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SIMULTANEOUS INFERENCE FOR AUTOCOVARIANCES BASED ON
AUTOREGRESSIVE SIEVE BOOTSTRAP
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aTechnische Universität Braunschweig, Braunschweig, Germany

In this article, maximum deviations of sample autocovariances and autocorrelations from their theoretical counterparts over
an increasing set of lags are considered. The asymptotic distribution of such statistics for physically dependent stationary time
series, which is of Gumbel type, only depends on second-order properties of the underlying time series. Since the autoregressive
sieve bootstrap is able to mimic the second-order structure asymptotically correctly it is an obvious problem whether the
autoregressive (AR) sieve bootstrap, which has been shown to work for a number of relevant statistics in time series analysis,
asymptotically works for maximum deviations of autocovariances and autocorrelations as well. This article shows that the
question can be answered positively. Moreover, potential applications including spectral density estimation and an investigation
of finite sample properties of the AR-sieve bootstrap proposal by simulation are given.
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1. INTRODUCTION

For stationary time series (Xt, t ∈ ℤ), where ℤ denotes the set of all integers, the autocovariance function
𝛾(h) = Cov(Xt+h,Xt), h = 0, 1,… , and the autocorrelation function 𝜚(h) = 𝛾(h)∕𝛾(0) are important characteristics.
Obvious estimates of 𝛾(h) and 𝜚(h) are their sample versions

𝛾̂(h) = 1
n

n−h∑
t=1

Xt+h Xt and 𝜚(h) = 𝛾̂(h)
𝛾̂(0)

, h = 0, 1,… , n − 1, (1)

where we assume for the sake of simplicity EXt = 0. Otherwise a centering with the sample mean of the observed
stretch X1,X2,… ,Xn of the underlying time series has to be added. Plots of sample autocorrelations, so-called
correlograms, play an important role in time series analysis. Numerous statistical procedures have been developed
for testing for serial correlation. A prominent example is the Box–Pierce portmanteau test, which uses QK =
n
∑K

h=1 𝜚(h)
2 as a test statistic. It is not surprising that a lot of asymptotical theory has been developed around

sample autocovariances and autocorrelations.
When investigating and proving properties of statistics in time series analysis important ingredients are the

assumptions made for the underlying model. The assumption of a linear time series, that is

Xt =
∞∑

j=0

bj𝜀t−j, t ∈ ℤ, (2)
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for absolutely summable coefficients (bj) and i.i.d. random variables (𝜀t) with mean zero and finite variance, serves
for many results as a comfortable assumption, see for example the monograph Brockwell and Davis (1991). More
flexible assumptions are mixing conditions (cf. Rosenblatt, 1961, 1972; see also Rosenblatt, 1985) or weak depen-
dence assumptions in the sense of Doukhan and Louhichi (1999). For a comprehensive review of weak dependence
we refer to Dedecker et al. (2007). Wu (2005) introduced the concept of physical dependence, which has proven
to be a powerful tool for the derivation of far-reaching asymptotic theory for time series. Wu assumes that (Xt) is
a (strictly) stationary time series of the form

Xt = g(ut, ut−1,…), (3)

for i.i.d. random variables (ut) and an arbitrary measurable function g. Such time series are denoted as Bernoulli
shifts. An essential assumption now consists in quantifying the impact of a single innovation at some fixed time
point on future values of the time series. For this let (u′

t , t ∈ ℤ) be an i.i.d. copy of (ut, t ∈ ℤ) and let X′
t ∶=

g(ut,… , u1, u
′
0, u−1, u−2,…).

If ‖Xt‖q ∶=
(

E|Xt|q)1∕q

< ∞ for some q > 0, the physical dependence measure is defined as

𝛿q(t) ∶= ‖Xt − X′
t‖q. (4)

Asymptotical results then are typically deduced under assumptions on the rate of decay of 𝛿q(t) as t → ∞. See
for example Wu (2011). For linear time series (Xt) according to (2) the representation (3) obviously holds with
(ut) = (𝜀t). It is not complicated to see that 𝛿q(t) = |bt| ‖𝜀1 − 𝜀′1‖q so that for linear time series assumptions on the
decay of 𝛿q(t) one-to-one carry over to assumptions on the decay of the coefficients bt.

Under all mentioned dependence assumptions on the underlying time series for sample autocovariances and
sample autocorrelations as well asymptotic normality can be shown. Of particular interest are uniform con-
fidence bands for sample autocovariances and sample autocorrelations. For this purpose asymptotic theory
for √

n max
1≤h≤dn

|𝛾̂(h) − 𝛾(h)| (5)

is necessary. First results concerning the asymptotic behavior of (5) have been deduced by Hannan and co-authors
(see Hannan, 1974; An et al., 1982 and also Hannan and Deistler, 1988). These papers allow dn to grow logarith-
mically. Under the same assumption of logarithmically growing dn Jirak (2011) proved under the assumption of
a linear time series for a properly centered and rescaled version of (5) weak convergence towards a Gumbel dis-
tribution with cumulative distribution function exp(− exp(−x)). Xiao and Wu (2014), under much more general
physical dependence assumptions, extended this result considerably in allowing the lags to grow at a rate dn ∼ n𝜂

for 𝜂 ∈ (0, 1) fulfilling some further restrictions depending on the physical dependence assumption. The result of
Xiao and Wu (2014) reads as follows:

a−1
n

(
𝜎
−1∕2
0 max

1≤h≤dn

√
n|𝛾̂(h) − 𝛾(h)| − bn

) 
−→ Gumbel, (6)

where 𝜎0 =
∑

h∈ℤ 𝛾
2(h) and an and bn are defined in the beginning of Section 2, where also precise assumptions

for such a result are stated.
The weak convergence results of Xiao and Wu (2014) and Jirak (2011) concerning the maximum deviation of

sample autocovariances are extreme value results. It is often the case that satisfactory precision in approximating
the finite sample distribution of extremes by asymptotic distributions, which is Gumbel in our case, typically
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536 A. BRAUMANN, J.-P. KREISS AND M. MEYER

is reached for large sample sizes only. That is why Xiao and Wu (2014) suggested to apply a block-of-blocks
bootstrap as a successful competitor to the asymptotic Gumbel distribution.

In this article, we propose another well-known bootstrap procedure for time series, the so-called autoregressive
(AR) sieve bootstrap (cf. Kreiss, 1992; Bühlmann, 1997) and show its asymptotic validity for maximum deviation
of sample autocovariances and autocorrelations. The AR-sieve bootstrap, which generates a pseudo time series
based on an AR fit to the observations, is a well-established and investigated resampling procedure. Kreiss (1992)
proved asymptotic validity for autocovariances and autocorrelations at fixed lags among other things. Paparoditis
and Streitberg (1992) investigated asymptotic validity of the AR-sieve bootstrap for inference of high order auto-
correlations. Bühlmann (1997) refines the AR-sieve bootstrap according to the rate of decay of AR coefficients and
generalizes its asymptotic validity to so-called general mean statistics. The paper Kreiss et al. (2011) makes the
abilities of the AR-sieve bootstrap very clear. To do so the authors defined a companion process, which indeed is
of AR type with i.i.d. innovations, and showed for the same class of statistics as has been considered in Bühlmann
(1997) that the AR-sieve bootstrap mimics the behavior of this companion process. Since the companion pro-
cess always has the same second-order structure (e.g., the same autocovariance structure) as the underlying time
series, which by far has neither to be an AR time series with i.i.d. innovations nor a linear time series, the paper
Kreiss et al. (2011) within the class of generalized means culminates in a check criterion for the asymptotic valid-
ity of the AR-sieve bootstrap. Namely, the AR-sieve bootstrap for generalized means asymptotically works if and
only if the asymptotic distribution of the statistic of interest solely depends on second-order properties of the
underlying time series. This fact together with the asymptotic distribution result (6) for maximum deviations of
sample autocovariances begs the question, whether or not AR-sieve bootstrap works for this statistic as well. This
question is answered positively is in this article. In addition we will indicate that the proposed bootstrap procedure
is also suitable for simultaneous confidence intervals for the spectral density based on well-known lag window
spectral density estimators.

It is worth mentioning that for (6) to hold it is important that the maximum is taken over an increasing number
dn of lags. If the maximum is only taken over a fixed number of lags, K say, then the asymptotic distribution
would be completely different. Since asymptotic normality of a vector of fixed length K of sample autocovariances
(and autocorrelations as well) can be shown we obtain from continuous mapping theorem that the maximum
deviation of sample autocovariances for a fixed number of lags weakly converges to the maximum of a dependent
Gaussian vector of fixed length K. For general stationary time series the asymptotic normal distribution of sample
autocovariances depends on the fourth order cumulant structure of the underlying time series and this in general
goes far beyond its second-order structure (see e.g., Rosenblatt, 1985, Chapter III, Corollary 2, for integrated
periodograms for which sample autocovariances are special cases). By Kreiss et al. (2011) this immediately implies
that AR-sieve bootstrap cannot work. However, for rather general stationary time series but still for the maximum
deviation over a fixed number of lags, the hybrid periodogram bootstrap (HPB) suggested in Meyer et al. (2020)
leads to an asymptotically valid resampling procedure. This procedure is valid even for fixed length vectors of
autocovariances and autocorrelations as can be seen from Meyer and Paparaoditis (2021+). Nevertheless, validity
of the HPB method has been shown only for the case of fixed dn, and an extension to the case of an increasing
number of lags seems not immediate. We therefore propose the use of the AR-sieve bootstrap in this scenario. The
latter has the additional advantage of being rather easy to implement.

If one restricts to the class of linear time series (cf. (2)) then it is well known that the asymptotic distribution
of sample autocorrelation only depends on second-order properties of the underlying model (this fact is known as
Bartlett’s formula, cf. Brockwell and Davis, 1991, Theorem 7.2.1). As a consequence AR-sieve bootstrap works
within the class of linear time series in approximating the maximum deviation (over a fixed number of lags) of
sample autocorrelations.

The article is organized as follows. Section 2 contains all necessary model assumptions and describes the
proposed AR-sieve bootstrap procedure to approximate the distribution of maximum deviations of sample autoco-
variances and autocorrelations. It also states and proves the consistency result for the proposed bootstrap procedure.
Section 3 sheds some light on finite sample size behavior of the proposed procedure based on simulations. Some
technical proofs are deferred to Section 4.

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 42: 534–553 (2021)
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AR BOOTSTRAP FOR MAX-DEVIATION OF AUTOCOVARIANCES 537

2. MODEL ASSUMPTIONS AND BOOTSTRAP PROCEDURE

We focus on stationary time series (Xt, t ∈ ℤ) generated according to the causal model

Xt = g(ut, ut−1,…) , (7)

and impose the following assumptions.

Assumption 1. For the time series given in (7) it holds

(a) (ut) is i.i.d. and g is a measurable function,
(b) EXt = 0, E|Xt|q < ∞ for some q > 4.

For some 𝛼 ≥ 𝛼′ > 0,

(c)
∑∞

t=m 𝛿q(t) = (m−𝛼),
(d) Δq(m) =

∑∞
t=0 min

{
(q − 1)1∕2

(∑∞
i=m 𝛿q(i)2

)1∕2
, 𝛿q(t)

}
= (m−𝛼′ ).

Under Assumption 1 it is known from Xiao and Wu (2014), Theorem 1, that the properly scaled statistic

Tn = a−1
n

(
𝜎
−1∕2
0 max

1≤h≤dn

√
n|𝛾̂(h) − 𝛾(h)| − bn

)
(8)

has an asymptotic standard Gumbel distribution, that is,

P
(
Tn ≤ x

)
−→ exp(− exp(−x)), ∀ x ∈ ℝ . (9)

Here a−1
n =

√
2 log(2dn), bn =

√
2 log(2dn) −

log log(2dn)+log(4𝜋)√
8 log(2dn)

, 𝜎0 =
∑

h∈ℤ 𝛾
2(h) and the maximum is taken over an

increasing range of lags with dn → ∞, dn = (n𝜂), 0 < 𝜂 < 1∕2 and

𝜂 < 𝛼
q

2
, 𝜂 min{2(q − 2 − 𝛼q), (1 − 2𝛼′)q} < q − 4. (10)

Observe that Xiao and Wu (2014) allow in their Theorem 1 that dn may grow almost as fast as sample size n. We
further restrict the rate of dn since we use the centering 𝛾(h) instead of E 𝛾̂(h) =

(
1 − h

n

)
𝛾(h).

Since the asymptotic distribution of Tn given in (9) is completely determined by the probabilistic behavior of
𝛾̂(h) for large lags, cf. the proof of Theorem 1 in Xiao and Wu (2014), Lemma 4, and (4.3), one can show that there
is no difference in the asymptotic behavior of Tn (up to a factor of 𝛾(0)) if we replace sample autocovariances by
sample autocorrelations (see also Xiao and Wu, 2014, Corollary 1). That is we have as a consequence of (9) for
all x ∈ ℝ

P

(
a−1

n

(
𝜎
−1∕2
0 𝛾(0) max

1≤h≤dn

√
n|𝜚(h) − 𝜚(h)| − bn

) ≤ x

)
→ exp(− exp(−x)). (11)

We further impose the following conditions on the second-order structure of the underlying process.

Assumption 2. (Xt, t ∈ ℤ) is purely non-deterministic with autocovariance function 𝛾 fulfilling∑
h∈ℤ

(1 + |h|)r|𝛾(h)| < ∞

for some r ≥ 0 to be specified later. The spectral density f is therefore continuous and is further assumed to be
uniformly bounded away from zero, that is, f (𝜆) ≥ cf > 0 for all frequencies 𝜆.

J. Time Ser. Anal. 42: 534–553 (2021) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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538 A. BRAUMANN, J.-P. KREISS AND M. MEYER

To approximate the finite sample distribution of (8) we propose a version of the AR-sieve bootstrap. Before we
precisely state the bootstrap proposal we will briefly discuss why an AR scheme is suitable to approximate certain
features of the underlying time series. For a detailed presentation including proofs for the following statements
we refer to Kreiss et al. (2011) or to the forthcoming monograph Kreiss and Paparoditis (2021), Section 2.3.1
(especially Theorems 2.14, 2.19, 2.21, and Corollary 2.15).

The success of the suggested application of the AR-sieve bootstrap is based on the fact that the underlying
process under Assumptions 1 and 2 possesses an infinite order Wold-type AR representation of the form

Xt =
∞∑

k=1

akXt−k + et , (12)

for an uncorrelated (and in general not i.i.d.) white noise process (et, t ∈ ℤ).
The power series A(z) ∶= 1 −

∑∞
k=1 akzk is well defined and has no zeroes within the closed unit disk {z ∈ ℂ ∶|z| ≤ 1} and therefore is always invertible with B(z) ∶= 1∕A(z) = 1 +

∑∞
j=1 bjz

j for all |z| ≤ 1.
Inversion of (12) leads to the well-known (moving average [MA]) Wold representation for purely

non-deterministic, stationary and zero-mean time series

Xt = et +
∞∑

j=1

bjet−j. (13)

The summability condition on the autocovariances from Assumption 2 carries over to the AR and MA coefficients,
namely,

∞∑
k=1

(1 + |k|)r|ak| < ∞, and
∞∑

j=1

(1 + |j|)r|bj| < ∞ , (14)

cf. Theorem 1.1 in Cheng and Pourahmadi (1993) or Theorem 3.8.4 in Brillinger (1981) and also pages 139/140
in Baxter (1962). The AR coefficients ak can be estimated from fitted finite-order AR models to the underlying
data. We denote the parameter estimates of a pth order AR fit by â(p) = (â1(p),… , âp(p))T . Typical choices for
these estimators are Yule–Walker or least squares estimates but we do not have to specify this for our bootstrap
procedure. The estimate â(p) is usually compared to the best theoretical fit of an AR model to the underlying time
series. The best fit of a pth order AR model in the L2-sense is given by the L2-projection of Xt onto the finite past
span{Xt−1,… ,Xt−p}, p ∈ ℕ, that is, by

(
a1(p),… , ap(p)

)
∶= argminc1,…,cp

E

(
Xt −

p∑
k=1

ckXt−k

)2

. (15)

The quantities a1(p),… , ap(p) are called the finite predictor coefficients, and we write a(p) = (a1(p),… , ap(p))T .
Solving (15) leads to the well-known Yule–Walker equations

Γ(p)
(

a1(p),… , ap(p)
)T

=
(
𝛾(1),… , 𝛾(p)

)T

, (16)

where Γ(p) = (𝛾(j−k))j,k=1,…,p. We further write 𝛾(p) ∶= (𝛾(1),… , 𝛾(p))T for the right-hand side of (16). The finite
predictors in turn converge by Baxter’s inequality with p → ∞ towards the AR coefficients ak. More precisely,
there exists a constant K < ∞ such that we have under Assumptions 1 and 2 for all s ∈ ℕ0 with s ≤ r and

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 42: 534–553 (2021)
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for all p ∈ ℕ:

p∑
k=1

(1 + k)s|ak(p) − ak| ≤ K
∞∑

k=p+1

(1 + k)s|ak| . (17)

The right-hand side converges to zero as p tends to infinity.
For our AR-sieve bootstrap scheme we will require p = p(n) with p(n) → ∞ as n → ∞. We impose the

following assumption on the rate with which the âk(p) approach the finite predictor coefficients ak(p).

Assumption 3. It holds p = p(n) with p(n) → ∞ and

max
1≤k≤p(n)

|âk(p(n)) − ak(p(n))| = P

(√
log n

n

)
, (18)

as n → ∞.

If one uses the Yule–Walker estimators for â(p), then (18) holds true, as the following result shows. However,
since these specific estimators are otherwise not required for our bootstrap scheme we have formulated (18) as an
assumption.

Lemma 1. If p(n) → ∞ with p(n) = (na) for a < 1∕2, and if â(p) is given by the Yule–Walker estimator

Γ̂(p)−1𝛾̂(p), where Γ̂(p) and 𝛾̂(p) are defined as the corresponding quantities in (16) but with 𝛾(⋅) replaced by 𝛾̂(⋅),
then assertion (18) holds true.

Now the AR-sieve bootstrap procedure can be formulated.

Bootstrap Proposal. (AR-sieve bootstrap)

Step 1: Select an order p = p(n) ∈ ℕ, p ≪ n and fit a pth order AR model to X1,X2,… ,Xn. Denote by â(p) =
(âk(p), k = 1, 2,… , p) parameter estimates which fulfill Assumption 3.

Step 2: Let (v∗t ) be a sequence of i.i.d. random variables with zero mean, unit variance, and finite fourth moment
and denote by 𝜎2(p) the sample variance of the residuals ẽt(p) = Xt −

∑p
j=1 âj(p)Xt−j, t = p+1, p+2,… , n,

of the AR fit (or some other consistent estimator of Var(et) in (12)).
Then define bootstrap innovations e∗t ∶= 𝜎(p) ⋅ v∗t , that is as i.i.d. white noise with variance 𝜎2(p)

and finite fourth order moment. Let (X∗
1 ,X

∗
2 ,… ,X∗

n ) be a set of pseudo observations from the time series
(X∗

t , t ∈ ℤ) where

X∗
t =

p∑
j=1

âj(p)X∗
t−j + e∗t . (19)

Step 3: Let T∗
n = Tn(X∗

1 ,X
∗
2 ,… ,X∗

n ) be the same estimator as Tn (cf. (8)) based on the pseudo-time series
X∗

1 ,X
∗
2 ,… ,X∗

n with 𝛾(h) replaced by 𝛾∗(h) = E∗X∗
t+h X∗

t , h ≥ 1, and 𝜎0 replaced by 𝜎∗
0 =

∑
h∈ℤ(𝛾(h)∗)2.

That is

T∗
n = a−1

n

(
(𝜎∗

0 )
−1∕2 max

1≤h≤dn

√
n|𝛾̂∗(h) − 𝛾∗(h)| − bn

)
, (20)

where 𝛾̂∗(h) = 1

n

∑n−h
t=1 X∗

t+h X∗
t , h ≥ 0 .

The AR-sieve bootstrap approximation of (Tn) finally is given by ∗(T∗
n ).

J. Time Ser. Anal. 42: 534–553 (2021) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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Remark 1. The classical AR-sieve bootstrap as presented in Kreiss et al. (2011) uses in (19) innovations (e∗t )
drawn with replacement from the empirical distribution of centered residuals êt(p) = ẽt(p) − e, where e = (n −
p)−1 ∑n

t=p+1 ẽt(p).
In principle we could do the same here. As can be seen from the proof of Theorem 1 in this case we would

need some slow but still polynomial rate of convergence for the Mallows distance d2(Fn,F). Here Fn denotes the
empirical distribution of n innovations e1,… , en from the white noise of the Wold-type AR representation (12)
and F denotes the true marginal cumulative distribution function of e1.

The distance dr for r > 0 is defined according to

dr(F,G) = inf
(
E|X − Y|r)1∕r

, (21)

where the infimum is over all possible two-dimensional distributions (X,Y) with X ∼ F and Y ∼ G, but arbitrary
dependence between X and Y , cf. Bickel and Freedman (1981), beginning of Section 8. Especially the following
identity applies

dr(F,G) ∶=
(
∫

1

0
|F−1(u) − G−1(u)|r du

)1∕r

. (22)

Moreover, pointwise convergence of Fn towards F together with consistency of second-order sample moments
(which both could be ensured under rather mild additional assumptions) is sufficient to guarantee d2(Fn,F) → 0,
cf. Bickel and Freedman (1981) Lemma 8.3. However, this result does not give the needed rate of convergence.

Much stronger assumptions, like i.i.d. structure or some kind of mixing, on the white noise (et) in (12) would
lead to desired convergence rates of d2(Fn,F). Under the restrictive assumption of i.i.d. innovations in (12) we
even obtain a

√
n-rate convergence of Mallows distance, cf. Samworth and Johnson (2005), Theorem 2.4. For the

i.i.d. case and a lower but still sufficient rate of convergence see Horowitz and Karandikar (1994). Dedecker and
Merlevède (2017) give convergence rates of d2(Fn,F) for a class of 𝛼-mixing innovations (et), while Fournier and
Guillin (2015) assumed 𝜌-mixing for their result.

For a general discussion of Mallows distance (also known as Wasserstein distance) see Panaretos and Zemel
(2019). Be that as it may, mixing –or even more i.i.d. –assumptions on the innovations in the Wold-type AR repre-
sentation (12) of the underlying time series (Xt) both are rather restrictive. For example, assuming an i.i.d. structure
for the innovations (et) in (12) would imply that the underlying time series is linear, which would mean a massive
restriction of the basic assumption (7) for the underlying time series. Since we want to present results which go
(far) beyond linear time series, we decided to define the innovations (e∗t ) in the AR-sieve bootstrap procedure in
the described simpler way. In Section 3 we report on simulation results for both choices of distributions for the
bootstrap innovations. At least for the considered models only slight differences are observed.

Our main result reads as follows:

Theorem 1. Let (Xt, t ∈ ℤ) be a process fulfilling Assumption 1(a)–(d) and Assumption 2 with r > 1∕2, and
furthermore, |||||Ee2

1 −
1
n

n∑
t=1

e2
t

||||| = P(n−𝛽), (23)

for some 𝛽 > 0. For the maximum lag dn we assume that dn = (n𝜂), 0 < 𝜂 < 1∕2, 𝜂 fulfilling the conditions
given in (10) as well as the conditions

𝜂 < 2ar, 2a <
1 − 𝜂

2
, 𝜂 < 𝛽, (24)

where a controls the rate of p(n), that is, p(n) ∼ na.
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Then, for T∗
n defined in (20) and Tn defined in (8), it holds

dK

(∗(T∗
n

)
,(Tn

))
→ 0 in probability, (25)

where dK(P,Q) = supx |P(−∞, x] − Q(−∞, x]| denotes the Kolmogorov distance of two probability measures P
and Q.

The conditions (23) and (24) are discussed in Remark 2. A detailed proof of this theorem is given in Section 4,
but we want to point out the main idea of the proof at this point. The AR-sieve bootstrap time series (X∗

t ) defined
in (19) asymptotically approximates the so-called companion process, which is an imaginary time series given
through

X̃t =
∞∑

k=1

akX̃t−k + 𝜀t, t ∈ ℤ, (26)

where the (ak) are the coefficients of the Wold-type AR representation of the underlying time series given in (12)
and (𝜀t) denotes an i.i.d. white noise with 𝜀t =

√
Var e1 ⋅ v∗t , where the i.i.d. sequence (v∗t ) is defined in Step 2

of the Bootstrap Proposal. Here (et) is the uncorrelated white noise of the AR representation (12). Be aware that
the decisive difference between the innovation sequences (𝜀t) and (et) is that the 𝜀t ’s are i.i.d. while the et’s are in
general only uncorrelated. This important difference makes the companion process (X̃t) to be a linear time series
which by far is not true for the underlying time series (Xt). However, the autocovariance structure of the underly-
ing time series (Xt) and of its companion (X̃t) is identical. This last property of (X̃t) together with its simple linear
structure suffices to ensure that the maximum deviation of sample autocovariances from the companion process
have the same limit distribution as the underlying statistic Tn itself (cf. (48)). Finally, to show that AR-sieve boot-
strap asymptotically works it suffices to prove that the AR-sieve bootstrap time series approximates the companion
process well enough to obtain that the distance between the distributions ∗(T∗

n ) and its companion counterpart
converges to zero (cf. Lemma 2).

Since in applications usually sample autocorrelations instead of autocovariances are considered the following
corollary to Theorem 1 is relevant.

Corollary 1. Under the same assumption as in Theorem 1 we obtain for

Rn ∶= a−1
n

(
𝜎
−1∕2
0 𝛾(0) max

1≤h≤dn

√
n|𝜚(h) − 𝜚(h)| − bn

)
(27)

and its AR-sieve bootstrap counterpart R∗
n, in which 𝜚(h) is replaced by 𝜚∗(h) = 𝛾̂∗(h)

𝛾̂∗(0)
, cf. AR-Sieve Bootstrap

Proposal,

dK

(∗(R∗
n

)
,(Rn

))
→ 0 in probability, (28)

that is AR-sieve bootstrap works for maximum deviations of sample autocorrelations as well.

Remark 2. A more basic assumption which guarantees (23) with 𝛽 = 1∕2 would be to assume that the so-called
fourth order cumulants of the uncorrelated innovations (et) in (12) are absolutely summable. More exactly this
means for

cum(ereseteu) = E(erereteu) − E(eres)E(eteu) − E(eret)E(eseu) − E(ereu)E(eset)

that
∑

h1 ,h2,h3
|cum(e0, eh1

, eh2
, eh3

)| < ∞.
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If the underlying time series (Xt) would be assumed to be 𝛼-mixing with suitably summable mixing coefficients
we then obtain absolute summability of the cumulants of (Xt), which by means of the AR representation (12)
carries over to absolute summability of the cumulants of (et).

Note that a strong mixing property of (Xt) does not automatically transfer to (et).
The conditions given in (24) relate two basic properties of the process (Xt), namely r which represents the

‘smoothness’ of the spectral density of (Xt) and the rate 𝛽 from (23) to the rate of the maximum lag dn. For example,
given that 𝛽 = 1∕2, for r = 1 the maximum lag dn may grow with a rate close to n1∕3, while for r = 2 it may grow
with a rate close to n1∕2. Moreover the inequalities in (24) give sufficient lower and upper bounds for the rate of
the AR order p(n).

Remark 3. It is worth mentioning, that if we restrict for the underlying data to linear time series (2) with
i.i.d. innovations, then it follows from Kreiss et al. (2011), Example 3.3, that the proposed AR-sieve bootstrap
works for fixed-length vectors of sample autocorrelations. This implies that in the case of linear time series the
proposed AR-sieve bootstrap procedure also works if dn, that is the number of lags considered for the maximum
deviation, does not grow but stays fixed. So for linear time series the AR-sieve bootstrap covers a broader situation
as is described in Corollary 1.

Application 1. One application of Corollary 1 are simultaneous confidence bands for the autocorrelation func-
tion. If we denote by q∗

n,1−𝛼 the (1− 𝛼)-quantile of the bootstrap distribution ∗
(
R∗

n

)
, which easily can be obtained

from simulations, then

𝜚(h) ±
an q∗

n,1−𝛼 + bn√
n𝛾̂(0) 𝜎−1∕2

0

, h = 1, 2,… , dn, (29)

is an asymptotically 1− 𝛼 confidence band for the autocorrelation function 𝜚(⋅). Here 𝜎0 is an arbitrary consistent
estimator for 𝜎0.

Applications of the AR-sieve bootstrap to testing problems are considered in Section 3.

Application 2. Another application of the bootstrap proposal are asymptotically 1− 𝛼 simultaneous confidence
intervals for the spectral density f of the underlying time series. If one is interested in statistical inference for
the entire sequence of autocovariances then one may switch to the frequency domain and may prefer tests or
confidence bands for the spectral density. To elaborate, consider the following well-known class of lag window
spectral density estimators

f̂ (𝜆) = 1
2𝜋

Bn∑
h=−Bn

𝛾̂(h)w
(

h
Bn

)
e−ih𝜆, (30)

where w ∶ [−1, 1] → [0,∞),w(0) = 1, denotes a continuous and symmetric weight function and Bn is the
truncation point with Bn → ∞ as n → ∞. To avoid additional bias considerations assume that n∕B5

n → 0 as
n → ∞. From Theorems 3–5 in Liu and Wu (2010) we obtain under physical dependence assumptions that

Sn ∶= 𝛼−1
n

[√
n
Bn

‖w‖−1
2 max

j=0,1,…,Bn

||f̂ (𝜆j,n) − f (𝜆j,n)||
f (𝜆j,n)

− 𝛽n

]
(31)

converges weakly to the standard Gumbel distribution. Here 𝛼−1
n =

√
2 log(2Bn), 𝛽n =

√
2 log(2Bn) −

log log(2Bn)+log(4𝜋)√
8 log(2Bn)

, 𝜆j,n =
𝜋⋅j

Bn
, j = 0, 1, 2,… ,Bn, and ‖w‖2

2 = ∫ 1
−1 w2(u) du.

For the special case of linear time series of the form (2) a similar result has been obtained in Woodroofe and
Van Ness (1967) (cf. Theorem 2.3).
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It should be mentioned that in Liu and Wu (2010) the weak convergence of (31) is formulated for the square of the
maximum deviation of the lag window estimator and therefore appears slightly different compared to Woodroofe
and Van Ness (1967). But it can be directly shown that both statements are equivalent.

However, our method of proof for Theorem 1 yields that for Bn ∼ n𝜂 , 𝜂 > 1∕5, 𝛽 = 1∕2, and properly chosen
further rates a and r the following result is valid

dK(S∗
n, Sn) → 0 in probability, (32)

where the bootstrap counterpart S∗
n of Sn is defined as

S∗
n ∶= 𝛼−1

n

[√
n
Bn

‖w‖−1
2 max

j=0,1,…,Bn

||f̂ ∗(𝜆j,n) − f ∗(𝜆j,n)||
f ∗(𝜆j,n)

− 𝛽n

]
, (33)

with f ∗(𝜆) = 1

2𝜋

∑∞
h=−∞ 𝛾∗(h)e−ih𝜆 and f̂ ∗(𝜆) is defined as in (30) with 𝛾̂∗(h) replacing 𝛾̂(h). We sketch the argument

leading to (32) in Section 4 in Remark 6.
If we denote the (1 − 𝛼)-quantile of the bootstrap distribution ∗(S∗

n) by Q∗
n,1−𝛼 then[

f̂ (𝜆j,n)
1

1 + c∗
, f̂ (𝜆j,n)

1
1 − c∗

]
, j = 0, 1,… ,Bn, (34)

with c∗ =
√

Bn

n
‖w‖2(𝛼nQ∗

n,1−𝛼 + 𝛽n), is an asymptotically 1 − 𝛼 simultaneous confidence interval for f (𝜆j,n), j =
0, 1,… ,Bn.

3. SIMULATIONS

We give simulation evidence that the AR-sieve bootstrap works well when testing the hypothesis H0 ∶ 𝜚(h) =
𝜚0

h, h = 1,… , dn. Here dn grows with the number of observations n and 𝜚0
h are given autocorrelations. We know

from Corollary 1 that for the sample autocorrelations not centered with the sample mean the AR-sieve bootstrap
is asymptotically valid. In this section we consider a scaled version of the test statistic

Mn = max
1≤h≤dn

√
n|𝜚̆(h) − 𝜚0

h|, (35)

where 𝜚̆(h) = 𝛾̆(h)∕𝛾̆(0), 𝛾̆(h) = 1

n

∑n−h
t=1 (Xt − X)(Xt+h − X), X = 1

n

∑n
t=1 Xt.

A bootstrap test for H0 is based on the sample X1,… ,Xn and uses the test statistic M∗
n = max1≤h≤dn

√
n|𝜚̆∗(h)−𝜚∗h|,

𝜚∗h =
∑∞

j=0 b̂n,j+hb̂n,j∕
∑∞

j=0 b̂2
n,j.

In the reported simulations we focus on the difference between the true and nominal rejection probability and
show that the bootstrap test is overall less conservative than the test using asymptotic theory.

Consider the following linear and nonlinear time series:

Xt = ut, (36a)

Xt = ut + but−1, (36b)

Xt = aXt−1 + ut, (36c)

Xt = (a + but)Xt−1 + ut, (36d)

Xt =
√

a + bX2
t−1 ⋅ ut, (36e)

Xt = a sin(Xt−1) + ut (36f)
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ut ∼  (0, 1) and 𝔼utus = 0 for s ≠ t. Note that models (36a), (36b), and (36c) are linear time series in the strict
sense, that is, with i.i.d. innovations in its Wold representations since the ut are independent. The parameters for
the models above are given by b = 0.5 for (36b), a = 0.5 for (36c), a = b = 0.25, 0.4 for (36d), a = b = 0.25 for
(36e), a = 0.6 for (36f).

For each time series (Xt) we generate 4000 times data X1,… ,Xn, n = 600, 1800, and perform the asymptotic test

by comparing Mn with
(∑tn

k=−tn
𝜚̆(k)2

)1∕2
(an q1−𝛼+bn), where q1−𝛼 is the 1−𝛼 quantile of the Gumbel distribution.

For the bootstrap tests we use the AR-sieve bootstrap. Option A is implemented with bootstrap innovations e∗t =
𝜎̃(p) ⋅ v∗t , v∗t ∼  (0, 1), while for option B we obtained bootstrap innovations from drawing with replacement
from the empirical distribution of centered residuals of the AR fit as is described in Remark 1. Note that the
distribution of v∗t can be freely chosen under the conditions of the bootstrap proposal for option A. In fact the
simulation results reported below do not change if we use for example a simple two-point distribution for v∗t , that
is, P(v∗t = −1) = P(v∗t = 1) = 1∕2.

We reject H0 if the bootstrap p-value #(M∗
n > Mn)∕B, B = 1000 is smaller than a given 𝛼 ∈ (0, 1).

The following tables show the empirical rejection rates for the different models. We set dn = ⌊log n⌋, ⌊n1∕3⌋,
25, ⌊n1∕2⌋, tn = min(dn, n

1∕3). The simulation setting is close to the setting in Xiao and Wu (2014) to compare our
results with their simulation results.

It can be seen from Tables I and II that AR-sieve bootstrap works rather well (even for a sample size of n = 600)
for the time series models (36a)–(36c), which all are linear time series and therefore advantageous for the AR-sieve
bootstrap. For the nonlinear time series models (36d)–(36f) the behavior of the proposed AR-sieve bootstrap is
mixed. While for model (36f) and the ARCH model (36e) the behavior of the AR-sieve bootstrap is quite satisfying
and reasonable respectively, the finite sample behavior for the bilinear time series (36d) depends on the selection
of parameters. For a = b = 0.25 (BILIN) bootstrap outperforms the asymptotic situation, whereas the choice
a = b = 0.4 (BILIN2) leads to much worse results also compared to the simulation results presented in Xiao and
Wu (2014) for the block of blocks bootstrap.

It is worth mentioning that for BILIN2, Xt = aXt−1+(1+bXt−1)ut, a simple adaptation of the AR-sieve bootstrap
improves finite sample results substantially. In particular, if we choose e∗t to capture conditional heteroscedasticity,
the empirical rejection rates for BILIN2 change to 2.0(𝛼 = 1%), 8.0(𝛼 = 5%), 14.4(𝛼 = 10%) if dn = 6 and to
2.0(𝛼 = 1%), 6.6(𝛼 = 5%), 12.4(𝛼 = 10%) if dn = 24, for n = 600. Similar improvements can be seen for dn =
8, 25. This adapted AR-sieve bootstrap method computes e∗t = ŝ(X∗

t−1)⋅v
∗
t , ŝ2(X∗

t−1) =
∑n

s=p+1 Kb((X∗
t−1−Xs−1)∕b) ê2

t ,
with Kb being some kernel function, to capture conditional heteroscedasticity. We have chosen for Kb the biweight
kernel with b = 0.75.

One of the reasons for the good finite sample performance of the proposed bootstrap for linear time series models
may be that the AR-sieve bootstrap also asymptotically works if dn stays fixed (see Remark 3). Another reason
maybe that the rate of convergence is of polynomial order (see Remark 4). This suggests that it may be worth
the effort to develop more sophisticated bootstrap methods that are able to correctly reproduce the distribution
of sample autocorrelations both for fixed and increasing number of lags h also for nonlinear time series. Such
bootstrap methods could be the block of blocks bootstrap applied in Xiao and Wu (2014) or the HPB suggested in
Meyer et al. (2020). Both have been shown to be valid for a fixed dn.

4. PROOFS

Proof of Lemma 1. First note that under the stated assumptions it holds

max
0≤h≤p(n)

√
n|𝛾̂(h) − E𝛾̂(h)| = P(

√
log n) ,

as can be seen from Xiao and Wu (2014), Theorem 1. Under p(n) = (na) for a ≤ 1∕2 one can obviously replace
the centering E𝛾̂(h) =

(
1 − h

n

)
𝛾(h) by 𝛾(h), which leads to an additional (1) term that is negligible compared
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Table I. Empirical rejection rates for n = 600 and nominal level 𝛼, both reported in percentages. For each model, the first line
gives rejection rates using Gumbel quantiles, the even lines give results using the AR-sieve bootstrap option A, the odd lines

(expect the first one) gives results using the AR-sieve bootstrap option B

n = 600 dn = 6 dn = 8 dn = 24 dn = 25

𝛼 1 5 10 1 5 10 1 5 10 1 5 10

WN 0.2 2.6 6.3 0.1 2.7 6.5 0.2 2.5 6.7 0.2 2.5 6.6
A p = 2 0.8 4.7 9.4 0.8 4.7 9.3 1.1 5.2 10.1 1.1 5.2 9.8
B 2 1.1 4.8 9.6 1.1 4.9 9.7 0.8 4.8 9.7 0.8 4.7 10.0
A p = 6 0.7 4.5 9.3 0.6 4.2 9.0 1.0 4.9 9.4 1.1 5.0 9.2
B 6 1.0 4.6 9.4 1.0 4.6 9.2 0.5 4.2 9.3 0.6 4.5 9.3

MA(0.5) 0.2 1.6 4.7 0.2 1.7 4.6 0.2 2.4 5.9 0.2 2.4 5.8
A p = 2 1.0 5.3 11.1 1.1 5.4 11.2 1.2 4.6 9.8 1.2 4.5 9.6
B 2 1.0 5.1 10.8 1.0 4.8 10.2 1.0 4.9 9.5 1.1 4.9 9.5
A p = 6 1.0 5.0 10.5 0.9 5.1 10.5 1.2 4.3 9.2 1.0 4.3 9.4
B 6 0.9 4.7 10.3 1.0 4.5 9.4 1.0 4.7 9.3 1.0 4.5 9.5

AR(0.5) 0.1 1.7 3.7 0.1 1.6 4.1 0.2 1.7 4.1 0.2 1.7 4.2
A p = 2 1.1 4.9 10.2 1.5 5.3 10.9 1.3 5.6 11.0 1.5 5.9 10.9
B 2 1.3 5.4 10.2 1.2 5.2 10.3 0.9 4.9 9.7 1.0 4.8 9.9
A p = 6 1.2 4.9 10.1 1.2 5.5 10.5 1.2 5.5 10.3 1.1 5.5 10.9
B 6 1.5 5.2 10.4 1.4 5.3 10.3 1.0 4.7 9.3 0.9 4.7 9.6

BILIN 0.3 2.9 7.2 0.3 2.8 6.9 0.2 2.6 6.4 0.2 2.8 6.5
A p = 2 1.8 7.2 12.9 1.5 6.8 12.6 0.9 5.0 10.7 0.9 5.1 10.8
B 2 1.8 6.2 11.8 1.8 5.9 11.5 1.2 5.2 10.3 1.4 5.4 10.4
A p = 6 1.4 6.9 12.7 1.2 6.5 12.2 0.8 4.9 9.9 0.8 4.7 9.7
B 6 1.7 6.2 11.9 1.7 5.8 11.3 1.1 4.9 9.9 1.1 5.0 10.0

BILIN2 1.6 7.8 14.1 1.5 6.9 12.6 1.2 5.0 9.6 1.3 4.9 9.5
A p = 2 5.7 14.3 23.0 5.0 12.9 20.4 3.2 9.2 15.7 3.2 9.1 15.7
B 2 5.6 14.6 22.9 4.7 13.0 21.3 2.9 9.4 15.8 3.0 9.4 15.8
A p = 6 5.3 14.3 23.2 4.7 12.8 20.7 3.0 8.9 15.0 2.9 8.8 15.0
B 6 5.8 14.6 22.8 4.5 13.1 20.9 2.8 9.1 15.2 2.8 8.9 15.3

ARCH 0.7 4.7 10.8 0.7 4.5 10.2 0.6 4.3 8.1 0.6 4.3 8.2
A p = 2 2.2 7.9 14.1 2.1 7.3 13.8 1.6 5.9 11.5 1.5 6.0 11.6
B 2 2.5 8.6 14.8 2.4 7.8 14.3 2.1 6.5 11.9 2.2 6.3 11.9
A p = 6 2.1 7.4 14.2 2.1 7.3 13.3 1.3 5.7 10.9 1.3 5.6 11.1
B 6 2.2 8.2 14.6 2.3 7.8 13.7 2.2 5.9 11.2 2.0 6.0 11.1

SIN 0.2 1.7 4.9 0.2 1.7 5.0 0.1 2.3 5.3 0.1 2.3 5.2
A p = 2 0.9 4.6 10.5 0.8 4.6 9.8 1.2 4.9 8.6 1.3 4.9 8.8
B 2 1.1 5.1 9.9 0.8 5.3 9.9 1.2 6.0 10.7 1.2 6.0 11.1
A p = 6 0.9 4.2 10.4 1.1 4.2 9.7 1.0 4.4 8.3 0.9 4.6 8.1
B 6 1.1 4.7 9.6 1.0 5.0 9.6 0.9 5.5 9.9 0.9 5.5 10.4

to P(
√

log n). This implies

max
0≤h≤p(n)

√
n|𝛾̂(h) − 𝛾(h)| = P(

√
log n) . (37)

In the following we denote for any matrix A with entries ar,s by ‖A‖1 = maxs

∑
r |ar,s| the column sum norm. Note

that this norm is submultiplicative, and that for column vectors it is simply the sum norm. Abbreviate p(n) by p.
We then have

p∑
k=1

|âk(p) − ak(p)| = ‖â(p) − a(p)‖1

≤ ‖Γ̂(p)−1(𝛾̂(p) − 𝛾(p))‖1 + ‖(Γ̂(p)−1 − Γ(p)−1)𝛾(p)‖1. (38)
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Table II. Empirical rejection rates for n = 1800 and nominal level 𝛼, both reported in percentages. For each model, the first
line gives rejection rates using Gumbel quantiles, the even lines give results using the AR-sieve bootstrap option A, the odd

lines (expect the first one) gives results using the AR-sieve bootstrap option B

n = 1,800 dn = 7 dn = 12 dn = 25 dn = 42

𝛼 1 5 10 1 5 10 1 5 10 1 5 10

WN 0.2 2.5 7.5 0.3 2.6 7.2 0.4 3.0 7.1 0.4 2.9 6.9
A p = 2 1.1 5.4 10.8 0.8 4.9 10.2 1.0 5.2 10.5 0.8 5.2 10.4
B 2 0.9 4.7 10.2 1.0 4.5 10.1 1.0 4.8 9.4 0.8 4.5 8.9
A p = 7 1.1 5.2 10.6 0.9 4.9 10.0 0.9 5.0 10.3 0.8 5.0 9.6
B 7 0.9 4.6 10.2 1.0 4.1 9.9 1.0 4.7 9.0 0.8 4.4 8.6

MA(0.5) 0.1 2.1 5.6 0.1 2.2 5.8 0.2 2.3 6.4 0.2 2.2 6.5
A p = 2 1.1 5.5 11.1 1.0 4.8 10.1 1.0 5.3 10.5 0.9 4.7 10.2
B 2 1.0 5.5 10.6 0.8 4.9 10.0 0.9 4.5 9.3 1.0 4.2 9.4
A p = 7 1.0 5.1 10.4 1.0 4.9 9.4 0.9 5.1 10.4 0.9 4.9 10.1
B 7 0.8 4.9 10.2 0.8 4.7 9.5 0.8 4.5 9.1 1.0 4.3 9.3

AR(0.5) 0.3 1.9 4.3 0.3 2.2 4.9 0.5 2.9 5.7 0.4 3.0 6.1
A p = 2 1.1 5.3 10.1 1.0 5.2 10.6 1.1 5.5 10.8 1.2 5.0 10.5
B 2 1.5 5.4 10.3 1.4 5.4 10.5 1.5 5.6 11.1 1.3 5.9 10.8
A p = 7 1.1 5.5 10.2 1.0 5.3 10.5 1.1 5.5 10.7 1.4 4.9 10.2
B 7 1.4 5.5 10.0 1.4 5.4 10.2 1.5 5.4 10.9 1.3 5.8 10.6

BILIN 0.2 3.2 8.0 0.2 3.0 7.8 0.2 3.0 7.3 0.4 3.1 7.2
A p = 2 1.4 5.9 11.0 1.1 5.3 10.8 0.8 4.9 9.6 0.8 4.9 9.5
B 2 1.3 6.4 12.1 1.1 5.5 11.3 1.0 5.1 10.5 1.0 5.1 10.0
A p = 7 1.4 5.8 11.2 1.2 5.1 10.7 0.9 4.6 9.7 0.8 4.8 9.0
B 7 1.4 6.6 12.2 1.0 5.5 11.2 1.1 4.9 10.1 0.9 5.1 9.9

BILIN2 2.0 8.1 15.0 1.8 7.0 13.2 1.3 6.2 11.1 1.4 5.4 10.7
A p = 2 6.2 14.7 23.6 4.2 12.0 19.7 3.5 10.6 16.6 3.1 8.6 14.8
B 2 5.7 14.7 23.0 4.3 12.2 19.4 3.3 9.8 16.7 2.7 8.8 15.2
A p = 7 5.8 15.0 23.4 4.0 11.9 19.5 3.4 10.4 16.5 2.9 8.4 14.9
B 7 5.6 14.4 22.9 4.4 12.2 19.2 2.9 9.4 16.3 2.5 8.6 14.9

ARCH 0.8 5.2 10.4 0.8 4.5 9.8 0.9 4.5 9.4 0.7 4.4 8.8
A p = 2 2.0 7.9 13.8 1.8 6.8 13.0 1.4 5.7 11.3 1.3 5.3 10.4
B 2 2.3 7.4 13.2 2.0 7.1 12.2 2.0 6.3 11.5 1.8 6.0 11.1
A p = 7 2.2 7.9 13.4 1.8 6.9 12.8 1.2 5.7 10.8 1.3 5.4 10.2
B 7 2.3 7.3 13.1 1.9 6.9 12.5 1.8 6.0 11.5 1.7 6.1 10.8

SIN 0.1 2.1 5.4 0.0 2.7 6.1 0.2 2.8 6.1 0.1 2.7 5.3
A p = 2 1.2 4.6 9.7 1.2 4.9 10.0 1.1 4.9 10.1 1.6 4.5 9.4
B 2 0.8 4.5 11.0 0.9 5.4 10.4 0.9 4.9 9.7 0.5 4.3 8.5
A p = 7 1.1 4.7 9.5 1.4 4.7 9.3 1.0 4.5 9.6 1.2 4.3 9.7
B 7 1.0 4.3 10.7 0.5 5.4 10.2 0.5 4.4 9.3 0.5 4.0 8.1

For the first summand on the right-hand side it follows from (37)

‖Γ̂(p)−1(𝛾̂(p) − 𝛾(p))‖1 ≤ ‖Γ̂(p)−1‖1 ⋅
p∑

h=1

|𝛾̂(h) − 𝛾(h)|
≤ ‖Γ̂(p)−1‖1 ⋅ P

(
p(n)

√
log n

n

)
.

For the ‖Γ̂(p)−1‖1 factor we consider as a preliminary

‖Γ̂(p)−1 − Γ(p)−1‖1 = ‖‖(Γ̂(p)−1 − Γ(p)−1 + Γ(p)−1
)(
Γ̂(p) − Γ(p)

)
Γ(p)−1‖‖1

≤ ‖Γ̂(p)−1 − Γ(p)−1‖1 ‖Γ̂(p) − Γ(p)‖1 ‖Γ(p)−1‖1

+‖Γ(p)−1‖1 ‖Γ̂(p) − Γ(p)‖1 ‖Γ(p)−1‖1 ,
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which implies

‖Γ̂(p)−1 − Γ(p)−1‖1 ⋅
(
1 − ‖Γ̂(p) − Γ(p)‖1 ‖Γ(p)−1‖1

) ≤ ‖Γ(p)−1‖2
1 ‖Γ̂(p) − Γ(p)‖1 . (39)

From Theorem 6.6.11 in Hannan and Deistler (1988) (or assertion (xxii) in Hannan and Kavalieris, 1984) we have‖Γ(p)−1‖1 = (1). Moreover, it holds with (37)

‖Γ̂(p) − Γ(p)‖1 ≤ 2
p∑

k=0

|𝛾̂(h) − 𝛾(h)| = P

(
p(n)

√
log n

n

)
= oP(1)

under our assumption of p(n) = (na) for a < 1∕2. Therefore the (1 −…) factor on the left-hand side of (39) is
(in probability and for n large enough) positive and we get the bound

‖Γ̂(p)−1 − Γ(p)−1‖1 ≤ ‖Γ(p)−1‖2
1 ‖Γ̂(p) − Γ(p)‖1

1 − ‖Γ̂(p) − Γ(p)‖1 ‖Γ(p)−1‖1

= P

(
p(n)

√
log n

n

)
. (40)

This gives ‖Γ̂(p)−1‖1 ≤ ‖Γ(p)−1‖1 + ‖Γ̂(p)−1 − Γ(p)−1‖1 = (1) + oP(1) and the first summand on the right-hand
side of (38) is of the rate stated in (18). The second summand on the right-hand side of (38) is of the same rate
due to (40) and ‖𝛾(p)‖1 ≤ ∑

h∈ℤ |𝛾(h)| < ∞.

We next present a result which transfers the convergence of the AR parameters from Baxter’s inequality to the
MA parameters (bk ∶ k ∈ ℕ), cf. (13). To elaborate, we define the z-transform of the finite predictor coefficients
(ak(p) ∶ k = 1,… , p) by

Ap(z) = 1 −
p∑

k=1

ak(p)zk ∀z ∈ ℂ . (41)

Under our assumptions this function is uniformly bounded away from zero on the unit disk plus a small ring around
the disk. To be precise, there exists 𝛿 > 0 such that |Ap(z)| ≥ 𝛿 uniformly for all |z| ≤ 1 + 1∕p and all p large
enough, cf. Kreiss et al. (2011), Lemma 2.3. For those p, Bp(z) ∶= 1∕Ap(z) again can be written as a power series
of the form

Bp(z) = 1∕Ap(z) = 1 +
∞∑

k=1

bk(p)zk ∀|z| ≤ 1 + 1∕p , (42)

for suitable coefficients (bj(p) ∶ j ∈ ℕ).
Then a constant C < ∞ exists such that for all p large enough and for all s ∈ ℕ0 with s ≤ r:

∞∑
j=1

(1 + j)s|bj(p) − bj| ≤ C ⋅
∞∑

k=p+1

(1 + k)s|ak|, (43)

cf. Kreiss et al. (2011), Lemma 2.4. The right-hand side converges to zero as p tends to infinity.
In our bootstrap procedure the estimated AR coefficients (âk(p), k = 1,… , p) are used to construct bootstrap

random variables. Let

Âp(z) ∶= 1 −
p∑

k=1

âk(p)zk ∀ z ∈ ℂ . (44)
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Since Âp(z) ≠ 0 for all |z| ≤ 1, cf. Brockwell and Davis (1991), p. 419, its reciprocal can be expanded as a power
series

B̂p(z) ∶=
1

Âp(z)
= 1 +

∞∑
k=1

b̂k(p)zk ∀ |z| ≤ 1 (45)

for suitable coefficients (b̂k(p), k ∈ ℕ). The bootstrap time series resulting from our proposal possess an
infinite-order MA representation with exactly these coefficients (b̂k(p)). As for the difference of b̂k(p) and bk(p),
one can follow along the lines of the proof of Lemma 2.5 in Kreiss et al. (2011) –merely replacing the bound for
the expression

∑p(n)
k=1 |âk(p(n)) − ak(p(n))| used there by the bound from (18) –to obtain uniformly for all k ∈ ℕ

||b̂k(p(n)) − bk(p(n))|| ≤ (
1 + 1

p(n)

)−k

⋅ P

(
p(n)

√
log n

n

)
. (46)

We define the auxiliary statistic T̃n based on the imaginary companion process (X̃t) as follows:

T̃n = a−1
n

(
𝜎
−1∕2
0 max

1≤h≤dn

√
n|̂̃𝛾(h) − 𝛾(h)| − bn

)
, (47)

where ̂̃𝛾k =
1

n

∑n−k
t=1 X̃t+kX̃t.

Proof of Theorem 1. Both Tn and T̃n converge in distribution to the Gumbel distribution under Assumptions 1 and
2, as long as r > 1∕2. While the weak convergence for Tn follows from Xiao and Wu (2014), Theorem 1, directly,
the same theorem also yields the result for T̃n since the companion process (X̃t) is a simpler linear time series
which fulfills the assumptions of Theorem 1 as well. Because convergence in Kolmogorov distance is equivalent
to convergence in distribution if the target distribution is continuous, we obtain by using the triangular inequality
for dK that dK((T̃n),(Tn)) → 0, n → ∞. In Lemma 2 we argue that dK(∗(T∗

n ),(T̃n)) → 0 as n → ∞.

Lemma 2. Under the same assumption as in Theorem 1 we obtain for the AR-sieve bootstrap

d1(∗(T∗
n ),(T̃n)) → 0, in probability, n → ∞, (48)

where d1 is defined in (21). Equation (48) implies convergence in Kolmogorov distance.

Remark 4. As can be seen from the following proof, the rate of convergence to zero in (48) is of polynomial
order. This means that the proposed bootstrap procedure approximates the distribution of the statistic of interest
T̃n, cf. (47), based on the companion process (X̃t) defined in (26) with a better rate compared to the asymptotic
Gumbel distribution. Note that it is well known, cf. the theorem in Hall (1979), that even for i.i.d. Gaussian random
variables the approximation rate of the limiting Gumbel distribution is only of logarithmic order. But it must be
said that this does not mean that our bootstrap proposal outperforms the approximation rate of the asymptotic
Gumbel distribution. Namely, in the proof of Theorem 1 we differentiate between the approximation of (T̃n) by
∗(T∗

n ), which indeed is of polynomial order, and the approximation of (Tn), the distribution of the statistic of

interest, by (T̃n). This last approximation relies on the asymptotic Gumbel distribution and therefore is only of
logarithmic order.

However, if we consider the classical AR-sieve bootstrap for causal AR(∞) time series and make assumptions
that ensure polynomial convergence to zero of d2(Fn,F) (cf. Remark 1 for details), the situation is different. In
this case the companion process (X̃t) from (26) has to be slightly modified to describe what the bootstrap actually
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imitates. (X̃t) then has to be defined as the autoregression given in (26) but with innovations 𝜀̃t defined as i.i.d. ran-
dom variables with marginal distribution (and this is the difference to (26)) given by the marginal distribution of
the true innovations et from the Wold-type representation (12) (cf. Remark 5). In this scenario, the companion
process (X̃t) coincides with the underlying time series (Xt). Then we indeed obtain for this specific situation that
the classical AR-sieve bootstrap achieves a polynomial convergence rate in approximating the distribution of Tn

and therefore outperforms the approximation rate by the asymptotic Gumbel distribution.

Proof. It suffices to show that E∗|T∗
n − T̃n| = oP(1). We split into two parts,

E∗|T∗
n − T̃n| ≤ a−1

n (𝜎∗
0 )

−1∕2 E∗ max
1≤h≤dn

√
n|𝛾̂∗(h) − ̂̃𝛾(h) + 𝛾(h) − 𝛾∗(h)|

+ a−1
n

|||(𝜎∗
0 )

−1∕2 − 𝜎
−1∕2
0

||| E∗ max
1≤h≤dn

√
n|̂̃𝛾(h) − 𝛾(h)| = I + II.

Let us introduce X+
t =

∑∞
j=1 bje

∗
t−j + e∗t and use 𝛾̂+(h) = 1

n

∑n−h
t=1 X+

t+hX+
t , 𝛾+(h) = E∗X+

t+hX+
t to split term I even

further:

I ≤ a−1
n (𝜎∗

0 )
−1∕2 E∗ max

1≤h≤dn

√
n|𝛾̂∗(h) − 𝛾̂+(h) + 𝛾+(h) − 𝛾∗(h)|

+ a−1
n (𝜎∗

0 )
−1∕2 E∗ max

1≤h≤dn

√
n|𝛾̂+(h) − ̂̃𝛾(h) + 𝛾(h) − 𝛾+(h)| = Ia + Ib.

The following bounds for Ia, Ib, and II are obtained after substituting the MA(∞) representations of the processes
X̃t, X+

t and X∗
t into the sample autocovariance terms. Let Sn,h,i,j =

∑n−h
t=1 (e

∗
t−je

∗
t−(i−h)) − 𝜎(p(n))2 𝟙[j=i−h]. Applying

Pollard’s lemma (Horowitz and Karandikar, 1994, Lemma 2.3) gives

Ia ≤ a−1
n (𝜎∗

0 )
−1∕2

∞∑
j=0

|b̂n,j − bj|√dn

(
max

1≤h≤dn

E∗
(|Sn,h,i,j|∕√n

)2
)1∕2

P(1). (49)

By straightforward calculations we obtain E∗(|Sn,h,i,j|∕√n)2 = P(1) because we assumed finite fourth moments of

(v∗t ) in our Bootstrap Proposal. Assumption 3 implies
∑∞

j=0 |b̂n,j−bj| = P

(
p(n)2

√
log n∕n + p(n)−r

)
(in particular

see (43) and (46)). Using dn = (n𝜂) we can bound Ia by

Ia ≤ [
p(n)2 n−1∕2 n𝜂∕2 + p(n)−r n𝜂∕2

] P(log n). (50)

By tedious but straightforward calculations, applying Pollard’s lemma and by using E(v∗t )
2 = 1 we obtain

Ib ≤ √
dn

√
E∗(𝜀1 − e∗1)2 P(

√
log n) = n𝜂∕2

||||
√

Ee2
1 − 𝜎(p(n))

|||| P(
√

log n). (51)

In order that the upper bound in (51) converges to 0, we need a certain rate of decay for |||√Ee2
1 − 𝜎(p(n))||| ≤

|𝜎e − 𝜎(p(n))|+ |||√Ee2
1 − 𝜎e

|||, 𝜎2
e = 1

n−p(n)

∑n
t=p(n)+1 e2

t . The expectation of the first summand can be bounded up to

a constant by the square root of

E

( ∞∑
j=p(n)+1

ajXt−j +
p(n)∑
j=1

(aj − âj(p(n)))Xt−j

)2

≤
(

p(n)−2r + p(n)2
log n

n

)
(1).
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The last inequality is obtained by using Assumption 3. Together with (23) this gives

Ib ≤ (
n−𝛽∕2 n𝜂∕2 + p(n)−r n𝜂∕2 + p(n) n−1∕2 n𝜂∕2

)p(log n). (52)

Finally we consider term II. Note that E max1≤h≤dn

√
n|̂̃𝛾(h) − 𝛾(h)| = (d1∕2

n ) = (n𝜂∕2) holds along the same

lines as for Ia as long as r > 1∕2. This means that term II can be bounded by |||(𝜎∗
0 )

−1∕2 − 𝜎
−1∕2
0

|||P(
√

log n n𝜂∕2).

An upper bound for |||(𝜎∗
0 )

−1∕2 − 𝜎
−1∕2
0

||| can be obtained by calculating

|||(𝜎∗
0 )

−1∕2 − 𝜎
−1∕2
0

|||2 ≤ (|(𝜎∗
0 ) − 𝜎0|) P(1) ≤

( ∞∑
j=0

|bj − b̂j(p(n))| + |||√Ee2
1 − 𝜎(p(n))|||

)
P(1).

Using the rates for both summands which have been derived above, we obtain

II ≤ (
p(n)2 n−1∕2n𝜂∕2 + n(𝜂−𝛽)∕2 + p(n)−rn𝜂∕2

) P(log n). (53)

Under the conditions given in (24) the upper bounds given in (50), (52), and (53) are oP(n−𝛾 ) for some suitable
𝛾 > 0.

Remark 5. In (51) the definition of 𝜀t and e∗t via the same i.i.d. sequence (v∗t ) ensures that
√

E(𝜀1 − e∗1)2 =
d2(𝜀1, e

∗
1), where d2 is the Mallows distance, cf. (22). In case that we would have used in the bootstrap process

innovations e∗t drawn from the empirical distribution of centered residuals of the AR fit (cf. Remark 1), we have to

change the definition of the companion process (X̃t) in the way that the i.i.d. innovations 𝜀t possess the marginal
distribution, F say, of the residuals et of the AR Wold representation (12). In this case we would arrive in (51) with
the bound √

dn d2(F,Fn)P(
√

log n),

where Fn denotes the empirical distribution of a sequence e1,… , en from the only uncorrelated innovations of the
representation (12). To complete the proof, we then would need a convergence rate for d2(F,Fn). As already stated
in Remark 1 such rates are available in the literature, but need further and typically quite restrictive additional
assumptions on the innovations on the AR representation, that we want to avoid.

Remark 6. Concerning validity of the bootstrap for the maximum deviation of the lag window spectral density
estimator (cf. (32)) we first state that from Theorems 3–5 in Liu and Wu (2010) or Theorem 2.3 in Woodroofe and
Van Ness (1967) (because X̃t is a linear time series) we have that

S̃n ∶= 𝛼−1
n

[√
n
Bn

‖w‖−1
2 max

j=0,1,…,Bn

||̂̃f (𝜆j,n) − f (𝜆j,n)||
f (𝜆j,n)

− 𝛽n

] 
−→ Gumbel, (54)

where ̂̃f (𝜆) denotes the lag window estimator based on n observations from the companion process (X̃t) (cf. (26)).
Note that the spectral density of (X̃t) coincides with the spectral density f of the underlying time series.

Next, the assumption n∕B5
n → 0 guarantees that the biases of f̂ and of ̂̃f are sufficiently small so that we only

need to compare

S′,∗
n ∶= 𝛼−1

n

[√
n
Bn

‖w‖−1
2 max

j=0,1,…,Bn

||f̂ ∗(𝜆j,n) − Ef̂ ∗(𝜆j,n)||/f ∗(𝜆j,n) − 𝛽n

]
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and

S̃′
n ∶= 𝛼−1

n

[√
n
Bn

‖w‖−1
2 max

j=0,1,…,Bn

||̂̃f (𝜆j,n) − Ễf (𝜆j,n)||/f (𝜆j,n) − 𝛽n

]

with each other. We show S′,∗
n − S̃′

n = oP(1). Because the spectral density f ∗ of the bootstrap time series (X∗
t ) (cf.

(19)) is uniformly consistent for the underlying spectral density f the necessary consideration is further reduced to

𝛼−1
n

√
n
Bn

max
j=0,1,…,Bn

||f̂ ∗(𝜆j,n) − Ef̂ ∗(𝜆j,n) −
̂̃f (𝜆j,n) + Ễf (𝜆j,n)||.

But this expression is bounded through

𝛼−1
n

√
Bn max

0≤h≤Bn

√
n||𝛾̂∗(h) − ̂̃𝛾(h) + 𝛾(h) − 𝛾∗(h)||

and for exactly this term we have shown in the proof of Lemma 2 that it is bounded by P(
√

Bnn−𝛾 ). For 𝛽 = 1∕2,
r = 2, a suitable choice for the rate a would lead to 𝛾 > 0.1 so that we end up with S′,∗

n − S̃′
n → 0 in probability,

as n → ∞. Together with (54) this yields validity of the bootstrap for maximum deviation of lag window spectral
density estimators.

5. CONCLUSION

We showed that the AR-sieve bootstrap procedure successfully can be applied to maximum deviations of sample
autocovariances and autocorrelations as well as lag window spectral density estimators. These results extend the
range of validity of AR sieve bootstrap beyond the class of generalized means as has been considered in Kreiss
et al. (2011). The proof is achieved as in this article and makes again use of the companion process (X̃t), cf. (26),
which indeed is the process which the AR-sieve bootstrap time series is able to mimic. Since the companion
behaves according to maximum deviations of sample autocovariances and sample autocorrelations asymptotically
exactly behaves like the underlying time series, which indeed stems from a much more general class of time series
(7), it is obtained that AR-sieve bootstrap works for that case.

Simulation results demonstrate that the AR-sieve bootstrap works especially well for underlying linear time
series but is also able to compete with the asymptotic distribution and the block of blocks bootstrap as was
considered in Xiao and Wu (2014).
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