
Kittel, Martin; Hobbie, Hannes; Dierstein, Constantin

Article  —  Accepted Manuscript (Postprint)

Temporal aggregation of time series to identify
typical hourly electricity system states: A systematic
assessment of relevant cluster algorithms

Energy

Provided in Cooperation with:
German Institute for Economic Research (DIW Berlin)

Suggested Citation: Kittel, Martin; Hobbie, Hannes; Dierstein, Constantin (2022) : Temporal
aggregation of time series to identify typical hourly electricity system states: A systematic
assessment of relevant cluster algorithms, Energy, ISSN 1873-6785, Elsevier, Amsterdam, Vol.
247, pp. 1-15,
https://doi.org/10.1016/j.energy.2022.123458

This Version is available at:
https://hdl.handle.net/10419/284363

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.energy.2022.123458%0A
https://hdl.handle.net/10419/284363
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Temporal Aggregation of Time Series to Identify Typical Hourly
Electricity System States:

A Systematic Assessment of Relevant Cluster Algorithms

Martin Kittela,∗, Hannes Hobbieb, Constantin Diersteinb

aDIW Berlin, Department of Energy, Transportation, Environment, Mohrenstraße 58, 10117 Berlin, Germany
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Abstract

Comprehensive numerical models are pivotal to analyze the decarbonization of electricity systems.

However, increasing system complexity and limited computational resources impose restrictions to model-

based analyses. One way to reduce computational burden is to use a minimum, yet representative,

set of system states for model simulation. These states characterize fluctuating renewable generation

and variable demand for electricity prevailing at a certain point in time. A review of possible time

series aggregation techniques identifies cluster algorithms as most adequate, with k-Means and the Ward

algorithm predominating. However, throughout the surveyed literature, the line of reasoning for the

selection of these algorithms remains unclear. To support the electricity system modeling community

in selecting an algorithm, this paper devises a systematic multi-stage evaluation approach to compare a

large variety of cluster analysis configurations, differing in algorithm, cluster representation and number

of clusters. Results show that electricity demand and renewable energy generation time series can be

compressed to below one percent while sustaining global characteristics of the original data. Two potent

cluster configurations are identified, confirming k-Means and Ward as being prevalent. Beyond electricity

market data, the methodology can be applied to various types of fundamental time-dependent input data.

Keywords: Cluster Analysis, Time Series Aggregation, Variable Renewable Energy, Electricity Market

Modeling, Typical System States

2010 MSC: 62H30

1. Introduction

Electricity systems are undergoing major structural changes due to the rising penetration of renewable

energy, additional demand-side flexibilities, or the electrification of the transport and heating sector.

Electricity market models are used to investigate these developments. They become increasingly complex,

entailing additional computational burden. A comprehensive representation might require a reduction of
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model size to handle complexity. Operational electricity system states1 refer to the prevailing average

variable renewable energy sources (VRE) penetration and electricity demand levels of one specific time

period, mostly one hour. To some extent, they are repetitive over the course of one year. A temporal

aggregation of similar or identical system states by identifying a set of representative system states may

reduce model size. Additionally, these system states potentially provide valuable insights into market

structures.

Aggregating the temporal resolution of VRE generation and load profiles requires a systematic selec-

tion process. Choosing an insufficient set of unrepresentative system states may lead to an underestima-

tion of VRE variability and overestimated VRE availability. Overrating the role of VRE results in biased

model results [2].

One common technique for temporal aggregation of fundamental input data in electricity market

modeling is cluster analysis. Two cluster algorithms are primarily used: Ward’s Minimum Variance

Method (WARD) algorithm from the class of hierarchical cluster algorithm (HACAL) and k-Means from

the class of partitional cluster algorithm (PARTAL). The objective rationale of the cluster algorithms

itself could motivate their application. However, relevant studies applying these algorithms lack a thor-

ough explanation as to why HACAL or PARTAL was chosen as preferred cluster class, and, furthermore,

why WARD or k-Means was selected over other available algorithms within the same class. Consequently,

the line of reasoning for the selection of WARD or k-Means for temporal aggregation in electricity mar-

ket modeling remains unclear. This paper aims at closing this gap in the literature. The overarching

methodological objective is to systematically investigate HACAL and PARTAL with respect to repre-

sentation quality of the original input data. To this end, a large number of different cluster scenarios is

scrutinized, each differing in terms of cluster algorithm, cluster representation, and the optimal number

of clusters within a cluster solution. Assessing the obtained clusters in terms of representation quality

of the original input data, evaluation criteria allow for meaningful interpretation of a cluster solution.

Traditionally, this is based on statistical key indicators. Although evaluating to what extent the approx-

imation reflects global statistic properties of the original data, they cannot reveal whether clustered time

series are performant in application. This paper employs a three-stage fundamental data clustering and

electricity market modeling approach. It complements a statistical evaluation of cluster algorithms with

an assessment of their model-based performance. For the latter, a flow-based electricity market model

for a case study of the Central West European (CWE) region is used.

A major merit of the combination of statistical key indicators and application-based result information

is that it allows for an extensive investigation. 260 initial cluster scenarios are narrowed down to the

100 most promising ones. Subsequently, two salient cluster scenarios from the HACAL and PARTAL

class are identified. Each generates a minimum, yet representative, set of hourly system states for system

representation.

1In literature, alternative expressions for system states are commonly used (e.g. snap shot, or time-slice), which have

different period lengths (e.g. a complete week or day, multiple consecutive hours, or hourly system states) [1].
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The remainder of the paper is structured as follows: Section 2 outlines empirical findings for temporal

aggregation methods used in electricity market modeling. Section 3 details the design and subject of this

research. Section 4 discusses statistical characteristics of obtained cluster solutions. Section 5 investigates

their application-based performance. Section 6 analyzes the determined hourly system states. Finally,

Section 7 summarizes results and discusses implications for electricity market modeling. Additional

material is available in the supplementary information (SI), such as a brief introduction into the theory

on cluster analysis.

2. Empirical findings and research focus

This section elaborates on temporal and spatial variability in electricity market modeling and related

empirical findings. Based on this, the section specifies the research focus of this paper.

2.1. Temporal and spatial variability in electricity market modeling

Crucial aspects when aggregating intra-annual temporal resolution are spatial and temporal vari-

ability within the investigated period. Spatial variability must be taken into account when analyzing

multi-regional settings. Traditionally, the major driver of temporal variability in electricity markets was

fluctuations in electricity demand, e.g. variations between day- and night-time or between seasons. The

introduction of VRE, such as wind or solar photovoltaic (PV), induced further variability into the system.

The role of VRE is set to increase in future, not only in the electricity sector but also for decarbonizing

mobility, heating, and industrial processes [3]. The adequate treatment of variability gains significantly

in importance in electricity market modeling.

While there are studies that do not aggregate at all (e.g. [4]), the aggregation of temporal resolution for

electricity market modeling is recognized in numerous studies employing different aggregation approaches.

Their underlying rationale is to reduce the temporal resolution of an original reference data set, while

maintaining the global properties of the reference data, such as temporal variability, spatial variability,

and concomitant extremes. This paper focuses on the aggregation of demand and VRE generation

patterns for electricity market modeling. Figure 12 illustrates three major approaches to derive hourly

system states [5]: Random selection, heuristic selection, and aggregation based on cluster analyses, with

ascending methodological complexity.

The idea of a random selection is to derive a subset of hourly system states based on arbitrary or

random pick. It comes with very low implementation requirements, yet, is highly affected by the number

and selection of system states.

Heuristic approaches use more advanced selection procedures to determine representative system

states. Content related systematics determine system states based on the fundamental features of the

reference data set, such as seasonality within the year, week, or day. Hourly whereas system states can

2A selection of relevant literature is presented. Related literature on temporal aggregation for modeling building energy

systems is comprehensive, yet, beyond the focus of this paper.
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Aggregation

approaches

Random selec-

tion: [6, 7]

Heuristic

selection

Cluster

analysis

Content related

systematics: [7–14]

External validity

indices: [15–20]

Hierarchical: [2, 7,

8, 21–26]

Partitional: [8, 23,

24, 26–35]

New techniques:

[24, 26, 26, 36, 37]

Complexity

Figure 1: Classification of time resolution aggregation approaches including assigned research.

also be selected based on external validity indices, e.g. statistical error metrics. The applicability of

heuristics is limited. The selection of a suitable heuristic strongly hinges upon the user’s depth and

understanding of domain knowledge, thus is susceptible to subjective bias.

Finally, cluster methods aim at identifying structures in a reference data set by objectively allocating

all observations into homogeneous groups called clusters. From each cluster, a representative is selected

and used as an input system state for an electricity market modeling. Since cluster analyses follow a

predefined optimization procedure, they are not prone to any subjective bias, instead featuring algorithmic

objectivity. Furthermore, system states’ weighting is implicit according to the cluster size, which allows

for adequate representation of both extreme and rather common events in the approximation. Even

though the implementation comes at higher costs compared to other approaches, they are superior when

aggregating temporal resolution [7], and central in related research in recent years [1].

2.2. Research focus specification

The right-hand panel of Figure 1 illustrates a selection of relevant literature applying cluster analysis

for temporal aggregation in electricity market modeling. It can be divided into three groups: hierarchical,

partitional, and new techniques. They are briefly discussed in the following, with a detailed overview in

Table 1.
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Nahmmacher et al. [2] device a novel approach based on the hierarchical WARD algorithm to identify

representative time-slices aggregating both demand and VRE time series. One time-slice contains three

consecutive hourly system states. Their approach selects 48 time-slices, equivalent to six typical days,

which are applied to a long-term capacity planning model of the European electricity system. Even

though the advantages of HACAL over PARTAL are briefly discussed, no thorough reasoning for the

selection of WARD among all HACAL is provided. Further applications of WARD ([8, 21, 23]) draw

upon the approach by Nahmmacher et al. [2], where they use 648 time-slices and six to eight typical days.

Yet, they do not motivate the choice of WARD. Poncelet et al. [7] evaluate multiple methods varying in

complexity for identifying representative system states of demand and VRE time series, e.g., based on

heuristics, WARD, or a mixed-integer linear programming optimization. They test the aggregation quality

for the Belgian electricity system with 24 two-hour time steps. Again, the authors do not reason the

selection of WARD. Merrick [22] employs WARD investigating the representation of temporal variability

in electricity capacity planning models. The author states that WARD features clusters with observations

that are extremely similar to each other or duplicates. Yet, the study lacks a reasoning for WARD in the

context of other available algorithms of the same or other cluster classes. Pineda shows [25] that WARD

allows the consideration of consecutive time periods. Although thoroughly examining how inappropriate

aggregation of temporal resolution can induce substantial distortions of model output, and how this can

be avoided, the line of reasoning for the selection of WARD is limited to a cluster class specific argument:

HACAL do not require a set of k initial starting points, as it is the case for PARTAL, which the author

considers advantageous. The author finds that it takes up to 300 representative days to properly capture

variability induced into the system by demand and VRE fluctuations. Pfenniger [8] compares WARD,

k-Means, and further heuristics to reduce input data for a capacity expansion for Great Britain. The

author does not explain why these cluster algorithms from the set of available algorithms of the class of

HACAL and PARTAL are selected.

The second subcategory contains temporal aggregation applications based on PARTAL. Green et

al. [30] use k-Means to identify six to ten representative days for Great Britain’s electricity demand net of

wind generation, each containing 24 hourly system states. The authors argue that k-Means, besides being

widely used and simply to implement, tends to form equally sized clusters, thus impeding the formation

of system states that represent rare extreme system states. However, long-term investment models under-

or overestimate the role of VRE if their variability including extreme cases is not properly accounted for

[2]. Thus, their argument for the selection of k-Means over other cluster algorithms is disputable. Kotzur

et al. [23] compare, inter alia, the performance of k-Means and k-Medoids for generating typical days

and weeks. They stress that despite their greedy nature, these algorithms are relatively fast compared to

hierarchical algorithms. Fazlollahi et al. [29] employ k-Means in combination with a parametric optimiza-

tion to identify a minimum number of 34 representative periods without quality losses. They base their

choice of k-Means solely on the frequency of its application in the literature. Similarly, Fitiwi et al. [28]

lack a well-founded selection of k-Means in their implementation of a new method for the creation of 15

to 40 representative system states that adequately consider uncertainties in network expansion. Agapoff
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et al. [27] conduct extensive sensitivities to investigate how the consideration of different features in

the clustering analysis configuration affects model outputs of a classical transmission expansion problem.

They find an optimal solution with at least 15 clusters. However, the motivation for the choice of k-Means

remains unclear. Further research applying partitional cluster algorithms has been dedicated to related

topics, such as temporal aggregation of data on building energy systems to find typical daily profiles [31],

or the requirement of consecutive typical time periods for appropriate storage representation in energy

system modeling [32]. Scott et al. [33] find that with reduced input data storage is used for addressing

ramping challenges rather than temporal smoothing of VRE generation. They apply k-Medoids, arguing

that it is less prone to smoothing than k-Means, thus giving better representations in long-term planning

models. No further reasoning for the use of PARTAL over HACAL is given.

The third subcategory refers research applying recent, non-traditional cluster techniques. Kazor and

Hering [36] compare 10 model-based cluster algorithms to find typical wind patterns from simulated wind

data. Also clustering wind data, Tupper et al. [37] introduce a novel distance measure, the band distance.

In contrast to the traditional Euclidean distance, this distance metric accounts for the shape of the time

series, i.e., the relative distances of observations to other members of the data set. Teichgräber et al. [24]

compare WARD and four PARTAL for a storage unit and a gas turbine dispatch optimization problem.

The results suggest that the performance of the clustering method strongly depends on the purpose and

the normalization of the data and the target function. A clear preference for an algorithm can therefore

not be determined prior to the analysis. Härtel [26] comes to comparable statements. In addition to

WARD and two PARTAL, the author also considers systematic sampling and moment-matching, which

are combined with different scaling options for the input data.

Conventionally, two cluster classes, HACAL and PARTAL, seem to prevail in electricity market model-

ing literature. Per class primarily only one particular algorithm is applied in the aforementioned research:

WARD or k-Means. However, the reviewed literature in the first and second subcategory lack thorough

justification as to why the respective cluster class has been chosen, and why the applied algorithm has

been selected over others within the same class. There is no systematic and sound evaluation of a large

number of different hierarchical or partitional cluster algorithms in the context of temporal aggregation in

electricity system modeling. Consequently, unintentional and undetected distortions of model outcomes

may result due to the selection of a concrete cluster algorithm. The aim of this paper is to close this

important gap in literature and scrutinize the common application of WARD and k-Means. Section SI.1

provides a brief introduction to cluster analysis focusing on HACAL and PARTAL. Research grouped

into the category ’new techniques’ offers potential for technical improvement of clustering applications in

electricity market modeling, yet is beyond the scope of this paper.

3. Research design and fundamental input data

This section details the three-stage fundamental data clustering and market modeling approach. It

further introduces the scenario variations of the conducted cluster analyses and defines metrics for as-
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sessing the approximation quality of identified clusters.

3.1. Three-stage fundamental data clustering and market modeling approach

Figure 2 illustrates the three-staged approach for identifying representative system states. First,

relevant input data are clustered using a large variety of cluster analyses, producing a large number of

preliminary representative market scenarios. To compare results, stage two and three apply error metrics,

which aim at identifying methods that generate the most representative, yet minimal, set of hourly system

states.

(preliminary set of)

Cluster analysis
(Python)

Fundamental Input Data of
CWE region for 2016

Demand
Onshore wind generation
Offshore wind generation
PV generation

Stage 1

(model-based)

Cluster evaluation

Output Error Metrics (OEM)

CostE
L1-distance
MAEPDC
RMSEPDC

Stage 3

(statistical)

Cluster validation

Input Error Metrics (IEM)

RMSEcl

VarC

CorrE

Stage 2

(validated set of)

ELTRAMOD-FBMC (GAMS)

Demand, VRES generation
Power plant stack
Fuel & CO2 prices
FBMC parameters

(final set of)

System states System states System states

- 
- 
- 
- 

- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

Figure 2: Three-staged approach for identifying representative system states.

3.2. Cluster analysis

System variables that induce variability into the electricity supply system, i.e., VRE generation and

demand patterns, characterize a representative system state. Dispatchable generation technologies can

adjust to the system variability. Hence, they are irrelevant for identifying representative system states.

In this paper, electricity demand (hereinafter called load), onshore and offshore wind power, and PV

for the CWE countries Austria, Belgium, France, DE! (DE!), Luxembourg, and NL! (NL!) from 2016

are clustered. This yields a multi-dimensional pattern matrix representing multiple system variables for

multiple model regions with the dimensions t×f , where f = 19 time series comprising t = 8784 uniformly

sampled, continuous hourly values. The original data are retrieved from the Transparency Platform of

the European Network of Transmission System Operator for Electricity. Data refinement is necessary

due to incomplete time series (see Section SI.2 for a brief description and visualization of the refinement

procedure). The data are re-scaled to the range [0, 1] using the min-max normalization.
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The investigated cluster scenarios differ regarding three methodological dimensions, as depicted in

Figure 3. The first dimension relates to a total of ten different cluster algorithms (seven HACAL,

three PARTAL). The second cluster dimension representation features a comparison of approximations

based on both centroid-based and medoid-based representation. A centroid is the arithmetic mean of

all observations in one cluster. A medoid is the observation that is closest to the centroid (see Section

SI.1 for detailed elaboration). The third dimension is dedicated to the determination of the optimal

number of clusters k, with a pre-defined range of 13 different k ∈ Rangek = (1, 25, . . . , 300).3 In total,

the three-dimensional cluster space yields 260 scenarios (10 algorithms × 2 representations × 13 different

k ∈ Rangek).

Cluster representation

Cluster algorithm

RangeK

100

300

centroid-based

medoid-based

hierarchical partitional

200

Figure 3: The three scenario dimensions algorithm, representation and chosen number of clusters.

3.3. Input data-based evaluation of cluster methods

The quality of cluster outputs can be assessed with either up- or downstream information of the

clustering process [38]. The idea of cluster validation refers to an ‘idealistic‘ analysis of the structure

of the approximation compared to the structure of reference data set. More specifically, it is tested for

accuracy and to what extent the obtained solution reflects the global statistical characteristics of the

reference data set, e.g. temporal and spatial variability. Corresponding methods are referred to as Input

Error Metrics (IEM). The term input relates to the upstream focus of cluster validation, as its scope is

limited to the deviation between the clustered and the original input data set.

Each of the generated 260 cluster scenarios are validated with three absolute IEM. These metrics

ensure that relevant temporal aspects of the original time-series are appropriately represented [2, 7, 21, 23].

Section SI.3 provides a detailed definition of all IEM. The Average Root Mean Square Error for Clustered

Data (RMSEcl) reflects the deviation from feature values of the original data set to their corresponding

approximated representatives [2]. The smaller this metric, the closer resemble cluster representatives

original values on average, and the more accurate is the approximation. The Covered Variance (VarC)

reflects the grade to which the approximation captures the temporal variability of an original feature

3An incremental size of 25 is chosen to limit the amount of scenarios to be investigated to a feasible extent.
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time series [17]. It is limited to the domain V arC ∈ [0, 1]. The closer it reaches the value of 1, the higher

the average share of covered temporal variability in the approximation. The Correlation Error (CorrE)

tests to what extent the correlation between the original time series is inherited to the approximation

[2, 7], with CorrE ∈ [0, 2]: A CorrE of 0 indicates perfect representation, whereas a value of 2 reflects no

representation of correlation at all.

To allow for meaningful representation, the three-dimensional scenario space is broken down to a

new view based upon only two dimensions. Algorithm-Representation Scenario (ARS) aggregate the

dimension number of clusters, while still differentiating the remaining two dimensions algorithm and

representation subject to a specific k ∈ Rangek. They average the sum of each metric obtained for all

members of the Rangek. In total, the collection of all possible combinations of these two dimensions

yields 20 super-ordinate scenarios (10 algorithms × 2 representation forms). As an example, WARD and

the two cluster representation forms, centroid and medoid, can be combined to the two ARS, WARD-c

and WARD-m. Each of which could again be decomposed into the number of clusters k resulting in the

originally investigated scenarios.

Altogether, the 260 scenarios amount to 39,020 hourly system states (1,951 system states × 20 ARS)

equivalent to 741,380 feature-specific single observations. The sheer number of scenarios and system states

renders a thorough consideration of each and every scenario impossible. The following relative IEM, based

on [7], overcome this issue: the Relative Root Mean Square Error for Clustered Data (RMSErel
cl ), the

Relative Covered Variance (VarCrel), and the Relative Correlation Error (CorrErel). They reflect the

average absolute metric overall 13 different cluster number configurations k ∈ Rangek. This allows for a

comparison of the aggregation quality of each ARS, irrespective of the chosen number of cluster k. The

interpretation and domain are equivalent to the absolute IEM.

3.4. Market model-based evaluation of cluster methods

Previously conducted research suggests a model-based investigation to evaluate cluster quality with

respect to the downstream employment of the approximation [2, 7, 21–23, 30]. The idea is to benchmark

the cluster solutions with respect to their application-based performance [38, 39]. Here, clustered system

states serve as scenario input in form of reduced time series to an electricity dispatch model. Output

Error Metrics (OEM) then benchmark, ceteris paribus, model outputs against a base case, which draws

upon the reference data set containing all 8784 hourly data points. Section SI.3 provides a detailed

definition of all OEM.

The System Cost Error (CostE) is a convergence indicator and reflects the ability of approximated

system states to replicate the base case’s Total System Cost (TC). The order of the representative system

states used as model input does not necessarily reflect the chronology of events in the original data set.

This may impact inter-temporal constraints on ramping or storage. The CostE evaluates the approxi-

mation regardless this likely disruption of order. Even though the CostE allows for a comparison of the

objective value among scenario runs, individual cost components and cost drivers might differ signifi-

cantly, while TC remain the same. The notion of the L1-distance overcomes this issue. It decomposes the
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objective function into its elements and subsequently sums the absolute deviations of the isolated terms

of scenario solution values from the base case. It thus facilitates a comparison of individual cost drivers,

such as curtailment of VRE [22].

Cluster quality can be further assessed by means of price formation comparisons [40]. The third and

the fourth output error metric test to what extent clustered system states are capable of reproducing price

formations. While the Mean Absolute Error of Price Duration Curves (MAEPDC) represents the average

difference between the Price Duration Curve (PDC) of a scenario and the base case, it underestimates

strong deviations. Therefore, the Root Mean Square Error of Price Duration Curves (RMSEPDC) is

introduced, which is more sensitive to outliers. The same interpretation applies to all four indicators:

The smaller the indicator, the closer are model results based on clustered time series to the base case.

Both absolute and relative OEM are employed.

3.5. Electricity market model definition

Both the cluster analysis and aforementioned data refinement procedures are implemented in the open

source programming language, Python. The employed Electricity Transshipment Model - Flow-Based

Market Coupling (ELTRAMOD-FBMC) is formulated as linear optimization problem. It minimizes total

system costs and covers the CWE region and adjacent countries. ELTRAMOD-FBMC draws upon the

base model ELTRAMOD-INVEST [40] and has been enhanced to incorporate the incumbent cross-border

transmission capacity allocation mechanisms - Flow-based Market Coupling (FBMC) and the Available

Transfer Capacity (ATC) regime - in place in the considered electricity markets.4 The ex post scope of this

paper is limited to the CWE electricity system of 2016. The model is calibrated to replicate the historical

electricity market outcome in 2016 in the CWE region in the base case. Capacity additions throughout

2016 are carried out exogenously. The cluster scenario-specific reduced multivariate time series represent

exogenous demand and VRE generation information of CWE countries. All other fundamental input data,

such as fuel prices and hourly heat demand, remain unchanged. Due to the non-consecutive character of

the hourly system states to be found, any diurnal structures in the underlying data are disrupted by the

clustering procedure. Model variables relevant to inter-temporal constraints, such as ramping or storage,

suffering from this restriction, have been changed to exogenous parameters that reflect endogenous model

results from the base case. Specifics of the implementation of the cluster analyses and model modifications

are provided in Section SI.5.

4. Results and discussion on cluster analysis

This section discusses results on the statistical approximation quality of the identified clusters and

related implications for the analysis.

4A detailed description of an NTC-based version of ELTRAMOD is provided in Ladwig [41]. An extended implementation

of FBMC into the model is detailed in Schönheit et al. [42].
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4.1. Results on absolute and relative input error metrics

Figure 4 illustrates the obtained absolute IEM.5 As the number of clusters k increases, the global

characteristics of the reference data set are better represented by the approximation. This is because,

on average, a cluster representative needs to typify a lower number of observations grouped together

in one cluster. In total, an increasing number of cluster representatives captures more information and

variability. In general, while the obtained RMSEcl and CorrE diminish with increasing k, the share of

captured variability, VarC, rises. Single-Linkage Clustering (SLINK)-based ARS are outliers and suffer

from weak approximation performance in terms of RMSEcl and VarC. Intriguingly, absolute IEM incur

diminishing returns to increasing k. Up to a cluster size of roughly 100, there is a significant marginal

improvement of additional clusters to the approximation quality. Above this threshold, the marginal gain

of additional clusters converges to near zero.

Table 2 aggregates absolute IEM over the original Rangek and presents obtained relative IEM.

WARD-c and k-Means-c achieve lowest RMSErel
cl scores among the investigated hierarchical and parti-

tional ARS, respectively. Centroid-based ARS dominate the RMSErel
cl ranking, suggesting that centroid-

based approximations closer resemble the reference data set (see also outperforming solid lines in Figure

4a). In contrast, medoid-based approximations show best aggregation performance in terms of average

covered temporal variability and correlation error (see also outperforming patterns of the dashed lines in

Figure 4b and 4c). WARD-m and k-Means-m are most effective here.

4.2. Discussion and implications for cluster dimensions

For the dimension number of clusters, results show that the approximation quality correlates positively

with the number of clusters k. This finding is intuitive, yet reveals a fundamental trade-off and adverse

relation of the two overarching requirements of the research objective: Finding a representative, yet

minimal, set of system states. The desired minimal number of system states comes at the cost of

accuracy of the approximation. Additionally, the analysis reveals that IEM incur the law of diminishing

returns by increasing k. There are considerable marginal gains up to the threshold k = 100, whereas they

decline after. To comply with the requirement minimal, while meeting the requirement representative,

more prominence is allocated to the Rangek = (1, . . . , 100), whereas less concern is given to the cluster

scenarios with k > 100 in the following. Results presented in Section 5 are based on the adjusted Range
′

k,

which has an incremental size of five in Range
′

k = (1, 5, . . . , 100), and 50 in Range
′

k = (100, . . . , 300),

totalling 25 different k ∈ Range
′

k.6

Regarding the two cluster dimensions algorithm and representation, four conclusions can be drawn.

First, WARD is the most potent algorithm among the HACAL. A possible explanation may be that the

5Note that, each curve is not a continuous function but maps discrete values that are linearly extended in intermediate

values.
6Noteworthy, previous studies use the elbow method to determine the optimal number of k [5, 28, 30]. For the adjusted

Range
′
k, no distinct curve kink can be determined, nor are the curves monotone. Thus, the elbow method is not applicable

here.

13



500

750

1000

1250

1500

1750

2000

2250

2500

R
M

S
E
cl

[
/M

W
h e
l]

0 50 100 150 200 250 300
number of clusters K

(a) RMSEcl for all ARS over k.

0.0

0.2

0.4

0.6

0.8

V
ar

C

0 50 100 150 200 250 300
number of clusters K

(b) VarC for all ARS over k.

0.8

C
or

rE

0 50 100 150 200 250 300
number of clusters K

0.0

0.2

0.4

0.6

S LIN K-c

S LIN K-m

CLIN K-c

CLIN K-m

UPM GA-c

UPM GA-m

WPM GA-c

WPM GA-m

UPM GC-c

UPM GC-m

WPM GC-c

WPM GC-m

K-M e d oid s -c

K-M e d oid s -m
fu zzy K-M e a n s -c

fu zzy K-M e a n s -m

WARD-c

WARD-m

K-M e a n s -c

K-M e a n s -m

r e j e c t e d  A R S A R S  f u r t h e r  u n d e r  c o n s i d e r a t i o n

(c) CorrE for all ARS over k.

Figure 4: Overview of IEM for all ARS depicted over the original Rangek.
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Table 2: Relative IEM RMSErel
cl , VarCrel and CorrErel for 14 hierarchical and six partitional ARSs.

HACAL RMSErel
cl HACAL VarCrel HACAL CorrErel

WARD-c 842 WARD-m 0.8264 WARD-m 0.1059

CLINK-c 874 WPGMA-m 0.8082 WPGMC-m 0.1124

UPGMA-c 898 CLINK-m 0.8055 WPGMA-m 0.1135

WPGMA-c 904 UPGMA-m 0.8034 CLINK-m 0.1160

WARD-m 928 UPGMC-m 0.8018 UPGMA-m 0.1254

UPGMC-c 939 WPGMC-m 0.7815 UPGMC-m 0.1330

CLINK-m 964 WARD-c 0.6435 UPGMA-c 0.1485

UPGMA-m 979 UPGMA-c 0.6338 WARD-c 0.1502

WPGMC-c 981 WPGMA-c 0.6304 WPGMA-c 0.1518

WPGMA-m 991 CLINK-c 0.6296 CLINK-c 0.1519

UPGMC-m 1020 UPGMC-c 0.6196 UPGMC-c 0.1546

WPGMC-m 1064 WPGMC-c 0.6076 WPGMC-c 0.1570

SLINK-c 2311 SLINK-m 0.0671 SLINK-c 0.2399

SLINK-m 2399 SLINK-c 0.0546 SLINK-m 0.2781

PARTAL RMSErel
cl PARTAL VarCrel PARTAL CorrErel

k-Means-c 810 k-Means-m 0.8307 k-Means-m 0.1016

k-Medoids-c 855 k-Medoids-m 0.8169 k-Medoids-m 0.1086

k-Means-m 896 fzy-k-Means-m 0.7196 fzy-k-Means-m 0.1399

k-Medoids-m 926 k-Means-c 0.6474 k-Means-c 0.1508

fzy-k-Means-c 1023 k-Medoids-c 0.6373 k-Medoids-c 0.1554

fzy-k-Means-m 1082 fzy-k-Means-c 0.5494 fzy-k-Means-c 0.2015
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algorithm merges the two clusters that are associated with minimum increase in inner-cluster variance.

As much information as possible on the absolute observation values, as well as the temporal and spa-

tial variability among the observations is preserved at each merging step. On the other hand, SLINK

scores lowest ratings. This might be related to its tendency to form cohesive, elongated cluster chains

[43]. Observations that are rather unalike are grouped together in one cluster causing a great loss of

information.

Second, among all PARTAL, k-Means achieves salient results. This could be due to the employment

of the enhanced k-Means++, which performs a more sophisticated seeding procedure before the cluster

process starts [44]. It suffers less from its greedy nature to opt for local instead of global optima.

Next, ARS using WARD and k-Means outperform all other algorithms within their cluster algorithm

class. The respective top-rated ARS obtain similar scores, indicating that neither of the two algorithms

are superior to the other. Based on the relative IEM no straightforward decision in favor of either of the

classes can be taken.

Finally, with respect to cluster representation, there are ambiguous results. A centroid-based cluster

representation generates system states that closer correspond to their historical equivalents in the original

data. This is because a centroid constitutes the arithmetic mean of a cluster. Every observation within a

cluster equally contributes to the final representative. On average, the centroid represents all observations

grouped together the best and the deviation from historical values altogether is minimized. However,

extreme events are averaged out, causing a smoothing effect of the inherited variability. The drawback

of centroids is the merit of a medoid-based cluster representation. Medoids inherit a greater deal of

temporal and spatial variability. A medoid is an actual observation of the original data set and is more

likely to contain extreme values, retaining a greater deal of the original variability.

In conclusion, IEM rule out inefficient cluster scenarios and allow for limiting the cluster dimension

space.7 The remainder of the analysis focuses on four ARS that proved most performant in approximation

quality: WARD-c, WARD-m, k-Means-c, and k-Means-m, while applying the adjusted Range
′

k. The total

number of scenarios reduces to 100 (25 different k× 2 representations × 2 algorithms).

5. Results on market model-based investigation

This section discusses results on the model-based approximation quality of the identified clusters and

related implications for the analysis.

5.1. Results on absolute and relative output error metrics

The base case serves as a benchmark in the following elaboration. Its TCbase are 40.30 bn e, consisting

of 40.03 bn e generation cost, 0.25 bn e curtailment cost, and further negligible cost components.

Figure 5 illustrates a selection of obtained absolute OEM. The curves using the same algorithm overlap

almost perfectly with negligible deviations, regardless of the applied cluster representation. For simplicity,

7We assume that algorithms with inferior IEM results cannot achieve superior OEM results.
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WARD is used interchangeably for both WARD-c and WARD-m as well as k-Means for k-Means-c and

k-Means-m as of now. At the lower end of Range
′

k remarkable incremental gains of additional clusters

are realized. For approximately k > 15, the metric curves begin to oscillate with more or less strong

kinks, and flatten at k ≥ 100.8 The latter does not allow for meaningful inference, but is caused by the

discrete nature of of Range
′

k that enlarges its increment size from 5 to 50 for k ≥ 100. WARD-based

curves have a rather smooth progression, whereas k-Means curves oscillate more extremely. If not stated

otherwise, k-Means curves have their lowest local optimum at k = 15 and global optimum at k = 70

within the set of defined cluster numbers. Here, optima are either maxima or minima, depending on the

considered metric. The lowest local and global optimum (also within the defined set of cluster numbers)

of the WARD curves occur at k = 20 and k = 55.

The convergence behavior of TCARS toward TCbase is illustrated in Figure 5a. None of the TCARS

reach the level of the base case, i.e., CostE > 0 over all k ∈ Range
′

k. Although achieved at different k,

the optimal points across all ARS closely resemble and deviate by less than 0.35 bn e. The L1-distance

curves closely follow CostE’s equivalents and exhibit the same extrema properties.

Figure 5b shows generation costs, which never achieve the base case level but fall below by some 2.5

bn e on average. Since generation costs take the majority of the TC, the curves approximate CostE’s

patterns, only in a mirrored fashion. k-Means’ global maxima within the defined set of cluster numbers

at k = 70 considerably outperform WARD’s by 0.5 bn e, whereas the optima at k = 20 (WARD) and

k = 15 (k-Means) almost level.

Figure 5c presents VRE curtailment costs, which are mainly caused by must-run restrictions and

excess VRE generation. The curves exhibit stronger oscillations, yet flattening the higher k. While

WARD curtailment deviates rather moderately from the base case at k = 20, k-Means deviates largely

at k = 15. At the previously considered extreme points k = {55, 70}, the difference declines significantly.

The temporal occurrence of curtailment in scenario runs corresponds with the base case.

Price formation benchmarks are shown in Figure 5d. While k = 20 already constitutes WARD’s

global minima within the defined set of cluster numbers, k-Means’ optima occurs at k = 250. Although

obtained at very different k, minima levels are similar. WARD outperforms k-Means at lower k ∈ Range
′

k

and appears to run smoothly, whereas k-Means curves incur strong kinks. RMSEPDC results are similar

to MAEPDC curves, and not illustrated here.

Table 3 presents obtained relative OEM. WARD-based ARS attain slightly better values across all

relative OEM. As far as the representation forms are concerned, differences are insignificant.

5.2. Discussion and implications for cluster dimensions

All OEM consistently support local or even global optima at k = 15 for k-Means and k = 20 for WARD

(within the defined set of cluster numbers). Given the trade-off between the requirements minimal in

8Note that, for very large k � 300, the curves converge to zero in Figures 5a and 5d or to the base case indicated by

the black lines in Figures 5b and 5c. Since this paper aims at finding a minimal set of representative system states, any

k � 300 is not considered for the analysis.
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Figure 5: ARS view on the CostE, generation cost, VRE curtailment, and MAEPDC at solution. While not perfectly

matching, the ARS curves using the same algorithm are very similar and overlap for many k ∈ Range
′
k.
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Table 3: Relative OEM CostErel [bn e], L1-distance rel [bn e], MAErel
PDC [e/MWhel], and RMSErel

PDC [e/MWhel].

ARS CostErel L1-distancerel MAErel
PDC RMSErel

PDC

WARD-c 3.283 6.731 1.6392 3.1584

WARD-m 3.283 6.731 1.6393 3.1557

k-Means-c 3.329 6.829 1.793 3.4170

k-Means-m 3.329 6.829 1.797 3.4239

number and representativeness, global optima at higher k are discarded. There are considerable gains in

representativeness at lower ranges of k ∈ Range
′

k up until the aforementioned lowest local optima since

more variability in fundamental data can be processed by the model. Once the number of hourly system

states is larger than the determined optimal thresholds, incremental returns on representativeness are

not necessarily guaranteed. The fluctuations could be for two reasons. Perhaps the identified system

states at locally (or globally) optimal k capture a great deal of temporal and spatial variability given

their specific cluster parameters. Alternatively, the model happens to work well with the system states

in conjunction with the time-dependent fundamental data of the respective time periods that have not

been clustered. In conclusion, out of the 25 different k ∈ Rangek, k = {15, 20} clusters are superior.

At optimal k, there is no cost convergence, neither for WARD nor k-Means. Instead, the investigated

ARS similarly underestimate costs by some 2.5 bn e compared to the base case. One of the rare

significant differences between WARD and k-Means appear in curtailment. In case of Denmark, as

the major market zone suffering from curtailment, WARD outperforms k-Means at optimal k by far.

In general, model shortcomings occurring in the base case also appear in scenario runs. Infeasibilities

are directly caused by exogenous transmission and must-run restrictions that are not processed in the

cluster analysis. However, clustered load and VRE generation patterns indirectly exert influence on these

restrictions, which may force the model to curtail. The cluster analysis inherits temporal and spatial

variability to the clustered system states, favorable or unfavorable in terms of model solution.

The analysis of price formations yields no significant difference between WARD and k-Means-based

ARS. On average, the former appears to closer resemble the base case, yet only to a marginal extent. At

optimal k, metrics results are similar.

Neither absolute nor relative OEM identify the most efficient cluster representation form. A centroid

constitutes a synthetic mean of a cluster and has no affiliation to a certain point in time. This is why it

is not possible to assign the remaining unclustered fundamental time-dependent input data to centroid-

based system states. Instead, the hourly data of the observation that is closest to the centroid, i.e., the

medoid, is used. This technical necessity is a small adjustment, yet may at least partially explain the

almost perfect overlap of medoid- and centroid-based OEM.

To conclude, the model-based investigation allow for a further reduction of the cluster dimension space

with regard to the optimal cluster number. While the WARD algorithm produces the most representative

set of system states at k = 20, k-Means determines k = 15 as optimal. Due to the applied increment size
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of five, it can be that the true underlying optimal k ∈ [11, . . . , 19] for k-Means and k ∈ [16, . . . , 24] for

WARD. Given this uncertainty, the deviation of the optimal cluster number between the two algorithms

is deemed irrelevant. As discussed in Section 2.2, the number of clusters determined in previous research

ranges from 15 up to several hundred typical periods. The identified cluster number in this paper is

located at the lower end of this range. Putting aside that WARD incurs less fluctuation of average

cost deviation when varying k compared to k-Means, no recommendation in favor of either of the two

algorithms and representation forms can be drawn.

6. Analysis of the representative system states

Although load and PV follow typical diurnal patterns, wind penetration is rather random. To reconcile

the patterns of all clustered system elements, Figure 6a shows a categorization of all hours of the day

into four phases following diurnal fluctuations of residual load (load net of renewable generation) profiles

of the CWE countries. The profiles resemble the typical ’camel back’ with peak times during morning

and afternoon.

Figure 6b illustrates the seasonal and diurnal distribution of the identified representative system states.

In terms of seasonal distribution, k-Means selects primarily system states from winter (six clusters) and

summer time (seven clusters), representing approximately 40% and 50% of the original 8784 hourly

observations, respectively. The spring cluster accounts for 6%, the fall cluster for 4%. In contrast, the

system states chosen by WARD are rather evenly distributed throughout the year and across all seasons.

Single cluster weights range from 2% to over 15% for WARD, and 3.4% to 10% for k-Means.

For diurnal patterns, both cluster configurations primarily select system states occurring during the

day period: k-Means 47% and WARD 75%. The vast majority of these states are associated with hours of

the morning hump and the subsequent saddle. Each cluster configuration selected only one hourly system

state from the afternoon hump. The day period system states chosen by WARD are from all seasons. In

contrast, k-Means picks only states from winter and summer days. Besides the day phase, WARD selects

three spring evening ramp-down states, and five night states from summer, winter, and fall. k-Means

identified four evening ramp-down and four night system states across all seasons. Intriguingly, none of

the cluster configurations selected a hourly system state from the morning ramp-up.

Each system state is associated with a certain hour of the day, and contains a value for each each

system element and country. Comparing each of these values to its average overall 366 values of this

hour within 2016 allows for a coarse labeling of the system states with tendencies (Section SI.4 provides

mathematical formulas for these averages). Table 4 illustrates these tendencies, which may be either

largely positive (’high’), i.e., the levels of the representative system states tend to be higher than the

average of the associated hours across one phase of the day. Or negative deviations (’low’) prevail, i.e., the

system state levels are below their average. A hyphen marks absent tendencies. For instance, WARD has

the tendency to select system states with rather high load requirements during the day and night, and low

load levels during the evening hours, with respect to the average load of the select hours of the phases.
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(a) Daily residual demand profiles of the clustered time series and concomitant four phases of the day. Greyed lines depict

all 366 daily profiles of 2016, colored lines show average profiles.

(b) Seasonal and diurnal distribution of the representative system states. Colors show seasonality, hatch patterns indicate

diurnal structures: night period (10pm - 3am, cross-diagonal hatch), morning (3am - 6am, not visible as no morning hours

are selected), daytime (6am - 6pm, no hatch pattern), evening (6pm - 10pm, dotted hatch with lines). The width of each

cell corresponds with the cardinality of a cluster.

Figure 6: Diurnal phases of the residual load and seasonal and diurnal distribution of the determined system states.
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These tendencies are generalizing, thus to be taken with caution since there are also few deviations

contradicting the general tendency. The determined representative load values closely resemble their

average for both k-Means and WARD. In contrast, deviations from their average range from 30 to 40%

for wind, and centre around 80% for PV, without large differences between the cluster configurations.

Table 4: Tendency of the dynamics captured by the representative system states, compared to the hourly average feature

values.

WARD20 k-Means15

day evening night day evening night

load high low high high - -

PV - high - high high -

wind onshore - low low low high low

wind offshore - low low - - low

The identified typical system states suffer from a smoothing of extreme events (see Section SI.1

for elaboration). Table 5 illustrates the Mean Absolute Error of the system states to the corresponding

maxima (MAEMAX) and minima (MAEMIN ) for each system element. They indicate the mean deviation

of the values inherited to the system states from the maximum or minimum of the original data set of

that hour a system state is associated with (see Section SI.4 for mathematical definition). By way of

example, the hourly load levels of the identified system states are, on average, almost nine gigawatts

below and above the corresponding maxima and minima of the hours associated with the selected states.

This smoothing explains why there is no cost convergence towards the TCbase or the generation costs of

the base case (Figures 5a and 5b). Lower upper and lower extreme load levels can be supplied with less

cost-intense generation technologies. The representation quality of k-Means outperforms WARD with

regard to capturing low load and wind generation extremes, as well as high load and high PV generation

patterns. WARD incurs lesser smoothing for low PV and high wind generation patterns. However,

differences between the two cluster configurations are rather marginal compared to the amplitude of the

metrics.

Table 5: Mean Absolute Error to the corresponding maxima or minima of the hours associated with the system states for

each system element [MWh/h].

k-Means15 WARD20

MAEMIN MAEMAX MAEMIN MAEMAX

load 8790 8573 8857 8665

PV 1194 1293 1124 1802

wind onshore 2355 6523 2461 6321

wind offshore 675 1049 695 1027
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7. Summary and modeling implications

This paper presents a structured three-staged approach to evaluate and compare hierarchical and

partitional cluster methods for temporal aggregation in electricity market modeling. Fundamental elec-

tricity market data on electricity demand, PV, and wind penetration in the CWE region are clustered

and serve as input to a flow-based electricity dispatch model. In total 260 cluster scenarios, differing in

terms of cluster algorithm, cluster representation, and cluster size, are scrutinized by IEM and OEM.

These metrics allow for statistical validation and application-based evaluation of cluster scenarios.

Findings support the selection of appropriate cluster algorithms for time series reduction in computa-

tional costly electricity market modeling. WARD and k-Means are most performant among hierarchical

and partitional cluster algorithms. Even though k-Means patterns are slightly more sensitive to variations

in the number of clusters, i.e., they incur more volatility, there is no significant difference between WARD

and k-Means. This justifies the selection of WARD and k-Means in previous model-based analyses.

The devised approach is applicable to various types of electricity system model applications or, more

generally, to applications where a temporal aggregation of time-variant fundamental input data is re-

quired. The selection of data that is being reduced by cluster analysis depends on the scope and technol-

ogy portfolio of the used energy model. For instance, additional electric loads from other energy-intense

sectors that are exogenously added to the demand from the power sector should be included. Likewise,

demand profiles for driving from battery-electric vehicles should be clustered. In contrast, there is no

need to cluster load profiles of endogenously modeled loads, such as endogenous charging and discharging

of battery-electric vehicles with re-conversion option. Clustering weather data instead of VRE avail-

ability factors may increase approximation quality, yet, comes at the cost of increased complexity and

computational burden as more variables need to be processed. Historical VRE generation profiles may

underestimate the actual generation potential since they are already reduced by VRE curtailment. With

an increasing electrification of the entire energy system, VRE surplus is likely to be largely used be-

yond the power sector in the future. Clustering residual load may resolve this issue, which merits future

research.

This paper also provides an approach for assessing and comparing a large number of possible cluster

analysis configurations. In light of the arising of many new aggregation techniques, the approach can

guide future selection processes of appropriate temporal reduction methods.

Besides cluster algorithm, representation quality depends on selection of cluster representatives.

Centroid-based approximations best resemble historical values, whereas medoids are more efficient in

capturing both spatial and temporal variability of the original data set. Hence, medoid-based representa-

tives are more suitable for applications that strongly rely on an appropriate representation of (co-)variance

present in the original data.

The use of IEM reveals the law of diminishing returns with respect to the number of clusters. This

means that the number of clusters, hence also the number of representative system states, can be substan-

tially reduced. Here, a distinct threshold for an adequate number of clusters at k = 100 is determined.
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A large part of the original 8,784 hourly observations can be covered with the significant smaller number

of 100 representatives. OEM results even support a further reduction down to k = {15, 20}, depending

on the algorithm applied. Although OEM results oscillate at smaller k, the average deviation between

the unclustered benchmark and scenario outcomes generally remains at a similar, relatively low level.

In other words, aggregation quality stays the same, regardless the precise number of clusters chosen for

k ∈ Range
′

k when used in short-term dispatch modeling. Hence, whenever an application’s computa-

tional burden is high, clustering can be an efficient and effective method for coping with increasing model

complexity within the discussed limitations, even for a very low number of representative system states.

The proposed methodology allows modelers and market participants to gain valuable insights into

typically occurring system states, hence facilitating a better understanding of the underlying market

functionality. Here, WARD selects representative system states from across all seasons mainly associated

with day-time hours with high load levels, high PV and low wind penetration. In contrast, k-Means

mainly picks winter and summer system states from day-, evening- and night-time, with high demand

and PV levels and erratic wind penetration. This is relevant to applications that model dispatch and

investment decisions for energy infrastructure with strong seasonality or diurnal structures in demand or

supply, such as heat provision.

Certain applications of electricity system models strongly rely on extreme events. Time aggregation

methods, by construction, exclude outliers from the approximation, thus exerting a smoothing effect

on the clustered data. Long-term models capable of endogenous generation and transmission capacity

additions, determine optimal investment decisions such that the maximum residual load can be covered.

The absolute value of maximum residual load contained in the original data set and clustered data may

differ, thus potentially impacting model outcomes. In this application, the degree of smoothing does not

differ significantly between WARD and k-Means.

Noteworthy, the selection of OEM depends on the energy model that uses the clustered input data.

For capacity expansion models, OEM should evaluate the approximation regarding the representativeness

of endogenous capacity variables. Furthermore, results based on OEM must be assessed relative to

the context of their application. Depending on the specific research question and model formulation,

temporal aggregation of time series to hourly, non-consecutive system states may influence inter-temporal

constraints, such as ramping and storage inter-temporality. Furthermore, time series from different years

are likely to influence attained cluster solutions. This merits future research, which may concentrate on

the generation of representative system states consisting of multiple, consecutive hours. Additionally,

dynamic cluster algorithms may bear potential for improvement of approximation quality, in particular

time-spanning flexibilities such as storage or demand side management.

Since we apply a dispatch model with a short-term focus, our analysis is limited to a data set com-

prising only one year. For long-term capacity addition models, using multiple weather years may improve

robustness of cluster results and accuracy of IEM and OEM. Further, we use the Euclidean distance as

proximity measure. Other proximity measures that put more weight on outliers may cause a variation in

results. We leave these aspects to further research.
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SI. Supplementary information

SI.1. Fundamentals of cluster analysis

Han et al. [45] describe data mining as a process to identify and extract useful knowl-

edge in form of pattern recognition from a comprehensive data set, e.g. based on machine

learning. The latter is dedicated to find ways for computers to learn automatically based

on data and can be divided into two main disciplines: supervised and unsupervised ma-

chine learning [43, 46]. While supervised learning relates to the classification of unlabeled

patterns based on already labeled training data, unsupervised learning corresponds to an

exploratory learning process without already predefined classification semantics. Cluster

analysis is a major discipline of unsupervised machine learning and is used for data seg-

mentation. Attributes of sub-populations within unlabeled data can be identified in order

to compress data. Instead of applying individual data points, obtained clusters can serve

a specific purpose [43].

The generic procedure for pattern clustering follows five consecutive steps as illustrated

in Figure SI.1 [39]: First, pattern representation is analyzed in terms of feature constitu-

tion of the unlabeled data, such as number, type and scale. Second, given quantitative

features, proximity is defined as a distance metric that quantifies similarities of patterns.

Third, a cluster algorithm is carried out. Identified structures in the data allow for the

extraction of a simple and compact representation of the reference data. Finally, the ob-

tained output requires a validity analysis to test for meaningful clusters. Once the cluster

solution is validated, the user then interprets clusters.

Pattern
representation

Proximity
measure Clustering Data

abstraction
Output
evaluation

Figure SI.1: General clustering procedure.

Given quantitative features, proximity of two observations is indicated by a distance

metric that quantifies (dis)similarities of patterns. Patterns can consist of single or mul-

tiple data points; hence, distance can be measured between single observations and/or

groups of observations. In line with aforementioned studies, this work focuses on the most

popular and easy-to-access distance metric, the Euclidean distance.

The research community has developed a rich variety of algorithms, on the order of

thousands, since the 1960s [46]. Inter alia, they are distinguished by the separation of the
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obtained output cluster structure, which can be hard or fuzzy [43, 46]. In fuzzy cluster-

ing, a pattern can belong to multiple clusters to some degree of membership, while hard

clustering allocates each pattern to exactly one cluster. The partitioning criterion defines

whether clusters are of the same semantic level or are hierarchically ordered, incorporat-

ing different semantics at each level of the hierarchy. Agglomerative HACAL perform

‘bottom-up‘ merging of single observations until a termination condition is satisfied or all

observations are grouped into one cluster altogether. Essentially, there are five categories

for clustering analyses as depicted in Figure SI.2: Hierarchical, partitional, density-based,

grid-based, and model-based algorithms [45–47].

Figure SI.2: Taxonomy and categorized examples of clustering algorithms (based on [45–47]).

The generic procedure for agglomerative HACAL is carried out as follows [43]: Let

N be a set of observations, D the distance matrix denoting the Euclidean distance dmo

between all observations or patterns m, o ∈ N , ui the cardinality of a cluster Ci. As a

first step v = 0, the algorithm places all observations into singleton clusters, i.e., one

observation per cluster. The obtained universal cluster structure is denoted Cv = C0.

Based on the ordered list of distances for all distinct pairs of observations or patterns

Dv, the algorithm finds the pair of clusters that is closest to each other, i.e., it minimizes

distance Dv for all clusters Ck and Cj comprised in Cv. In case of a tie, it chooses any

pair with smallest distance:

Dv = minD(Ck, Cj) ∀k 6= j;Ck, Cj ∈ Cv (SI.1)

This merging step is iterated until all observations are grouped into one cluster N ∈
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Cn−1. In order to keep computational costs at minimum, the distance matrix D can be

calculated in a recursive way after each merging step [48, 49].

There are a vast variety of agglomerative HACAL. While they all follow the generic

procedure in (SI.1), they differ in terms of the employed linkage measure that determines

the clusters to be merged. It is denoted by the construction formula of the distance mea-

sure D(Ck, Cj) and its recursive parameters. Seven agglomerative HACAL are employed

in this paper: SLINK, Complete-Linkage Clustering (CLINK), Unweighted Pair Group

Method using Arithmetic Mean (UPGMA), Weighted Pair-Group Method using Arith-

metic Mean (WPGMA), Unweighted Pair-Group Method using Centroids (UPGMC),

Weighted Pair-Group Method using Centroids (WPGMC) and WARD.9

The majority of these algorithms join clusters according to a linkage measure that

aims at merging the most similar clusters. By contrast, WARD is based on the idea

of minimizing the loss of homogeneity, i.e., the loss of information associated with each

merging step [50]. This loss is quantified by the Sum of Squared Errors (SSE) objective

function. To compute the SSE, the mean vector of all observations in Ck, called centroid

x̄k, is required:

x̄k =
1

uk

∑
n∈Ck

xn (SI.2)

The centroid x̄k+j for a newly merged cluster Ck+j is defined by all original observations

in Ck and Cj. The distance between the new cluster Ck+j and any other cluster is

computed by the Euclidean distance between the centroids, respectively. WARD aims at

minimizing its objective function SSE, which is based on the inner-cluster variance [50]:

SSE =
∑
n∈Ck

||xn − x̄k||2 (SI.3)

The algorithm merges the two clusters that are associated with minimum increase in

inner-cluster variance when merged. In other words, it compares all potential merging

pairs, as well as corresponding deviations as measures for information loss and selects the

merge that results in the smallest deviation from the new centroid.

In contrast to HACAL, which produce a cluster hierarchy, PARTAL obtain a one-level,

non-hierarchical partition per clustering step. Their application requires three parameters

9Linkage measures and recursive parameters are detailed in [49].
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of the cluster analysis procedure to be specified a priori : The number of desired clusters k,

the cluster initialization procedure and the distance measure [46]. By way of example, the

general partitional clustering procedure can be described based on k-Means - probably

the most renown partitional cluster algorithm - which optimizes an objective function

J(C) based on SSE over all clusters determined in number by k [43, 46, 51]: At first,

the algorithm places k initial centroid seeds x̄k across the feature space or data, either

randomly or according to some seeding criterion. It then assigns each observation to

the cluster Ck with the shortest distance from the respective cluster centroid x̄k to the

observation, using some distance measure. In case of a tie, it chooses any cluster Ck with

smallest distance:

J(C) = min
∑
K

∑
n∈Ck

||xn − x̄k||2 (SI.4)

Given the obtained partitioning is denoted C1, the algorithms recalculates the centroid

x̄k as the mean of all members of cluster Ck. The reassignment is iterated such that new

partitions Cv≥2 are generated until some convergence criterion is met. Typical criteria

are no or only marginal relocation of cluster centroids; no or only marginal reassignment

of cluster memberships; or some threshold for SSE decrease. Since it minimizes devia-

tion between observations and respective centroids, the objective function J(C) can be

interpreted as cost of configuration. The procedure above implicitly ensures that, at each

clustering iteration, the value J(C) decreases.

HACAL lead to relatively low computational costs, as no combinatorial complexity

needs to be considered [43]. However, they suffer from rigidity [45, 46]. Cluster structures

found at each merging step cannot be undone and the next step might build upon an

erroneous cluster partitioning. In contrast, PARTAL induce high computational costs as

theoretically only an exhaustive enumeration of all possible combinations yields a global

optimum. To overcome this complexity they adopt greedy heuristics. Instead of global

optima, they opt for the locally optimal choice.

Density-based methods draw upon the number of observations in the dimensional

neighborhood. Clusters are grown as long as the density exceeds some termination crite-

rion, such as a minimum amount of observations within a certain radius. As for grid-based

methods, a finite number of grid cells are produced covering the data space. For each

cell some integrated clustering operation is conducted, which then can be combined with
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methods of other cluster categories. Finally, model-based approaches assume that data

were produced according to model structure and attempt to recover a model for each

cluster. Once recovered, it then determines the assignment of the original data set to

clusters [47].10

Once a final cluster partition is determined, a representative needs to be retrieved

from any identified sub-population. It is derived by reducing the entire cluster to a

single, typical profile that ideally accurately reflects the global characteristics of all cluster

members [30]. A straightforward and intuitive approach is to use the centroid x̄k as

representative. Although simple averaging allows every observation within a cluster to

contribute equally to the final representative, it causes the centroid to lack extremes,

thus inducing temporal smoothing of extreme values. Instead of creating a synthetic

representation, the actual observation that best represents the cluster can be used, i.e.,

the observation that is closest to the centroid, called the medoid x̂k of a cluster Ck. It is

more likely to contain extreme values.

x̂k = arg min
xl

1

N

N∑
i=1

||xl − xi||2 (SI.5)

Due to the fact that clusters differ in number of assigned observations, each representa-

tive needs to be weighted with respect to its relative cluster size.11 This accounts for the

fact that there are observations reflecting rather common system states, whereas extreme

system states occur rather occasionally. Besides the weighting according to the relative

cluster size, no further weighting is carried out.

SI.2. Data refinement procedure

The pattern matrix is not readily applicable for two reasons: First, the original data

exhibit different temporal and spatial resolution. For instance, German VRE genera-

tion or demand time series were only retrievable with a 15 minute interval structure,

while ELTRAMOD-FBMC requires an hourly resolution. The data are aggregated and

distributed according to the resolution of the model.

Second, many of the time series are incomplete, requiring deliberate data refinement.

Complete time series are an crucial prerequisite to cluster analyses. Missing data points

10As elaborated in Section 2.2, the aim of this paper is to scrutinize the usage of HACAL and PARTAL. Thus, density-,

grid-, and model-based algorithms are beyond the scope of this paper.
11See [2] for the applied weighting method in this work.

6



impede comparability of observations and computation of distances between one another,

thus potentially distorting obtained cluster solutions. The data exhibit three categories

of gaps: Up to three consecutive hourly data points, four to 24 consecutive data points,

and gaps comprising more than an entire day. Each gap is replaced with a sequence of

synthetically generated data points, which is tailor-made to the respective gap category

and feature. Gaps of the first category are linearly interpolated, as illustrated in Figure

SI.3a. Since load and VRE profiles underlie intra-weekly and, in the case of PV, diurnal

patterns, the second category requires a more deliberate replacement procedure, which is

displayed in Figure SI.3b. While each hour of the replacement sequence for load time series

is derived from the mean of the same hour of the same weekday one week before and after,

VRE replacement sequences are derived from the rolling average of the corresponding time

section of the previous and the following day of the same time series. To avoid jumps

in the data, each sequence is linearly factorized to fit the level of the time series at the

respective gap, i.e., it is multiplied by the average level of the last and first existing data

point that encompass the gap. While the same procedure applies to gaps in load data

comprising more than 24 hours, the substitution of gaps within VRE generation time series

follows a more sophisticated approach. Assuming that the large-scale weather conditions

of neighboring countries closely resemble, VRE generation does so, too. This relation

can be used to approximate periods of missing data, as shown in Figure SI.3c. The most

suitable substitution area is assigned to each country and generation technology, according

to geographical constitution or data quality. The replacement sequence is selected from

the reference time series of the replacement area corresponding to the time section of the

gap. To smoothly fit it into the time series containing the gap, the replacement sequence

is scaled by the generation capacity ratio of the respective countries and technologies.

SI.3. Mathematical formulary for input and output error metrics

Let N be the total number of observations, f a feature, F the total number of features,

Ck a cluster in the clustering partitioning C, xf,n, x̄f,k and x̂f,k historical values and their

corresponding cluster representatives, respectively. The RMSEcl over all features and all

hourly values is denoted as:

RMSEcl(x̄) =
1

F

∑
f∈F

√
1

N

∑
Ck∈C

∑
n∈C

(xf,k − x̄f,k)2 (SI.6)
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(a) Exemplary gaps in Belgian onshore wind generation data and respective substitution sequences. The gaps encompass

three and two hourly values, respectively.

(b) Exemplary gap in German load data and substitution sequence. The gap encompasses six hourly values.

(c) Exemplary gap in DE onshore wind generation data and substitution sequence. The gap encompasses 24 hourly values.

Figure SI.3: Exemplary gaps in data for all three categories and respective substitution sequences..
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Let fs and f ∗s be a feature of the original and approximated data set based on either

the centroid or the medoid, respectively. The VarC of over all feature time series is defined

as:

V arC(fs) =
1

F

∑
f∈F

var(f ∗s )

var(fs)
(SI.7)

Let fs and fr be two features of the feature set and f ∗s and f ∗r their corresponding

approximations. The CorrE is denoted as:

CorrE =
1

F

∑
f∈F

|corr(fs, fr)− corr(f ∗s , f
∗
r )| (SI.8)

Let TCbase and TCscen be the TC of the base case and the model scenario, respectively,

the CostE is defined as:

CostE = TCbase − TCscen (SI.9)

Let Z be the total number of market zones z, T the set of hours t, pbaset,z and pscent,z the

day-ahead price in zone z at the hour t of the base case and of a scenario, respectively.

The MAEPDC and RMSEPDC are then denoted as:

MAEPDC =
1

Z ∗ T
∑
z∈Z

∑
t∈T

|pbaset,z − pscent,z | ∀ z ∈ ZCWE (SI.10)

RMSEPDC =
1

Z

∑
z∈Z

√
1

T

∑
t∈T

(pbaset,z − pscent,z )2 ∀ z ∈ ZCWE (SI.11)

Let card(·) be the cardinality of a range, i.e., the number of elements contained in

the range, the RMSErel
cl is then denoted as follows, while the remaining relative IEM and

OEM are computed accordingly:

RMSErel
cl =

∑
K RMSEcl

card(Rangek)
(SI.12)

SI.4. Mathematical formulary for system state analysis

Let C be the total number of countries c, T ∗ the set of hours t∗ ∈ [0..23] associated

with the representative system states, vorig,max
c,t∗ and vorig,min

c,t∗ the maximum and minimum

value occurring in the original data set for hour t∗ for country c, vapproxc,t∗ the feature value
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captured by the representative system state, respectively. The Mean Absolute Error of

the system states to the corresponding mean (MAEAV G), MAEMAX , and MAE of the

system states to the corresponding minimum (MAEMIN) for one system element (load or

a VRE generation) are then denoted as:

MAEAV G =
1

C ∗ T ∗
∑
c∈C

∑
t∗∈T ∗

|vorig,avgc,t∗ − vapproxc,t∗ | (SI.13)

MAEMAX =
1

C ∗ T ∗
∑
c∈C

∑
t∗∈T ∗

|vorig,max
c,t∗ − vapproxc,t∗ | (SI.14)

MAEMIN =
1

C ∗ T ∗
∑
c∈C

∑
t∗∈T ∗

|vorig,min
c,t∗ − vapproxc,t∗ | (SI.15)

SI.5. Implementation specifics and modifications to the model

The cluster analyses were conducted with the open-source environment Python. Wher-

ever possible, predefined functionality is used, e.g. Pandas, NumPy, SciPy, and scikit-

learn library [52–55]. If no other implementation is available, the algorithms are manually

coded, e.g. the implementation for k-Medoids is based on [56], but enhanced to guarantee

robustness and fit the purpose of this paper. The code is available upon request. Both,

the k-Means++ implementation - which out-speeds k-Means in terms of convergence [44] -

and the k-Medoids, employ Forgy‘s initialization [57]. Table SI.1 lists all Python packages

and their version numbers used for the cluster analysis.

Table SI.1: Name and version number of Python packages used for clustering.

package version used functions for clustering

scipy 0.18.1 scipy.cluster.hierarchy: dendrogram, linkage, fcluster

scipy.spatial.distance: pdist, euclidean, squareform

sklearn 0.0 sklearn.cluster: KMeans

sklearn extensions 0.0.2 sklearn extensions.fuzzy kmeans: FuzzyKMeans

The ELTRAMOD-FBMC model is implemented in GAMS and draws upon the base

model specified in [40]. Both the ATC mechanism and FBMC apply within the geo-

graphical scope of ELTRAMOD-FBMC. FBMC is implemented as in [58]. System states

determined by a cluster analysis do not reflect diurnal structures of consecutive hours, but

are selected based on similarity throughout the year. However, the storage functionality

of pump storage power plants requires diurnal structures in the data. To overcome this
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issue, endogenous storage variables are turned into exogenous parameters, which are fixed

at the level of the endogenous model results based on the reference data set. Additional

demand caused by pumping of pump storage power plants affiliated with a zone z is ag-

gregated to a zone level and added to the derivation of the residual demand as exogenous

parameter.
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[26] P. Härtel, M. Kristiansen, M. Korp̊as, Assessing the impact of sampling and clustering

techniques on offshore grid expansion planning, Energy Procedia 137 (2017) 152 –

13

http://dx.doi.org/10.1016/j.energy.2011.08.021
http://dx.doi.org/10.1016/j.energy.2011.08.021
http://dx.doi.org/10.1016/j.enpol.2011.06.062
http://dx.doi.org/10.1016/j.enpol.2011.06.062
http://dx.doi.org/10.1016/j.apenergy.2014.08.072
http://dx.doi.org/10.1016/j.eneco.2016.03.006
http://dx.doi.org/10.1016/j.eneco.2016.03.006
http://dx.doi.org/10.1016/j.eneco.2016.08.001


161, 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind 2017. doi:

https://doi.org/10.1016/j.egypro.2017.10.342.

[27] S. Agapoff, C. Pache, P. Panciatici, S. Lumbreras, L. Warland, Snapshot selection

based on statistical clustering for Transmission Expansion Planning, in: 2015 IEEE

Eindhoven PowerTech, IEEE, 2015, pp. 1–6. doi:10.1109/PTC.2015.7232393.

[28] D. Fitiwi, F. De Cuadra, L. Olmos, M. Rivier, A new approach of clustering op-

erational states for power network expansion planning problems dealing with RES

(renewable energy source) generation operational variability and uncertainty, Energy

90 (2) (2015) 1360–1376. doi:10.1016/j.energy.2015.06.078.

[29] S. Fazlollahi, S. Bungener, P. Mandel, G. Becker, F. Maréchal, Multi-objectives,
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