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Abstract

Risk management decisions provide a means to elicit

individuals' risk preferences empirically. In such a

context, the literature often presumes that the decision

to invest in risk management and the benefit of this

investment occur contemporaneously. There is, how-

ever, no consensus in the theoretical literature that

one‐period results can be transferred to intertemporal

settings. To address this gap, we study the effect of an

increase in risk aversion on the demand for risk

management in a two‐period context. Our findings

reproduce the one‐period results and, thus, support the

focus of previous empirical literature on the structure

of the risk rather than on the timing of investments

and benefits. We also contrast our results with those

obtained by employing widely used but limited pre-

ferences to examine risk aversion in intertemporal

settings (standard additive expected utility setting,

Selden, Epstein and Zin).
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1 | INTRODUCTION

The decision to invest in risk management involves the consideration of risk and uncertainty.
Individuals can prevent car accidents by driving carefully or by applying what is learned in a
defensive driving course, reduce the risk of a fire by installing sprinkler systems or lightning
conductors, and eat well and exercise regularly to reduce health risks. Companies invest in
cybersecurity to prevent successful cyberattacks, install burglar alarms to reduce the risk of
theft, and, in the case of farming, store extra water in the event of a drought. Moreover, both
individuals and companies obtain insurance to mitigate financial losses. Given the numerous
examples of risk management activities, how can we use observed behavior to draw inferences
about the underlying risk preferences of decision makers?

Mitigation decisions usually involve activities to reduce either the size or the probability of loss.
We follow Ehrlich and Becker (1972) and call the former self‐insurance and the latter self‐
protection.1 While previous research supports to employ self‐insurance decisions to infer risk
preferences, it identifies intricacies to draw inferences from self‐protection activities. Theoretical
findings show that greater risk aversion raises optimal self‐insurance but has an ambiguous effect
on optimal self‐protection in one‐period models (Briys & Schlesinger, 1990; Dionne &
Eeckhoudt, 1985). In this setting, the investment in risk management and the induced risk re-
duction are assumed to occur contemporaneously, but, often, for example, when buying insurance
or when making safety investments, they occur temporally separated.

This paper employs a two‐period model to incorporate the time structure of investments
in risk management and their benefits. The objective is to study how optimal risk man-
agement changes with increased risk aversion. This comes with the conceptual challenge of
how to compare risk preferences in a two‐period model. Kihlstrom and Mirman (1974)
demonstrate that comparing agents in terms of their risk aversion requires keeping ordinal
preferences unchanged. Preferences also need to fulfill a monotonicity property to ensure
that agents do not prefer first‐order stochastically dominated lotteries (Bommier
et al., 2012, 2017). Theoretical research, however, widely employs risk preferences that are
either not consistent with ordinal preferences (standard additive expected utility setting) or
not necessarily monotone (Epstein & Zin, 1989; Selden, 1978). In contrast, our approach to
comparative risk aversion in intertemporal settings fulfills both requirements.

First, we find that increased risk aversion unambiguously raises optimal self‐insurance,
using a framework provided by Bommier et al. (2012), which works only with ordinal pre-
ferences and does not assume a particular representation of risk preferences. To study the
interaction between saving and self‐insurance, we further employ the preferences proposed by
Kihlstrom and Mirman (1974). In this setting, we demonstrate that a more risk‐averse agent
invests more in self‐insurance with and without endogenous saving. Second, we study self‐
protection decisions. While Bommier et al.'s approach remains silent about the effect of greater
risk aversion on self‐protection, Kihlstrom and Mirman's preferences enable us to draw con-
clusions about this effect. Both with and without endogenous saving, we show that, if the loss
probability is sufficiently small, a more risk‐averse agent invests more in self‐protection. We
further contrast our results with those obtained by employing widely used but limited

1Insurance is, for example, a special case of self‐insurance and has similar comparative statics (Courbage et al., 2013).
Additionally, note that decision makers in Ehrlich and Becker's (1972) setting are assumed to have precise information
about the benefits of risk mitigation. In contrast, Li and Peter (2021) analyze self‐insurance and self‐protection activities
where the effectiveness of risk mitigation is subject to exogenous environmental factors.
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preferences to examine risk aversion in intertemporal settings (standard additive expected
utility setting, Selden, Epstein and Zin).

Our results contribute to both theoretical and empirical literature. Bommier et al. (2012) show
that standard additive expected utility settings as well as Selden's (1978) and Epstein and Zin's
(1989) preferences are not well ordered in terms of risk aversion. We explore how the lack thereof
affects optimal risk management under an increase in risk aversion. Without the consistency of
ordinal preferences (standard additive expected utility setting) or the lack of monotonicity (Selden,
Epstein and Zin), we find that two‐period results for risk management hinge on the consideration
of endogenous saving. Agents who optimize risk management and saving separately (employing
two mental accounts) would then behave differently than would agents, who optimize risk man-
agement and saving jointly (employing only one mental account). Using preferences that are well
ordered in terms of risk aversion, however, we reproduce the one‐period results in our two‐period
models independent of the consideration of endogenous saving. Our findings are thus good news
for empiricists. Empirical studies often ignore the intricacies of the time structure when analyzing
mitigation decisions and simply assume all costs and benefits to appear contemporaneously. They
thus make the implicit assumption that results of one‐period models can be transferred to inter-
temporal settings. Our analysis, therefore, supports the focus of the empirical literature on the
structure of the risk rather than on the timing of investments and benefits.

Risk management in two‐period settings has received only scant attention in the literature.
Menegatti (2009) was the first to study self‐protection in a two‐period setting, finding that
prudence is positively related to investments in self‐protection. By introducing endogenous
saving, Peter (2017) reproduces the one‐period result and explains his finding through the
substitution effect between self‐protection and saving (Menegatti & Rebessi, 2011). The paper
most closely related to ours is Hofmann and Peter (2016), who study self‐insurance and self‐
protection in a two‐period expected utility framework with and without saving. In the absence
of saving, the authors find that, if first‐period consumption is sufficiently high, a more concave
utility function raises optimal self‐insurance and optimal self‐protection. They show that, in the
presence of saving, if the loss probability is sufficiently low, higher concavity unambiguously
increases optimal self‐insurance and optimal self‐protection. Increasing the concavity of the
utility function, however, changes ordinal preferences in a standard additive expected utility
setting, which makes it impossible to study the effect of risk aversion on optimal self‐insurance
and optimal self‐protection. We address this gap and contribute to the literature by focusing on
the role of greater risk aversion on optimal risk management in isolation.

In Section 2, we first summarize Bommier et al.'s (2012) framework of comparative risk
aversion. We then examine the effect of greater risk aversion on self‐insurance and self‐
protection decisions, using monotone preferences in Section 3 and employing nonmonotone
preferences in Section 4. We discuss our findings in view of the extant literature in Section 5.
The paper ends with concluding remarks and directions for future research in Section 6. All
proofs appear in Appendix A.

2 | COMPARATIVE RISK AVERSION IN TWO PERIODS

2.1 | Overview

According to comparative Arrow‐Pratt risk aversion, an agent A is more risk‐averse than agent
B if A's utility function is more concave than B's (Arrow, 1963; Pratt, 1964). While greater
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concavity of an agent's utility function represents higher risk aversion in a one‐period expected
utility setting, it changes ordinal preferences in a standard additive expected utility setting with
two periods. This makes it impossible to compare agents in terms of their risk aversion in this
setting (Kihlstrom & Mirman, 1974).2

Recent theoretical literature presents approaches to examine comparative risk aversion in
intertemporal settings. These approaches ensure that ordinal preferences are preserved and
that agents do not prefer first‐order stochastically dominated lotteries, consistent with mono-
tonicity. For example, Bommier et al. (2012) develop a framework that works only with ordinal
preferences and does not assume a particular representation of risk preferences when analyzing
the effect of risk aversion on behavior. Further, they show that, while Kihlstrom and Mirman
(1974) preferences are well ordered in terms of risk aversion, those of Selden (1978) and Epstein
and Zin (1989) are not. In the following, we present Bommier et al.'s (2012) framework of
comparative risk aversion for intertemporal settings.

2.2 | Bommier et al.'s (2012) framework of comparative risk aversion

We focus on agents who invest in risk management today and face a potential loss to-
morrow. Agents, thus, face a certain period‐one consumption and an uncertain period‐
two consumption. This consumption stream is modeled by lotteries over “certain ×
uncertain” consumption pairs c c( , )1 2͠ , which pay off in the state space C = +

2 . Their
payoffs are, therefore, of the form c c( , )1 2 with c c, 01 2 ≥ . The uncertainty with respect to
the lottery outcome is represented by a probability space (Ω, , ) , where Ω denotes the
set of states of the world θ,  denotes the σ‐algebra of sets in Ω, and  is the probability
measure. Further, C( ) denotes the set of lotteries with payoffs in the state space C. Each
lottery l C l C( ), : Ω∈ → , is a mapping from states of the world into the state space. In
such a two‐period model, we define comparative risk aversion according to Yaari (1969).

Definition 1 (Yaari, 1969). Agent A is at least as risk‐averse as agent B if all increases in
risk that are acceptable to A are also acceptable to B.

Yaari (1969) shows that his definition of comparative risk aversion is equivalent to comparative
Arrow‐Pratt risk aversion in the case of a univariate utility function. Bommier et al. (2012) work
with Yaari's (1969) definition of comparative risk aversion by (1) assuming certain regularity
conditions on ordinal preferences as well as risk preferences and (2) introducing a relation to
compare the riskiness of lotteries, which will then be used to define increases in risk.

First, we introduce the regularity conditions on preferences. Agents rank consumption
pairs c c( , )1 2 according to a common ordinal preference relation ≽, defined on the state
space C. For simplicity, we assume that this ordinal preference relation can be re-
presented by a continuous lifetime utility function u C: → .3 Agents also rank uncertain
consumption pairs c c( , )1 2͠ according to their individual risk preference. We define an
agent's risk preference over subsets H of the set of lotteries C( ) , where
δ c C H C{ } ( )c ∣ ∈ ⊂ ⊂ , meaning that H contains the degenerate lotteries δc, which pay off

2See also Gollier (2001, Section 15.3) for a discussion on this issue regarding the consumption‐saving problem.
3Debreu (1954) shows the existence of such a continuous utility function if the preference relation is complete,
transitive and continuous.
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c c c( , )1 2≔ with certainty. To make their risk preferences comparable, we require all risk
preferences to be consistent with a common ordinal preference relation.

Definition 2 (Consistency with ordinal preferences). Let≽ be an ordinal preference and
A≽ be the risk preference of agent A. The risk preference A≽ is consistent with the ordinal

preference ≽, if, for c c C′, ″ ∈ the relation c c δ δ′ ″
″c

A
c′≽ ⇔ ≽ holds true.

Agents A and B, for example, whose risk preferences A≽ and B≽ are consistent with the
ordinal preference relation≽, rank degenerate lotteries as the ordinal preference relation ranks
consumption pairs. This makes A's and B's risk preference comparable in the absence of risk,
which is required for their comparability in the presence of risk.

All risk preferences shall further satisfy the assumption of monotonicity so that agents do
not prefer first‐order stochastically dominated lotteries.

Definition 3 (Monotonicity). Let ≽ be an ordinal preference and A≽ be the risk
preference of agent A. The risk preference A≽ satisfies monotonicity if, for any lotteries
l l H,1 2 ∈ , the following holds true:

θ l θ l θ l l( Ω: ( ) ( )) .A
1 2 1 2∀ ∈ ≽ ⇒ ≽ (1)

Monotonicity ensures that decision makers never choose an action that provides less
lifetime utility in all states of the world. In intertemporal choice models without
monotonicity, agents may desire to reduce the difference in lifetime utilities although this
may decrease lifetime utility in all states of the world (Bommier & Le Grand, 2018;
Bommier et al., 2017).

Second, we introduce the notion of a p‐spread to compare the riskiness of lotteries. Given
a lottery l H∈ and its corresponding cumulative distribution function F z( ) =l

θ u l θ z{ Ω: ( ( )) } ∈ ≤ , this “riskier than” relation is defined as follows.

Definition 4 (Bommier et al., 2012). For fixed p (0, 1)∈ lottery l1 is a p‐spread of lottery
l2 (in notation: l lp1 2⊢ ), if there exists an u0 ∈ such that:

1. p F z F z( ) ( )l l1 2
≥ ≥ for all z u< 0,

2. p F z F z( ) ( )l l1 2
≤ ≤ for all z u0≥ .

In this case, we say that lottery l1 is an increase in risk of lottery l2.

Figure 1 provides an example of a p‐spread. Here, lottery l1 is a p‐spread of lottery l2 for p = 0.5

and u = 30 . The pair u p( , )0 allows the separation of utility levels into good and bad states of the
world. The bad states of the world (z u< 0) occur with probability p and the good states of the world
(z u0≥ ) with probability p1 − . Conditional on the bad states of the world lottery, l2 first‐order
dominates lottery l1 and, conditional on the good states of the world, lottery l1 first‐order dominates
lottery l2. P‐spreads, thus, satisfy single‐crossing between the lotteries involved.

Given the above p‐spread relation, we can define comparative risk aversion in the sense of
Yaari (1969).
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Definition 5 (Bommier et al., 2012). Agent A is at least as risk‐averse as agent B with
respect to the p‐spread relation if for all l l H,1 2 ∈ :

l l l l l l( ) ( ) .p
A B

1 2 1 2 1 2⊢ ∧ ≽ ⇒ ≽ (2)

The intuition behind Bommier et al.'s (2012) definition of comparative risk aversion is as
follows. If lottery l1 is riskier than lottery l2 according to the p‐spread notion, l1 has a
higher chance than l2 of outcomes that are ordinally more extreme in the sense that l1 has
more probability mass on ordinally favorable and unfavorable outcomes than l2 (see
Figure 1). Consequently, if l1 is preferred to l2 by the more risk‐averse agent, it is only
consequential that it is also preferred over l2 by the less risk‐averse agent.

2.3 | Increased risk aversion and optimal behavior

Lottery l H∈ provides an agent with a consumption stream c c( , )1 2͠ . The agent can take an action
y J +∈ ⊂ that alters the cumulative distribution function Fl of the lottery l. After the im-
plementation of action y (e.g., investing in self‐insurance), we denote the new lottery by ly and its
corresponding cumulative distribution function by Fly. The objective is then to study optimal actions
under an increase in risk aversion. If agent A is at least as risk‐averse as agent B with respect to the p‐
spread relation for all p (0, 1)∈ , we can use Bommier et al.'s (2012) theorem to compare the optimal
actions of agents A and B. This theorem requires the action y to fulfill certain assumptions. First, the
action y shall have a nonzero effect on the cumulative distribution function of the lottery l.

Assumption 1 (Nonconstant). Let y J1 ∈ and y J2 ∈ be two actions. If l θ l θ( ) ~ ( )y y1 2
for

all θ Ω∈ , then y y=1 2.

If an agent is indifferent toward the implementation of action y1 and action y2 for all states
of the world, the above assumption ensures that these actions are identical. Second, an optimal

FIGURE 1 The concept of the p‐spread relation is displayed. Lottery l2 first‐order dominates lottery l1 for
utility levels below u0 and lottery l1 first‐order dominates lottery l2 for utility levels above u0. Lottery l1, thus, has
a higher chance than l2 of outcomes that are ordinally more extreme in the sense that l1 has more probability
mass on ordinally favorable and unfavorable outcomes than l2. Lottery l1 is, therefore, riskier than lottery l2
[Color figure can be viewed at wileyonlinelibrary.com]
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action yθ shall exist for every state of the world θ Ω∈ . In addition, given an optimal action yθ
for state θ Ω∈ , moving closer to the optimal action shall improve the lottery in terms of the
ordinal preference.

Assumption 2 (Single‐peakedness). Let y y y y y J, , , ,1 2 3 4 ∈ be actions. For all θ Ω∈ , it
holds true that:

• There exists an optimal action yθ so that y J l θ l θ: ( ) ( )y yθ
∀ ∈ ≽ .

• For y y y y yθ1 2 3 4≤ ≤ ≤ ≤ we have l θ l θ l θ( ) ( ) ( )y y yθ 2 1
≽ ≽ and l θ l θ l θ( ) ( ) ( )y y yθ 3 4

≽ ≽ .

Third, actions are assumed not to change the initial ordering of lottery outcomes with
respect to the states of the world. In the case of only two states, this means that outcomes in the
good state are always preferred to outcomes in the bad state, regardless of the action y

implemented.

Assumption 3 (Comonotonicity). Let θ θ, Ω1 2 ∈ be two states of the world. If
l θ l θ( ) ( )y y1 21 1

≽ for some y J1 ∈ , then it follows that l θ l θ( ) ( )y y1 2≽ for all y J∈ .

For two states θ θ, Ω1 2 ∈ , we can thus write θ θ1 2≥ if l θ l θ( ) ( )y y1 2≽ for some action y J∈ .
The ordering of the states is well defined due to the assumption of comonotonicity. For the
action y = 0, we obtain the initial ordering of lottery outcomes. According to the above as-
sumption, any other action y J∈ does not alter this ordering. The assumption of comonoto-
nicity, therefore, enables us to order the states of the world according to the lottery outcomes.

Assumption 4 (Action order). Applying a suitable bijection ν:  → leads to y yθ θ1 2
≤

whenever θ θ1 2≥ .

Thus, the better the state of the world, the smaller the optimal action. Because we already
have defined an ordering of the states of the world, we can always find a bijection so that
Assumption 4 is fulfilled. Given Assumptions (1)–(4), we can compare optimal actions under
an increase in risk aversion.

Proposition 1 (Bommier et al., 2012). Consider two agents, A and B, who choose an
action y that provides them with a lottery ly so that Assumptions (1)–(4) are fulfilled.
Suppose that the risk preferences of agents A and B are consistent with the same ordinal
preference relation and satisfy the assumption of monotonicity. Further, let their respective
risk preference define optimal actions y*A and y*B . If agent A is at least as risk‐averse as is
agent B with respect to the p‐spread relation for all p (0, 1)∈ , then it follows that y y* *

A B≥ .

According to the assumption of action order, the worse the state of the world θ, the higher
the optimal action yθ in that state. Using agent B's optimal action y*B enables us to call states θ
with y y< *

θ B good states and those with y y> *
θ B bad states. Agent A, who is more risk‐averse

than B, is more concerned about the bad states. The assumption of single‐peakedness guar-
antees that actions in the bad states are better the closer they are to the optimal action in this
state. It is, therefore, only consequential that the more risk‐averse agent chooses a higher action
than the less risk‐averse agent. This ensures an increase in welfare in the bad states of the world
by decreasing welfare in the good states of the world.

HUBER | 103



3 | RESULTS WITH MONOTONE RISK PREFERENCES

3.1 | Overview

This section provides an examination of the effect of increased risk aversion on optimal self‐
insurance and self‐protection with and without endogenous saving. First, we apply Bommier et al.'s
(2012) approach of comparative risk aversion to self‐insurance and self‐protection decisions. This is
parsimonious because it dispenses with the implicit assumptions that typically come with the
choice of a preference representation. While more general, such a framework may not permit
definitive conclusions about the effect of greater risk aversion on risk management decisions in
some situations, such as in the presence of saving. Ordinal preferences rank consumption bundles
c c( , )1 2 but are unable to distinguish between two actions, each affecting period‐one and period‐two
consumption. Second, we thus employ a particular representation of risk preferences. Kihlstrom
and Mirman's (1974) preferences are well ordered in terms of risk aversion and enable us to
establish a link between risk aversion and optimal actions in those situations where ordinal pre-
ferences do not provide enough structure to derive specific results. In our subsequent analyses, we
distinguish between three instruments to manage risk.

Definition 6 (Instruments).

1. Self‐insurance: Agents invest an amount y in self‐insurance in the first period to
reduce the size of a random loss L

∼
with realizations of 0 and L y( ) in the second

period. The size of loss L y( ) is convex in self‐insurance. Whenever we employ a
particular representation of risk preferences, we further assume that L y( ) is a twice
differentiable function of y with L y′( ) < 0 and L y″( ) 0≥ .

2. Self‐protection: In the first period, agents invest an amount x in self‐protection to
reduce the probability p x p x p x( ) ′( ) < 0 ″( ) 0≥ of a loss of size L in the second period.
The probability of loss p x( ) is convex in self‐protection. Whenever we employ a
particular representation of risk preferences, we further assume that p x( ) is a twice
differentiable function of x with p x′( ) < 0 and p x″( ) 0≥ .

3. Saving: Agents can save an amount s in the first period to receive income of
Rs R r, 1 + > 1≔ , in the second period.

Self‐insurance, self‐protection, and saving reduce first‐period income to increase expected
second‐period consumption, but these instruments act differently in achieving this outcome.
Whereas saving increases second‐period wealth in both states of the world, self‐insurance
increases second‐period wealth in the loss state and keeps it constant in the no‐loss state.
Further, self‐protection keeps second‐period wealth constant in both states of the world but
shifts probability mass from the loss state to the no‐loss state.

3.2 | No particular representation of risk preferences

3.2.1 | Setting

We consider an agent who is endowed with initial wealth of w1 in the first period and w2 in the
second period. In the second period, either a loss of size L occurs with probability p (state θ2) or
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no loss occurs with probability p1 − (state θ1). The agent faces the income profile w w L( , − )1 2

if a loss occurs and the income profile of w w( , )1 2 if no loss occurs. We write
l w w L H( , − )1 2≔ ∈

∼
for the agent's uncertain income profile with L

∼
as the random variable

that designates the size of the loss. Consider agents A and B with risk preferences i A B, = ,i≽ .
Let agent A be more risk‐averse than B with respect to the p‐spread relation for every
p (0, 1)∈ . Using Proposition 1, we aim to study whether agent A invests more in mitigating the
loss in the second period than B.

3.2.2 | Self‐insurance

In the first period, the agent can invest in self‐insurance to reduce the size of the loss in the
second period. The agent gives up wealth from the certain first‐period income to increase
expected consumption in the second period and to decrease the riskiness of second‐period
consumption. By investing in self‐insurance, the agent changes the payoff of the lottery l. For a
self‐insurance level y, we denote the modified lottery by l w y w L y H( − , − ( ))y 1 2≔ ∈

∼
.

Figure 2 provides an example of how self‐insurance alters the distribution function over
lifetime utilities. Self‐insurance decreases lifetime utility in the good state and increases it in the
bad state. Assume an agent with an optimal self‐insurance level y* and two self‐insurance
levels y1 and y2 ( y y y0 < *1 2≤ ≤ ). If an agent raises her investment in self‐insurance from y1 to
y2, this makes lottery l l y2 2

≔ first‐order dominate lottery l l y1 1
≔ for utility levels smaller than

u0 (p F z F z( ) ( )l l1 2
≥ ≥ for all z u< 0). For utility levels above u l,0 1 first‐order dominates lottery

l2 (p F z F z( ) ( )l l1 2
≤ ≤ for all z u0≥ ). Following the definition of a p‐spread, lottery l1 is a

p‐spread of lottery l2 for p = 0.2 and u = 90 .4

Investing in self‐insurance changes lottery l in a way that enables us to compare optimal
self‐insurance levels under greater risk aversion according to Bommier et al. (2012). The as-
sumptions of Proposition 1 are satisfied if we assume normality of first‐period consumption and
convexity of ordinal preferences.5 Thus, if agent A is at least as risk‐averse as B with respect
to the p‐spread relation for all p (0, 1)∈ and the size of loss is decreasing and convex in
investments in self‐insurance, we can use Proposition 1 to show:

Proposition 2. An increase in risk aversion raises optimal self‐insurance.

The proof of this result uses only ordinal preferences. The result, thus, is neither restricted
to expected utility, nor is it restricted to a particular representation of risk preferences.

3.2.3 | Self‐protection

In the first period, the agent can invest in self‐protection to reduce the probability of a loss in
the second period. In the second period, either a loss of size L occurs with probability p x( ) or
no loss occurs with probability p x1 − ( ). By investing in self‐protection, the agent alters the

4Lottery l1 is a p‐spread of lottery l2 for each choice u [5, 9]0 ∈ and probability p = 0.2.
5An ordinal preference relation has the property of normality of first‐period consumption if optimal first‐period
consumption rises with an increase in income. Additionally, convexity of ordinal preferences can be interpreted by a
diminishing marginal rate of substitution of consumption in period one and consumption in period two.
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probability distribution over payoffs of the lottery l w w L( , − )1 2≔
∼

. For a self‐protection level
x , we denote the modified lottery by l w x w L( − , − )x 1 2≔

∼
.

Figure 3 illustrates how self‐protection changes the cumulative distribution function over
lifetime utilities. Assume an agent with an optimal self‐protection level x* and two self‐
protection levels x1 and x2 ( x x x0 < *1 2≤ ≤ ). If an agent raises her investment in self‐protection
from x1 to x2, this makes the cumulative distribution functions of lottery l lx2 2

≔ and l lx1 1
≔

cross twice. The intuition is that, in both the loss state and the no‐loss state, agents derive
higher utility from foregoing an investment in self‐protection. The agent nevertheless benefits
from investing in self‐protection as she shifts probability mass from the loss state to the no‐loss
state. The agent gives up wealth from the certain first‐period income to increase expected
consumption in the second period and to decrease the riskiness of second‐period consumption.
Because the cumulative distribution functions Fl1 and Fl2 cross twice, neither is lottery l1 a
p‐spread of lottery l2, nor is lottery l2 a p‐spread of lottery l1. Hence, Bommier et al.'s (2012)
approach remains silent about the effect of greater risk aversion on self‐protection.

While the notion of a p‐spread is parsimonious because it only depends on ordinal pre-
ferences, it does not allow us to draw any conclusions about the effect of greater risk aversion
on self‐protection. This is because self‐protection does not reduce risk in the sense of
Rothschild and Stiglitz (1970).6 There also is no hope of finding results for self‐protection by
replacing the p‐spread notion with other notions of dispersion because any other notion (e.g.,
higher‐order stochastic dominance) would require a particular representation of risk
preferences (Bommier et al., 2012, footnote 6).

FIGURE 2 Effect of self‐insurance on the cumulative distribution function over lifetime utilities. Without
self‐insurance, the agent faces the income profile w w L( , − )1 2 if a loss occurs and w w( , )1 2 if no loss occurs. Let y
denote the cost of self‐insurance in the first period. By investing in self‐insurance, the agent changes the payoff
of the lottery l w w L( , − )1 2≔ ͠ . For a self‐insurance level y, we denote the modified lottery by
l w y w L y( − , − ( ))y 1 2≔ ͠ . If an agent raises her investment in self‐insurance from y1 to y2, this makes lottery
l l y2 2
≔ first‐order dominate lottery l l y1 1

≔ for utility levels smaller than u0. For utility levels above u0, lottery l1
first‐order dominates lottery l2. Lottery l1, thus, is riskier than lottery l2 according to the p‐spread notion for
p = 0.2 and u = 90 [Color figure can be viewed at wileyonlinelibrary.com]

6Self‐protection does not reduce risk in the sense of Rothschild and Stiglitz (1970) because in both the loss state and the
no‐loss state agents derive higher utility from foregoing an investment in self‐protection (Briys & Schlesinger, 1990).
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3.3 | Kihlstrom–Mirman preferences

3.3.1 | Setting

Using particular representations of risk preferences enables us to establish a link between risk
aversion and optimal actions in situations in which we cannot draw conclusions using Bommier
et al.'s (2012) framework of comparative risk aversion (e.g., self‐protection, risk management in the
presence of endogenous saving). The Kihlstrom–Mirman framework (1974) provides a way to
analyze the role of risk aversion in a two‐period expected utility framework (Bommier et al., 2012;
Bommier & Le Grand, 2014). For a given consumption stream, where c1 denotes certain first‐period
consumption and c2͠ denotes uncertain second‐period consumption, the agent derives welfare ac-
cording to the following expected utility objective:

U c c φ u c v c( , ~ ) = [ ( ( ) + (~ ))].1 2 1 2 (3)

In the above expression φ u, and v are twice‐differentiable real‐valued functions that are
increasing and concave. u denotes the agent's utility function in the first period and v

denotes the agent's utility function in the second period. Given u and v, agent A is more
risk‐averse than agent B if A's φ‐function is more concave than B's (Kihlstrom &
Mirman, 1974). The transformation φ does not have an impact in the absence of risk and,
thus, does not change ordinal preferences. Increasing the concavity of φ raises the agent's
risk aversion in the sense of Yaari (1969) and is the only way to study risk aversion
while remaining in an expected utility framework (Bommier et al., 2012; Kihlstrom &
Mirman, 1974).

FIGURE 3 Effect of self‐protection on the cumulative distribution function over lifetime utilities. Without self‐
protection, the agent faces the income profile w w L( , − )1 2 if a loss occurs and w w( , )1 2 if no loss occurs. Let x denote
the cost of self‐protection in the first period. By investing in self‐protection, the agent alters the probability distribution
over payoffs of the lottery l w w L( , − )1 2≔

∼
. For a self‐protection level x , we denote the modified lottery by

l w x w L( − , − )x 1 2≔
∼

. If an agent raises her investment in self‐protection from x1 to x2, this makes the cumulative
distribution functions of lottery l lx2 2≔ and l lx1 1≔ cross twice. Because the cumulative distribution functions Fl1 and
Fl2 cross twice, neither is lottery l1 a p‐spread of lottery l2, nor is lottery l2 a p‐spread of lottery l1 [Color figure can be
viewed at wileyonlinelibrary.com]
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3.3.2 | Self‐insurance, Kihlstrom–Mirman preferences

The agent's optimal demand for self‐insurance maximizes

U y p φ u w y v w p φ u w y v w L ymax ( ) = (1 − ) ( ( − ) + ( )) + ( ( − ) + ( − ( ))).
y

1 2 1 2⋅ ⋅ (4)

For the sake of notational simplicity, we set u u w y v v w L y( − ), ( − ( ))F L1 2≔ ≔ , and
v v w( )N 2≔ . Here, uF denotes the utility derived from the first period, vL denotes the utility
derived from the second period in the loss state, and vN denotes the utility derived from the
second period in the no‐loss state v u v( ).L F N≤ ≤ An interior solution7 for optimal self‐
insurance y* is given by the first‐order condition:

y
U y p φ u v p φ u v u

pL y φ u v v

( ) =−[(1 − ) ′( + ) + ′( + )] ′

− ′( ) ′( + ) ′ = 0.

F N F L F

F L L

∂

∂
⋅ ⋅

⋅

(5)

The optimal level of self‐insurance y* balances the marginal cost (first term in Equation 5)
and benefit of the investment (second term in Equation 5). Consider two agents, A and B,
where φ k φ= ( )A B with a twice‐differentiable real‐valued function k which is increasing and
concave. Then, agent A is more risk‐averse than agent B (Kihlstrom & Mirman, 1974). Eval-
uating A's first‐order condition at B's optimal level of self‐insurance, shows that the more risk‐
averse A invests more in self‐insurance than the less risk‐averse B.

Proposition 3. An increase in risk aversion raises optimal self‐insurance.

This result is a special case of Proposition 2 under the assumption of an expected utility
setting endowed with Kihlstrom and Mirman (1974) preferences.

3.3.3 | Self‐protection, Kihlstrom–Mirman preferences

The agent optimizes her expected utility over investments in self‐protection:

U x p x φ u w x v w p x φ u w x v w Lmax ( ) = (1 − ( )) ( ( − ) + ( )) + ( ) ( ( − ) + ( − )).
x

1 2 1 2⋅ ⋅ (6)

For the sake of notational simplicity, we again use the above abbreviations and set
v v w L( − )L 2≔ v u v( ).L F N≤ ≤ An interior solution8 for optimal self‐protection x* can be
obtained from the first‐order condition:

x
U x p x φ u v p x φ u v u

p x φ u v φ u v

( ) =−[(1 − ( )) ′( + ) + ( ) ′( + )] ′

− ′( )[ ( + ) − ( + )] = 0.

F N F L F

F N F L

∂

∂
⋅ ⋅

(7)

7The second‐order condition is satisfied, that meansU y p φ u v u p φ u v u″( ) = (1 − ) ″( + )(− ′ ) + (1 − ) ′( + ) ″ +F N F F N F
2⋅ ⋅ ⋅

p φ″⋅ u v u L y v p φ u v u L y v L y v( + )(− ′ − ′( ) ′) + ′( + )( ″ − ″( ) ′ + ( ′( )) ″) < 0.F L F L F L F L L
2 2⋅ ⋅ ⋅ ⋅

8The second‐order condition is not necessarily satisfied. It is given by U x p x φ u v φ u v″( ) = ″( )[ ( + ) − ( + )] +F L F N

p2 x φ u v u p x φ u v u p x φ u v u φ u v u

p x φ u v u φ u v u

′( ) ′( + ) ′ − 2 ′( ) ′( + ) ′ + (1 − ( ))·[ ″( + )(− ′ ) + ′( + ) ″

+ ( )[ ′( + )(− ′ ) + ′( + ) ″].

F N F F L F F N F F N F

F L F F L F

2

2

⋅ ⋅
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The optimal level of self‐protection x* balances the marginal cost (first term in Equation 7)
and the marginal benefit of the investment (second term in Equation (7)). Using A's and B's
first‐order conditions, we find that the more risk‐averse A invests more in self‐protection than
the less risk‐averse B if and only if the loss probability is small enough.

Proposition 4. An increase in risk aversion raises optimal self‐protection if and only if
the probability of loss is below an endogenous threshold.

This ambiguity is also shown in a one‐period setting (Briys & Schlesinger, 1990; Dionne &
Eeckhoudt, 1985; Jullien et al., 1999). The intuition is that self‐protection does not reduce risk
in the sense of Rothschild and Stiglitz (1970). It induces a mean‐preserving spread at low
wealth levels and a mean‐preserving contraction at high wealth levels.

3.3.4 | Self‐insurance with endogenous saving, Kihlstrom–Mirman
preferences

Beyond investing in self‐insurance, agents can engage in saving. Referring to the concept of mental
accounting (Thaler, 1999), the agent can optimize self‐insurance and saving either separately or
jointly. If the agent employs two separate mental accounts for these instruments, Proposition 3 shows
that greater risk aversion increases optimal self‐insurance. If the agent employs only one mental
account, she jointly optimizes her expected utility over investments in self‐insurance and saving:

U y s p φ u w y s v w Rs

p φ u w y s v w L y Rs

max ( , ) = (1 − ) ( ( − − ) + ( + ))

+ ( ( − − ) + ( − ( ) + )).

y s,
1 2

1 2

⋅

⋅
(8)

For the sake of notational simplicity, we set u u w y s v v w L y Rs( − − ), ( − ( ) + )F L1 2≔ ≔ ,
and v v w Rs( + )N 2≔ . Interior solutions9 for optimal self‐insurance y* and saving s* are
characterized by the first‐order conditions:

y
U y s p φ u v p φ u v u

pL y φ u v v

( , ) =−[(1 − ) ′( + ) + ′( + )] ′

− ′( ) ′( + ) ′ = 0.

F N F L F

F L L

∂

∂
⋅ ⋅

⋅

(9)

s
U y s p φ u v p φ u v u

p φ u v v p φ u v v R

( , ) =−[(1 − ) ′( + ) + ′( + )] ′

+[(1 − ) ′( + ) ′ + ′( + ) ′] = 0.

F N F L F

F N N F L L

∂

∂
⋅ ⋅

⋅ ⋅

(10)

The pair y s( *, *) jointly balances the marginal cost and the marginal benefit of self‐insurance
and saving. To investigate the effect of increased risk aversion on optimal self‐insurance, we recap
the following lemma as given in Hofmann and Peter (2016, Lemma 1).

Lemma 1. Let f : 2 → be a concave function in the variables y s( , ), that is, f < 0yy

and f f f− > 0yy ss ys
2 , which is maximal at y s( *, *). Let ȳ ∈ be a value we want to

9The Hessian matrix is negative definite. Thus, the objective function is concave in the parameters y s( , ). The second‐
order conditions are given in the Supporting Information Appendix.
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compare y* with. Then, y y* > ¯ if and only if f y s( ¯ , ˆ ) > 0y where ŝ is the value that
maximizes f y s( ¯ , ).

Comparing the optimal self‐insurance level y*A to y*B , where agent A is more risk‐averse than
agent B, Lemma 1 instructs to evaluate A's first‐order condition at y s( *, ˆ )B , where ŝ is the value
that maximizes A's expected utility evaluated at y*B . Using A's and B's first‐order conditions, we
can show that A's optimal investment in self‐insurance is greater than B's.

Proposition 5. Under endogenous saving, an increase in risk aversion raises optimal self‐
insurance.

A more risk‐averse agent, thus, invests more in self‐insurance not only without but also
with endogenous saving.

3.3.5 | Self‐protection with endogenous saving, Kihlstrom‐Mirman
preferences

The agent utilizes investments in self‐protection and saving to optimize her expected utility.
According to Proposition 4, an agent who optimizes self‐protection and saving separately in-
creases her optimal self‐protection under greater risk aversion if the loss probability is below an
endogenous threshold. In contrast, if the agent employs only one mental account, she considers
investments in self‐protection and saving jointly in her decision making:

U x s p x φ u w x s v w Rs

p x φ u w x s v w L Rs

max ( , ) = (1 − ( )) ( ( − − ) + ( + ))

+ ( ) ( ( − − ) + ( − + )).

x s,
1 2

1 2

⋅

⋅
(11)

We again define uF and vN as above and set v v w L Rs( − + )L 2≔ . We characterize interior
solutions10 for optimal self‐protection x* and saving s* by using the first‐order conditions:

x
U x s p x φ u v p x φ u v u

p x φ u v φ u v

( , ) −[(1 − ( )) ′( + ) + ( ) ′( + )] ′

− ′( )[ ( + ) − ( + )] = 0,

F N F L F

F N F L

∂

∂
⋅ ⋅

(12)

s
U x s p x φ u v p x φ u v u

p x φ u v v p x φ u v v R

( , ) =−[(1 − ( )) ′( + ) + ( ) ′( + )] ′

+[(1 − ( )) ′( + ) ′ + ( ) ′( + ) ′] = 0.

F N F L F

F N N F L L

∂

∂
⋅ ⋅

⋅ ⋅

(13)

The pair x s( *, *) jointly balances the marginal cost and marginal benefit of self‐
protection and saving. We apply Lemma 1 to study the effect of increased risk aversion on
optimal self‐protection. Using agent A's and agent B's first‐order conditions, we find that
the more risk‐averse A invests more in self‐protection than the less risk‐averse B if and
only if the loss probability is small enough.

10The Hessian matrix is not necessarily negative definite. Thus, we cannot conclude that the objective function is necessarily
concave in the parameters x s( , ). The second‐order conditions are given in the Supporting Information Appendix.
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Proposition 6. Under endogenous saving, an increase in risk aversion raises optimal self‐
protection if and only if the probability of loss is below an endogenous threshold.

A more risk‐averse agent, therefore, invests more in self‐protection with and without en-
dogenous saving if the loss probability is sufficiently low.

4 | RESULTS WITH NONMONOTONE RISK
PREFERENCES

4.1 | Overview

In this section, we employ the widely used preferences proposed by Selden (1978)
and Epstein and Zin (1989) to study optimal self‐insurance and self‐protection. While
Kihlstrom and Mirman's (1974) preferences are monotone, Selden's (1978) and Epstein
and Zin's (1989) preferences lack this property. This enables us to explore how the
monotonicity property of preferences affects optimal risk management under an increase in
risk aversion.

4.2 | Selden preferences

4.2.1 | Setting

For a given consumption stream where c1 denotes certain first‐period consumption and c2͠

denotes uncertain second‐period consumption, the agent derives welfare according to the
following recursive utility objective (Selden, 1978):

U c c u c v M u c v ψ ψ c( , ~ ) = ( ) + ( ) = ( ) + ( ( [ (~ )])).1 2 1 1
−1

2 (14)

In this equation, u v, , and ψ are twice‐differentiable real‐valued functions that are in-
creasing and concave. u denotes the agent's utility function in the first period, and v denotes the
agent's utility function in the second period. Given u and v, agent A is more risk‐averse than
agent B if A's ψ‐function is more concave than B's (Selden, 1978). In addition, we abbreviate the
certainty equivalent of future consumption by M .

The above model encompasses two well‐known risk preferences. We obtain the standard
additive expected utility model for ψ v= and the isoelastic representation of Epstein and Zin's

(1989) preferences for u x v x( ) = ( ) =
x

ρ1−

ρ1−

and ψ x x( ) = γ1− . In a standard additive expected

utility setting, risk preferences are not consistent with ordinal preferences but monotone. In
contrast, Selden's (1978) and Epstein and Zin's (1989) preferences are consistent with ordinal
preferences but are not necessarily monotone.

Further, in a standard additive expected utility framework, the agent is indifferent to the
timing of the resolution of uncertainty. This is no longer the case in a setting with Selden's
(1978) preferences. The relation between the second‐period utility function that reflects con-
sumption smoothing (v) and the one that reflects risk aversion (ψ) can be interpreted as the
preference for an early or late resolution of uncertainty (Gollier, 2001).
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Definition 7 (Preferences for the resolution of uncertainty).

1. An agent prefers an early resolution of uncertainty, if v is less concave than ψ.
2. An agent prefers a late resolution of uncertainty, if v is more concave than ψ.

If an agent exhibits a preference for an early resolution of uncertainty, she prefers to observe
random second‐period consumption in the first period rather than in the second period. This is
beneficial because early information can lead to better decision making.

We now turn our focus to the effect of greater risk aversion on optimal risk management
decisions. Unfortunately, objective functions in a Selden (1978) framework are not necessarily well
behaved even if u v, , and ψ are concave functions. Subsequently, we assume that interior solutions
exist. We refer to Gollier (2001) for conditions to ensure that second‐order conditions are fulfilled.

4.2.2 | Self‐insurance, Selden preferences

The agent's optimal demand for self‐insurance maximizes

U y u w y v M y

u w y v ψ p ψ w L y p ψ w

max ( ) = ( − ) + ( ( ))

= ( − ) + ( ( ( − ( )) + (1 − ) ( ))).

y
1

1
−1

2 2⋅ ⋅
(15)

An interior solution for optimal self‐insurance y* is given by the first‐order condition:

y
U y u w y pL y ψ w L y

v M y

ψ M y
( ) = − ′( − ) − ′( ) ′( − ( ))

′( ( ))

′( ( ))
= 0.1 2

∂

∂
⋅ ⋅ (16)

The optimal level of self‐insurance y* balances the marginal cost (first term in Equation 16)
and benefit of the investment (second term in Equation 16). Consider two agents, A and B,
where ψ k ψ= ( )A B with a twice‐differentiable real‐valued function k, which is increasing and
concave. Then, agent A is more risk‐averse than agent B (Selden, 1978). Evaluating A's first‐
order condition at B's optimal level of self‐insurance leads to the following proposition.

Proposition 7. An increase in risk aversion either increases or decreases optimal self‐
insurance. If the agent prefers to resolve uncertainty late, then increased risk aversion raises
optimal self‐insurance.

This result is identical to Proposition 1 in Berger (2010), who studies optimal self‐insurance
and self‐protection without endogenous saving. While Kihlstrom and Mirman's (1974) pre-
ferences are monotone, Selden's preferences lack this property. This explains why we obtain a
different result with Kihlstrom and Mirman's preferences.

4.2.3 | Self‐protection, Selden preferences

The agent optimizes her expected utility over investments in self‐protection:

U x u w x v M x

u w x v ψ p x ψ w L p x ψ w

max ( ) = ( − ) + ( ( ))

= ( − ) + ( ( ( ) ( − ) + (1 − ( )) ( ))).

x
1

1
−1

2 2⋅ ⋅
(17)
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An interior solution for optimal self‐protection x* can be obtained from the first‐order
condition:

x
U x u w x p x ψ w ψ w L

v M x

ψ M x
( ) = − ′( − ) − ′( ) ( ( ) − ( − ))

′( ( ))

′( ( ))
= 0.1 2 2

∂

∂
⋅ ⋅ (18)

The optimal level of self‐protection x* balances the marginal cost (first term in Equation 18)
and the marginal benefit of the investment (second term in Equation 18). Using A's and B's
first‐order conditions, we show that the more risk‐averse A invests more in self‐protection than
the less risk‐averse B if the loss probability is small enough.

Proposition 8. An increase in risk aversion either increases or decreases optimal self‐
protection. If the agent prefers to resolve uncertainty late and the probability of loss is below
an endogenous threshold, then increased risk aversion raises optimal self‐protection.

Again, the result with Kihlstrom and Mirman's preferences differs from that with Selden's
preferences.

4.2.4 | Self‐insurance with endogenous saving, Selden preferences

Beyond investing in self‐insurance, agents can engage in saving. Proposition 7 shows that, if the
agent employs two separate mental accounts for these instruments, greater risk aversion either
increases or decreases optimal self‐insurance. If the agent employs only one mental account,
she jointly optimizes her expected utility over investments in self‐insurance and saving:

U y s u w y s v M y s

u w y s v ψ p ψ w L y Rs p ψ w Rs

max ( , ) = ( − − ) + ( ( , ))

= ( − − ) + ( ( ( − ( ) + ) + (1 − ) ( + ))).

y s,
1

1
−1

2 2⋅ ⋅
(19)

Interior solutions for optimal self‐insurance y* and saving s* are characterized by the first‐order
conditions:

y
U y s u w y s pL y ψ w L y Rs

v M y s

ψ M y s
( , ) = − ′( − − ) − ′( ) ′( − ( ) + )

′( ( , ))

′( ( , ))
= 0,1 2

∂

∂
⋅ ⋅ (20)

s
U y s u w y s

R p ψ w L y Rs p ψ w Rs
v M y s

ψ M y s

( , ) =− ′( − − )

+ ( ′( − ( ) + ) + (1 − ) ′( + ))
′( ( , ))

′( ( , ))
= 0.

1

2 2

∂

∂

⋅ ⋅ ⋅ ⋅

(21)

The pair y s( *, *) jointly balances the marginal cost and the marginal benefit of self‐
insurance and saving. Applying Lemma 1 and using A's and B's first‐order conditions, we can
show the following relation between A's and B's optimal investment in self‐insurance.

Proposition 9. Under endogenous saving, an increase in risk aversion raises optimal self‐
insurance.

With endogenous saving, greater risk aversion increases optimal self‐insurance independent
of the agent's preference for the resolution of uncertainty.
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4.2.5 | Self‐protection with endogenous saving, Selden preferences

The agent utilizes self‐protection and saving to optimize her expected utility. According to
Proposition 8, an agent who optimizes self‐protection and saving separately either increases or
decreases her optimal self‐protection when her level of risk aversion increases. In contrast, if
the agent employs only one mental account, she considers investments in self‐protection and
saving jointly in her decision making:

U x s u w x s v M x s

u w x s v ψ p x ψ w L Rs p x ψ w Rs

max ( , ) = ( − − ) + ( ( , ))

= ( − − ) + ( ( ( ) ( − + ) + (1 − ( )) ( + ))).

x s,
1

1
−1

2 2⋅ ⋅
(22)

We characterize interior solutions for optimal self‐protection x* and saving s* by using the
first‐order conditions:

x
U x s u w x s p x ψ w Rs ψ w L Rs

v M x s

ψ M x s
( , ) = − ′( − − ) − ′( ) ( ( + ) − ( − + ))

′( ( , ))

′( ( , ))
= 0,1 2 2

∂

∂
⋅ ⋅

(23)

s
U x s u w x s

R p x ψ w L Rs p x ψ w Rs
v M x s

ψ M x s

( , ) =− ′( − − )

+ ( ( ) ′( − + ) + (1 − ( )) ′( + ))
′( ( , ))

′( ( , ))
= 0.

1

2 2

∂

∂

⋅ ⋅ ⋅ ⋅

(24)

The pair x s( *, *) jointly balances the marginal cost and marginal benefit of self‐protection and
saving. We apply Lemma 1 to study the effect of increased risk aversion on optimal self‐protection.
Using agent A's and agent B's first‐order conditions, we find that the more risk‐averse A invests more
in self‐protection than the less risk‐averse B if and only if the loss probability is small enough.

Proposition 10. Under endogenous saving, an increase in risk aversion raises optimal
self‐protection if and only if the probability of loss is below an endogenous threshold.

With endogenous saving and if the loss probability is small enough, greater risk aversion raises
optimal self‐protection independent of the agent's preference for the resolution of uncertainty.

4.3 | Epstein–Zin preferences

4.3.1 | Setting

One famous example of Selden's (1978) preferences is the isoelastic representation of Epstein
and Zin (1989). For a given consumption stream, where c1 denotes certain first‐period con-
sumption and c~ 2 denotes uncertain second‐period consumption, the agent derives welfare
according to the following recursive utility objective (Epstein & Zin, 1989):

( )U c c
c

ρ ρ
c( , ~ ) =

1 −
+

1

1 −
~ .

ρ
γ

1 2
1
1−

2
1−

ρ
γ

1−
1−⎡⎣ ⎤⎦ (25)

In Equation (25), ρ 1≠ and γ 1≠ are positive scalars. The agent's risk aversion is represented by γ . A
higher value of γ leads to a more risk‐averse agent. The agent's elasticity of intertemporal substitution
EIS is equal to the inverse of ρ. Consequently, the larger the parameter ρ, the smaller the agent's EIS,
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which can be interpreted as response of consumption growth to changes in the interest rate r . In the
following, we employ these preferences to illustrate Propositions (7)–(10), using a numerical
simulation.

4.3.2 | Self‐insurance, Epstein–Zin preferences

Agents are endowed with a wealth of w = 100 in each period and face a loss of size L = 50 with
a probability p = 0.3 in the second period. We consider two instruments. First, agents can
engage in saving (R = 1).11 Second, investments in self‐insurance reduce the size of the loss:

L y L y L( ) =
2

3
exp(−0.06 ) +

1

3
.⋅ ⋅ ⋅

We consider several relations between self‐insurance and saving decisions: (1) agents optimize
saving separately (Equation 26), (2) agents optimize self‐insurance separately (Equation 27),
and (3) agents optimize self‐insurance and saving jointly (Equation 28).

U s
w s

ρ ρ
p w Rs p w L Rsmax ( ) =

( − )

1 −
+

1

1 −
[(1 − )( + ) + ( − + ) ] ,

s

ρ
γ γ

ρ
γ

1−
1− 1−

1−
1− (26)

U y
w y

ρ ρ
p w p w L ymax ( ) =

( −

1 −
+

1

1 −
[(1 − ) + ( − ( ) ] ,

y

ρ
γ γ

)1−
1− )1−

ρ
γ

1−
1− (27)

U y s
w y s

ρ ρ
p w Rs p w L y Rsmax ( , ) =

( − − )

1 −
+

1

1 −
[(1 − )( + ) + ( − ( ) + ) ] .

y s

ρ
γ γ

,

1−
1− 1−

ρ
γ

1−
1−

(28)

Figure 4 provides a plot of optimal saving and self‐insurance as functions of γ = 2, …25 and
ρ {0.1, 0.2, 0.5, 1.5, 2, 5}∈ . Panel (a) shows optimal saving. The lower ρ and thus the lower the
desire for consumption smoothing, the higher the amount of saving. Further, we observe that
increased risk aversion either increases or decreases optimal saving. To derive some intuition, we
assume ρ = 0.5. We can calculate the optimal saving level given that the good state (s0.5

up , dashed line
in Panel (a)) or the bad state of the world (s0.5

low , not depicted here) occurs for certain. The mono-
tonicity requirement of risk preferences ensures that optimal saving lies always in the interval
s s[ , ]0.5
low

0.5
up (Bommier et al., 2017). According to Proposition 1, the more risk‐averse the agent, the

closer optimal saving to s0.5
up . Because saving acts as a means of consumption smoothing and risk

management in this setting, increased risk aversion would raise optimal saving if preferences were
monotone. Epstein and Zin's (1989) preferences, however, do not fulfill the assumption of mono-
tonicity and, thus, optimal saving can lie above s0.5

up . Starting at γ = 10, greater risk aversion de-
creases optimal saving, leading to a value closer to the optimal saving level s0.5

up .
The same intuition applies to optimal self‐insurance. We derive the optimal level of self‐insurance

in the bad state of the world for ρ = 0.5, denoted by y0.5
up . Due to the nonmonotonicity of Epstein and

Zin's (1989) preferences, optimal self‐insurance can increase above the optimal level of self‐insurance
in the bad state. Optimal self‐insurance increases with greater risk aversion until γ = 17 and de-
creases afterward. Panel (b) further shows that, even for small values of risk aversion, there are
marked differences between optimal self‐insurance levels. Without saving, self‐insurance acts as

11We also assume the discount factor to be equal to 1.
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instrument of consumption smoothing and risk management. The lower ρ, the lower the desire for
consumption smoothing. Self‐insurance, is thus, used for reducing risk rather than for smoothing
consumption over time. This explains why small values of ρ lead to smaller optimal self‐insurance.

Panels (c) and (d) show the situation with joint optimization over saving and self‐insurance.
Saving is now employed to smooth consumption over time, and self‐insurance is used to reduce
risk. Optimal saving and optimal self‐insurance thus decrease when compared with the situation
portrayed in Panels (a) and (b). Further, the differences between optimal self‐insurance for
different ρ decline compared with Panel (b). We also find that optimal self‐insurance lies always
below the optimal level of the loss state y0.5

up , and optimal self‐insurance is increasing in γ . We
conclude that the presence of saving replicates the monotonic relationship between risk aversion
and self‐insurance, which would be obtained in a setting with monotone risk preferences.

Our results are in line with Propositions 7 and 9. Without endogenous saving, greater risk
aversion either increases or decreases optimal self‐insurance. In addition, our simulation shows that
risk aversion always raises optimal self‐insurance if ρ is larger than γ . In this situation, the function
that reflects consumption smoothing is more concave than is the one that reflects risk aversion, and
agents prefer to resolve uncertainty late (in line with Proposition 7). With endogenous saving, higher
risk aversion monotonically increases optimal self‐insurance (in line with Proposition 9).

(a) (b)

(c) (d)

FIGURE 4 Saving and self‐insurance decisions with Epstein–Zin preferences. Optimal saving and self‐
insurance as functions of risk aversion γ and the desire to smooth consumption ρ are plotted. (a) Agents
optimize saving separately, (b) agents optimize self‐insurance separately, and (c) and (d) agents optimize saving
and self‐insurance jointly
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4.3.3 | Self‐protection, Epstein–Zin preferences

We again consider two instruments. First, agents can engage in saving. Second, investments in
self‐protection reduce the probability of the loss in the second period:

p x p x p( ) =
2

3
exp(−0.9 ) +

1

3
.⋅ ⋅ ⋅ (29)

We distinguish three cases: (1) Agents optimize saving separately (Equation 30), (2) agents
optimize self‐protection separately (Equation 31), and (3) agents optimize self‐protection and
saving jointly (Equation 32).

U s
w s

ρ ρ
p x w Rs p x w L Rsmax ( ) =

( − )

1 −
+

1

1 −
[(1 − ( ))( + ) + ( )( − + ) ] ,

s

ρ
γ γ

1−
1− 1−

ρ
γ

1−
1− (30)

U x
w x

ρ ρ
p x w p x w Lmax ( ) =

( − )

1 −
+

1

1 −
[(1 − ( )) + ( )( − ) ] ,

x

ρ
γ γ

1−
1− 1−

ρ
γ

1−
1− (31)

U x s
w x s

ρ ρ
p x w Rs p x w L Rsmax ( , ) =

( − − )

1 −
+

1

1 −
[(1 − ( ))( + ) + ( )( − + ) ] .

x s

ρ
γ γ

,

1−
1− 1−

ρ
γ

1−
1−

(32)

Figure 5 displays optimal saving and self‐protection as functions of γ and ρ. Panel (a) is identical
to Panel (a) of Figure 4. Again, we denote the optimal level of saving in the bad state of the world for
ρ = 0.5 by s0.5

up . While s0.5
up is greater than zero, optimal self‐protection (x0.5

up , not depicted here), in
this situation, is zero. Panel (b) shows that the lower ρ, the lower the optimal self‐protection. In
addition, even for small values of risk aversion, we observe marked differences between optimal self‐
protection levels. Self‐protection, thus, not only reduces second‐period risk but also smooths con-
sumption over time. In line with Proposition 8, greater risk aversion either increases or decreases
optimal self‐protection. Panel (b) further shows that, if ρ is larger than γ and the probability of loss is
sufficiently small, an increase in risk aversion raises optimal self‐protection.

Panels (c) and (d) depict the situation with joint optimization of saving and self‐protection. Saving
is now employed to smooth consumption over time, and self‐protection is used to reduce risk.
Optimal self‐protection, thus, decreases when compared with the situation in Panel (b). Further, the
differences between optimal self‐protection for different ρ decline compared with Panel (b). While
Proposition 10 identifies a monotonically increasing relation between risk aversion and optimal self‐
protection if the loss probability is small enough, Panel (d) shows that greater risk aversion either
increases or decreases optimal self‐protection. The proposition and Panel (d) do not contradict each
other because the endogenous threshold of the loss probability is dependent on the utility function.
Increasing γ thus changes the endogenous threshold of the loss probability. Therefore, we cannot
observe the finding of Proposition 10 for all depicted values of γ in this illustration.

5 | DISCUSSION

We now return to the question of whether we can use observed risk management behavior to
draw inferences about the underlying risk preferences of decision makers. First, we find that
increased risk aversion unambiguously raises optimal self‐insurance without using a particular
representation of risk preferences. To study the interaction between saving and self‐insurance,
we further employ Kihlstrom and Mirman's (1974) preferences. In this setting, we demonstrate
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that a more risk‐averse agent invests more in self‐insurance with and without endogenous
saving. This result is in line with the findings for a one‐period expected utility setting (Briys &
Schlesinger, 1990; Dionne & Eeckhoudt, 1985).

Second, we study self‐protection decisions. Because there is no hope of finding general results
with Bommier et al.'s (2012) framework, we employ Kihlstrom and Mirman's (1974) preferences and
demonstrate that a more risk‐averse agent invests more in self‐protection with and without en-
dogenous saving if the loss probability is sufficiently small. This ambiguity is also shown in a one‐
period setting (Briys & Schlesinger, 1990; Dionne & Eeckhoudt, 1985; Jullien et al., 1999). The
intuition for this result is that investing in self‐protection does reduce risk in the sense of Rothschild
and Stiglitz (1970). The investment reduces welfare for the agent in the loss state and, therefore,
deteriorates her situation compared with not investing in self‐protection.

In contrast to our results, Hofmann and Peter (2016) show that two‐period results for risk
management hinge on the consideration of endogenous saving. In the absence of endogenous
saving, the authors find that a more concave utility function raises optimal self‐insurance and
optimal self‐protection if first‐period consumption is sufficiently high. In the presence of en-
dogenous saving, they show that an increase in concavity unambiguously increases optimal
self‐insurance and optimal self‐protection if the loss probability is sufficiently low. Increasing

(a) (b)

(c) (d)

FIGURE 5 Saving and self‐protection decisions with Epstein–Zin preferences. Optimal saving and self‐
protection as functions of risk aversion γ and the desire to smooth consumption ρ are plotted. (a) Agents
optimize saving separately, (b) agents optimize self‐protection separately, and (c) and (d) agents optimize saving
and self‐protection jointly
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the concavity of the utility function, however, changes ordinal preferences in a standard ad-
ditive expected utility setting, which makes it impossible to study the effect of risk aversion on
optimal risk management in isolation. This explains why we obtain a different result.

Selden (1978) and Epstein and Zin (1989) propose preferences that disentangle risk from time
preferences and, thus, leave ordinal preferences unchanged. Without endogenous saving, we find
that greater risk aversion either increases or decreases optimal self‐insurance and optimal self‐
protection. With endogenous saving, we demonstrate that increased risk aversion unambiguously
increases optimal self‐insurance and optimal self‐protection if the loss probability is sufficiently
small. While Kihlstrom and Mirman's (1974) preferences are monotone, Selden's and Epstein and
Zin's preferences lack this property. Thus, the results obtained with Kihlstrom and Mirman's
preferences differ from those obtained with Selden's or Epstein and Zin's preferences.

Our results contribute to both theoretical and empirical literature. Bommier et al. (2012) show
that standard additive expected utility settings as well as Selden's (1978) and Epstein and Zin's (1989)
preferences are not well ordered in terms of risk aversion. We explore how the lack thereof affects
optimal risk management under an increase in risk aversion. Without consistency of ordinal pre-
ferences (standard additive expected utility setting) or the lack of monotonicity (Selden, Epstein and
Zin), we find that two‐period results for risk management hinge on the consideration of endogenous
saving. Using preferences that are well ordered in terms of risk aversion, however, we reproduce the
one‐period results in our two‐period models, which is good news for empiricists.

6 | CONCLUSION

This paper analyzes the effect of increased risk aversion on self‐insurance and self‐protection in
situations in which an agent invests in risk management today and benefits from this investment
tomorrow. We demonstrate that increased risk aversion is monotonically linked to optimal self‐
insurance and show that an increase in risk aversion raises optimal self‐protection if and only if the
loss probability is below an endogenous threshold. Interestingly, our findings are independent of
whether the agent considers endogenous saving in her decision making. This is surprising, as pre-
vious literature shows that two‐period results on risk management hinge on the consideration of
endogenous saving (Hofmann & Peter, 2016; Peter, 2017). Mental accounting (Thaler, 1999), thus,
plays no role in the effect of greater risk aversion on optimal risk management.

This is good news for the empirical literature. Agents who optimize risk management and saving
separately (employing two mental accounts) behave in the same way as agents who optimize risk
management and saving jointly (employing only one mental account). Because we reproduce the
one‐period results in our two‐period models, our findings support the focus of the extant empirical
literature on the structure of the risk rather than on the timing of investments and benefits.

Our work provides some direction for further research. First, theoretical research should develop
a framework to analyze self‐protection without employing a particular representation of risk pre-
ferences. There is no hope of finding such a result using Bommier et al.'s (2012) framework. Second,
future research could establish an exogenous rather than endogenous loss probability threshold in the
self‐protection result with a particular representation of risk preferences. Peter (2021) uses risk‐
neutral probabilities to remove the endogeneity of the probability threshold and thus provides a
promising starting point for this analysis. Third, it would be interesting to see whether Bommier
et al.'s (2012) framework can be extended to two‐dimensional actions. Finally, replicating our results
with risk‐sensitive preferences proposed by Bommier et al. (2017) seems to be a worthwhile next step.
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APPENDIX A

Proof of Proposition 2. Consider two agents, A and B, with risk preferences i A B, = ,i≽ .
Let agent A be more risk‐averse than B with respect to the p‐spread relation for every
p (0, 1)∈ . We apply Proposition 1 to show that agent A invests more in self‐insurance
than agent B. Thus, we need to show the assumptions given in this proposition:

• Nonconstant: We need to show that, if for all states of the world an agent is indifferent
between actions y1 and y y,2 1 must be equal to y2. Choosing a self‐insurance level of y
has a real effect on the lottery outcome in the loss state and in the no‐loss state. If we
have for all θ Ω∈ and investments y1 and y2 that the lottery outcome l θ( )y1 equals
l θ( )y2 , then the investment y1 equals y2.

• Comonotonicity: We need to show that the agent's action does not change the initial
ordering of lottery outcomes that is implied by the states of the world. Independent of
the self‐insurance level y, the agent always prefers the no‐loss state to the loss‐state.
This allows us to write θ θ1 2≽ in short for l θ l θ( ) ( )y y1 2≽ . Self‐insurance, thus, preserves
the initial ordering of lottery outcomes.

• Action order: We need to show that optimal actions can be ordered according to states
of the world. Assuming normality of first‐period consumption leads to action order.
The better the state of the world (i.e. the smaller the loss), the smaller the optimal
investment in self‐insurance (i.e. the greater optimal first‐period consumption).
Therefore, we can order the optimal actions according to states of the world.

• Single‐peakedness: We need to show that for all θ Ω∈ :

1. There exists an optimal investment yθ such that y l θ l θ: ( ) ( )y yθ
∀ ≽ .
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2. For y y y y yθ1 2 3 4≤ ≤ ≤ ≤ we have l θ l θ l θ( ) ( ) ( )y y yθ 2 1
≽ ≽ and l θ l θ l θ( ) ( ) ( )y y yθ 3 4

≽ ≽ .
First, the Bolzano‐Weierstrass theorem guarantees the existence of a solution y*

for the optimization problem u w y w L ymax ( − , − ( ))y 1 2 because the subset
O w w= [0, ] × [0, ]1 2 is bounded and closed in 2 and is therefore compact due to the
Heine–Borel theorem. Second, we assume convexity of the ordinal preference rela-
tion. Ordinal preferences are convex if and only if for all pairs c c c c( , ), ( ′, ′)1 2 1 2 and
c c( ″, ″)1 2 in the state space C and for all λ [0, 1]∈ we can conclude from
c c c c( ′, ′) ( , )1 2 1 2≽ and c c c c( ″, ″) ( , )1 2 1 2≽ that λc λ c λc λ c c c( ′ + (1 − ) ″, ′ + (1 − ) ″) ( , )1 1 2 2 1 2≽ .
This can be interpreted by a diminishing marginal rate of substitution of
consumption in period 1 and consumption in period 2. We consider y y′, ″

with y y y′ < ″ < *. There exists λ [0, 1]∈ so that y λy λ y″ = * + (1 − ) ′. Using
the definition of y″ (first step), the convexity of L y( ) (second step), and the
convexity of the ordinal preference relation (third step), we can then conclude
from w y w L y w y w L y( − *, − ( *)) ( − ′, − ( ′))1 2 1 2≽ and w y w L y( − ′, − ( ′))1 2 ≽

w y w L y( − ′, − ( ′))1 2 that

w y w L y w λy λ y w L λy λ y

w λy λ y w λL y λ L y w

y w L y

( − ″, − ( ″)) ( − * − (1 − ) ′, − ( * + (1 − ) ′))

( − * − (1 − ) ′, − ( *) − (1 − ) ( ′)) (

− ′, − ( ′)).

1 2 1 2

1 2 1

2

≽

≽ ≽

(A1)

If we assume y y′, ″ with y y y* < ″ < ′, this completes the proof for single‐peakedness
in the loss state. Using the same rationale, we can also prove single‐peakedness for the
no‐loss state.

Therefore, according to Proposition 2 in Bommier et al. (2012) we have y y* *
A B≥ for the

optimal self‐insurance levels of agent A and B. □

Proof of Proposition 3. Consider two agents, A and B, where φ k φ= ( )A B with a twice
differentiable real‐valued function k which is increasing and concave. Then, agent A
is more risk‐averse than B (Kihlstrom & Mirman, 1974). Further, let y*A and y*B
denote optimal self‐insurance for agents A and B. Evaluating A's first‐order
condition at y*B yields:

( )( )
y
U y p k φ u v φ u v u

p k φ u v φ u v u L y v

( *) = −(1 − ) ′( ( + )) ′ ( + ) ′

− ′( ( + )) ′ ( + ) ′ + ′ * ′ .

A B B F N B F N F

B F L B F L F B L

∂

∂
⋅ ⋅

⋅ ⋅ ⋅ ⋅ (A2)

Because the first term in Equation (A2) is negative and k φ u v k φ u v′( ( + )) ′( ( + ))B F N B F L≤ ,
we decrease the expression in (A2) by substituting k φ u v′( ( + ))B F N by k φ u v′( ( + ))B F L .
Moreover, we use agent B's first‐order condition and the optimality of y*B to get:

( )( )
y
U y k φ u v p φ u v u

p φ u v u L y v

( *) ′( ( + )) −(1 − ) ′ ( + ) ′

− ′ ( + ) ′ + ′ * ′ = 0.

A B B F L B F N F

B F L F B L

⎡⎣
⎤⎦

∂

∂
≥ ⋅

⋅ ⋅ ⋅

(A3)
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BecauseU y( )A is globally concave and
y
U y( *) 0A B

∂

∂
≥ we get y y* *

A B≥ . Therefore, a more

risk‐averse agent invests more in self‐insurance. □

Proof of Proposition 4. We make agent A more risk‐averse than agent B. Thus, we have
φ k φ= ( )A B with a twice differentiable real‐valued function k which is increasing and
concave. Further, let x*A and x*B denote optimal self‐protection for agent A and B. Using
agent A's and agent B's first‐order conditions, we find the condition that the more risk‐
averse agent A invests more in self‐protection than the less risk‐averse agent B if and only
if the loss probability is small enough.

Without loss of generality, we can set:12

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

φ u w x v w φ u w x v w

φ u w x v w L x φ u w x v w L x

− * + ( ) = − * + ( ) ,

− * + − * = − * + − * .

A B B B

A B B B B B

1 2 1 2

1 2 1 2

(A4)

Evaluating A's first‐order condition at x*B yields:

( )
( ) ( )

( )
( )

x
U x p x φ u v φ u v

p x k φ u v φ u v u

p x k φ u v φ u v u

* =− ′ * [ ( + ) − ( + )]

− 1 − * ′( ( + )) ′ ( + ) ′

− * ′( ( + )) ′ ( + ) ′ .

A B B B F N B F L

B B F N B F N F

B B F L B F L F

∂

∂
⋅

⋅

⋅

(A5)

Due to k″ < 0 we have k φ u v k φ u v′( ( + )) < ′( ( + ))B F N B F L . Comparing Equation (7) with
Equation (A5) shows that increased risk aversion can increase or decrease optimal self‐
protection. We can derive a necessary and sufficient condition for an increase
in optimal self‐protection by substituting the first term in Equation (A5) by agent B's
first‐order condition:

( )
( ) ( )

( )
x
U x p x φ u v φ u v u

p x φ u v φ u v u

* = * ′ ( + ) − ′ ( + ) ′

+ 1 − * ′ ( + ) − ′ ( + ) ′ .

A B B B F L A F L F

B B F N A F N F

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

∂

∂
⋅

⋅

(A6)

Due to increased risk aversion we have that in (A6) the first term is negative and the
second term is positive. A loss probability of one renders a negative expression in

(A6) and a loss probability of zero a positive expression. Additionally,
x
U x( *)A B

∂

∂
is

linear in p x( *)B . Therefore, there exists an endogenously defined threshold p* so that
increased risk aversion leads to higher optimal self‐protection if and only if the loss
probability is below this threshold. □

12There always exists a suitable affine transformation such that this can be achieved and this transformation does not
change preferences.
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Proof of Proposition 5. We make agent A more risk‐averse than agent B. We evaluate A's
first‐order condition at y s( *, ˆ)B , where y*B denotes optimal self‐insurance for agent B and ŝ
maximizes A's expected utility given the investment in self‐insurance y*B . Without loss of
generality we can set:13

( ) (
)

( )

( )
( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

φ u w y s v w L y Rs φ u w y s

v w L y Rs

φ u w y s v w Rs φ u w y s v w Rs

− * − ˆ + − * + ˆ = − * − *

+ − * + * ,

− * − ˆ + + ˆ = − * − * + + * .

A B B B B B

B B

A B B B B B

1 2 1

2

1 2 1 2

(A7)

Using the shorthand notation u u w y s v v w Rs v v wˆ ( − * − ˆ), ˆ ( + ˆ), ˆ ( −F B N L1 2 2≔ ≔ ≔

L y( *)B Rs u u w y s v v w Rs+ ˆ), ( − * − *), ( + *)F B B N B1 2≔ ≔ and v v w L y Rs( − ( *) + *)L B B2≔

we obtain:

( )
y
U y s p φ u v u

p φ u v u pL y φ u v v

*, ˆ = −(1 − ) ′ ( ˆ + ˆ ) ˆ′

− ′ ( ˆ + ˆ ) ˆ′ − ′( *) ′ ( ˆ + ˆ ) ˆ′.

A B A F N

A F L F B A F L L

∂

∂
⋅

⋅ ⋅ (A8)

Additionally, we use the optimality of y s( *, *)B B with respect to B's first‐order conditions
to substitute the expression pL y′( *)B and get:

( ) ( )
y
U y s p φ u v u p φ u v u

φ u v v

φ u v v

p φ u v u p φ u v u

p φ u v u p φ u v u

*, ˆ = (1 − ) ( + ) + ( + )

( ˆ + ˆ ) ˆ

( ˆ + )
−
(1 − ) ( ˆ + ˆ ) ˆ + ( ˆ + ˆ ) ˆ

(1 − ) ( + ) + ( + )
.

A B B F N F B F L F

A F L L

B F L L

A F N F A F L F

B F N F B F L F

′ ′ ′ ′

′ ′

′ ′

′ ′ ′ ′

′ ′ ′ ′

⎡
⎣⎢

⎤
⎦⎥

∂

∂
⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅
(A9)

The overall expression is positive if the term in square brackets is positive. Using agent
A's and B's first‐order condition for saving yields:

( )
y
U y s

R p φ u v v p φ u v v φ u v v

p φ u v v p φ u v v φ u v v

φ u v v

φ u v v

φ u v v

φ u v v

*, ˆ > 0

(1 − ) ′ ( + ) ′ + ′ ( + ) ′ ′ ( ˆ + ˆ ) ˆ′

− (1 − ) ′ ( ˆ + ˆ ) ˆ′ + ′ ( ˆ + ˆ ) ˆ′ ′ ( + ) ′ > 0

′ ( ˆ + ˆ ) ˆ′

′ ( + ) ′
>

′ ( ˆ + ˆ ) ˆ′

′ ( + ) ′
.

A B

B F N N B F L L A F L L

A F N N A F L L B F L L

A F L L

B F L L

A F N N

B F N N

⎡⎣⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎤⎦

∂

∂

⇔ ⋅ ⋅

⋅ ⋅

⇔

(A10)

According to the assumptions in (A7) and because agent A's φ‐function is a concave
transformation of agent B's φ‐function, the first expression is always greater than one and
the second expression is always smaller than one. Therefore, the inequality is satisfied
and agent A invests more in self‐insurance than agent B. □

13There always exists a suitable affine transformation such that this can be achieved and this transformation does not
change preferences.
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Proof of Proposition 6. We make agent A more risk‐averse than agent B. We evaluate A's
first‐order condition at x s( *, ˆ)B , where x*B denotes optimal self‐protection for agent B and ŝ
maximizes A's expected utility given the investment in self‐protection x*B . Without loss of
generality, we can set:14

( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( )

φ u w x s v w L Rs φ u w x s v w L Rs

φ u w x s v w Rs φ u w x s v w Rs

− * − ˆ + ( − + ˆ) = − * − * + − + * ,

− * − ˆ + ( + ˆ) = − * − * + + * .

A B B B B B

A B B B B B

1 2 1 2

1 2 1 2

(A11)

Using the shorthand notation u u w x s v v w Rs v vˆ ( − * − ˆ), ˆ ( + ˆ), ˆF B N L1 2≔ ≔ ≔

w L Rs u u w x s v v w Rs( − + ˆ), ( − * − *), ( + *)F B B N B2 1 2≔ ≔ and v v w L Rs( − + *)L B2≔

we obtain:

( )
( ) ( )

( )
x
U x s p x φ u v φ u v

p x φ u v u p y φ u v u

*, ˆ =− ′ * [ ( ˆ + ˆ ) − ( ˆ + ˆ )]

− 1 − * ′ ( ˆ + ˆ ) ˆ′ − ( *) ′ ( ˆ + ˆ ) ˆ′ .

A B B A F N A F L

B A F N F B A F L F

∂

∂

⋅ ⋅

(A12)

Additionally, we use the optimality of x s( *, *)B B with respect to B's first‐order conditions
to substitute the expression p x− ′( *)B and get:

( )( )
( )

( )

( ) ( )

( ) ( )

x
U x s

φ u v φ u v

φ u v φ u v

p x φ u v u p x φ u v u

p x φ u v u p x φ u v u

*, ˆ =
( ˆ + ˆ ) − ( ˆ + ˆ )

( + ) − ( + )

* ′ ( + ) ′ + 1 − * ′ ( + ) ′

− 1 − * ′ ( ˆ + ˆ ) ˆ′ − * ′ ( ˆ + ˆ ) ˆ′ .

A B
A F N A F L

B F N B F L

B B F L F B B F N F

B A F N F B A F L F

∂

∂

⋅ ⋅ ⋅

⋅ ⋅

(A13)

According to the assumptions in (A11), the above fraction is equal to 1. Further, we
use agent A's and B's first‐order conditions for saving and derive:

( )

( ) ( )

( )
x
U x s R p x φ u v v φ u v v

p x φ u v v φ u v v

*, ˆ = * ′ ( + ) ′ − ′ ( ˆ + ˆ ) ˆ′

+ 1 − * ′ ( + ) ′ − ′ ( ˆ + ˆ ) ˆ′ .

A B B B F L L A F L L

B B F N N A F N N

⎡⎣ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦⎤⎦

∂

∂ (A14)

Due to increased risk aversion, we have that the first term is negative and the second
term is positive. A loss probability of one renders a negative expression and a loss

probability of zero a positive expression. Additionally,
x
U x s( *, ˆ)A B

∂

∂
is linear in p x( *)B .

Therefore, there exists an endogenously defined threshold p* so that increased risk
aversion leads to higher optimal self‐protection if and only if the loss probability is
below this threshold. □

Proof of Proposition 7. Consider two agents, A and B, where ψ k ψ= ( )A B with a twice
differentiable real‐valued function k which is increasing and concave. Then, agent A is more

14There always exists a suitable affine transformation such that this can be achieved and this transformation does not
change preferences.
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risk‐averse than agent B (Selden, 1978). Further, let y*A and y*B denote optimal self‐insurance
for agents A and B. Evaluating A's first‐order condition at y*B and using the shorthand notation
N y ψ k p k ψ w L y p k ψ w( ) ( ( ( ( − ( ))) + (1 − ) ( ( ))))B B B

−1 −1
2 2≔ ⋅ ⋅ yields:

( )
( )

( )
( )
( )

( )
( )

( ) ( ) ( ) ( )
( )
( )

( )

( )

y
U y u w y pL y ψ w L y

v N y

ψ N y

k ψ w L y

k ψ N y

* = − ′ − * − ′ * ′ − *
′ *

′ *

′ − *

′ *
.

A B B B B B

B

B B

B B

B B

1 2

2

∂

∂
⋅ ⋅

⋅ (A15)

Moreover, we use agent B's first‐order condition to get:

( )
( )

( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( )

( )
( )

( )

( )

( )
( )

y
U y pL y ψ w L y

v N y

ψ N y

k ψ w L y

k ψ N y

v M y

ψ M y

* = − ′ * ′ − *

′ *

′ *

′ − *

′ *
−

′ *

′ *
.

A B B B B

B

B B

B B

B B

B

B B

2

2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∂

∂
⋅

⋅ ⋅ (A16)

This expression is non‐negative if and only if:

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )
( )

( )

( )

( )
( )y

U y
v N y

ψ N y

k ψ w L y

k ψ N y

v M y

ψ M y
* 0

′ *

′ *

′ − *

′ *

′ *

′ *
.A B

B

B B

B B

B B

B

B B

2∂

∂
≥ ⇔ ⋅ ≥ (A17)

Using k″ < 0 we can show that k ψ N y k ψ w L y′( ( ( *))) ′( ( − ( *)))B B B B2≤ and employing
Jensen's inequality yields N y M y( ) ( )≤ . This enables us to derive a sufficient con-
dition for risk aversion to raise optimal self‐insurance: if the second‐period utility
function that reflects consumption smoothing (v) is more concave than the one that
reflects risk aversion (ψ), then increased risk aversion raises optimal self‐
insurance. □

Proof of Proposition 8. We make agent A more risk‐averse than agent B. Thus, we have
ψ k ψ= ( )A B with a twice differentiable real‐valued function k which is increasing and
concave. Further, let x*A and x*B denote optimal self‐protection for agent A and B. Without
loss of generality, we can set:15

( ) ( )( ) ( )
ψ w ψ w

ψ w L x ψ w L x

( ) = ( ),

− * = − * .

A B

A B B B

2 2

2 2

(A18)

Using the shorthand notation N x ψ k p x k ψ w L( ) = ( ( ( ) ( ( − ))B B
−1 −1

2⋅ p x+ (1 − ( ))

k ψ w( ( ))))B 2⋅ and evaluating A's first‐order condition at x*B yields:

15There always exists a suitable affine transformation such that this can be achieved and this transformation does not
change preferences.
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( )
( )
( ) ( )

( ) ( ) ( )
( )
( ) ( )x

U x u w x p x
v N x

ψ N x

k ψ w k ψ w L

k ψ N x

* = − ′ − * − ′ *
′ *

′ *

( ( )) − ( ( − ))

′ *
.A B B B

B

B B

B B

B B

1
2 2∂

∂
⋅ ⋅ (A19)

We now use agent B's first‐order condition to get:

( )
( )
( ) ( )

( )
( )

( ) ( )

( )
( ) ( )

( )
( )

x
U x p x ψ w ψ w L

v N x

ψ N x k ψ N x

v M x

ψ M x

* = − ′ * ( ( ) − ( − ))

′ *

′ *

1

′ *
−

′ *

′ *
.

A B B B B

B

B B B B

B

B B

2 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∂

∂

⋅ ⋅ (A20)

This expression is nonnegative if and only if:

( )
( )
( ) ( )

( )
( )

( )
( )
( ) ( )

( )
( )x

U x
v N x

ψ N x k ψ N x

v M x

ψ M x
* 0

′ *

′ *

1

′ *

′ *

′ *
.A B

B

B B B B

B

B B

∂

∂
≥ ⇔ ⋅ ≥ (A21)

Using the convexity of k−1 we can show that:

( ) ( )
( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

k ψ N x k k p x k ψ w L p x k ψ w

k p x ψ w L p x ψ w

′ * = ′ * ( ( − )) + 1 − * ( ( ))

′ * ( − ) + 1 − * ( ) .

B B B B B B

B B B B

−1
2 2

2 2

⎛
⎝

⎞
⎠⋅ ⋅

≤ ⋅ ⋅

(A22)

By equation (A18) we know that k ψ w L′( ( − )) > 1B 2 and k ψ w′( ( )) < 1B 2 . Therefore,
there exists an endogenously defined threshold p* so that k ψ N x′( ( ( *))) < 1B B .

Moreover, employing Jensen's inequality yields N x M x( ) ( )≤ . This enables us to derive a
sufficient condition for risk aversion to raise optimal self‐protection: if the probability of loss is
below an endogenous threshold and the second‐period utility function that reflects
consumption smoothing (v) is more concave than the one that reflects risk aversion (ψ),
then increased risk aversion raises optimal self‐protection. □

Proof of Proposition 9. We make agent A more risk‐averse than agent B. We evaluate A's
first‐order condition at y s( *, ˆ)B , where y*B denotes optimal self‐insurance for B and ŝ

maximizes A's expected utility given the investment in self‐insurance y*B . Without loss of
generality, we can set:16

( ) ( )( ) ( )
( )

ψ w L y Rs ψ w L y Rs

ψ w Rs ψ w Rs

− * + ˆ = − * + * ,

( + ˆ) = + * .

A B B B B

A B B

2 2

2 2

(A23)

Using the shorthand notation N y s ψ k p k ψ w L y Rs( , ) = ( ( ( ( − ( ) + ))B B
−1 −1

2⋅ p+(1 − )

k ψ w Rs( ( + ))))B 2⋅ we obtain:

16There always exists a suitable affine transformation such that this can be achieved and this transformation does not
change preferences.
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( )
( )

( )
( )
( )

( )
( )

( ) ( )

( ) ( )
( )
( )

( )

( )

y
U y s u w y s

pL y ψ w L y Rs
v N y s

ψ N y s

k ψ w L y Rs

k ψ N y s

*, ˆ =− ′ − * − ˆ

− ′ * − * + ˆ
′ *, ˆ

*, ˆ

′ − * + ˆ

′ *, ˆ
.

A B B

B B B

B

B B

B B

B B

1

′
2

′

2

∂

∂

⋅ ⋅ ⋅

(A24)
Next, we use agent B's first‐order condition to substitute the expression pL y′( *)B and get:

( ) ( )
( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

( )

( )
( )

( )
( )

y
U y s u w y s

u w y s

u w y s
*, ˆ = ′ − * − * −

′ − * − ˆ

′ − * − *
.

*

*

*

*

* *

* *

′ * *

′ *

A B B B

v N y s

ψ N y s

k ψ w L y Rs

k ψ N y s

v M y s

ψ M y s

ψ w L y Rs

ψ w L y Rs

B

B B

1

′ , ˆ

, ˆ

′ − + ˆ

′ , ˆ

′ ,

,

− +

− + ˆ

1

1

B

B B

B B

B B

B B

B B B

B B B

B B

′

2

′

2

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

∂

∂
⋅

⋅

⋅

(A25)

The overall expression is positive if the bracketed term is positive. Using agent A's and B's
first‐order condition for saving yields:

( )
( )
( )
( )

)

( )
( ) ( )

( )
( )

( )

( )

( ) ( )

( )
( )
( )

( )

( )
( ) ( )

( )
( )

( ( )

( )

( ) ( )

( ) ( )
( )
( )

y
U y s

R
v N y s

ψ N y s k ψ N y s

v M y s

ψ M y s

p ψ w L y Rs p ψ w Rs

k ψ w L y Rs

p k ψ w L y Rs ψ w L y Rs

p k ψ w Rs ψ w Rs
ψ w L y Rs

ψ w L y Rs

*, ˆ > 0

′ *, ˆ

′ *, ˆ

1

′ *, ˆ

′ *, *

′ *, *

′ − * + ˆ + (1 − ) ′ ( + ˆ)

′ − * + ˆ

− ′ − * + * ′ − * + *

+(1 − ) ′ + * ′ + *
′ − * + *

− * + ˆ
> 0.

A B

B

B B B B

B B

B B B

B B B

B B

B B B B B B

B B B B

B B B

B B

2 2

2

2 2

2 2

2

′
2

⎛
⎝

⎞

⎠
⎟⎟

∂

∂

⇔ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅

⋅ ⋅

⋅ ⋅ ⋅

(A26)

Rearranging the bracketed expression leads to the following inequality:

( ) (( ) ( )
( )

( )

( )

( ) ( )

( )

( )
( )

y
U y s

k ψ w L y Rs ψ w L y Rs

ψ w L y Rs

k ψ w L y Rs ψ w Rs

ψ w Rs

*, ˆ > 0

′ − * + ˆ ′ − * + ˆ

′ − * + *
>

′ − * + ˆ ′ ( + ˆ)

′ + *
.

A B

B B B B

B B B

B B B

B B

2 2

2

2 2

2

∂

∂

⇔
⋅ ⋅

(A27)

According to the assumptions in (A23) and because agent A's ψ‐function is a concave
transformation of agent B's ψ‐function, the first expression is always greater than one and
the second expression is always smaller than one. Therefore, the inequality is satisfied
and A invests more in self‐insurance than B. □
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Proof of Proposition 10. We make agent A more risk‐averse than agent B. We evaluate
A's first‐order condition at x s( *, ˆ)B , where x*B denotes optimal self‐protection for B and ŝ
maximizes A's expected utility given the investment in self‐protection x*B . Without loss of
generality, we can set:17

( )
( )

ψ w L Rs ψ w L Rs

ψ w Rs ψ w Rs

( − + ˆ) = − + * ,

( + ˆ) = + * .

A B B

A B B

2 2

2 2

(A28)

Using the shorthand notation N x s ψ k p x k ψ w L Rs( , ) = ( ( ( ) ( ( − + ))B B
−1 −1

2⋅

p x k ψ w Rs+(1 − ( )) ( ( + ))))B 2⋅ we obtain:

( )
( )
( ) ( )

( ) ( )

( )
( )
( ) ( )

x
U x s u w x s

p x
v N x s

ψ N x s

k ψ w Rs k ψ w L Rs

k ψ N x s

*, ˆ =− ′ − * − ˆ

− ′ *
′ *, ˆ

′ *, ˆ

( ( + ˆ)) − ( ( − + ˆ))

′ *, ˆ
.

A B B

B

B

B B

B B

B B

1

2 2

∂

∂

⋅ ⋅

(A29)
Additionally, we use the optimality of x s( *, *)B B with respect to B's first‐order conditions

to substitute the expression p x− ′( *)B and get:

( )
( )
( )

( )
( ) ( )

( ) ( )

( )
( )
( )

( )
( ) ( )

x
U x s u w x s

u w x s
v M x s

ψ M x s

v N x s

ψ N x s k ψ N x s

*, ˆ =− ′ − * − ˆ

+ ′ − * − *
′ *, *

′ *, *

′ *, ˆ

′ *, ˆ

1

′ *, ˆ
.

A B B

B B

B B

B B B

B

B B B B

1

1

∂

∂

⋅ ⋅ ⋅

(A30)

Further, we use A's and B's first‐order conditions for saving and derive:

( )
(

)

( )
( ) ( )

( )

( )

( )
( )
( ) ( )

( ) ( ) ( ) ( )

( )

( )

x
U x s R

v N x s

ψ N x s k ψ N x s

p x ψ w L Rs p x ψ w Rs

p x k ψ w L Rs ψ w L Rs

p x k ψ w Rs ψ w Rs

*, ˆ =
′ *, ˆ

*, ˆ

1

′ *, ˆ

* ′ − + * + 1 − * ′ + *

− * ′( ( − + ˆ)) ′ ( − + ˆ)

− 1 − * ′( ( + ˆ)) ′ ( + ˆ) .

A B

B

B B B B

B B B B B B

B B B

B B B

′

2 2

2 2

2 2

∂

∂
⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅ ⋅

(A31)

Rearranging the bracketed expression leads to the following inequality:

( )
( )( )

( )

( ) ( )

( ) ( )

x
U x s

p x ψ w L Rs k ψ w L Rs ψ w L Rs

p x ψ w Rs k ψ w Rs ψ w Rs

*, ˆ > 0

* ′ − + * − ′( ( − + ˆ)) ′ ( − + ˆ)

+ 1 − * ′ + * − ′( ( + ˆ)) ( + ˆ) > 0.

A B

B B B B B

B B B B B

2 2 2

2 2
′

2

∂

∂

⇔ ⋅ ⋅

⋅

(A32)

17There always exists a suitable affine transformation such that this can be achieved and this transformation does not
change preferences.
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Due to increased risk aversion, we have that the first term is negative and the second
term is positive. A loss probability of one renders a negative expression and a loss

probability of zero a positive expression. Additionally,
x
U x s( *, ˆ)A B

∂

∂
is linear in p x( *)B .

Therefore, there exists an endogenously defined threshold p* so that increased risk
aversion leads to higher optimal self‐protection if and only if the loss probability is below
this threshold. □
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