
Bolle, Friedel

Article  —  Published Version

Voting with abstention

Journal of Public Economic Theory

Provided in Cooperation with:
John Wiley & Sons

Suggested Citation: Bolle, Friedel (2021) : Voting with abstention, Journal of Public Economic Theory,
ISSN 1467-9779, Wiley, Hoboken, NJ, Vol. 24, Iss. 1, pp. 30-57,
https://doi.org/10.1111/jpet.12537

This Version is available at:
https://hdl.handle.net/10419/284756

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1111/jpet.12537%0A
https://hdl.handle.net/10419/284756
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


J Public Econ Theory. 2022;24:30–57.30 | wileyonlinelibrary.com/journal/jpet

Received: 5 February 2021 | Revised: 29 March 2021 | Accepted: 14 June 2021

DOI: 10.1111/jpet.12537

OR IG INAL ART I C L E

Voting with abstention

Friedel Bolle

Department of Business and Economics,
European University Viadrina Frankfurt
(Oder), Frankfurt, Germany

Correspondence
Friedel Bolle, Department of Business
and Economics, European University
Viadrina Frankfurt (Oder), Postfach
1786, D‐15207 Frankfurt (Oder),
Germany.
Email: bolle@euv-frankfurt-o.de

Funding information

German Ministry of Education and
Research, Grant/Award Number: FKZ
01LA1139A; Deutsche
Forschungsgemeinschaft,
Grant/Award Number: BO 747/14‐1

Abstract

Most voting models in the literature neglect abstention,

but is such a simplification justified? I investigate this

question in a model with outside pressure on voters.

For sequential voting (e.g., roll call votes), with and

without an abstention option, there is a unique sub-

game perfect equilibrium, which implies that true ma-

jorities always succeed. Abstention can be an

equilibrium strategy for some voters, in particular un-

der complex decision rules (e.g., weighted voting,

double majorities). Simultaneous voting often has a

unique pure strategy equilibrium but also a plethora of

mixed and pure/mixed strategy equilibria. Therefore,

only with equilibrium selection, can we evaluate the

consequences of neglecting abstention. For equal

weight voting, equilibria selected by the procedure of

Harsanyi and Selten change completely with an ab-

stention option, even if abstention itself is not or rarely

used. With small enough outside pressure, however,

the selected equilibrium honors true majorities in both

cases.

1 | INTRODUCTION

I want to investigate a model which differs in two respects from most other voting models.
First, it assumes vote‐dependent costs instead of participation costs and, second, it allows
abstention.
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On September 3, 2019, the British Conservative Party withdrew the whip from 21 of its MPs
because they voted against the party line. This means, they were practically expelled from their
own party. Only 10 of the suspended MPs had the whip restored; only four of these could run in
the December 2019 election as Tory candidates (retaining their seats); all other “rebels” lost
their seats. This is an extreme example of the outside pressure under which not only members
of parliament but also members of other voting bodies make their decisions. MPs’ outside
pressure stems from party whips, lobbyists, their electorate, and public opinion (media).
Therefore, voting according to true preferences is often connected with costs and, I think, an
appropriate model of voting on a proposal should consider such costs. True preferences are
defined as the vote in cases where it is decisive.

I will use this model to investigate the question whether or not a popular simplification of
voting models is justified. The bulk of the theoretical literature about voting on a proposal
assumes binary decisions (Yes‐No voting) and binary results (accepting or rejecting a proposal).
Does the introduction of an abstention option have a considerable strategic effect? If not, the
concentration on simpler binary decisions is justified. There are voting rules where abstention
has the same effect on the voting result as voting No, for example if the acceptance of a proposal
needs a certain absolute number of Yes votes, that is, if an absolute (super‐)majority is ne-
cessary. For pluralities (= relative majorities) and many other decision rules, however, ab-
stention and No votes are not equivalent and the restriction on Yes‐No voting is a simplifying
assumption.

1.1 | Voting beyond equal weights

Under common ownership of firms, the shares of the owners are their weights when they vote on
proposals. Decision making in multinational organizations has to take into account considerable
asymmetry concerning the population of the countries as well as their economic, political, and
military power. This leads to veto rights, weighted voting, and the requirement of multiple
(super‐)majorities. For examples of votes with complex decision rules, see Posner and Sykes
(2014) and Bolle (2018). We will start this investigation with asymmetric voters and general
decision rules and then concentrate on almost symmetric voters and relative super‐majorities.

1.2 | Vote dependent versus participation costs

In almost all models, voting costs, if introduced at all, are participation costs. In many empirical
(e.g., Hodler et al., 2015) as well as theoretical investigations (e.g., Krishna & Morgan, 2012)
these are of central interest. Vote dependent costs may be intrinsic (party or personal loyalty,
religious requirements, conscience) or extrinsic, caused by the threats of party whips or bribes
from lobbyists or their equivalents in international organizations (Dippel, 2009) and board
meetings of firms and faculties (colleagues with special knowledge, special resources, formal or
informal power to promote people). There is a small number of nonformal articles on vote
dependent costs and their influence on voting, for example, Kilgour et al. (2006) and other
discussions of the role of party whips. Extrinsic voting costs may also stem from the effect of a
vote on public opinion and reputation. The benefits of an accepted proposal may as well stem
from different intrinsic and extrinsic sources. Costs and benefits have been discussed in detail
for voting games without an abstention option in Bolle (2018).
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A central problem in models with participation costs is the paradox of voting, that is, the
question why voters bear participation costs, in particular in general elections, although their
influence on the result is negligible. The central problem in models with vote dependent costs is
the question whether or not voters follow their true preferences. While, starting with Downs
(1957), a large amount of literature with participation costs has emerged, voting with vote
dependent costs has been investigated mainly by Groseclose and Milyo (2010, 2013) and Bolle
(2018, 2019). In a mainly empirical investigation of roll call votes in the US senate, Spenkuch
et al. (2018), find regularities concerning order effects and narrow results. These will be
compared with the unique equilibria, which are derived in the section about sequential votes.

1.3 | Results with vote‐dependent costs and without abstention

In equal weight voting, pure strategy equilibria are mostly unique, that is, with the exception of
two cases where no pure strategy equilibrium exists. In these equilibria, voters decide only
according to their costs, however small they are, and not according to the benefits of an
accepted proposal. If we rely on these pure strategy equilibria then we accept that “conflicted”
voters never follow their true preferences. It is disturbing and hardly believable that voters will
select the pure strategy equilibrium even in cases where costs are negligible. Therefore, Bolle
(2019) has investigated competing mixed and pure/mixed strategy equilibria. Under the sim-
plification of almost symmetric voters, he found that, according to Harsanyi and Selten (1988),
the pure strategy equilibrium applies only for large deviation costs. For small deviation costs,
the voters choose a strictly mixed strategy, which converges to a pure strategy if costs converge
to zero. The majority side almost certainly follow their true preferences and the minority side
join them. Therefore, the result of the vote honors the “true majority.”

1.4 | Why and when abstain?

Abstention and nonparticipation are often used synonymously, in particular with respect to general
elections (e.g., Adams et al., 2006). In this paper, however, abstention is an explicit voting option with
costs of its own. Strategically, the option of abstention is not necessary for absolute majority voting.
There, voting No or Abstain have the same effect. If we apply the voting game in an environment
where a threshold public good (bad) can be produced by voluntary (predetermined) contributions
with positive (negative) costs, a “voter” can either contribute or not, but not abstain. Public good
models usually assume that the product is either a public good or a public bad (common pool
problem) for all; the application of the model with vote dependent costs allows investigating cases
where the product is a good for some people and a bad for others. In plurality voting and under more
complicated decision rules, abstention is strategically different from voting Yes or No. Plurality is the
most used decision rule in voting, and therefore an investigation of the effect of an abstention option
seems to be rather important. In addition to the strategic effect, there is a “psychological” effect of
abstention. Even if an absolute majority is required, conflicted voters may nonetheless use abstention
as a compromise. Government MPs may reject a proposal of the government with a seemingly
weaker Abstain vote, which may signal their conflict and their regret that they have to vote against
the proposal. Members of the opposing party would strategically follow the party line by voting
Abstain, but they signal their intrinsic disagreement with their vote. These arguments are in line with
the literature on expressive preferences (Brennan & Lomasky, 1997; Hillman, 2010). In our model, we
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will not assume expressive preferences. There are opportunity costs of abstention, which are smaller
than the deviation costs for Yes or No. We will investigate abstention also under absolute majority
requirements.

1.5 | Further literature

The literature on simultaneous and sequential voting is vast and differentiated, for a brief description
of different strands of models with different research questions see Bolle and Otto (2019). All these
models are quite different from the “vote dependent costs model” of this investigation. Possibly
closest to the topic of this article is the large literature on Vote Buying, mainly in general elections
(e.g., Dekel et al., 2009; Finan & Schechter, 2012), but also in parliament (e.g., Dal Bo, 2007) or in
shareholder firms (e.g., Dekel & Wolinsky, 2011). With the exception of Dal Bo (2007), in all these
investigations, if there is a game, it is between the buyers of votes, while the reaction to the “bribes” is
nonstrategic. In this investigation, the “bribes” are given and the behavior of the voters is strategic.
The model of Dal Bo (2007) will be characterized below. In addition, many voting models pose special
questions. As an example, regard the question whether there are asymmetric equilibria when players
are symmetric—in strategic terms but perhaps not concerning the color of their shoes (Bolle, 2019;
De Sinopoli & Iannantuoni, 2007).

The number of voting models with abstention is also rather limited. We find such model
variants for cooperative Simple Games (e.g., Felsenthal & Machover, 1997; Freixas, 2012;
Musegaas et al., 2018) which are mainly concerned with defining and computing power indices.
Abstention is also introduced in models with incomplete information. Feddersen and Pesendorfer
(1999) investigate voting with abstention in a model without costs and with asymmetric in-
formation of the voters. Battaglini (2005) assumes (small) participation costs and information
cascades in sequential voting. Morton and Tyran (2015) experimentally investigate the readiness
of nonexperts in voting committees to abstain when there is suspicion that the experts are
corrupt. In these models, the aggregation of information is the central topic. My model is with
complete information and its central question is whether voters bend to outside forces.

1.6 | Outlook

In the next Section, I will set up a general model of voting. Then I will ask whether sequential voting
(Section 3) and simultaneous voting (Sections 4, 5, and 6) are crucially influenced by the introduction
of an abstention option. The derivation of the unique subgame perfect equilibrium of sequential
voting games with general decision rules is surprisingly simple. In Section 4, the often unique pure
strategy equilibria of simultaneous voting games are investigated and Section 5 derives attributes of
mixed and pure/mixed strategy equilibria. Section 6 applies the equilibrium selection procedure of
Harsanyi and Selten (1988) to voting games with almost symmetric voters. Section 7 evaluates the
question whether or not we can stick to simplified voting models without abstention.

2 | VOTING GAMES WITH ABSTENTION

Definition 1. In a Voting Game with Abstention (VGA), there are n 2≥ players who
simultaneously or sequentially vote on a certain proposal. The preferences of the voters
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will be characterized by Assumptions 1 and 2. The acceptance of a proposal is described
by the following structure.

N n= {1, …, } is the player set, Y denotes the set of players voting Yes, A the set of players
who choose Abstain, and N Y A− − vote No.H designates the set of all combinations Y A( , )

which suffice to accept the proposal. It has the following properties:
(never sufficient) Hϕ ϕ( , ) ∉ with ϕ = empty set
(always sufficient) HN ϕ( , ) ∈

(monotonicity) If Y Y ′⊂ , Y A Y A′ ′∪ ⊂ ∪ and HY A( , ) ∈ , then also HY A( ′, ′) ∈ .
Definition 1 is an extension of the definition of Simple Cooperative Games where the char-

acteristic function takes binary values. Simple cooperative games describe successful coalitions
and therefore correspond to binary (Yes‐No) voting. The monotonicity condition requires that
switching from No to Abstain and from Abstain to Yes do not cause a switch from acceptance to
rejection. Together with the monotonicity condition, the two other conditions guarantee that the
game is not trivial, that is, voting never having any effect. On first glance, the never sufficient
condition may appear too weak. It might be strengthened by requiring at least one Yes vote for
the acceptance of the proposal; but as we have announced in the introduction and as we will
explain in more detail below, the voting game will be defined as a “residual game.” All voters
with dominant strategies have been removed from the game while taking into account their
decisions.H describes the “residual requirements” for the acceptance of the proposal.

Definition 2. In a VGA withH designating successful voting combinations we define:

(Pivot players) Player i is called a Yes‐Abstain pivot player with respect to Y A( , ) if
HY i A i( { }, − { })∪ ∈ and HY i A i( − { }, { })∪ ∉ . Player i is called an Abstain‐No pivot player

with respect to Y A( , ) if HY i A i( − { }, { })∪ ∈ and HY i A i( − { }, − { }) ∉ . Player i is called a
Yes‐No pivot player or simply a pivot‐player if she is either a Yes‐Abstain or an Abstain‐No pivot
player, which implies HY i A i( { }, − { })∪ ∈ and HY i A i( − { }, − { }) ∉ .

(MSC) We call HY A( , ) ∈ a minimal supporting combination if all i Y∈ are Yes‐Abstain
pivot players and all i A∈ Abstain‐No pivot players.

(Negligible players) Player i is called negligible if she is not contained in a set of any minimal
supporting combination.

(Absolute majorities) If HY A( , ) ∈ is independent of A, that is, HY A( , ) ∈ if and only if
HY ϕ( , ) ∈ , then we call the VGA a voting game with absolute majorities.

The most important examples of VGAs are absolute (relative) k‐majority VGAs, defined by
H Y A Y k= {( , ) : | | }≥ with k n1 ≤ ≤ and Y| |= number of members of Y ,
(H Y A Y N Y A k= {( , ) : | | − | − − | }≥ with n k n− < ≤ ). Relative k‐majority VGAs are
probably the most frequently used decision rule, in parliaments, committees, and faculty
meetings. The cases k = 0 for absolute majority and k n= − for pluralities are excluded because
the proposal would always be accepted.

We now continue the characterization of VGAs as non‐cooperative games.

Assumption 1 (Preferences of voters in VGAs). If player i votes No and if the proposal is
not accepted, then her revenue is R = 0i , that is, the status quo is evaluated by 0. Player i
bears costs ci (or di) if she votes Yes (or Abstain) and she enjoys benefitsGi if the proposal
is accepted. Players want to maximize their revenues Ri which are benefits minus costs,
formally R G= 1i i Suc∗ ‐ c d1 − 1i Yes i Abstain∗ ∗ with 1 = 1Suc if the proposal is accepted and
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1 = 0Suc otherwise; 1 = 1(1 = 1)Yes Abstain if player i has voted Yes (Abstain) and
1 = 0(1 = 0)Yes Abstain otherwise.

With three decision options and two results, all utility functions that are additively separ-
able in costs and benefits are equivalent to this simple linear utility function.

Assumption 2 (Parameter restrictions).

(i) ci and di have the same sign and d c0 < | | < | |i i .
(ii) The cases d G c| | | | | |i i i≤ ≤ are excluded.

(i) requires abstention to have intermediate costs (between Yes and No). This should always
be the case if outside pressure stems mainly from one group (e.g., party whips) or from several
groups with the same goal. The assumption may be violated if outside pressure comes from
several groups with different goals or if costs are mainly participation costs. Thus, Assump-
tion 2 (i) separates VGAs from the “participation costs” games in the literature. (ii) excludes
two cases to simplify the investigation. A voter with d G c0 < < <i i i would never vote Yes, a
voter with c G d< < < 0i i i would never vote No. Thus, two voter sets with restricted choices
are excluded. It is easy to integrate these sets into the analysis, however with more complex
characterizations of equilibria.

Six cases remain: If d c G0 < < <i i i, player i wants the proposal to be accepted without
voting approvingly or abstaining. If c d G< < 0 <i i i or c d G< < < 0i i i , i has the dominant
strategy to vote Yes. If G d c0 < < <i i i or G d c< 0 < <i i i, i has the dominant strategy to vote
No. If G c d< < < 0i i i , then i wants to free‐ride on the No or Abstention votes of others.

Lemma 1:
(i) Voters with dominant strategies vote according to their costs of voting. Voters with ne-

gative costs vote Yes, voters with positive costs vote No.
(ii) If voters with dominant strategies determine the voting result and if all other voters know

this, then all voters vote according to their costs.

(Without proof)
In the following, we neglect voters with dominant strategies after taking their decisions into

account. This implies a new definition of (restricted) VGAs.

Definition 3. We define voter sets N+ and N− with n+ and n− members. For all i N+∈

we have d c G0 < < <i i i and for all i N−∈ we have G c d< < < 0i i i . No voter is
negligible. All other voters are assumed to follow their dominant strategies. The game
with the voter set N N N= + −∪ is called the reduced simultaneous or sequential voting
game with abstention. A game with n = 0+ or n = 0− is denoted as VGA‐0. From now on,
a VGA denotes all other reduced simultaneous voting games with abstention.

The success of a voting rule may be measured by the probability of producing true majority
results. Under the naïve assumption that voters always follow their true preferences, true ma-
jority results are always implied; but this assumption is contrary to almost all equilibria of
VGAs. For this statement, however, we need a definition of true preferences and true
majorities.
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Definition 4. The true preference of a voter is defined as her optimal vote in cases
where she is decisive with certainty and can choose only Yes or No. Acceptance or
rejection has a true majority if it results from all voters following true preferences.

The definition implies that voters with dominant strategies always follow their true pre-
ferences. The true preference of voters from N+(N−) is Yes (No). Acceptance has a true majority
if HN ϕ( , )+ ∈ . For equal weight VGAs, this means n k+ ≥ (absolute majority) or n n k−+ − ≥

(plurality).
A pure strategy equilibrium has a rather simple property: All voters who follow their

true preferences or abstain are pivotal, all others not. One problem with pure strategy
equilibria is finding partitions of players with this property; another is the often‐lacking
plausibility of these equilibria. In strictly mixed strategy equilibria, all players are pivotal
with a certain probability, which has to be equal to a cost/benefit relation. The problem
here is the multitude of strictly mixed strategy equilibria and the existence of additional
pure/mixed strategy equilibria. Under these circumstances, without equilibrium
selection, the contribution of game theory to the evaluation of voting rules would tend
to zero.

The central goal of this paper is the comparison of voting games with and without an
abstention option. For the latter, we use the same terminology as for VGAs.

Definition 5. A voting game without an abstention option (VG) is a VGA with A ϕ=

in all definitions. Voters cannot abstain and, therefore, there is only one type of pivotality.

3 | SEQUENTIAL VOTING

The most investigated voting procedure in the US Senate is a roll call vote where the members
are required, in alphabetic order, to vote either “yea” or “nay” and where abstention is possible
in principle but usually not applied. Roll call votes are sequential although we may argue that,
facing a fast sequence of 100 votes, senators have decided on their vote in advance. Therefore,
not only abstentions but also dynamics of voting are neglected in most of the econometric work
on roll call voting (cf. Clinton et al., 2004). Nonetheless, let us derive the subgame perfect
equilibrium of the sequential voting game with abstention. Groseclose and Milyo (2013) have
investigated sequential equal weight voting and Bolle (2018) sequential voting under general
decision rules, both without the option of abstention. They often find a unique subgame perfect
equilibrium.

Let us assume that the order of voters is (player 1, player 2, …, player n). Again, we
disregard all players with dominant strategies after taking their decisions into account so
that the sets of remaining necessary votes for the passing of the proposal is again de-
scribed byH.

Assumption 3. The voters know whether any other voter is from N+or N−. Voter i
knows the votes of voters j i< .

The game consists of a sequence of subgames which are essentially described by Y A( , )i i , the
votes of players i1, 2, …, − 1.

36 | BOLLE



Proposition 1. The sequential voting game has a unique subgame perfect equilibrium.
All voters decide in accordance to their costs except if they are pivotal under the
assumption that all subsequent voters follow their true preferences. The result always
honors true majorities. Formally:

Let Y A( *, *) denote the votes cast in the course of the game. We define
Y Y i i n N* = ( * {1, …, − 1}) ({ + 1, …, } )i

+∩ ∪ ∩ and A A i* = * {1, …, − 1}i ∩ .

(i) i N−∈ votes No (i Y A* *∉ ∪ ) if she is an Abstain‐No pivot player with respect to Y A( *, *)i i ,
she votes Abstain (i A*∈ ) if she is a Yes‐Abstain pivot player, and otherwise she votes
Yes (i Y *∈ ).

(ii) i N+∈ votes Abstain (i A*∈ ), if she is an Abstain‐No pivot player with respect to Y A( *, *)i i ,
she votes Yes (i Y *∈ ) if she is a Yes‐Abstain pivot player, and otherwise she votes
No (i Y A* *∉ ∪ ).

(iii) If HN ϕ( , )+ ∉ then the proposal is rejected; all i N+∈ vote No.
(iv) If HN ϕ( , )+ ∈ then the proposal is accepted; all i N−∈ vote Yes.

Proof. Y A( *, *) is defined by moving from voter i = 1 to voter i n= . The proof is by
backward induction. Apparently, voter n will stick to the rules (i) and (ii). Then the
proposal will be accepted if and only if HY n A( * { }, *)n n∪ ∈ . Let us now assume that the
proposal will be accepted if and only if HY i A( * { + 1}, * )i i+1 +1∪ ∈ . Then player i N+∈

will induce HY i A( * { + 1}, * )i i+1 +1∪ ∈ if she can and with lowest costs. If she is pivotal
with respect to S Y*, *i i , she votes Yes or Abstain, otherwise she saves costs and votes No.
If i N−∈ is pivotal with respect to S A( *, )i i , she votes Abstain or No, otherwise she incurs
negative costs and votes Yes. So, (i) and (ii) apply also for player i. (iii) and (iv) follow
from (i) and (ii) with i = 1.

Spenkuch et al. (2018, p. 1982) find: “In sum, our analysis of sequential roll‐call votes in the
US Senate documents three empirical regularities. First, the majority party is considerably
more likely to barely win a roll‐call vote than to just lose it. Second, senators who, by virtue of
their last name, get to vote earlier in the order are more likely to deviate from the party line
than their colleagues who get to vote late. Third, the vote order affects the choices of senators
only on roll calls that end up being close.”

These regularities do not contradict Proposition 1, but they are not implied by it without
further assumptions. In Proposition 1, voters with dominant strategies are absent. These always
vote according to their costs (following the party line without conflict). Therefore, the vote in
the Senate looks always less extreme than it might appear from the viewpoint of Proposition 1.
If, after the exclusion of all voters with dominant strategies, the majority party still has a
majority, the first regularity is confirmed.

Also the second regularity seems plausible, but again we need additional assumptions. As a
counter‐example, we require a relative k‐majority (as in the US senate) with n n=+ − and k = 0,
that is, the voters from N+ have a narrow majority. Let us assume that the voters from N+ vote
first, thereafter the voters from N−. Then all voters vote Yes, the first (following their true
preferences) because they must vote Yes to guarantee the acceptance of the proposal, and the
voters from N− (voting against their true preferences) to incur the negative costs of voting Yes.
With a reverse order, all voters vote against their true preferences. As an example confirming
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the second regularity let us assume n k n> >+ −. In the unique subgame perfect equilibrium,
the voters from N− vote Yes, but that is not sufficient for the acceptance of the proposal. If the
voters from N− vote first, then only the last n n k( + + )/2+ − voters from N+ follow their true
preferences, resulting in a narrow vote. This is also the case if the first positions in the sequence
are filled alternately with voters from N− and N+. Also many random distributions of voters
will have the same consequences.

The third regularity is not supported by Proposition 1. In our first example, the majority according
to true preferences is narrow, but the result may show 100% for the proposal. The second set of
examples shows that even a large majority in true preferences can result in a narrow vote. The order
of voters is always important—not for the result, but for the decisions of single voters.

Does Proposition 1 imply Abstain votes in some situations? If an absolute majority is
required, the Abstain option is never used. In a plurality k‐majority VGA, the relation
n n k= + + 1+ − with the first player from N+ is special. In this case, the first player will vote
Abstain. She need not vote Yes, but she must not vote No. Also in a subgame with such a
relation for the remaining player numbers and the remaining requirement k, the equilibrium
choice is Abstain. There are no other constellations in games with the equilibrium acceptance
of votes where Abstain is chosen. Under more complex voting rules, there can be more si-
tuations with Abstain votes.

The sequential VG with an abstention option has the same nice properties as a sequential
VG without. Both have a unique subgame perfect equilibrium with (iii) and (iv) from Propo-
sition 1 (Bolle, 2019). Therefore, in sequential games, the simplification by disregarding the
Abstain option does not concern the result of the vote.

4 | PURE STRATEGY EQUILIBRIA OF SIMULTANEOUS
VOTES

As in the case of sequential votes, pure strategy equilibria are based on ordinal preferences and,
therefore, weak information requirements.

Assumption 3′. In the general case, we assume that H, N−, and N+ are common
knowledge. For equal weight VGAs, we can reduce this requirement by assuming that k,
n−, and n+ are common knowledge.

Proposition 2. Let us assume a VGA with n = 0− , that is, a VGA‐0.

(i) Voting according to a minimal supporting combination HY A( , ) ∈ is an equilibrium.
(ii) If Hi ϕ({ }, ) ∉ for all i, then Y A ϕ ϕ( , ) = ( , ) describes the only pure strategy equili-

brium without the acceptance of the proposal; otherwise no such equilibrium exists.

Proof. In both cases, no player can gain from changing his decision. In an equilibrium
without the acceptance of the proposal, no player would incur costs by voting Yes or
Abstain.

IfH N ϕ( , )}≠ and every player is nonnegligible, thenH contains more than one minimal
supporting combination. In an absolute k‐majority VGA with n = 0− , there are ( )nk minimal
combinations with the acceptance of the proposal, all of the form Y ϕ( , ), Y k| | = . There are
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similar equilibria for relative k‐majority VGAs. The equilibria for VGAs, that is, games with
n > 0− and n > 0+ , are completely different. Therefore, the investigation of bribing by Dal Bo
(2007) with n = 0− relies on completely different equilibria than those in a VGA.

Proposition 3 (Necessary and sufficient conditions for pure strategy equilibria of a
VGA). Let Y A( *, *) denote the sets of players who vote Yes or Abstain in a pure strategy
equilibrium of a VGA. If the proposal is accepted, then

(i) N Y *− ⊂

(ii) No voter i N−∈ is a pivot player, that is, HY i A( *−{ }, *) ∈

(iii) All voters i Y A N( )⁎ ⁎ +∈ ∪ ∩ are pivot players, that is, HY i A i( * − { }, * { })∪ ∉ for all
i Y N* +∈ ∩ and HY A i( *, * − { }) ∉ for all i A N* +∈ ∩

If the proposal is rejected, then

(iv) Y A N* * −∪ ⊂

(v) No voter i N+∈ is a pivot player, that is, HY i A( * { }, *)∪ ∉

(vi) All voters i N Y− *−∈ are pivot players, that is, HY A i( *, * { })∪ ∈ for i N Y A− * − *−∈

and HY A i( *, * { })∪ ∈ for i A*∈

Proof. The conditions are apparently sufficient: no voter can gain from changing her
vote. The necessity of each requirement is shown separately. Ad (i): When the proposal is
accepted, every player i N−∈ is, because of her negative costs, better off if she votes Yes.
Ad (ii): Because of her negative benefits, every player i N−∈ would withdraw her support
if and only if she is a pivot player. Ad (iii): Because of her positive costs, every player
i Y A N( * *) +∈ ∪ ∩ would withdraw her support (abstention) if and only if she is not a
pivot player. Ad (iv): Because of her positive costs, no player from N+ would support a
rejected proposal. Ad (v): A player from N+ supports the proposal if and only if she is a
pivot player. Ad (vi): All voters from A⁎ and N Y A− −− ⁎ ⁎ must not be pivot players
because, otherwise, they could prevent negative benefits.

In the following, we characterize cases where Y A N ϕ( , ) = ( , )− describes the unique equi-
librium or where no pure strategy equilibrium exists.

Definition 6. Voter j is replaceable1 by i if, for every Y A( , ) with i j Y A, ∉ ∪ ,

(i) HY j A( { }, )∪ ∈ implies HY i A( { }, )∪ ∈

(ii) HY A j( , { })∪ ∈ implies HY A i( , { })∪ ∈ .

i and j are mutually replaceable if i is replaceable by j and j is replaceable by i.
All voters in equal weight voting games are mutually replaceable. In general voting games,

there may be no replaceability relations between a pair of players or they may be one‐sided or

1For Simple Cooperative Games, Isbell (1958) uses a similar definition but says that “i is as least as desirable as j.” In the
literature on power indices, desirability is used to characterize local monotonicity, that is, if i is as least as desirable as j,
then is power index is not lower than j's index (Freixas & Gambarelli 1997).
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mutual. Examples of one‐sided replaceability are games where the chairman has tie‐breaking
power or where shareholders vote with sufficiently unequal shares. The following example
without replaceability relations is adopted from Bolle (2018). Double majorities are often re-
quired for decisions by condominium owners and in international organizations (Posner &
Sykes, 2014).

Example 1 (Double majorities). There are four countries (1, 2, 3, 4) with weights (2, 4, 1, 5)
and populations (40, 20, 50, 10). The acceptance of a proposal in an organization of these
countries requires aggregate weights of Yes‐voters of at least 6 and an aggregate population
of at least 60.

In this example, the only minimal supportive combinations of countries are ({1, 2}, ϕ) and
({3, 4}, ϕ). Therefore, no player is replaceable by another player.

Proposition 4.

(i) If there is an equilibrium Y A( *, *) with the acceptance of the proposal and if every
j N+∈ is replaceable by a voter i j N( ) −∈ , then Y A N ϕ( *, *) = ( , )− .

(ii) If there is an equilibrium Y A( *, *) with the rejection of the proposal and if every i N−∈

is replaceable by a voter j i N( ) +∈ , then Y A N ϕ( *, *) = ( , )− .
(iii) If every i N−∈ is replaceable by a voter j i N( ) +∈ and if every j N+∈ is replaceable by

a voter i j N( ) −∈ , then there is a unique pure strategy equilibrium Y A N ϕ( *, *) = ( , )−

or no pure strategy equilibrium exists.

Proof. Ad (i): If a proposal is rejected then, according to Proposition 3 (i), i N−∈ votes
Yes. If j N+∈ votes Yes or Abstain then, according to Proposition 3 (iii), j is a pivot player
which implies that i j( ) is also a pivot player. This contradicts Proposition 3 (ii). Therefore
j N+∈ votes No. Ad (ii): similar argument. Ad (iii): (i) and (ii).

Proposition 5 (Sufficient conditions for a unique pure strategy equilibrium N ϕ( , )− ).
Y A( *, *) denote the sets of players voting Yes or Abstain in a pure strategy equilibrium.

(i) If HN i ϕ( − { }, )− ∈ for all i N−∈ , then Y A N ϕ( *, *) = ( , )− describes the unique pure
strategy equilibrium with the acceptance of the proposal. If, in addition, every j N−∈ is
replaceable by a player i j N( ) +∈ , then no pure strategy equilibrium without the ac-
ceptance of the proposal exists.

(ii) If HN i ϕ( { }, )− ∪ ∉ for all i N+∈ , then N ϕ( , )− describes the unique pure strategy
equilibrium without the acceptance of the proposal. If, in addition, every i N+∈ is
replaceable by a player i j N( ) −∈ , then no pure strategy equilibrium with the accep-
tance of the proposal exists.

Proof. Ad (i): Because of Proposition 3 (i) and HN i ϕ( − { }, )− ∈ , no player from N− has
an incentive to withdraw his support and no player from N+ has an incentive to vote Yes.
Therefore N ϕ( , )− is the unique equilibrium with the acceptance of the proposal. In an
equilibrium Y A( *, *) with the rejection of the proposal, N Y− *− is not empty because,
otherwise, the proposal would be accepted, and, according to Proposition 3 (vi), it
contains only pivot players. But as each of these pivot players can be replaced by a player
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from N+ the necessary conditions from Proposition 3 (v) do not apply. Ad (ii): The
arguments for (i) can be repeated almost verbally.

Corollary 1.

(i) In an absolute k‐majority VGA with n k − 1− ≠ or k, N ϕ( , )− is the unique pure
strategy equilibrium. There is no pure strategy equilibrium for n k= − 1− or k.

(ii) In a relative k‐majority VGA with n n k− − 2− + ≠ or k − 1 or k or k + 1, N ϕ( , )− is
the unique pure strategy equilibrium. There is no pure strategy equilibrium for
n n k− = − 2− + or k − 1 or k or k + 1.

Proof. Ad (i): This statement has been proved by Groseclose and Milyo (2010). In our
notation, it is easy to check. According to Proposition 4, N ϕ( , )− is the only possible
equilibrium. According to Proposition 5, N ϕ( , )− is an equilibrium except, possibly, in
cases n k or k= − 1− . If n k=− , every i N−∈ has an incentive to switch to Abstain, if
n k= − 1− , then every i N+∈ has an incentive to switch to Yes. Therefore, in both cases,
N ϕ( , )− is not an equilibrium. Ad (ii): Arguments as in (i).

Therefore, if we rely on pure strategy equilibria, for simultaneous voting with equal weights
we can disregard an abstention option; but, as a general advice, this result is delusive. First, it is
not true for more complex voting rules. Second, in many cases these equilibria are not the most
plausible candidates for equilibrium selection. In addition to the general preference falsification
as predicted by Corollary 1, these equilibria are particularly doubtful if they do not imply true
majority results although costs are negligible. In such cases, there are competing “almost” pure
strategy equilibria with highly probable true majority results. For VGs, Bolle (2019) has shown
the existence of such equilibria and their selection by the Harsanyi and Selten (1988) equili-
brium selection theory. But before we turn to mixed strategy equilibria, let us briefly consider
an example of more complicated voting rules.

Example 2. The UN security council has 15 members (countries), five permanent
members (set P) and 10 nonpermanent members. A proposal is accepted if at least nine
members vote Yes and none of the permanent members votes No. Assume that all
permanent members are in N+ and 5 nonpermanent members (set nP−) are in N− and the
other 5 (set nP+) are in N+. Therefore, acceptance has a true majority.

With and without abstention, there is an equilibrium Y A nP( *, *) = ( , )− ∅ without the ac-
ceptance of the proposal (Proposition 5 (ii)). Y A nP P( *, *) = ( , )− ∪ ∅ with the acceptance of the
proposal is an equilibrium only without abstention because, only then, the permanent mem-
bers are pivot players (required by Proposition 3 (iii)). Therefore, with the introduction of an
abstention option, the set of pure strategy equilibria can change without abstention being used.

5 | MIXED STRATEGY EQUILIBRIA

In the following two sections, arguments and goals completely change. While pure strategy
equilibria are typically unique or nonexistent, there is a plethora of mixed and pure/mixed
strategy equilibria. Therefore, if we do not assume pure strategy equilibria to be the only
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relevant equilibria, the most important problem is equilibrium selection. There are several
methods of equilibrium selection with a (generically) unique result, but their application is
connected with a large number of cases and subcases. Therefore, in Section 6, we will restrict
our attention to “almost symmetric” relative k‐majority VGAs with either “sufficiently” large or
small cost/benefit ratios. In the first case, pure strategy equilibria are selected. In the second
case, there is still a large number of subcases, but equilibria are selected where either voters
from N+ or N− play a pure strategy and the others use a mixture between only two strategies.
Because of the small cost/benefit ratios, the latter is close to a pure strategy. Nonetheless, these
equilibria are completely different from pure strategy equilibria.

It turns out that the description of cases and subcases of equilibrium selection is a bit easier if we
take Abstain as the residual option. This slight change of perspective compared with the previous
sections will not lead to any confusion because only results are carried over. The players' probabilities
of voting Yes and No are γi and νi with γ ν+ 1i i ≤ . The probability of abstention is γ ν1 − −i i. We
define p γ ν= (( , ))i i i n=1, …, and p γ ν γ ν γ ν γ ν= (( , ), …, ( , ), ( , ), …, ( , ))i i i i i n n− 1 1 −1 −1 +1 +1 .

Definition 7. Player i plays a strictly mixed strategy if γ0 < < 1i , v0 < < 1i , and
γ v0 < + < 1i i . A partially mixed strategy has γ = 0i or v = 0i or γ v+ = 1i i . In a strictly

mixed strategy equilibrium, all players play strictly mixed strategies. If some players play
mixed strategies but not all players play strictly mixed strategies we call the equilibrium a
pure/mixed strategy equilibrium. The probability wi that voter i is an Abstain‐No pivot
player is called i's Abstain‐No decisiveness. The probability xi that i is a Yes‐Abstain pivot
player is called i's Yes‐Abstain decisiveness.

Assumption 3″. In addition to Assumption 3’, voters know all cost/benefit ratios.

Q Q p= ( ) denotes the probability of success, that is, that voting with p results in a com-
bination HY A( , ) ∈ .Q i− ,Q i0 , andQ i+ denote the probability of success if i votes No, Abstain, or
Yes with certainty. The monotonicity condition in Definition 1 implies Q Q Qi i i− 0 +≤ ≤ .
We have

Q γQ ν Q γ ν Q Q γ Q Q ν Q Q= + + (1 − − ) = + ( − ) − ( − )i i i i i i i i i i i i i i+ − 0 0 + 0 0 −

x Q Q= − 0i i i+ 0 ≥ and w Q Q= − 0i i i0 − ≥ are the Yes‐Abstain and the Abstain‐No decisi-
veness of player i. Player i's expected revenue is

R p G Q p γ c v γ d( ) = ( ) − − (1 − − )i i i i i i i

G Q γ G x c d v G w d= + [ − + ] − [ − ].i i i i i i i i i i i0 (1)

Because Q i+ , Q i0 , Q i− , xi, and wi depend only on p i− , we get

R γ Gx e e c d/ = − with = −i i i i i i i i∂ ∂ (2)

R v G w d/ =−( − ).i i i i i∂ ∂ (3)

A mixed strategy equilibrium requires that Ri is independent of γi and vi, that is, R γ/ = 0i i∂ ∂

and R v/ = 0i i∂ ∂ . If, in equilibrium, R γ/ > 0i i∂ ∂ then Yes is preferred to Abstain: Yes ≻ Abstain.
R γ/ < 0i i∂ ∂ implies Yes ≺ Abstain. R v/ > (<)0i i∂ ∂ implies Abstain ( )≻ ≺ No.

In three of the four combinations of the signs of the two derivatives, one of the possible
votes is preferred to the other two. If R γ/ < 0i i∂ ∂ and R v/ < 0i i∂ ∂ , then Abstain≻ Yes, Abstain≻
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No and, therefore γ v= = 0i i . If R γ/ > 0i i∂ ∂ and R v/ < 0i i∂ ∂ , then Yes ≻ Abstain ≻ No and,
therefore, γ = 1i . If R γ/ < 0i i∂ ∂ and R v/ > 0i i∂ ∂ , then No ≻ Abstain ≻ Yes and, therefore, v = 1i .
In the remaining case R γ/ > 0i i∂ ∂ and R v/ > 0i i∂ ∂ , Abstain will never be chosen. Yes is optimal
if R γ R v/ > /i i i i∂ ∂ ∂ ∂ , that is, G x e G w d− > −( − )i i i i i i or

G x w e d( + ) − ( + ) > 0i i i i i (4)

Proposition 6 (Best replies to x w( , )i i ).

(i) Strictly mixed strategies require G x e− = 0i i i and G w d− = 0i i i

(ii) If G x e− < 0i i i and G w d− > 0i i i then Abstain is played with certainty.
(iii) If G x e− > 0i i i and G w d− > 0i i i then Yes is played with certainty.
(iv) If G x e− < 0i i i and G w d− < 0i i i then No is played with certainty
(v) If G x e− > 0i i i and G w d− < 0i i i , then Abstain will never be chosen. Yes (No) is

played with certainty if G x w e d( + ) − ( + ) > (<)0i i i i i .
Proof. (2) and (3).

Let us define η e G= /i i i and σ d G= /i i i. Then Proposition 6 (i) is x η=i i and w σ=i i. For the
inequalities in Proposition 6, not only the cost/benefit ratios are important but also the signs.
Therefore, using cost/benefit ratios, the other conditions of Proposition 6 apply differently to players
from N+ and N−. The best reply map (Figure 1) serves to visualize conditions for pure, mixed, and
partially mixed equilibrium strategies. (xi, wi) are implications of the equilibrium strategies and the
equilibrium strategies must be best replies to these (xi, wi). The unique pure strategy equilibria of
Corollary 1 have (xi,wi) = (0, 0), strictly mixed strategy equilibria must imply (xi, wi) = (ηi, σi). Partially
mixed equilibrium strategies need decisiveness combinations on the lines in Figure 1, which are
characterized by equalities. Between these lines the best replies are pure strategies; that is, equili-
brium strategies with such decisiveness combinations are pure strategies. As an example, let us take
Segment IV with x η>i i and w σ>i i. For players from N+, Proposition 6 (iii) applies, that is, Yes is a
best reply. For players from N−, Proposition 6 (iv) applies, that is, No is a best reply.

FIGURE 1 The best reply map (Proposition 6). x x w w= , =i i and σ σ=i , η η=i .
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The best reply map has been derived for one player. If, however, replaceable voters play the
same strategy, then the same point on the best reply represents their decisiveness. If voters
within N+ and N− play the same strategies but between N+ and N− different strategies, then
their decisiveness is represented by two (mostly) different points on the best reply map. If all
players play different strategies, then every player has her individual x w( , )i i . In the following,
we are particularly interested in cases where voters are almost symmetric and N+ and N− play
different strategies. As an example, let voters from N+ play the pure strategy No and let voters
from N− mix between Yes and Abstain. These strategies are equilibria only if the decisiveness
x w( , )i i of players from N− lies on the line x η= (in Figure 1, indices are suppressed), and the
decisiveness of players from N+ is anywhere in segments I or II.

5.1 | VGAs with almost symmetric players

VGAs often have an extreme multiplicity of equilibria. In these cases, the question which of these
equilibria applies is the crucial question for applications. Unique pure strategy equilibria are salient
candidates; but for small cost/benefit ratios the implied deviations from true majority voting are
particularly disturbing. Equilibrium selection by “plausibility” or with formal procedures is difficult to
apply in a general VDA. Therefore, in the following, we concentrate on almost symmetric players.

Definition8 Two replaceable players are called symmetric if they have the same costs and
benefits. They are called almost symmetric if they have the same cost/benefit ratios η η=i
and σ σ=i . A game is called almost symmetric if all player pairs are almost symmetric. An
almost symmetric relative k‐majority VGA, where all voters from N+ and N− are restricted to
play the same strategies s γ v= ( , )+ + + and s γ v= ( , )− − − , is denoted as η σ k n nΓ( , , , , )+ − .

Because symmetric players cannot be distinguished, it is practically impossible for them to
coordinate on an equilibrium where they play different strategies. Therefore, the restriction to
η σ k n nΓ( , , , , )+ − is plausible for symmetric players. Harsanyi and Selten (1988) regard players

as symmetric if their utilities are equal after a linear positive transformation, that is, all players
with the same sign who are almost symmetric according to Definition 8 are symmetric ac-
cording to Harsanyi and Selten (1988). They require symmetric players to play the same
strategy; that is, following their requirement, we should investigate games η σ k n nΓ( , , , , )+ − .

It is easy to derive from Proposition 6 (i) that η σΓ( , , 0, 1, 1) has a unique strictly mixed strategies
equilibrium and that η σΓ( , , 0, 2, 1) with η > 1/2 has no strictly mixed strategies equilibrium. With
numerical methods we find at least three strictly mixed strategy equilibria for Γ(0.3, 0.1, 1, 2, 1),
namely γ v γ v( , ) = (0.11, 0.44), ( , ) = (0.23, 0.55)⁎ ⁎ ⁎⁎ ⁎⁎ , and γ v( , ) = (0.73, 0.20)⁎⁎⁎ ⁎⁎⁎ played by all
players. Generically, however, strictly mixed strategy equilibria do not play any role in the following
equilibrium selection procedure. Nonetheless, these examples illustrate that the set of pure, strictly
mixed, and pure/mixed equilibria may be large and diverse. Lemmas 2, 3, and 4 in the appendix
report restrictions to equilibria with partially mixed strategies.

6 | EQUILIBRIUM SELECTION FOR GAMES η σ k n nΓ( , , , , )+ −

The discussion of social interactions by applying game theory usually needs equilibrium selection
criteria, in particular if parameter (policy) changes are to be discussed. Assuming a unique pure
strategy equilibrium (if existent) to be played is one possibility. Another is the application of a
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formal equilibrium selection theory. From the multitude of the existing concepts, I have chosen
Harsanyi and Selten's (1988) selection of an equilibrium by the Linear Tracing Procedure. In my
view, there are mainly two prominent competitors of this concept. One is selection via Global
Games (Carlsson & Van Damme, 1993) where common knowledge games are transformed into
games of incomplete information with private and correlated signals. While incomplete in-
formation (noise) vanishes, equilibrium play converges, under certain conditions, to one of the
Nash equilibria of the original game. The Global Games selection has turned out to be easily
applicable only for games where strategies are strategic complements. Frankel et al. (2003) show
that, otherwise, the result may depend on the distribution of “noise.” In voting games, however,
equilibria coexist where strategies are strategic complements or substitutes (see Bolle, 2019). A
further prominent method of equilibrium selection was suggested by McKelvey and Palfrey
(1995) as a limit of their Quantal Response Equilibria (QRE) which assume all strategies (from a
finite set) to be played with probabilities that are ordered according to the utilities these strategies
gain against the strategies of the other players. When random deviations from the best response
vanish, QRE (generically) converges to a Nash equilibrium.2 For voting games, the QRE selection
suffers from the problem that QREs depend not only on cost/benefit ratios but also on the
magnitude of costs and benefits. This also applies to limits of QRE. Therefore, our choice of the
QRE selection depends on the question whether we assume that players with
c e G( , , ) = (2, 1, 4)i i i and c e G( , , ) = (4, 2, 8)i i i behave equally or differently. If we assume that
linear positive transformations of utility functions do not matter, we should not apply the QRE
selection to games η σ k n nΓ( , , , , )+ − . Investigating equilibrium selection in the class of almost
symmetric games via QRE seems to be an awkward choice. Thus, I argue that, while all three
prominent equilibrium selection theories have general advantages and disadvantages, for
η σ k n nΓ( , , , , )+ − only the Harsanyi and Selten theory, which requires the same strategies within

the player sets N+ and N−, is a sensible choice.

6.1 | The tracing procedure

Harsanyi and Selten (1988) select equilibria mainly by the application of the Linear Tracing
Procedure which describes a process of expectation formation of the players. The procedure
starts from the centroid of a game Γ which consists of the strategy profile where every pure
strategy is played with the same probability. In our games with three pure strategies, all
strategies are played with probability 1/3. In the tracing procedure, for every t0 1≤ ≤ , equi-
libria are determined in a game tΓ( ). Best replies at t are derived under the assumption that
other players play random with probability t1 − and follow a certain strategy with probability
t . In an equilibrium of tΓ( ) all players play such best replies. If there is a unique continuous
path of equilibria from t = 0 to t = 1, then the equilibrium at t = 1 is selected. Harsanyi and
Selten (1988) and Herings (2000) prove the general feasibility of the linear tracing procedure.

In the following, all variables which are indicated as dependent on t are related to Γ(t).
Without such an indication, a variable is related to Γ = Γ(1). The tracing procedure can be

2In addition to these concepts, there is the proposal by Güth and Kalkofen (1989), there are approaches with learning to
play equilibria (e.g., Berninghaus & Ehrhart, 1998) or other dynamic approaches (Binmore & Samuelson, 1999). Kim
(1996) investigates further proposals for equilibrium selection in symmetric normal form games with Pareto‐ranked
equilibria. Our equilibria are usually not Pareto‐ranked.
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illustrated by paths q t X t W t( ) = ( ( ), ( )) of decisiveness scores on the best reply map (Figure 1).
The tracing procedure starts with decisiveness values implied by the centroid.

q q X W(0) = (0) = ( (0), (0))i i i (5)

where X (0)i is the probability that, for t = 0, the number of Yes votes minus the number of No
votes is k − 1, andW (0)i is the probability that this difference is k.

Let us assume that q (0) is an interior point in one of the segments in Figure 1. Then the best
replies to q (0) in game Γ are the unique pure strategies indicated in the best reply map. In
Segment I, for example, the best reply to q (0) is No for i N+∈ , that is, γ υ( , ) = (0, 1)i i

+ + and Yes
for i N−∈ , that is, γ υ( , ) = (1, 0)i i

− − . This is the only equilibrium of Γ(0). For t > 0, we have to
take into account the decisiveness scores x w( , )i i in game Γ, caused by these strategies. The
decisiveness scores in game tΓ( ) are

q t X t W t t q t x w( ) = ( ( ), ( )) = (1 − ) (0) + ( , ).i i i i i (6)

Let us assume q (0) to be in segment I (Case 0), that is, voters from N− vote Yes and voters
from N+ vote No. Therefore, players from N− (N+) expect n n− − 1− + (n n− + 1− + ) Yes
minus No votes from the other voters. Excluding the cases from Table 1, we have
x w( , ) = (0, 0)i i and q t( )i moves on a line from q (0) to the origin.

The introductory example of the 21 Tory rebels seems to be a typical example with q (0) in
Segment I, provided the rebels had rational expectations. However, after declining so many
previous proposals, mainly from the May government, the rebels may have developed an
illusion of impunity. Therefore, this is an example with (surprisingly) high costs, but not
necessarily for Case 0 and an incorrect theoretical prediction.

Because pure strategy equilibria are particularly implausible for small cost/benefit ratios, we
are mainly interested in cases where q (0) lies in Segment IV. When it is necessary for the
exclusion of further subcases, we will always assume that the cost/benefit ratios are “sufficiently”
small. Our concentration on this scenario helps a lot to keep this investigation tractable, but
nonetheless there are still many subcases with different relations between k, n+, and n−.

6.2 | The tracing procedure with sufficiently small cost/benefit ratios

The tracing procedure is investigated in more detail in the appendix; here, only the essential ideas
are presented. In the following, let us suppress the indices i of players. We distinguish only voters

TABLE 1 Thresholds k without ( ) ( )x w x w, = , = (0, 0)i i i i
+ + − − if voters decide according to w x( , ) in the best

reply map

Segment x = 1+ w = 1+ x = 1− w = 1−

I n n− + 2− + n n− + 1− + n n−− + n n− − 1− +

II n− + 2+ n− + 1+ n− + 1+ n− +

III n+ n − 1+ n + 1+ n+

IV n n−+ − n n− − 1+ − n n− + 2+ − n n− + 1+ −

V n− + 1− n− − n− + 2− n− + 1−

VI n + 1− n− n− n − 1−
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from N+ and N−. Let us assume that q (0) lies in Segment IV and let us exclude the special cases
indicated in Table 1 for Segments I, II, III, and IV. Then, x w x w( , ) = ( , ) = (0, 0)+ + − − applies and
q t q t q t( ) = ( ) = ( )+ − moves on a line to the origin until it intersects the line w σ= . While voters
from N+ keep their Yes vote in Section III, voters from N− switch from No to Abstain.

q t( ) can move further on the line to the origin only if, at the intersection and for constant t ,
the players from N− continuously increase their probability of voting Abstain from 0 to 1. This is
possible if k n + 2+≥ or k n n− − 2+ −≤ . In the former case, the proposal is always rejected,
independent of the probability of the voters from N− voting Abstain and independent of whether
one of the players completely changes her vote. Therefore x w x w x w( , ) = ( , ) = ( , ) = (0, 0)+ + − −

is maintained. As players from N− are indifferent in game tΓ( ), the transition constitutes a
continuous path of equilibria. In the case k n n− − 2+ −≤ , in game Γ, the proposal is always
accepted. The development of q t( ) is described in Figure 2. In Cases 1.1 and 2.2,
x w x w x w( , ) = ( , ) = ( , ) = (0, 0)+ + − − applies on the whole path q t( ) to the origin. Therefore, in
these cases, again the pure strategy equilibrium is selected. The difference to the case with q (0) in
Section I is that the pure strategy equilibrium is assumed only if the true majority result is
implied, in Cases 1.1 rejection and in Case 2.2 acceptance of the proposal.

In the remaining cases, q t( ) cannot cross all lines to the origin. In Case 1.3, already w σ=

cannot be crossed. When q t( ) intersects this line, the voters from N− have to start increasing
the probability of voting Abstain from zero to positive values; but this cannot happen with a
constant t. Because of w > 0− , q t( )− would leave the line w σ= and the voters from N− would
no longer be indifferent between No and Abstain. To continuously increase the probability of
voting Abstain, q t( )− must stay on the line w σ= . Equation (6) shows that we need increasing t
to balance the increasing w−. Then q t( )− and q t( )+ separate with q t( )− moving along the line
w σ= . In the appendix, it is shown that, for sufficiently small σ and η, q t( )+ moves downwards
but does not reach the line w x σ η+ = + . Proposition 8 in the appendix discusses all cases in
Figure 2 in detail. Proposition 9 in the appendix covers cases with q (0) in Segment IV but above

FIGURE 2 q t( ) in the cases of Proposition 8, blue lines q t( )+ for voters from N+, red lines q t( )− for voters
from N−, and black lines for q t q t( ) = ( )+ − . The endpoints q (1) or q (1)+ and q (1)− describe the decisiveness
scores in the selected equilibrium
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the line w xσ η= / . Proposition 7 will describe the results of voting without abstention. Figure 3
illustrates Propositions 8, 9, and 7, thus allowing an easy comparison of the selected equilibria
with and without an Abstain option.

Considering so many cases and subcases is tedious but seems to be inevitable because different
relations between k, n+, and n− cause different voting behavior. The common property of all these
cases (with “sufficiently” small σ and η) is that true majorities are honored with certainty or high
probability.

FIGURE 3 Voting with sufficiently small η and σ . Red (black): voting according to (against) true
preferences. Bold type: Certainty instead of high probability. Explanatory remarks: Figure 3 is a visual
representation of Propositions 7, 8, and 9 (the latter two in the appendix). Around the indicated borders of cases,
some k values are excluded. Either Case 1.2 or 2.1 is empty; if n < 5− , Case 3.1 is empty. Either Case 3.2 or 4.2 is
empty; if n < 5+ , Case 4.1 is empty. In all cases covered by Propositions 7, 8, and 9, the voting result reflects,
with high probability, true majorities
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6.3 | Voting without abstention

In the best reply map, we have to consider only the line x w η σ+ = + . Above this line,
voters from N+ vote Yes and voters from N− vote No; vice versa below the line. With q (0)

above this line, q t( ) moves on a line to the origin until it intersects x w η σ+ = + at t t= 1.
Until this point, the majority voters (for k n n> −+ −, the voters from N−, otherwise those
from N+) determine the result with certainty. Therefore and because they are indifferent,
the minority voters can continuously change their strategy to that of the majority voters.
Then, for t t> 1 both play the symmetric mixed strategy equilibrium with π t( ) = prob-
ability of the majority decision, starting with π t( ) = 11 . q t( ) remains on the line
x w η σ+ = + until t = 1. For η σ+ sufficiently small, π (1) is arbitrarily close to 1. This
implies the voting behavior described in Figure 3. The tedious part of the proof is the
exclusion of other paths q t( ).

Proposition 7. Without an abstention option and for sufficiently small η σ+ , the
selected equilibrium for n n k− >+ − is symmetric, all players voting Yes with high
probability; for n n k− < − 1+ − , all players vote No with high probability.

Proof. Bolle (2019).

There are two differences between the tracing procedures with and without abstention.
First, on the lines x η= and w σ= , transitions are “smooth,” namely from Yes to Abstain or
from Abstain to No compared with “abrupt” transitions from Yes to No on the line
x w η σ+ = + which is the only critical line without abstention. Second, with abstention, only
one of the player groups is indifferent on a line. Therefore, at every intersection of q t( ) with one
of the lines, only one side changes their strategy.

6.4 | The excluded cases

The investigation of cases where q (0) lies in Segments II, III, V, and VI, follows the same lines
as in the other cases, but medium η and σ require considering more subcases. The omission of
the special values k in Table 1 cause “gaps” between the main cases (see Figure 3). Their
discussion can but need not be difficult. If, for example, q (0) lies in Segment I and if
k n n= − + 2− + , then x = 1+ and w x w= = = 0+ − − (see Table 1). q t( )− moves along the line
to the origin and q t( )+ downward to the right until it possibly intersects the line x η= .

7 | CONCLUSION: CAN WE NEGLECT ABSTENTION?

For sequential voting with general decision rules, we get unique subgame perfect equilibria
with and without abstention, both honoring true majorities. Therefore, we can neglect ab-
stention if we are interested only in the result of a vote. In equal weight voting, abstention is
rarely used.

For simultaneous voting, uniqueness of equilibria and independence from an abstention
option applies only for pure strategy equilibria of equal weight majority voting. In these pure
strategy equilibria, all voters vote against true preferences with the consequence that results
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often do not reflect true majorities. Such results are implausible for small voting costs. At least
then, the plethora of mixed and pure/mixed strategy equilibria of simultaneous voting games
should be taken into account. Applying the selection (tracing) procedure of Harsanyi and
Selten (1988) to equal weight VGAs with almost symmetric voters, we get more plausible
results. Pure strategy equilibria (possibly with results against true majorities) are selected if the
costs of voting according to true preferences are large enough; for small enough costs, pure
strategy equilibria are selected only if they imply true majority results. In the other cases with
small enough costs, an equilibrium is selected where either the voters from N+ or N− play a
pure strategy and the others a mixture between only two of the three options. In VGs with low
enough costs, equilibria are selected with all voters playing the same strategy; also these
equilibria honor true majorities with high probability.

By applying the tracing procedure of Harsanyi and Selten (1988) to simultaneous equal
weight voting with small voting costs, we partially reproduce the results for sequential voting:
true majorities are honored with high probability. Therefore, evaluating our extant voting rules
by equilibria selected with the tracing procedure instead of pure strategy equilibria is connected
with much more trust in these democratic institutions.

While the voting outcome is not affected, voting behavior in simultaneous equal weight
games depends a lot on the existence of an abstention option. According to Figure 3, abstention is
used with high probability only in some subcases; but this does not imply that voting behavior is
otherwise not affected. In all cases, either the voters from N+ or N− play a different strategy when
the abstention option is available. An additional effect of an abstention option is that, for small
cost/benefit ratios, the selected equilibria are not only close to pure strategy equilibria, but that
many mixture probabilities are exactly 0 or 1 (bold types in Figure 3). Without abstention, all
players play the same strictly mixed strategy; with abstention, either voters from N+ or N− play a
pure strategy and the others use a mixture between only two strategies.

Therefore, if we are interested only in the voting outcome, we can simplify our models by
neglecting abstention; if we are interested also in voting behavior, we cannot, even if abstention itself
is not used. The difference is much more pronounced in simultaneous than in sequential voting.
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APPENDIX A
For the proof of Propositions 8 and 9, we need Lemmas 2, 3 and 4.

( )B π m j
m
j π π( , ; ) = (1 − ) .j m j− (A1)

is the binomial distribution with π = success probability and j = number of successes
j m0 ≤ ≤ . B is a unimodal function of π with the maximum max m j( , ) at π j m= / . For every
δ max m j0 < ( , )≤ and j m0 < < , B π m;j δ( , ) = has two solutions; for δ = 0 they are π = 0

and π = 1, for increasing δ they continuously increase (decrease). For π0 1≤ ≤ , B π m( , ; 0)

decreases from 1 to 0 and B π m;m( , ) increases from 0 to 1.

Lemma 2. Let us assume n n k n− + 3 − 2+ − +≤ ≤ (Case 1.3 of Proposition 8). A
partially mixed strategy equilibrium where voters from N+ play a mixture of Yes (prob γ= )
and No (prob γ= 1 − ) and where players from N− play a mixture of Abstain
(prob ν= 1 − ) and No (prob ν= ) does not exist with γ and ν arbitrarily close to 1.

Proof. The equilibrium requires

w ν γ σ( , ) =− (A2)

w (ν, γ) + x (ν, γ) = η + σ+ + (A3)

with

w ν γ B ν n ;m B γ n ;h( , ) = ( , − 1 ) ( , )
h m K

−

( , )ϵ

− +∑ ∗ (A4)

x ν γ B ν n ;m B γ n h( , ) = ( , ) ( , − 1; )
h m L

+

( , )ϵ

− +∑ ∗ (A5)

w ν γ B ν n ;m B γ n h( , ) = ( , ) ( , − 1; ).
h m M

+

( , )ϵ

− +∑ ∗ (A6)

The respective decisiveness is 0 if K or L or M is empty. K determines the number of Yes
votes h from N+ and the number m of No votes from N i− { }− which lead to a number of Yes
minus No votes k so that i is an Abstain‐No pivot player, that is, h n h m k− ( − ) − =+ .
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K h m h n m n h m k n= {( , ) : 0 , 0 − 1, 2 − = + }2 + − +∈ ≤ ≤ ≤ ≤ (A7)

With similar arguments, we get

L h m h n m n h m k n= {( , ) : 0 − 1, 0 , 2 − = + − 2}2 + − +∈ ≤ ≤ ≤ ≤ (A8)

M h m h n m n h m k n( = {( , ) : 0 − 1, 0 , 2 − = + − 1})2 + − +∈ ≤ ≤ ≤ ≤ (A9)

K andM are not empty because, because h n= + is feasible in K and h n= − 1+ in L andM
because of the restrictions of Case 1.3. These maximal h‐values imply maximal m values
m m m, ,K L M in the three sets with m m n k= = −K L + and m n k= − − 1M + . For small ν1 −

and small γ1 − , (A4), (A5), and (A6) can be approximated by

w ν γ
n

m
ν ν γ γ ε( , ) =

− 1
(1 − ) (1 − ) +

K
m n m n−

−
−1− 0

1
K K− +⎜ ⎟⎛

⎝
⎞
⎠ (A10)

where ε1 contains summands with π γ s n m r(1 − ) (1 − ) , − 1 − , 0s r K−≥ ≥ , and
r s n m+ > − 1 − K− . For small ν1 − and γ1 − , ε1 can be neglected. The same is true for

( )w ν γ
n

m
ν ν γ γ ε( , ) = (1 − ) (1 − ) +L
m n m n+

−
− −1 0

2
L L− + (A11)

( )x ν γ
n

m
ν ν γ γn m ε( , ) = (1 − ) (1 − − ) + .M
m n m n L+

−
− −1 − 0

3
M M− + (A12)

Therefore, (A2) and (A3) imply

σ

η σ

c ν

c ν c ν+

(1 − )

(1 − ) + (1 − )

j

j j

1

2
+1

3
+1

≈ (A13)

with j n n k= − 1 − + 2− + ≥ because of the restrictions of this case and constants ci which
are independent of ν.

While the left side of (A13) is bounded by 1, the right‐hand side takes arbitrarily large values
for ν approaching 1. This contradiction proves the Lemma.

Lemma 3. Let us assume n k n n− + 2 − − 2+ + −≤ ≤ (Case 2.1 of Proposition 8). A
partially mixed strategy equilibrium where voters from N+ play a mixture of Yes (prob γ= )
and No (prob γ= 1 − ) and where players from N− play a mixture of Yes (prob β= ) and
Abstain (prob β= 1 − ) does not exist for γ arbitrarily close to close to 1 and and β

arbitrarily close to zero.

Proof. We can follow the lines of the proof of Lemma 2. In the equivalents of (A4), (A5),
and (A6), we substitute ν by β and we compute x− instead of w−. After determining new
sets K, L, M, which again have maximal h values of n+ or n − 1+ , we estimate
x const β γ(1 − )− 0≈ ∗ ∗ , x const β γ(1 − )+ 2 1≈ ∗ ∗ , and w const β γ(1 − )+ 3 1≈ ∗ ∗ . Then, the
equivalent of (A13) with η

η σ+
is contradictory for arbitrarily small β and γ1 − .

Lemma 4. Let us assume n k n n+ 2 − − 2+ − +≤ ≤ (Case 1.2 of Proposition 9). A
partially mixed strategy equilibrium where voters from N+ play a mixture of Yes (prob γ= )
and No (prob γ= 1 − ) and where players from N− play a mixture of Yes (prob β= ) and
Abstain (prob β= 1 − ) does not exist for sufficiently small γ if β.
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Proof. As for Lemmas 2 and 3.

Proposition 8. For sufficiently large η and σ , q (0) lies in Segemnt I of the best reply map.

Case 0. q (0) lies in Segement I. With the exception of the four k values in Table 1, the pure
strategy equilibrium is selected; voters from N+ vote Yes and those from N− vote No. All voters
vote against their true preferences. The true majority result may or may not be implied.

Cases 1 and 2. For sufficiently small η and σ , q (0) lies in Segment IV. The linear tracing
procedure results in the following equilibrium selection. q (0) lies in Segement IV below the
line w xσ η= / . For Subcases 1.2, 1.3, and 2.1, sufficiently small η and σ are assumed. With
high probability or certainty, the selected equilibrium implies the true majority result, namely
rejection in cases 1 (k n n> −+ −) and acceptance in cases 2 (k n n−+ −≤ ). Depending on n+

and n−, some of the following Subcases may be empty, that is, without feasible thresholds k.
The special values of Table 1 are excluded. Therefore, subcases need not be adjacent to one
another.

Case 1.1: k n + 2+≥ and k n n− + 3− +≥ . The pure strategy equilibrium is selected.
Case 1.2: n k n n+ 2 − − 2+ − +  . Voters from N+ vote Yes and those from N− vote

Abstain with high probability.
Case 1.3: n n k n− + 3 − 2+ − +≤ ≤ . For sufficiently small σ , voters from N+ vote Yes with

certainty and voters from N− vote No with high probability.
Case 2.1: n k n n− + 2 − − 2+ + −≤ ≤ . Voters from N+ vote Yes and voters from N− vote

Abstain with high probability.
Case 2.2: k n− − 1+≤ and k n n− − 2+ −≤ . The pure strategy equilibrium is selected.

Proof. The general feasibility of the tracing procedure has been proved by Harsanyi and
Selten (1988) and Herings (2000). Therefore, we need not prove the existence of solutions
of the following systems of equations but we will only investigate their properties. First,
the simple Cases 0, 1.1, and 2.2 are examined. Then, we investigate Case 1.3., where a
mixed strategy is played at the first intersection of q t( ) with one of the critical lines, that
is, with w σ= . Thereafter, we investigate the Cases 2.1 and 1.2 where playing mixed
strategies start at the lines w x η σ+ = + and x η= (see Figure 2). We suppress the
indices i of players.

Case 0. For q (0) in Segment I and excluding the four special values of k (Table 1), we
have x w x w x w( , ) = ( , ) = ( , ) = (0,0)+ + − − and, therefore, q t( ) moves on the line to the
origin which is reached at t = 1, that is, the pure strategy equilibrium is selected.

Case 1.1. k n + 2+≥ , k n n− + 3− +≥ .
Case 2.2: k n− − 1+≤ , k n n− − 2+ −≤ . For these k values, x w( , ) = (0, 0)i i applies on

the whole path to the origin. On the lines between two segments and without changing t ,
either voters from N+ or voters from N− continuously change their strategy to that of the
new segment. In Segments IV and III, voters from N+ vote Yes. On the line w σ= , Yes is
never a best reply for voters from N−. When they start to mix between No and Abstain, for a
player from N− the minimum number of Yes minus No votes from other players is
n n− + 1+ − . The maximum number is n+. The restrictions of the two cases imply that
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players from N− are never decisive: either they cannot prevent acception or they cannot
prevent rejection of the proposal. For a player from N+, these minimum and maximum
numbers are n n− − 1+ − and n − 1+ . Therefore, q t q t q t( ) = ( ) = ( )+ − proceed along the
line to the origin. The same procedure applies when q t( ) intersects the lines
w x η σ+ = + and x η= . Note that q t( )+ or q t( )− cannot stay on the lines because,
with x w( , ) = (0, 0)i i , the decreasing t q(1 − ) (0)∗ cannot be balanced. Therefore, in these
cases, again the pure strategy equilibrium is selected. The difference to Case 0 is that the
pure strategy equilibrium is assumed only if the true majority result is implied, in Case 1.1
rejection and in 2.2 acceptance of the proposal.

Case 1.3. n n k n− + 3 − 2+ − +  . This case exists only if n 5−  .

We define t1 by the intersection of the line (6) with x w( , ) = (0,0) with the line w σ= . For
t t> 1, voters from N− start to play a mixture of Abstain (prob ν t= 1 − ( )) and No
(prob ν t= ( )). They choose ν t( ) so that

W t t W t w σ( ) = (1 − ) (0) + =− −∗ ∗ (A14)

remains constant. The Abstain‐No decisiveness w− of voters from N− is the probability that the
number of Yes minus the number of No votes is k, that is,

n − kw ν B ν n( ) = ( , − 1; )+− − (A15)

Because of the restrictions of this case, we have 1 n − k n − 4+ −  . Therefore, if this
case is not empty, n − kB n(1, − 1; ) = 0+− . From (A14) and (A15) follows:

n − kB ν n δ t
σ t W

t
( , − 1; ) = ( ) =

− (1 − ) (0)
.+− (A16)

Because of the definition of t1, δ t( ) = 01 , and ν t( ) = 11 is a solution of equation. For larger t ,
δ t( ) increases and ν t( ) decreases continuously until ν (1), provided σ n n kmax ( − 1; − )− +≤ .
For small enough σ , ν (1) defined by n − kB ν n σ( (1), − 1; ) =+− , is arbitrarily close to 1.

The Yes–Abstain decisiveness

x ν t B ν t n n k( ( )) = ( ( ), − 1; − + 1)− − + (A17)

has a smaller exponent of ν1 − . Therefore, close to ν = 1, x− is much larger than w− and, in
the best reply map, q t( )− moves along the line w σ= to the right. Because of the same argu-
ment, close to ν = 1,

w ν t B ν t n n k( ( )) = ( ( ), ; − − 1)+ − + (A18)

is much smaller than w α( )− and

x ν t B ν t n n k( ( )) = ( ( ), ; − )+ − + (A19)

is much smaller than x α( )− . As a consequence, q t( )+ moves close to the line to the origin until
either t = 1 or until t t= < 12 , when it intersects the line w x η σ+ = + . The latter case will be
excluded. For sufficiently small σ , ν (1) and, therefore, ν t( )2 is arbitrarily close to 1.

On the line w x η σ+ = + ., voters from N+ can mix Yes and No. Starting such a mixed
strategy cannot take place with constant t t2≥ because of w x+ > 0+ + . Therefore, for t t> 2,
players from N− play a mixture of Abstain (prob ν t= 1 − ( )) and No (prob ν t= ( )) and voters
from N+ play a mixture of Yes (prob γ t= ( )) and No (prob γ t= 1 − ( )). As the voters from N+
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vote Yes in Segment III, they start, at t t= 2, with γ = 1. According to Lemma 1, however, a
partially mixed equilibrium of Yes and No for players from N+ and No and Abstain for players
from N− does not exist for ν and γ close to 1. Therefore q t( )+ will never intersect the
line w x η σ+ = + .

We conclude that, if σ is sufficiently small, in the selected equilibrium, voters from N− vote
No with high probability and voters from N+ vote Yes with certainty.

Case 2.1. n k n n− + 2 − − 2+ + −≤ ≤ . Therefore, n n2 + 4+ −≥ is required.

q t( ) crosses the line w σ= because of k n n−+ −≤ (see Cases 1.1 and 2.2). At t t= 1, it
intersects the line w x η σ+ = + . Voters from N− vote Abstain in Segments II and III. On the
line, voters from N+ can mix Yes (prob γ= ) and No (prob γ= 1 − ) to maintain

W t X t t W X t w γ x γ η σ( ) + ( ) = (1 − ) ( (0) + (0)) + ( ( ) + ( )) = + .+ + + +∗ ∗ (A20)

For a Yes‐Abstain pivot player i, Abstain would mean rejection, that is,
h n h k− ( − 1 − ) <+ when h players from N i− { }+ vote Yes, and i voting Yes would mean
acceptance of the proposal, that is, h n h k− ( − 1 − ) + 1+ ≥ . k n+ − 1+ . If k n+ − 1+ is
even, then these two inequalities cannot be fulfilled by an integer h. If k n+ − 1+ is odd, we
find a critical h k n= ( + − 2)/2+ . Vive versa, for w+.

w γ B γ n k n x γ k n( ) = ( , − 1; ( + − 1)/2) and ( ) = 0 for + − 1 even+ + + + + (A21)

w γ x γ B γ n k n k n( ) = 0 and ( ) = ( , − 1; ( + − 2)/2) for + − 1 odd.+ + + + + (A22)

As either x = 0+ or w = 0+ , q t( ) moves down the line W t X t η σ( ) + ( ) = ++ + . At t1 the
mixed strategy of voters from N+ starts with γ t( ) = 11 and, for small η σ+ , even γ (1) has to be
close to 1.

Because of the restrictions of this case, w γ x γ const γ( ) + ( ) ⁎(1 − ) j+ + ≈ with
j n k n= − 1 − ( − − 1)/2+ + > 0 or j n k n= − 1 − ( − − 2)/2 > 0+ + .

With respective arguments, the decisiveness scores of voters from N− are

w γ x γ B γ n k n k n( ) = 0 and ( ) = ( , ; ( − − 1)/2) for even + − 1− − + + + (A23)

w γ B γ n k n x γ k n( ) = ( , ; ( − )/2) and ( ) = 0 for odd + − 1,− + + − + (A24)

None‐zero x− and w− are about const γ(1 − ) j
′

∗ with j j′ > . Therefore, for γ close to 1,
w γ x γ( ( ), ( ))− − are small compared with w γ x γ( ( ), ( ))+ + and q t( )− moves downwards below the line
W t X t η σ( ) + ( ) = ++ + until t = 1 or it intersects the line x η= at t t= 2. There voters from N−

have to switch from Abstain to Yes, starting with β prob Yes= ( ) = 0. This is excluded by Lemma 3.
We conclude that, if η and σ are sufficiently small, in the selected equilibrium, voters from

N− vote Abstain with certainty and voters from N+ vote Yes with high probability.

Case 1.2. n k n n+ 2 − − 2+ − +  . This case requires n n2 + 4+ −≤ .

In this case, because of n k+ 2+ ≤ , q t( ) crosses the lines w σ= and w x η σ+ = + as
described above, but cannot cross x η= because, there, x > 0i

− when voters from N− change
their strategy. Let us assume that q t( ) intersects x η= at t t= 1. In Segments I and II, voters
from N+ vote No. For t t> 1, voters from N− never vote No but mix between Yes and Abstain.
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They continuously change the probability β t( ) = 01 for Yes and β t1 − ( ) = 11 for Abstain to
higher β t( ). q t( )− staying on the line x η= requires

X t t X t x η( ) = (1 − ) (0) + = .− −∗ ∗ (A25)

For a voter from N− we get

x β B β n ;k n( ) = ( , − 1 + − 1)− − + (A26)

w β B β n ;k n( ) = ( , − 1 + ),− − + (A27)

w β( )− is proportional to β nk+ +
and x− to β nk −1+ +

. Therefore, for small β, w− is much smaller
than x− and q t( )− moves along the line x η= downwards (See Figure 2).

w β B β n ;k n( ) = ( , + − 1),+ − + (A28)

x β B β n ;k n( ) = ( , + − 2)+ − + (A29)

Imply, for small β, w β w β( ) > ( )+ − and x β x β( ) > ( )+ − . Therefore, q t( )+ moves, for increasing t ,
upwards to the right (Figure 2) until t = 1 or it intersects the line x w σ η+ = + where voters
from N+ start mixing strategies Yes (initially with probability γ = 0) and No. Using Lemma 4, the
second case can be excluded.

In the selected equilibrium of this case, voters from N+ vote No with certainty and N− vote
Abstain with high probability.

Proposition 9. For sufficiently small η and σ , q (0) lies in Segemnt IV of the best reply
map. If q (0) lies above the line w xσ η= / , the linear tracing procedure results in the
following equilibrium selection.

Cases 3 and 4. For Subcases 3.2, 4.1, and 4.2, sufficiently small η and σ are assumed.
With high probability or certainty, the selected equilibrium implies the true majority result,
namely rejection in Cases 3 (k n n> −− +) and acceptance in Cases 4 (k n n−− +≤ ).
Depending on n+ and n−, some of the following subcases may be empty, that is, without
feasible thresholds k. Subcases need not be adjacent to one another.

Case 3.1: nk + 2−≥ and k n n− + 3+ −≥ . The pure strategy equilibrium is selected.
Case 3.2: k nn n + 2 − 2− −+ −   . Voters from N+ vote Abstain with certainty and those

from N− vote No with high probability.
Case 4.1: n k n n− + 3 − − 2− + −≤ ≤ . Voters from N+ vote Yes with high probability and

voters from N− vote No with certainty.
Case 4.2: n n k n− + 2 − − 2− + −≤ ≤ . Voters from N+ vote Abstain with high probability

and those from N− vote Yes with certainty.
Case 4.3: k n− − 1−≤ and k n n− − 2− +≤ . The pure strategy equilibrium is selected.

Proof. As for Proposition 8.
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