Yule–Walker equations can be used for param-
eter estimation using the well-known Yule–Walker estimators. Before these will be addressed in Section 2.4, we
will discuss possible identification issues in Section 2.3.

The derivation of a Yule–Walker-type equation for h = 0 is much more intricate. For this purpose, we will use
Hadamard products denoted by ‘◦’, where A ◦ B ∶= (aijbij)i,j for two matrices A and B of the same dimensions.

Theorem 2.8 (Yule–Walker equation for gbVAR(p) models, h = 0). Let (Xt, t ∈ ℤ) be a K-dimensional
gbVAR(p) process that fulfills (2.14). Then, for h = 0, we have

ΓX(0) =
p∑

i,j=1

[
IK ◦

{(


(i)|⋅|𝜇X𝟙′K
)
𝟙{i=j} −

(
(i) (ΓX(j − i) + 𝜇X𝜇

′
X

)
(j)′

)}
+
(
(i)

(
ΓX(j − i)

)
(j)′

)]
+

p∑
i,j=1

[
IK ◦

{(
−(−,i)𝜇X𝟙′K

)
𝟙{i=j} −

(
(i)𝜇X𝟙′K

(−,j)′
)}]

−
p∑

i=1

[
IK ◦

{(
(i)𝜇X𝜇

′
e

′
)
+
(
(−,i)𝟙K𝜇

′
e

′
)}]

+
p∑

i,j=1

[
IK ◦

{(
−(−,i)𝜇X𝟙′K

)
𝟙{i=j} −

(
(−,i)𝟙K𝜇

′
X

(j)′
)}]
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+
p∑

i,j=1

[
IK ◦

{(
(−,i)𝟙K𝟙′K

)
𝟙{i=j} −

(
(−,i)𝟙K𝟙′K

(−,j)′
)}]

−
p∑

j=1

[
IK ◦

{(
𝜇e𝜇

′
X

(j)′
)
+
(
𝜇e𝟙′K

(−,j)′
)}]

+ IK ◦
{
𝜇e𝟙′K − 𝜇e𝟙′K

}
+ Σe. (2.20)

Note that the formula derived in Theorem 2.8 contains the expression

ΓX(0) =
p∑

i,j=1

(
(i)

(
ΓX(j − i)

)
(j)′

)
+ Σe,

which is similar to the classical formula for the Yule–Walker equation for h = 0 of VAR(p) processes (see
e.g. Lütkepohl, 2005, Section 11.4, here only Σe is replaced by Σe) plus some additional terms that contain
“IK ◦ · · ·”. Note that these additional terms only adjust the diagonal entries. They show up due to the random
coefficients, that control the selection mechanism in the gbVAR model.

Alternatively, the last line in (2.20) can be rearranged to get

IK ◦
{
𝜇e𝟙′K + (Σe − 𝜇e𝟙′K)

}
+
(
𝟙K×K − IK

)
◦
{
Σe

}
= IK ◦

{
𝜇e𝟙′K − 

(
𝜇e𝜇

′
e

)


}
+ 

{(
𝟙K×K − IK

)
◦ Σe

}
. (2.21)

Note that the Hadamard multiplication in the last term on the right-hand side sets the diagonal of Σe (which is
already determined by 𝜇e due to 𝜎e,ii = 𝜇e,i(1 − 𝜇e,i) to zero and that the first term on the right-hand side of (2.21)
contains only  and 𝜇e, but not Σe. This is particularly useful to identify the off-diagonal elements of Σe, which
can be used for estimation purposes as discussed in Section 2.4.

Example 2.9 (Special cases of Theorem 2.8). For p = 1, the formula derived in Theorem 2.8 simplifies to become

ΓX(0) = IK ◦
{(


(1)|⋅| 𝜇X𝟙′K

)
−
(
(1) (ΓX(0) + 𝜇X𝜇

′
X

)
(1)′)} +

(
(1)ΓX(0)(1)′

)
+
[
IK ◦

{(
−(−,1)𝜇X𝟙′K

)
−
(
(1)𝜇X𝟙′K

(−,1)′
)}]

−
[
IK ◦

{
(1)𝜇X𝜇

′
e

′} ]
+
[
IK ◦

{
−(−,1)𝜇X𝟙′K −

(
(−,1)𝟙K𝜇

′
X

(1)′
)}]

+
[
IK ◦

{(
(−,1)𝟙K𝟙′K

)
−(−,1)𝟙K𝟙′K

(−,1)′
}]

−
[
IK ◦

{
(−,1)𝟙K𝜇

′
e

′
}]

−
[
IK ◦

{
𝜇e𝜇

′
X

(1)′} ] − [
IK ◦

{
𝜇e𝟙′K

(−,1)′
}]

+ IK ◦
{
𝜇e𝟙′K − (𝜇e𝟙′K)

}
+ Σe.

If additionally all entries in (1) are non-negative, all terms containing (−,1) = 0K×K vanish and we can replace


(1)|⋅| by (1). This leads to

ΓX(0) = IK ◦
{(

(1)𝜇X𝟙′K
)
−
(
(1)

(
ΓX(0) + 𝜇X𝜇

′
X

)
(1)′

)}
+
(
(1)ΓX(0)(1)′

)
−
[
IK ◦

{
(1)𝜇X𝜇

′
e

′} ] − [
IK ◦

{
𝜇e𝜇

′
X

(1)′} ]
+ IK ◦

{
𝜇e𝟙′K − 

(
𝜇e𝟙′K

)

}
+ Σe. (2.22)
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In the following result, we derive expressions for one step ahead transition probabilities for gbVAR processes
to reach a certain state in {0, 1}K given the past values of the time series.

Lemma 2.10 (Transition probabilities of gbVAR processes). Let (Xt, t ∈ ℤ) be a K-dimensional gbVAR(p)
process. Furthermore, for k = 0, 1,… , p, let sk, r0 ∈ {0, 1}K with sk ∶=

(
sk,1,… , sk,K

)′
and r0 ∶=

(
r0,1,… , r0,K

)′
.

Denote by 𝛿ij = 𝟙{i=j} the Kronecker delta and set pr0
∶= P

(
et = r0

)
. Then, the transition probability given the

past p values of the time series becomes

P
(
Xt = s0|Xt−1 = s1,… ,Xt−p = sp

)
(2.23)

=
∑

r0∈{0,1}K

pr0

K∏
k=1

[
p∑

i=1

K∑
l=1

|𝛼(i)
kl | [𝟙{𝛼(i)kl ≥0}𝛿s0,ksi,l

+ 𝟙{𝛼(i)kl <0}𝛿s0,k(1−si,l)
]
+ 𝛽kk𝛿s0,kr0,k

]
.

Remark 2.11 (Dependent multinomial selection). In view of the mutually independent multinomial selection
mechanisms Pt,k•, k = 1,… ,K, used to define gbVAR processes in Definition 2.1, a possible extension would be to
allow for dependence between the multinomial distributions. Such an extension would not affect the Yule–Walker
equations for h > 0 in Theorem 2.7, but those in Theorem 2.8 for h = 0. However, we do not follow this path as
it would complicate things considerably and the benefit of such an extension of the gbVAR model class would be
comparatively small. Furthermore, multinomial distributions allowing for dependence seem to be less developed;
see, for example Johnson et al. (1997, chap. 36) for a rather restrictive attempt in this direction.

Note that the scalar selection mechanism used for the GDARMA approach proposed in Möller and Weiß
(2020) coincides with a setup of mutually dependent multinomial selection mechanisms with perfectly correlated
coefficient matrices’ diagonal entries.

2.3. Identification of gbVAR Models

As discussed in Theorem 2.4, a gbVAR(p) process that fulfills condition (2.14) has a (causal) L1-converging
gbVMA(∞)-type representation (2.16). Moreover, Theorem 2.7 shows that standard Yule–Walker equations hold
for h ∈ ℕ, that relate (ΓX(h), h ∈ ℤ) and (1),… ,(p), and Theorem 2.8 indicates a Yule–Walker-type equation
for h = 0 that also involves 𝜇X , 𝜇e,  and Σe. However, the stationarity condition (2.14) alone does not guarantee
identifiability of the gbVAR(p) model, that is, identification of model parameters (1),… ,(p),  and Σe, from
the autocovariance function (Γ(h), h ∈ ℤ) (and the mean vector 𝜇X) via Yule–Walker equations.

For given p ∈ ℕ, using Theorem 2.7, the gbVAR(p) parameter matrices (1),… ,(p) are identified from the
autocovariance function (ACF) if and only if the Yule–Walker matrix

𝚪X̃,p ∶= Cov(X̃t) =
( ΓX(i − j)

i, j = 1,… , p

)
(2.24)

is non-singular, where X̃t is defined in (2.9), such that we can re-arrange (2.19) to get

[(1),… ,(p)] = [ΓX(1),… ,ΓX(p)]
( ΓX(i − j)

i, j = 1,… , p

)−1

. (2.25)

Consequently,  is also identified by imposed diagonality of  and the requirement that 𝟙K(p+1) = 𝟙K has to hold.
Similarly, using Theorem 2.8, the innovation covariance matrix Σe is identified if and only if  is non-singular
which is equivalent to 𝛽kk > 0 for all k = 1,… ,K. In this case, we can re-arrange (2.20) to isolate Σe on one side
of the equation by making use of −1.
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Now, let us discuss the case of a singular Yule–Walker matrix 𝚪X̃,p. It is singular if and only if there exists vectors

g ∈ ℝKp, g ≠ 0Kp, such that g′X̃t is constant. As X̃t takes values in {0, 1}Kp, such a vector g can always be chosen

from {−1, 0, 1}Kp∖{0Kp} leading to g′X̃t either equal to 0 or equal to 1 for all t. For example, if one component
(Xt,k, t ∈ ℤ) is constant over time, we have that e′kXt is constant in {0, 1}, where ek is the kth K-dimensional unit

vector. Hence, for general p ∈ ℕ and as X̃t−1 contains Xt−1,k,… ,Xt−p,k, we can find p many linearly independent

vectors g that have only one entry equal to one and all others equal to zero leading to g′X̃t constant in {0, 1}. If,
for some h = 0, 1,… , p − 1, we have Xt,i = Xt−h,j or Xt,i = 1 − Xt−h,j for some i, j = 1,… ,K, we can find a vector

g having two non-zero entries such that g′X̃t is constant equal to 0 or 1 for all t respectively.
Suppose, we can find L ≤ Kp linearly independent vectors g1,… , gL with the property g′X̃t constant. If L =

Kp, we are in the purely deterministic case. If L < Kp, the underlying gbVAR(p) model is partially identified.
After having identified L such linearly independent vectors g1,… , gL, we can find also vectors gL+1,… , gKp ∈
{−1, 0, 1}Kp such that the Kp × Kp matrix G with G′ = [G′

1,G
′
2] = [g1,… , gL, gL+1,… , gKp] is of full rank Kp.

Moreover, the gL+1,… , gKp can be chosen such that they have only one non-zero entry equal to 1 respectively.
Together, we have

GX̃t =

(
vL

Ỹt

)
and X̃t = G−1

(
vL

Ỹt

)
(2.26)

where vL is a constant vector with 0 and 1 entries and Ỹt is (Kp − L)-dimensional with Cov(Ỹt) having full rank.
Plugging-in for X̃t in the Yule–Walker matrix in (2.19) and multiplication from the right with ((G−1H′)′)+, where
H = (0(Kp−L)×(L), I(Kp−L)×(Kp−L)) and ((G−1H′)′)+ denotes the (Kp − L) × Kp Moore–Penrose inverse of (G−1H′)′,
leads to

[(1),… ,(p)]Cov
(

X̃t

)
((G−1H′)′)+ = [(1),… ,(p)]G−1H′Cov

(
Ỹt

)
(G−1H′)′((G−1H′)′)+

= [(1),… ,(p)]G−1H′Cov
(

Ỹt

)
= [ΓX(1),… ,ΓX(p)]((G−1H′)′)+.

By defining 𝚪Ỹ ,p = Cov(Ỹt) and AỸ ,p = [(1),… ,(p)]G−1H′, the dimension-reduced K × (Kp − L) parameter
matrix AỸ ,p is identified by

AỸ ,p = [(1),… ,(p)]G−1H′ = [ΓX(1),… ,ΓX(p)]((G−1H′)′)+𝚪−1
Ỹ ,p
. (2.27)

Finally, we can obtain one candidate of [(1),… ,(p)] by right multiplying AỸ ,p with (G−1H′)′ to get a K × Kp
parameter matrix.

In the case, where the matrix  is not invertible, which corresponds to at least one diagonal entry 𝛽kk = 0 for
some k = 1,… ,K, the innovation distribution of those et,k is not identifiable. However, we can rearrange (2.20)
using (2.21) to isolate {(𝟙K×K − IK)◦Σe} on one side of the equation. Now, let M ≤ K be the number of zero
diagonal elements of . If M = K, we are in the special case (see e.g. Example 2.5(iv)), where no innovations
enter the model at all and the distribution of et is clearly not identifiable.

If M < K, we define a (K − M) × K matrix F that picks those components k ∈ {1,… ,K}, where the diagonal
elements 𝛽kk of  are non-zero such that FF′ has full rank K−M. Then, isolating 𝜇e on one side of the equation
in (2.7) and left-multiplication with F and inserting F′F leads to

F

((
I −

p∑
i=1

(i)

)
𝜇X −

p∑
j=1

(−,j)𝟙K

)
= (FF′)(F𝜇e) = ẽ𝜇ẽ (2.28)
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with an obvious notation for ẽ and 𝜇ẽ. Since ẽ has full rank, we can left-multiply the whole equation with −1
ẽ

to identify 𝜇ẽ, which is the mean vector of ẽ which is defined to consist of those et,k’s, where the corresponding
𝛽kk’s are non-zero. This allows also to identify the diagonal elements of the covariance matrix Σẽ of ẽ.
Furthermore, after re-arranging (2.20) using (2.21) to isolate {(𝟙K×K − IK)◦Σe} on one side of the equation,
left-multiplication with F, right-multiplication with F′ and inclusion of F′F twice, we can get on one side of the
equation

(FF′)(F{(𝟙K×K − IK)◦Σe}F′)(FF′) = (FF′)((𝟙(K−M)×K◦F){(𝟙K×K − IK)◦Σe}(𝟙K×(K−M)◦F′))(FF′)
= (FF′)({𝟙(K−M)×K(𝟙K×K − IK)𝟙K×(K−M)◦FΣeF

′})(FF′)
= (FF′)({(𝟙(K−M)×(K−M) − IK−M)◦FΣeF

′})(FF′)
= ẽ({(𝟙(K−M)×(K−M) − IK−M)◦Σẽ})ẽ. (2.29)

Again, since ẽ has full rank, we can left- and right-multiply the whole resulting equation with −1
ẽ

to identify also
the non-diagonal elements of Σẽ of those et,k. Note that this identification is indeed sufficient, as the innovations
et,k that are not identified, do not enter the gbVAR(p) at all.

The identification issues discussed above are illustrated in the following example.

Example 2.12 (gbVAR(2) with singular Yule–Walker matrix). Suppose (Xt, t ∈ ℤ) is a bivariate gbVAR(2)
process with

1 =

(
𝛼(1)

11 𝛼(1)
12

1 0

)
, 2 =

(
𝛼(2)

11 𝛼(2)
12

0 0

)
, and  =

(
𝛽11 0

0 0

)

where 𝛼(1)
11 , 𝛼

(1)
12 , 𝛼

(2)
11 , 𝛼

(2)
12 ≥ 0 and 𝛽11 > 0 such that 𝛼(1)

11 + 𝛼(1)
12 + 𝛼(2)

11 + 𝛼(2)
12 + 𝛽11 = 1 and with E(et) = 𝜇e and

Var(et) = Σe. Then, we are facing two identification issues. First, et,2 does not enter the model at all such that only
the distribution of the innovation et,1, that is, E(et,1) = 𝜇e,1 and Var(et,1) = Σe,11 = 𝜇e,1(1 − 𝜇e,1) are identifiable as
discussed in (2.28) and (2.29). Second, by construction, the process (Xt, t ∈ ℤ) fulfills Xt,2 = Xt−1,1 for all t ∈ ℤ.

Hence, we can choose g1 = (0, 1,−1, 0)′ leading to g′
1X̃t = 0, where X̃t = (X′

t ,X
′
t−1)

′ = (Xt,1,Xt,2,Xt−1,1,Xt−1,2)′. As
this is the only vector g1 (up to scale) with this property, we have L = 1 in the notation described above. Defining
also g2 = (1, 0, 0, 0)′, g3 = (0, 1, 0, 0)′ and g4 = (0, 0, 0, 1) and G′ = [g1, g2, g3, g4] we get a lower-dimensional
process Ỹt of dimension Kp − L = 3 as in (2.26) with non-singular covariance matrix Cov(Ỹt) leading to a
(2 × 3)-dimensional coefficient matrix AỸ ,p as in (2.27), where H = [03×1, I3] and p = 2. This leads to

(G−1H′)′ =
⎛⎜⎜⎜⎝
1 0 0 0

0 1 1 0

0 0 0 1

⎞⎟⎟⎟⎠ and ((G−1H′)′)+ =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1∕2 0

0 1∕2 0

0 0 1

⎞⎟⎟⎟⎟⎠
and AỸ ,p = [1,2]G−1H′.

Now we address why diagonality of  has to be imposed to achieve identifiability of Σe.

Remark 2.13 (Non-diagonalmatrix). The parameter matrices(1),… ,(p) can be easily estimated using Yule–
Walker estimators as will be described in Section 2.4 such that, by imposing a diagonal structure of , that is,
 = diag(𝛽11,… , 𝛽KK), it is straightforward to define 𝛽kk ∶= 1−

∑p
i=1

∑K
l=1 |𝛼(i)

kl |, for k = 1,… ,K. If the diagonality

of  is not enforced, it is unclear how to allocate 1 −
∑p

i=1

∑K
l=1 |𝛼(i)

kl | to K free parameters 𝛽k1,… , 𝛽kK . Hence,
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allowing  to be non-diagonal leads to identification issues. For example, let K = 2 and suppose  is potentially
non-diagonal with non-negative entries. Then, the bivariate process {Btet, t ∈ ℤ} is i.i.d. taking values s0 ∈ {0, 1}2

and we get

P
(
Btet = s0

)
=

∑
r0∈{0,1}2

P
(
Btet = s0|et = r0

)
P
(
et = r0

)
=

∑
r0∈{0,1}2

(
𝛽11𝛿r0,1s0,1

+ 𝛽12𝛿r0,2s0,1

)(
𝛽21𝛿r0,1s0,2

+ 𝛽22𝛿r0,2s0,2

)
pr0

. (2.30)

As the distribution of Btet takes values in {0, 1}2, it is fully specified by three parameters. If  is imposed to be
diagonal such that 𝛽12 = 𝛽21 = 0 and 𝛽11 and 𝛽22 are predetermined (by 𝛽kk ∶= 1−

∑p
i=1

∑K
l=1 |𝛼(i)

kl |), the distribution
of et specified by, for example, p(0,0), p(0,1) and p(1,0) (with p(1,1) = 1− p(0,0) − p(0,1) − p(1,0)), is identified. If  is not
restricted to be diagonal, this is not the case.

2.4. Parameter Estimation in gbVAR Models

The joint distribution of a gbVAR process is fully determined by the marginal distribution of the i.i.d. innovations
(et, t ∈ ℤ) and by the model parameters in  . In view of the second-order dependence structure of gbVAR pro-
cesses, the Yule–Walker equations derived in Theorems 2.7 and 2.8 constitute an important link between the mean
vector 𝜇X , the autocovariance function ΓX , the gbVAR coefficients in  , which are all population quantities of the
process (Xt, t ∈ ℤ), and mean vector 𝜇e and covariance matrixΣe, which are population quantities of the innovation
process. Here, 𝜇X and ΓX(h) are easily estimable from a gbVAR data sample X1,… ,Xn by their sample versions

𝜇X ∶= X = 1
n

n∑
t=1

Xt, (2.31)

Γ̂X(h) ∶=
⎧⎪⎨⎪⎩

1

n

∑n−h
t=1 (Xt+h − X)(Xt − X)′, 0 ≤ h < n

0, h ≥ n
(2.32)

and ΓX(−h) ∶= Γ′
X(h) for h < 0. If X̃t = (X′

t ,X
′
t−1,… ,X′

t−p+1)
′ constructed from (Xt, t ∈ ℤ) has a non-singular

covariance matrix, we can use the Yule–Walker equation system (2.19) to construct the well-known Yule–Walker
estimator [̂(1),… , ̂(p)] for [(1),… ,(p)] by replacing the ACF ΓX by the sample ACF Γ̂X . Otherwise, we have
to apply the Yule–Walker estimation to the corresponding lower-dimensional process (Ỹt, t ∈ ℤ) obtained as in
Section 2.3.

In the following, we assume that (Xt, t ∈ ℤ) has a non-singular Yule–Walker matrix 𝚪X̃,p. Then, Yule–Walker
estimators (see e.g. Lütkepohl, 2005, eq. (3.3.17)), which are consistent for [(1),… ,(p)], are defined by

[̂(1),… , ̂(p)] = [Γ̂X(1),… , Γ̂X(p)]

(
Γ̂X(i − j)

i, j = 1,… , p

)−1

, (2.33)

where ̂(i) = (𝛼(i)
kl )k,l=1,…,K . As we imposed diagonality of  to achieve identification of Σe, by using

the natural restriction 𝛽kk = 1 −
∑p

i=1

∑K
l=1 |𝛼(i)

kl | for k = 1,… ,K, we get immediately the estimator ̂

defined by

̂ ∶= IK − diag
(
[̂(1),… , ̂(p)]𝟙Kp

)
. (2.34)
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From Lemma 2.3, we get an estimator 𝜇e for the innovation mean 𝜇e by rearranging (2.7) and plugging-in the
sample versions of (i), (−,j),  and 𝜇X to get

𝜇e = ̂−1

([
IK −

p∑
i=1

̂(i)

]
𝜇X −

p∑
j=1

̂(−,j)𝟙K

)
, (2.35)

where ̂(−,i) ∶= (|𝛼(i)
kl |𝟙{𝛼(i)kl <0})k,l=1,…,K , i = 1,… , p analogous to (2.6). In scenarios where (some) diagonal

elements 𝛽kk equal zero such that ̂ is no longer invertible, the corresponding 𝜇e,k’s are not identified, but the
remaining mean parameters are still identified via (2.28); see also Remark 2.14. The diagonal of Σe, that is, IK◦Σe

can be estimated by

ÎK◦Σe ∶= diag(𝜇e,i(1 − 𝜇e,i), i = 1,… ,K). (2.36)

Moreover, by using the Yule–Walker equation (2.20) from Theorem 2.8, it is also possible to construct an estima-
tor for the non-diagonal elements of Σe, that is, for (𝟙K×K − IK)◦Σe. Such an estimator is obtained by replacing
the last line of (2.20) by (2.21), separating (𝟙K×K − IK)◦Σe on one side of the equation (achieved by left- and
right-multiplication with −1) and replacing all population quantities on the other side of the equation by their
sample versions proposed above. In cases, where  is not invertible due to (some) zero diagonal entries, the
non-diagonal elements of Σẽ are still identified; see the discussion around (2.29).

Finally, transition probabilities derived in Lemma 2.10 can be estimated in a similar fashion by replacing
population quantities by the corresponding estimators to get

P̂
(
Xt = s0|Xt−1 = s1,… ,Xt−p = sp

)
= p̂s0|s1 ,…,sp

(2.37)

=
∑

r0∈{0,1}K

p̂r0

K∏
k=1

[
p∑

i=1

K∑
l=1

|𝛼(i)
kl | [𝟙{𝛼(i)kl ≥0}𝛿s0,ksi,l

+ 𝟙{𝛼(i)kl <0}𝛿s0,k(1−si,l)
]
+ 𝛽kk𝛿s0,kr0,k

]
,

where

p̂r0
=

(
K∏

k=1,r0,k=1

𝜇e,k

)(
K∏

k=1,r0,k=0

(1 − 𝜇e,k)

)
(2.38)

in the case where the random vectors et consist of mutually independent Bernoulli random variables. In the depen-
dent case, the estimator for off-diagonal elements of Σe, that is, (𝟙K×K − IK)◦Σe, derived above can be used to allow
also for dependent Bernoulli random variables to incorporate linear dependence.

Remark 2.14 (Estimation outside of the parameter space). Estimation of the gbVAR parameters A ∶=
[(1),… ,(p)] using the Yule–Walker estimator Â ∶= [̂(1),… , ̂(p)] can lead to invalid parameters with[

̂
(1)|⋅| ,… , ̂(p)|⋅|

]
𝟙Kp ∉ [0, 1]K (2.39)

such that (at least) for one row k0 ∈ {1,… ,K}, we have(|𝛼(1)
k0 ,•

|,… , |𝛼(p)
k0 ,•

|)𝟙Kp =
p∑

i=1

K∑
l=1

|𝛼(i)
k0,l
| > 1. (2.40)

Let K∗ denote the number of such rows and by K the set of all indices k0 ∈ {1,… ,K} satisfying (2.40). Then, we
propose to estimate a constraint model that assures valid parameters [̂(1)|⋅| ,… , ̂(p)|⋅| ]𝟙Kp ∈ [0, 1]K ; see Lütkepohl,
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2005, Sect. 5.2). For this purpose, we construct a K∗ ×(K2p+K) matrix C of rank K∗ by first defining the auxiliary
matrix

c̃k0
=
((

𝟙{Ak,m≥0} − 𝟙{Ak,m<0}

)
𝛿{k0=k}

)
k=1,…,K, m=1,…,Kp

of dimension K × Kp for each k0 ∈ K. These matrices c̃k0
have only entries of −1 and 1 in row k = k0 and

zero otherwise. Then, the matrix C combines the vectorized auxiliary matrices for every k0 ∈ K ∶= {k0,1,… , k0,K∗}
by

C ∶=
⎛⎜⎜⎜⎝

vec(̃ck0,1
)′

⋮

vec(̃ck0,K∗ )′

⎞⎟⎟⎟⎠ .
Furthermore, we define Z =

[
Z(p−1),… ,ZT

]
to contain the variables Zt ∶= vec

[
Xt,… ,Xt−p+1

]
and the parameters

𝛽 = vec
([
(1),… ,(p)

])
, thus 𝛽 is the vectorized estimated parameter matrix from the Yule–Walker estimator

(2.33). As we restrict the rows to have row sums (of the absolutes) equal to one, we set c = 𝟙K∗ , which leads to
the constraint estimator defined by

𝛽valid = 𝛽 +
[(

ZZ′)−1
]

C′
[
C
(
ZZ′)−1

C′
]−1 (

c − C𝛽
)
. (2.41)

Revectorizing 𝛽valid leads to the constraint parameter estimator Âvalid and the corresponding ̂valid matrix is
obtained as described in (2.34). Since ̂valid contains now K∗ zero diagonal entries, the innovation process
(et, t ∈ ℤ) is not identified for those rows. The remaining entries of 𝜇e can be estimated by a reduced system of
dimension K − K∗ consisting of all rows with 𝛽valid,kk ≠ 0; see also the discussion after (2.35).

3. SIMULATION STUDY

We investigate the performance of Yule–Walker-based estimators in gbVAR models as described in Section 2.4 by
Monte Carlo simulations. To illustrate the estimation performance in several gbVAR model setups, we consider
a) the (average) mean squared error (MSE) of different parameter estimators and b) the (average) mean absolute
deviation error (MADE) of transition probability estimators.

For this purpose, we consider three different gbVAR(p) setups with orders p = 1, 2 and of dimensions
K = 3, 4 for sample sizes n = 100, 500, 1000 to be able to judge the performance of parameter estimation in
several gbVAR model specifications. Precisely, we consider data generating processes (DGPs) with the following
specifications:

(DGP1) gbVAR(1) with K = 3, 𝜇e = (0.48, 0.52, 0.47)′,

(1) =
⎛⎜⎜⎜⎝

0.15 −0.25 0.49

−0.19 0.27 0.28

0.17 −0.39 0.21

⎞⎟⎟⎟⎠ and  = diag (0.11, 0.26, 0.23)

(DGP2) gbVAR(1) with K = 4, 𝜇e = (0.48, 0.52, 0.47, 0.33)′,

(1) =

⎛⎜⎜⎜⎜⎝
−0.18 0.25 −0.19 −0.15

0.33 −0.23 0.18 −0.18

−0.27 −0.29 0.21 −0.11

0.08 0.15 −0.21 −0.32

⎞⎟⎟⎟⎟⎠
and  = diag (0.23, 0.08, 0.12, 0.24)
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(DGP3) gbVAR(2) with K = 3, 𝜇e = (0.48, 0.52, 0.47)′,

(1) =
⎛⎜⎜⎜⎝
−0.09 0.15 −0.13

0.13 −0.11 0.28

0.13 −0.19 −0.18

⎞⎟⎟⎟⎠ , (2) =
⎛⎜⎜⎜⎝
−0.18 0.07 −0.19

−0.09 −0.17 0.15

−0.17 −0.09 0.14

⎞⎟⎟⎟⎠ ,
and  = diag (0.19, 0.07, 0.10) .

For all DGPs, the corresponding innovation process (et, t ∈ ℤ) consists of K independent Bernoulli processes
(et,k, t ∈ ℤ), k = 1,… ,K with 𝜇e,k = P

(
et,k = 1

)
leading to diagonalΣe matrices with diagonal entries 𝜇e,k(1−𝜇e,k),

k = 1,… ,K. Note that we make use of positive as well as negative entries in (1) and (2). Hence, these coefficient
matrices are related to the diagonal matrix  via 𝛽kk = 1 −

∑p
i=1

∑K
l=1 |𝛼(i)

kl |. In Section 3.2, we address also the
estimation of the off-diagonal elements of a non-diagonal variance–covariance matrix Σe.

3.1. Average MSE Estimation Performance

To measure the estimation performance, we calculate averages of the entry-wise mean squared errors (MSE) of
the estimators ̂(1) and ̂(2), 𝜇X , 𝜇e and ̂, respectively, based on 1000 Monte Carlo replications for each DGP
and each sample size. The simulation results are presented in Table I. It can be seen that the estimation perfor-
mance improves with increasing sample size for all estimators and all DGPs. In comparison, the estimation of
the mean innovation vector 𝜇e is least precise with an average mean squared error around 10 percent. This phe-
nomenon can be explained by formula (2.35), which requires the inversion of the diagonal matrix ̂. Due to rather
small diagonal entries of , already small deviations in ̂ might lead to a less stable estimation of 𝜇e and to a
larger MSE.

3.2. Average MSE Estimation of Non-diagonal Σe

As discussed in Remark 2.13, the imposed diagonality of(0) does generally allow to identify also the non-diagonal
entries ofΣe. These can be estimated by using the Yule–Walker equation for h = 0 from Theorem 2.8 in conjunction
with (2.21), where the corresponding estimator is obtained by replacing all population quantities by their sample
analogs as described in Section 2.4.

For illustration, we consider a bivariate gbVAR(1) process, where we used the four entries 𝛼12, 𝛼13, 𝛼32 and 𝛼33

in (1) of DGP1 leading to  = diag(0.26, 0.4). The bivariate marginal distribution of the innovations (et, t ∈ ℤ)
is fully specified by 𝜇e,1 = P(et,1 = 1) = 0.260, 𝜇e,2 = P(et,2 = 1) = 0.382 and

Σe =
(0.19240 0.134680

0.13468 0.236076

)
,

Table I. Average MSE estimation performance for different parameter estimators ̂(1), ̂(2), 𝜇X , 𝜇e and ̂ for three different
parameter specifications DGP1, DGP2, and DGP3, respectively

n MSE of ̂(1) MSE of ̂(2) MSE of 𝜇e MSE of 𝜇X MSE of ̂

DGP1 100 0.0085 0.0626 0.0046 0.0214
500 0.0017 0.0152 0.0009 0.0034

1000 0.0008 0.0070 0.0005 0.0015
DGP2 100 0.0085 0.0794 0.0022 0.0426

500 0.0017 0.0388 0.0004 0.0085
1000 0.0008 0.0208 0.0002 0.0035

DGP3 100 0.0084 0.0083 0.1041 0.0015 0.0821
500 0.0018 0.0018 0.0701 0.0003 0.0374

1000 0.0009 0.0009 0.0502 0.0002 0.0198
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Table II. Mean squared error of diagonal and non-diagonal elements of Σ̂e

n 𝜎11 𝜎12, 𝜎21 𝜎22

100 0.0100 16.7383 0.0028
500 0.0025 0.0101 0.0002
1000 0.0009 0.0045 0.0001

where Σe determines the joint probabilities P((et,1, et,2) = (i, j)) for i, j ∈ {0, 1}. Practically, such an innovation
process can be generated by first sampling the innovation et,1 from a Bernoulli distribution with P

(
et,1 = 1

)
=

0.26. Then, we generate et,2 conditional on the outcome of et,1 such that P
(
et,2 = 1|et,1 = 1

)
= 0.9 and

P
(
et,2 = 1|et,1 = 0

)
= 0.2. This leads to a marginal Bernoulli distribution of et,2 with P

(
et,2 = 1

)
= 0.9 ⋅ 0.26 +

0.2 ⋅ (1 − 0.26) = 0.382. For a comprehensive discussion of multi-variate Bernoulli distributions allowing for
dependence also beyond K = 2, we refer to Dai et al. (2013).

In Table II, we report the MSE for the diagonal and non-diagonal elements of Σ̂e for different sample sizes. It
can be seen that the MSE decays for increasing sample size. However, for a small sample size of n = 100, the MSE
of the off-diagonal elements 𝜎e,12 is huge with 16.7383. This value is caused by a mis-estimation for some few
Monte Carlo replications, where the estimated parameters already show a large MSE. Due to a matrix inversion,
this leads to unstable and unreliable estimates. Nevertheless, this issue disappears for larger sample sizes such
that the joint distribution of the innovation process in form of the non-diagonal entries of Σe can be consistently
estimated. However, as  is imposed to be diagonal for identification reasons, the non-diagonal entries of Σe do
not have large effects on the stochastic properties of the model. Hence, in practice, it seems to be recommendable
to avoid the estimation of a non-diagonal Σe due to potentially unstable estimation results.

3.3. Average MADE Estimation Performance

An alternative concept to measure the estimation performance in gbVAR models is based on (average) mean
absolute deviation error (MADE) of transition probability estimators. Note that a direct comparison of prediction
probabilities in [0, 1] and outcomes in {0, 1} are not straightforward and might be misleading to judge the param-
eter estimation performance. Hence, we compare the (one step ahead) population transition probabilities with the
corresponding estimated transition probabilities and consider

|ps0|s1 ,…,sp
− p̂s0|s1,…,sp

| = |||P (Xt = s0|Xt−1 = s1,… ,Xt−p = sp

)
− P̂

(
Xt = s0|Xt−1 = s1,… ,Xt−p = sp

) ||| (3.1)

with ps0|s1,…,sp
= P(Xt = s0|Xt−1 = s1,… ,Xt−p = sp) as obtained in Theorem 2.10 and p̂s0|s1,…,sp

= P̂(Xt =
s0|Xt−1 = s1,… ,Xt−p = sp) as constructed in (2.37) for the special case, where et,1,… , et,K are independent

such that pr0
= P(et = r0) =

∏K
k=1 P(et,k = r0,k). Mainly, there are two possibilities to use (3.1) to judge the

average estimation accuracy in gbVAR models. The first one, considers the absolute deviation of the transition
probabilities according to their actual appearances in the Monte Carlo sample under consideration. That is, given
(X1,… ,Xn) = (x1,… , xn), we compute

1
n − p

n∑
t=p+1

|pxt|xt−1,…,xt−p
− p̂xt|xt−1,…,xt−p

|. (3.2)

The second option is to calculate the absolute deviate of the transition probabilities over all possible states of
s0,… , sp in the state space {0, 1}K leading to

1
2K(p+1)

∑
s0,s1,…,sp∈{0,1}K

|ps0|s1 ,…,sp
− p̂s0|s1 ,…,sp

|. (3.3)
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Table III. Estimation performance based on both versions of average MADE in (3.2) and (3.3) for DGP1, DGP2 and DGP3,
respectively

Average MADE (3.2) Average MADE (3.3)

n DGP1 DGP2 DGP3 DGP1 DGP2 DGP3

100 0.0341 0.0358 0.0196 0.0338 0.0169 0.0179
500 0.0154 0.0151 0.0082 0.0149 0.0077 0.0076
1000 0.0108 0.0106 0.0054 0.0104 0.0054 0.0050

Based on 1000 Monte Carlo samples, we report the estimation performance using both versions (3.2) and (3.3)
of average MADE for each DGP and each sample size in Table III.

4. REAL DATA EXAMPLE: PM10 DATA

With increasing environmental awareness, there has been great interest in collecting and analyzing data describ-
ing the extent of the pollution of the environment and its impact on the health of the population. In recent years,
there is particularly growing interest in air pollution with particulate matter in European cities and metropolitan
areas. The European Union established the European emission standards, which include limits for particulates
in the air. In 2008, the European Parliament made a policy on critical values in the rule 2008/50/EG for air
pollution substances. In particular, it is by law not allowed to exceed the threshold on 35 or more days per
year. For particulate matter PM10 (coarse particles with a diameter between 2.5 and 10 μm), the liability has a
threshold of 50 μg/m3. Hence, whenever the amount of PM10 exceeds the threshold of 50 μg/m3 at a certain
monitoring station, this will cause a ‘fine dust alarm’. Hence, for each such monitoring station, this results in
a binary sequence with states ‘exceedance’ and ‘no exceedance’. In fact, the current public discourse centers to
a large extent around whether the threshold is exceeded or not, and less about the actual amount of fine dust
measured.

In view of these EU regulations, Stuttgart, Germany is one poorly prominent city, where air pollution generally
is a major problem. The reasons for these problems are essentially twofold. On the one hand, they can be explained
by its geographic location in a valley leading to a poor air exchange in the city area. On the other hand, the main
industry such as automobile companies and suppliers as well as financial industry is located near to the city center.
Due to the restricted space in a valley to expand, many people live in suburbs of Stuttgart and have to commute
to their work places. The commuting traffic concentrates on few main traffic routes, which are highly frequented
during rush hours. Hence, large portions of particulate matter in the air in and around Stuttgart are caused by
individual mobility.

In Figure 2, we show the recorded fine dust alarms at six monitoring stations in Stuttgart, Germany for 886
consecutive days from 1 March 2016 to 31 July 2018. Precisely, with Yt,k, k = 1,… , 6, representing the day-wise
mean of the PM10 values for each station, Figure 2 shows binarized time series data (Xt = (Xt,1,… ,Xt,6), t ∈ ℤ),
where Xt,k = 1, if Yt,k ≥ 50 and Xt,k = 0 otherwise. The locations of the six monitoring stations Arnulf-Klett
Platz (AKP), Bad Cannstatt (BC), Hauptstätter Straße (HS), Hohenheimer Straße (HH), Neckartor (NRT) and
Stadtgarten (SG) are illustrated in Figure 5.

A first inspection of the data in Figure 2 shows that fine dust alarms tend to occur in clusters indicating serial
and cross-sectional dependence. However, all sequences do not show long runs of fine dust alarms, but rather long
runs without any alarm. Moreover, fine dust alarms tend to show more likely in winter. This is due to the fact
that the topological influence of stationary temperature inversion hinders vertical air exchange. Hence, after the
analysis of the whole data set, we will also run the analysis on the subsample of the data collected in the fine dust
alarm period (October 15–March 15) afterwards.

First, when considering the whole data set, one station (NRT, k = 5) shows considerable more exceedances in
comparison to the other stations with fine dust alarms occurring in about 13% of the days in the considered time
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Figure 5. Locations of six major PM10 monitoring stations in Stuttgart, Germany

Table IV. AUC values for a fitted gbVAR(p) model for p ∈ {1, 2} componentwise for each station and the overall mean

AKP BC HS HH NRT SG mean

p = 1 0.9368 0.9500 0.9337 0.9459 0.8022 0.9305 0.9164
p = 2 0.9388 0.9572 0.9352 0.9479 0.8111 0.9306 0.9201

period. This is captured by the sample mean vector

𝜇X = (0.0420, 0.0227, 0.0397, 0.0386, 0.1283, 0.0249)′ .

The mean of all the other stations lie around 3% indicating that only few fine dust alarms are detected. Overall, this
is not surprising, as NRT is located at one of the most frequented roads of Stuttgart, where high buildings on one
side of the road hinder the air exchange and favor air pollution. In contrast, BC with the smallest value of 0.0227 is
located at an accommodation route to the city outside of the city center. Now, to study the serial dependence in the
data, we aim to fit a gbVAR(p) model. As gbVAR processes satisfy standard Yule–Walker equations and can be
estimated by Yule–Walker estimators as described in (2.33), we can make use of classical order selection criteria
such as Hannan–Quinn (HQ) or BIC to determine an appropriate order p of the fitted gbVAR process. Whereas
HQ selects a more parsimonious model with p = 1, BIC leads to p = 2. To make a choice which model fits best in
terms of prediction performance, we use the receiver operating characteristic (ROC) curve and the corresponding
area under the curve (AUC), where an AUC near to one indicates good prediction performance. For this purpose,
similar to Section 3.3, we make use of transition probability estimators P̂(Xt = s0|Xt−1 = s1,… ,Xt−p = sp) as
constructed in (2.37) to estimate the transition probabilities for each station, which allows to compute the ROC
curves and AUC values. In Table IV, we show the resulting component-by-component AUC values and their
overall means for model orders p ∈ {1, 2}. Both models show a good prediction performance with AUC values
near to one. However, the additional benefit of fitting a gbVAR(2) model in comparison to a more parsimonious
gbVAR(1) model is minor. Hence, we make use of a gbVAR(1) model in the following to further analyze the PM10

data set.
In this case, Yule–Walker estimation leads to an estimated parameter matrix having

∑K
l=1 |𝛼kl| = 1.1451 > 1 for

k = 5 corresponding to NRT. Hence, in view of Remark 2.14, we have to use constraint estimation leading to the
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Estimator A

SG

NRT

HH

HS

BC

AKP

AKP BC HS HH
NRT SG

0.0895 0.1723 0.0685 0.0623 0.045 0.1624

0.2281 0.1512 -0.014 -0.0772 0.5134 0.016

0.0463 0.2509 0.1303 0.1589 0.1384 -0.0068

0.1418 0.1569 0.1421 0.1433 0.114 0.0425

0.1149 0.3008 0.0744 0.0613 0.0576 -0.1074

0.233 0.177 0.0597 0.0032 0.126 0.2318
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Figure 6. Heatmaps of estimated coefficient matrices for fitted gbVAR(1) processes on the whole PM10 data sample

(̂, left panel) and on the fine dust alarm period (̂FDAP, right panel)

estimated parameter matrix ̂ as shown in the left panel of Figure 6. The absolute eigenvalues of ̂ compute to
{0.7092, 0.2933, 0.2933, 0.1143, 0.1143, 0.0019} such that the fitted gbVAR(1) model is stationary.

In each row of ̂, we can see which past state at time t − 1 of the six monitoring stations (fine dust alarm
or not) does affect the state at time t. For example, with 51.33% probability, NRT takes the same value as the
day before. In contrast, the largest entry in row k = 4 (HS) is 0.2509 in the second column corresponding to BC
such that it takes its value of the day before with probability of about 25%. Note also, as can be seen in the left
panel of Figure 6, that the fitting of a gbVAR model leads to some negative coefficients in ̂. From a modeling
perspective, this naturally leads to more flexibility in comparison to models that do allow only for non-negative
coefficients.

For identification purposes, we impose  to be diagonal; see also Remark 2.13. Since we constrained the esti-
mation to achieve

∑K
l=1 |𝛼5l| = 1 and set 𝛽55 = 0 for NRT, the effective innovation process is of reduced dimension

K̃ = 6 − 1 = 5. Hence, as described in Section 2.4, we get

diag
(
̂

)
= (0.1694, 0.2837, 0.2594, 0.2684, 0.0000, 0.3999) .

The diagonal entries of ̂ indicate how often the corresponding innovation terms are selected. For example, for
SG, in about 40% of the days, the innovation term enters the gbVAR model, whereas this happens only in about
17% for AKP.

By using formulae (2.35) and (2.36), we can estimate the mean vector and the variances of the innovations. This
leads to

𝜇e = (0.1176, 0.4084, 0.0693, 0.0993, 0.0000, 0.0203)′ (4.1)

(𝜎e,ii, i = 1,… , 6) = (0.1038, 0.2416, 0.0645, 0.0895, 0.0000, 0.0199). (4.2)

Hence, for PM10 data, this indicates that the innovation terms generally take zero values with high probability.
Note that 𝜇e,5 and 𝜎e,55 are not identified due to 𝛽55 = 0 and we set 𝜇e,5 = 𝜎e,55 = 0 for convenience.
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Now, we conduct the same analysis as above, but only for the data collected in the fine dust alarm period (FDAP)
(October 15–March 15). First, we obtain the sample mean vector

𝜇X,FDAP = (0.08981, 0.04854, 0.08252, 0.08010, 0.25243, 0.05340)′ .

As there are only very few alarms outside of the FDAP, the sample vector 𝜇X,FDAP has entries that are about twice as
large as those of 𝜇X . Now, in contrast to the analysis of the whole sample, both order selection criteria HQ and BIC
select the order p = 1 and a corresponding AUC analysis (not reported) leads again to only minor improvements
when using order p = 2 in comparison to the more parsimonious gbVAR(1) model. For the FDAP, again a con-
straint estimation has to be executed leading to the estimated parameter matrix ̂FDAP as shown in the right panel of
Figure 6. The absolute eigenvalues of ̂FDAP compute to {0.6845, 0.3070, 0.3070, 0.1147, 0.1147, 0.0069}. Finally,
based on ̂FDAP, we get

diag
(
̂FDAP

)
= (0.1609, 0.2853, 0.2646, 0.2700, 0.0000, 0.4050)

leading to

𝜇e,FDAP = (0.3255, 0.4457, 0.1436, 0.1858, 0.0000, 0.0449)′ (4.3)

(𝜎e,FDAP,ii, i = 1,… , 6) = (0.2195, 0.2471, 0.1230, 0.1513, 0.0000, 0.0429). (4.4)

In comparison to the analysis of the whole data sample, there is only a pronounced change in the estimated mean
vectors, when restricting the analysis to the FDAP. In particular, 𝜇X,FDAP is estimated about twice as large as 𝜇X .

In contrast, the estimation of the coefficient matrix leading to ̂ and ̂FDAP turns out to be very similar.

5. CONCLUSION

We consider vector-valued extensions of gbAR processes introduced by Jentsch and Reichmann (2019) to model
multi-variate binary time series data with potentially negative model parameters. We define generalized binary
vector AR (gbVAR) models of order p ∈ ℕ and provide a full description of the gbVAR model class. We
derive stochastic properties of gbVAR processes including formulae for the mean vector, stationarity conditions,
moving-average representations, geometric mixing properties, Yule–Walker equations and transition probabili-
ties. Possible identification issues and parameter estimation in gbVAR models based on Yule–Walker estimators
are discussed.

In a simulation study, the estimation performance of Yule–Walker estimators and related estimators is analyzed
in several regards indicating good finite sample properties. In a real data application, we fit gbVAR processes to
binarized PM10 data from Stuttgart, Germany. The estimated gbVAR(1) model contains positive as well as negative
coefficients to capture the serial dependence in the data and proves to yield accurate predictions.
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